
Dealing with Scale and Adaptation of Global Web Services Management

William Vambenepe, Carol Thompson, Vanish Talwar, Sandro Rafaeli,

Bryan Murray, Dejan Milojicic, Subu Iyer, Keith Farkas, and Martin Arlitt

HP
[firstname.lastname]@hp.com

Abstract

Service Oriented Architectures (SOA) are becoming the

prevalent approach for realizing modern services and systems.

SOA offers superior support for autonomy (decoupling) and

heterogeneity compared to previous generation middleware

systems, resulting in more scalable and adaptive solutions.

However, SOA have not adequately addressed management,

while traditional management solutions do not sufficiently

scale to address the needs of (global) Web services.

We propose scalable management based on models and

industry standards. We discuss a use case for global service

management, we present its design, implementation and pre-

liminary evaluation. We retain all the benefits of SOA while

also enabling global scale manageability. Our approach pro-

vides manageability that is comprehensible for administrators

yet automated enough for integration into autonomous sys-

tems.

1 Introduction

The increasing scale and complexity of systems and ser-

vices makes them increasingly difficult and expensive to

administer. In addition, traditional enterprise data cen-

ters are being complemented with so called closet com-

puters emerging from remote and home offices. New

computing models, such as Utility Computing [1, 2],

Grid Computing [3], and PlanetLab grow even more

significantly in scale.

Service Oriented Architectures (SOA) [7] contribute to

increased scale and availability of services, but they do

not sufficiently address the management of services. An

update at a moderately-sized data center may require

changes to software on thousands of machines. In the

case of global services in a large enterprise, a software

update may require touching hundreds of data centers.

In addition, there may be interdependencies among the

services. For example, a Web-based e-commerce appli-

cation may consist of a virtual store, catalog, customer

relationship, and billing services, among many others.

At the infrastructure level, this application is usually

mapped on a three-tier system architecture, comprising

the database, application, and Web server tiers. The

application tier further consists of the application server,

the application in question, and other services on which

the application depends. Large scale data centers in

financial, public and private sector, etc. can be signifi-

cantly larger in size with significantly more complex

services.

As services become globally deployed, the design

assumptions are changing. Scalability requirements

change as administrative boundaries are cross. Avail-

ability needs change as companies move from expen-

sive, private networks with well defined policies to the

to the Internet and poorly-defined policies and best

practices. Such shifts require adaptation to unexpected

loads, rebooting and upgrading of machines, networks,

and services. As the systems continue to grow in size

and global deployment, the traditional management

approaches become less effective. To address these new

requirements, we propose a new way of scalable man-

agement, based on the use of models and standards-

based interfaces. The work presented in this paper is

related to our work on approaches to service deploy-

ment and on scalable communication described else-

where [8, 9].

The rest of the paper is organized in the following man-

ner. In Section 2 we overview related standards in the

management area. Section 3 presents a use case sce-

nario. In Section 4 we describe our solution. We evalu-

ate this solution in Section 5 followed by lessons

learned in Section 6. In Section 7 we discuss how our

solution can be extended and then we compare it to the

related work in Section 8. Finally, in Section 9 we

present the summary and future work.

2 Industry Standards Background

Our work relies on the use of industry standards in order

to ensure that there is interoperability between long-

lived global services as well as infrastructures they exe-

cute on. In this section we provide a summary of stan-

dards in the area of models, management, deployment

and workflows.

Web Based Enterprise Management (WBEM), is a set

of management standards for distributed computing

environments, developed by the Distributed Manage-

ment Task Force, Inc. (DMTF). WBEM has been

designed to simplify system management across multi-

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

ple computing environments. The core set of WBEM

standards includes the Common Information Model

(CIM) standard, a data model for representing common

management information for systems, networks, appli-

cations, services, and the dependences between these

components. CIM specifies a schema, which provides

the definitions of the model, and a meta-schema, which

facilitates integrating CIM with other models.

The Web Services Distributed Management (WSDM)

technical committee in OASIS produced the Manage-

ment Using Web Services (MUWS) specification to

describe a standard way to advertise, expose and access

manageability capabilities through Web services. The

specification defines the notions such as manageable

resources, manageability endpoints, and manageability

capabilities. It provides a common way to handle man-

ageability endpoints and assess their identity. Manage-

ment models such as CIM can make use of WSDM

MUWS to make their semantics available through the

standard mechanism for exposing management informa-

tion through Web services.

The GGF’s Configuration Description, Deployment, and

Lifecycle Management Working Group (CDDLM-

WG), pursues Web service deployment in the Grid

space. The CDDLM deployment is an extension of the

OASIS WSDM. CDDLM defines a language for speci-

fying deployment requests, the component model that

enables services to become deployable, and a set of Web

services interfaces (in WSDL) for invoking deployment.

The Business Process Execution Language (BPEL) is a

standard published by OASIS. BPEL for Web services

is an XML-based language designed to enable task-

sharing for distributed computing. BPEL orchestrates

Web Services by specifying the order in which it is

meaningful to invoke a collection of services. A Busi-

ness Process in BPEL is composed of several Web Ser-

vice invocations, Receptions, and Decision Points with

simple conditional logic and parallel flows or

sequences.

3 Use Case: Global Services Management

In this section we consider a scenario involving the

deployment of a global scale, three-tier e-commerce

application. The scenario consists of deploying the

application onto a large number of nodes. Some nodes

support the database, while others support the Web and

e-commerce application. The Web application is config-

ured to connect to the correct database node. It is possi-

ble, in case of failures, to reconfigure the Web

application to migrate to a different database server. A

few nodes have other services running, and these ser-

vices use the default ports of the Web server and data-

base server, which means that the deployed application

has to be configured to run on a different port. The data-

base and Web applications are customized for geo-

graphic location. For example, the application running

on a node in Brazil is presented in Portuguese and

should offer products that are relevant to Brazilian peo-

ple. Configuring the correct language requires detecting

the language to use and then activating the proper Web

application files as well as filling the database with the

right product catalogue.

In this scenario, there is also the possibility of failures.

These faults can happen to one or more Web applica-

tion, database or Web servers. There is some way to

monitor the deployed applications in order to detect

these failures and then take some action to solve the

problem. This scenario requires the following:

1. Web-services-based scalable deployment: for decou-

pled and scalable communication

2. Model-based configuration and adaptation: for

machine-readable system configuration

3. Event-based notification: for scalable failure notifica-

tion (pursued elsewhere by Adams et al. [10])

In our work, the core service model is the same in all

deployments, and the localization is modeled as an

extension to the core model. This allows us to configure,

deploy and manage the services in a coherent manner,

maintaining a consistent view of the deployments,

regardless of customization. Furthermore, using the

standard manageability interfaces enables the compo-

nents to configure each other on as needed basis.

4 Our Solution

We have built a solution to address the problems

brought about in previous sections. The solution con-

sists of model-based services for deployment, health

Figure 1 Solution Components

dependencies

CIM

Repository

BPEL Workflow

Engine

Adaptation Engine

Target Machine

Deployment Engine

Health Monitoring

app

process

Deployment Server

CIM

Repository

BPEL Workflow

Engine

Adaptation Engine

Target Machine

Deployment Engine

Health Monitoring

app

process

Deployment Server

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

monitoring, and adaptation. (see Figure 1). We are using

the solution to manage several instances of JPetStore

services deployed globally on Planetlab [11]. Planetlab

is a research testbed consisting of nodes over the globe.

All of the nodes run a common software package that

includes a Linux-based operating system and support

for distributed virtualization. In summary, Planetlab pro-

vides us with a computing environment that has charac-

teristics of scale, virtualization, and dynamism.

4.1 Deployment Service

Our deployment service is reponsible for performing the

installation, configuration, activation, de-activation, and

de-installation of global application services. It is prima-

rily comprised of an infrastructure component consist-

ing of web services-based deployment and workflow

engines; a service description component consisting of

language parsers and interpreters; and an eventing com-

ponent consisting of event triggers and event visualiza-

tion tools.

To use our deployment service for JPetStore, we first

describe the logic for installation, configuration, and

activation of the service as Java methods of a manage-

ment component. An instance of a JPetStore testbed

consists of a Tomcat server, a MySQL server, and JPet-

Store application files. A typical deployment process

involves the download of each of these packages, the

installation to appropriate folders, their configuration,

and then subsequent activation. We wrote generic Java

components that capture the logic for performing these

actions.

The Java component is designed so that it can read

many of the parameters specific to an application

through a configuration file. The generic Java compo-

nents we wrote include GenericRPMInstaller,

GenericTarInstaller, GenericActivator,

GenericRSyncDownloader, and GenericFailure-

Detector. These components are then distributed as a

library along with the deployment engine infrastructure

package. (see Figure 2 for the example code snippet).

The web services based deployment engine exists on all

of the deployment target nodes. It receives and pro-

cesses the deployment requests given to a deployment

target node. Based on a deployment request, it locates

the appropriate Java component responsible for a

request, and then invokes the appropriate methods on

that component.

At the time of deployment, we describe the specific con-

figuration information needed during the JPetStore

deployment in a well-defined deployment language.

These parameters are, for example, the name of the

deployment server, the package names, the destination

directories, the download byte size, etc. The language

parsers and interpreters execute at the deployment target

nodes. They are invoked during the execution of the

appropriate Java components at the target node.

We also describe the deployment dependencies that

exist among the various components of the JPetStore

package as a workflow. Figure 3 shows the conceptual

workflow needed for an instance of a JPetStore. This is

formally represented in a workflow language, wherein

we describe the destination host, the functionality to be

performed, and the configuration language specification

for the deployment step. In this workflow, we map the

dependency requirements that the application service

provider has specified to the actual instances of the

packages and services within the system. (See Figure 4

for the example code).

The BPEL workflow specifies a composition of tasks to

be performed by the management components and it is

provided to the BPEL workflow engine. The workflow

engine executes at the deployment server node. It parses

and processes the deployment workflow descriptions. It

public class GenericRPMInstaller
{

public boolean install(String parameters) {
// download the packages

RsyncDownloader downloader = new
RsyncDownloader(downloadFromDir,downloadToLocation,
new Integer(downloadBlockSize).intValue());
downloader.download();

// install the package
String installCmd = rpmCmd+downloadToLocation+"/"+rpm;
File file = new File(downloadToLocation);
p = Runtime.getRuntime ().exec (installCmd,null,file);

}
}

Figure 2. Snippet of Deployment Component

Figure 3. Workflow for the Deployment of JPetStore.

Install MySQL

on machine

planetlab1.foo.bar

Configure MySQL

Server

Install Tomcat

on machine

planetlab2.abc.xyz

Install JPetStore

Application

Install MySQL

JDBC Driver

Activate Tomcat on

planetlab2.abc.xyz

Configure Tomcat

Activate MySQL

on machine

planetlab.boo.far

Populate Database

with JPetstore data

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

then invokes the deployment engines on the target nodes

using SOAP. The deployment engine when thus invoked

processes the deployment requests as described earlier.

Various event triggers are started during the deployment

process. The event triggers are written to send notifica-

tions about START, FAILURE, and HEARTBEAT for

the deployed process. These events are then visualized

through visualization tools.

4.2 Health Monitoring Service

The Health Monitoring Service is responsible for moni-

toring the execution of application processes started on

the target machine. The deployment engine tells the

health monitoring service the name of process to be

monitored and whatever happens to that process is

reported to the adaptation service (see Figure 1).

The health monitoring service is formed by three

WSDM-compliant Web services. The DetectFailure

Web service is just a place holder for resource proper-

ties, namely WATCH and NOTIFY. From time to time,

the resource properties are updated, at which time it

sends notification events to its subscribers.

The WatchService Web service subscribes to the

WATCH resource property of DetectFailure. When a

notification is received, the WatchService starts a failure

detection service for monitoring an application process.

The NotifyService Web service subscribes to the

NOTIFY resource property of DetectFailure. Whatever

is written to NOTIFY is then provided to NotifyService

that on its turn translates the WSDM event into an exter-

nal event and it is sent to adaptation service.

The Health Monitoring Service is triggered by the

deployment engine (see Figure 5). Once the deployment

engine has started the deployment of an application, it

calls the SetResourceProperty operation (WS-Resour-

ceProperties) on DetectFailure and sets a new value to

the NOTIFY resource property.

At this moment, NOTIFY is set to a STARTUP event.

The NotifyService is then notified of this event and then

translates it from WSDM to an external event and sends

it to adaptation service. Once the deployment engine has

finished deploying (started) that application, it calls the

SetResourceProperty operation on DetectFailure and

sets a new value to the WATCH resource property. The

WatchService is then notified of the new WATCH value

and based on its content the WatchService starts a fail-

ure detection service.

On its turn, the failure detection service keeps watching

the application process and generates events of the cur-

rent state of that process. It calls the SetResourceProp-

erty operation on DetectFailure and sets a new value to

the NOTIFY resource property. This event is received

by NotifyService and passed on to the adaptation ser-

vice. There are two types of events generated by failure

detection service. The first one is HEARTBEAT, which

tells adaptation service that the designated application is

up and running. The second event is FAILURE. This

event tells the adaptation service that the process is no

longer running on the target machine. After generating a

FAILURE event, failure detection service stops running.

4.3 Model Based Adaptation Service

The implementation of the adaptation service is com-

prised of CIM repositories; a discovery and eventing

mechanism that populates and updates the models

throughout the service lifecycle; and scalable decision

making services that act upon the information in the

models for adaptation.

The motivation for using models is the need to capture

in a structured manner the application details, the depen-

dencies among various application components, and

their relationship with the underlying hardware. For

example, in a standard three-tier application, several

application servers could talk to one database server. So,

if the database goes down, all of the application servers

connecting to this database server would also fail. We

<sequence name="main">
<receive name="receiveInput" partnerLink="client" portType="tns:
PLDBInstallation-Sequence" operation="process" variable="input"
createInstance="yes"/>
.....
<invoke name="invoke-1" partnerLink="deploymentengine-node-24"
operation="invokeEngine" portType="nsx24:DeploymentEngine"
inputVariable="net-xmpp_input"/>
.....
<invoke name="invoke-2" partnerLink="deploymentengine-node-15"
portType="nsx15:DeploymentEngine" operation="invokeEngine"
inputVariable="net-psepr_input"/>
......
</sequence>

Figure 4. Snippet of Deployment WorkFlow Specification

dependencies

Figure 5 Health Monitoring Service

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

look at CIM models as a way of capturing the complex

relationships between different application components.

We are using the WBEM implementation for CIM

repositories. We create a model of JPetStore instances.

Several instances of the JPetstore testbed exist and their

attributes are each customized based on geography and

internationalization.

An eventing mechanism is used to receive change

events from the Health Monitoring Service. This com-

munication between the Adaptation Service and the

Health Monitoring Service happens through an external

publish/subscribe event system. What happens is that

instead of subscribing to DetectFailure's NOTIFY

resource property, the adaptation service subscribes to a

single given topic on this event system. Whatever infor-

mation is written to NOTIFY is translated from a

WSDM event to this event system format. The design

option of using an external publish/subscribe system

instead of directly using WSDM's WS-Notification

mechanism is driven by the scalability required by

highly distributed systems.

Using WS-Notification, the adaptation service would

have to subscribe to all NOTIFY resource properties on

every target machine being deployed. This clearly does

not scale to a large number of target machines (or

nodes). However, by allowing the adaptation service

subscribe to only a single topic, the burden of managing

all events generated is passed to the publish/subscribe

system infrastructure being used. It is assumed that such

system can handle the expected number of events gener-

ated by the health monitoring service.

On receiving these change events, the model is updated

to reflect the changes. The information is then acted

upon by decision making engines. In our implementa-

tion, we perform a redeployment in case of failures.

Such a redeployment action takes into consideration the

dependencies that exist among various application com-

ponents. In many cases, the decision making engine

needs knowledge about the current state across multiple

distributed nodes.

The whole process is prone to failures during deploy-

ment time, which means that our adaptation service

could never receive any FAILURE events because the

Health Monitoring Service had not been launched for

the given deploying component. For these cases, we

start a timeout for every node being deployed. When the

timeout expires and no FAILURE or HEARTBEAT

events have been received, the adaptation service

assumes the node has failed completely and it starts a

process of redeploying the component on another node.

We simulate failures of MySQL servers and demon-

strate the adaptation service executing a redeployment

action and the MySQL servers are restarted.

5 Evaluation

In this section we evaluate our solution by presenting

our experience in developing the solution and evaluat-

ing the scalability of our prototype.

5.1 Experience in Global Service on PlanetLab

Scale, complexity, and dynamism of the PlanetLab envi-

ronment resembles the systems of future. PlanetLab is

an evolving research testbed, and so are the next genera-

tion distributed services. Because we based our design

on standard solutions for the various aspects of the sys-

tem, we were able to build our prototype in less than two

weeks. Our experiments consist of deploying the JPet-

Store application onto 50-100 nodes. On each node, the

JPetStore can be customized based on its geographic

location. This customization requires initializating each

database with its respective products.

The whole deployment process is visualized with a tool

(showing dots on the screen as deployment completes or

fails). The following events took place during our exper-

iments:

• Planetlab nodes were constantly going up and down.

Our initial list of nodes to be deployed during the

experiment had 100 nodes. However, a large number

of those nodes went down, and as a result, our number

of nodes shrank from 100 to 36, then to 22 and then to

12. In less than 36 hours, our setup was reduced to one

tenth of its original size.

• Our management service is not currently capable of

adapting to such varying conditions, nor is the under-

lying infrastructure capable to provide resource guar-

antees. Just before we started running our experiment,

the configuration of our communication infrastructure

was modified. This change was not formally captured

by our system, and as a result, the configuration

changes made to it were not propagated to our man-

agement service and the experiment broke unexpect-

edly.

• The Planetlab network and nodes were highly loaded

leading to unpredictable service response times. Our

management service is neither currently handling

adaptation to such changing conditions, nor the under-

lying infrastructure provides any sort of resource guar-

antees. As a result, the time for the deployment events

to get propagated through the communication infra-

structure to the visualization tool was much poorer

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

than expected, with some events taking more than

five minutes to complete.

Thus, even though the deployment service code was

functioning correctly and it executed the deployment of

JPetStore, the interesting characteristics of the comput-

ing and service environment caused a disruption in the

experiment. The lesson learned is that the management

service needs an adaptability layer, which can adapt to

the Planetlab environment conditions. We also require a

more structured formal representation (i.e., model) of

the overall system, including characteristics such as

ranges of expected performance and response times, to

allow the management system to deal with expected

behavior, and to identify anomalous behavior.

5.2 Quantitative Evaluation

We conducted several additional experiments to validate

the scalability of our Web Services based JPetStore

deployment. We conducted a scale experiment for

deploying JPetStore on up to 105 PlanetLab nodes (See

Figure 6). Nodes were chosen at random from around

the world. The infrastructure on each node for our

deployment service included Apache Tomcat Web

Server, Apache Axis Web Service Container and our

deployment Web Service component. We created a work

flow for deploying JPetStore (See Figure 3). We then

conducted a scale experiment for the deployment and

collected average deployment time. Our measurement

infrastructure consists of a process monitoring the start

and finish times of each JPetStore deployment. The data

is then analyzed to calculate the average deployment

time with increasing scale. As you can see from the

graph, the average deployment time does not increase

linearly with the scale. Although we would like to con-

duct scale experiments with hundreds if not thousands

of nodes, we expect to see a similar pattern for the

graph.

6 Lessons Learned

We have learned the following lessons while developing

our approach to scalable management:

• Planetary scale requires careful interaction between

applications, service oriented architectures, and man-

agement stack. At the scale of millions of nodes, trans-

parently extending architectures designed for small

scale will not work. Our preliminary experience indi-

cates that such applications must be designed with

planetary scale on mind. Rather than transparently

hiding scalability, in many cases it must be exposed,

by explicitly designing for redundancy and distribu-

tion where needed.

• There exist new and different challenges for scalable

management with respect to reliability and availabil-

ity. Because of the complexity of services, the depen-

dency matching and redeployment of services

becomes a critical part of the system. Consequently,

separating it from the deployment system (and thus

decoupling it from the health of the deployment sys-

tem) is essential even if it introduces additional prob-

lems in maintaining this additional state.

• Models are only as good as what we want to do with

them. We are relying on the use of models. However,

distributed models also pose new challenges for main-

taining their consistent state across distributed service

deployments. Therefore, the models are not contribut-

ing anything in their own right, the key benefit is in

the use of models in a manner that serves the given

purpose best. This usually means making decision

based on incomplete knowledge of the system.

• Transparency of the WSDM interfaces. We have used

scalable eventing for communication. WSDM was

designed with point-to-point management, whereas

the eventing was designed for one-to-many communi-

cation. WSDM interfaces accommodated for it with-

out any changes to existing design and

implementation.

• Move the BPEL workflow to target machines. In our

current implementation, the deployment workflow

specified in the BPEL language is processed by a cen-

tralized BPEL workflow engine hosted at the deploy-

ment server. Such a design enables processing of

cross-node dependencies at a single workflow engine.

However, such a centralized orchestration has the lim-

itations of scale. There is a need to partition and dis-

tribute the BPEL workflow description to workflow

engines on the target machines. Challenges exist to

achieve decentralization, such as determining the par-

tition boundaries, and co-ordination among the distrib-

uted workflow engines.

Figure 6 Scaling Web Services Deployment

dependencies

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

7 Extending the Solution

As noted earlier, our scalable management solution is

built around an adaptation service that uses the struc-

tural information stored in a CIM model repository to

automate management actions. We are currently extend-

ing this work in two important areas: workflow genera-

tion and model implementation.

Owing to the complexity of the compute infrastructure

and the services that are run or will be run on top of it,

we believe that workflows must be automatically gener-

ated. We are currently exploring what information needs

to be captured to facilitate such automation, and how to

capture it in models. One early by-product of this work

is the recognition of the types of dependencies that need

to be represented within the model representation. These

dependencies are for capturing relationships for installa-

tion, activation, de-activation, de-installation, and geog-

raphy-based customization (e.g., internationalization).

Model implementation, which is our second focal area,

embraces a number of issues relating to model structure,

model access and security, and model maintenance.

Model structure is important because we believe a sin-

gle model repository running on a single server in a sin-

gle administrative domain is not scalable, sufficiently

robust, nor practical for the wide-area compute environ-

ments. We are thus investigating how to decompose the

models into multiple repositories located on multiple

servers running within multiple administrative domains.

To support this federation, we are exploring approaches

for stitching the distinct model repositories into one or

more logical views while resolving possible conflicts in

the information stored in different models, thereby facil-

itating access to the stored information. Equally impor-

tant are mechanisms for handling unplanned model-

view outages, and the resynchronization of models once

the outages are restored. Complexity in building such

views results from the likelihood that multiple modeling

frameworks (e.g., CIM, Glue Schema1, or home-grown

framework) are used, or that a given administrative

domain will extend a given framework to facilitate local

needs. We are thus considering how to bridge the

semantic and syntactic differences in model frame-

works, for which techniques such as ModelGen [12],

will likely be useful. To address model-framework

extensions, we believe policies for model governance

must be established.

Federation also requires mechanisms for limiting access

to a given repository and the information it maintains,

and for updating the model repository. Related to model

updates is the problem of keeping the model repositories

consistent with each other and synchronized with real-

ity. We are exploring mechanisms for automatically dis-

covering models and, as noted above, constructing the

layered views of all the repositories.

Similarly, we would like to investigate the possibilities

for converging the service models that are used for

deployment, health monitoring and adaptation, so that

all of the information necessary for the effective man-

agement of the service remains consistent, and can be

leveraged across the lifecycle of the service.

8 Related Work

The related work falls into categories of deployment,

model-based automation, and workflows. In the area of

deployment, several tools exist. Deployme system for

package management and deployment supports creation

of the package, distribution, installation, and deleting

old unused packages from remote hosts [14]. Magee et

al. describe CONIC, a language specifically designed

for system description, construction, and evolution [15].

Cfengine provides an autonomous agent and a middle to

high level policy language for building expert systems

which administrate and configure large computer sys-

tems [19]. A number of other tools are surveyed in [17].

Existing management solutions similarly address func-

tionalities in other areas of our interest, e.g., adaptation

to failures and to performance violations ([4],[5],[6]).

The effectiveness of these traditional solutions in large

distributed systems is significantly reduced by a number

of properties of these solutions. These are centralized

control, tight coupling, non-adaptivity, semi-automa-

tion. Furthermore, these solutions do not adequately

address the needs and characteristics of large- scale dis-

tributed services.

We base our work on standards evolving in SOA [21-

24]. SOA represents a tie between various areas, such as

Grid computing, autonomic computing, and enterprise

computing, by enabling underlying mechanisms for

implementing policies and controls for these different

domains. A number of projects use workflows for

orchestrating tasks in large scale dynamic environments,

such as [25, 26]. Our work has a lot of similarities with

all above areas, however, our primary focus is on very

large scale, global services.

9 Summary and Future Work

In this paper we have described an approach for manag-

ing planetary-scale services. Our approach is based on

the use of models and standards. We have demonstrated1. http://www.cnaf.infn.it/~sergio/datatag/glue/

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

a use case and then presented our solution to it, followed

by an initial evaluation. We claim that adopting this

approach will enable easier management of global ser-

vices and reduce development and adoption barriers. In

summary, it will reduce the total cost of ownership of

large computer systems running globally-scale services.

In the future, we plan to pursue the following opportuni-

ties. For the deployment, we plan to use WSDM MOWS

to manage the deployment service e.g., to handle fail-

ures occurring during deployment process. We will also

further integrate the GGF CDDLM language parser,

deployment APIs, and component models. We will

finally, distribute workflows so that we eliminate it as a

potential bottleneck for very large scale deployments. In

the area of models, we shall research federation of mod-

els in order to enable more effective decentralized deci-

sion making. We will also explore loosely coupled

communication among models and prototype example

model-based automation services, e.g. adaptation ser-

vices. Finally, similarly to deployment, we shall explore

compliance with standards, in particular using WSDM/

CIM interfaces.

Acknowledgments

Parts of this work were conducted in the broader context

of the Scalable Management project, with Robert

Adams and Paul Brett.

References

[1] Wilkes, J., Mogul, J., Suermondt, J., “Utilification,” Proc.

ACM European SIGOPS Workshop, September 2004.

[2] “Utility Computing,” IBM Systems Journal special issue

43(1), 2004.

[3] Foster, I. et al., “The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Inte-

gration.“, Open Grid Service Infrastructure WG, Global

Grid Forum, June 22, 2002.

[4] HP OpenView http://www.managementsoftware.hp.com/

[5] IBM Tivoli, http://www.tivoli.com/

[6] Computer Associates Unicenter,http://www3.ca.com/so-

lutions/solution.asp?id=315

[7] Huhns, M.N., and Singh, M.P., “Service-Oriented Com-

puting: Key Concepts and Principles,” IEEE Internet Com-

puting, vol. 9, no. 1, 2005, pp. 75-81.

[8] Talwar, V., et al. “Approaches for Service Deployment”,

to appear in IEEE Internet Computing, vol. 9, no. 2,

March/April 2005.

[9] Adams et al., “Scalable Management—Technologies for

Management of Large-Scale, Distributed Systems“, to ap-

pear at International Conference on Autonomic Comput-

ing (ICAC) 2005.

[10] P. Brett, et al., “A Shared Global Event Propagation Sys-

tem to Enable Next Generation Distributed Services”,

WORLDS'04: First Workshop on Real, Large Distributed

Systems, San Francisco, CA, December 2004.

[11] Peterson, L., et al., “A Blueprint for Introducing Disrup-

tive Technology, “PlanetLab Tech Note, PDN-02-001,

July 2002.

[12] Atzeni, P., et al., “ModelGen: Model Independent Schema

Translation,” Unpublished Report. http://

www.dia.uniroma3.it/~atzeni/didattica/SINF/20042005/

modelgen.pdf

[13] Dunagan, J., et al., “Towards A Self-Managing Software

Patching Process Using Black-Box Persistent-State Mani-

fests,” Proceedings of the International Conference on Au-

tonomic Computing, pp 106-113, May 2004, New York,

NY, USA.

[14] Oppenheim, K., and MCormick, P., “Deployme: Tellme’s

Package Management and Deployment System,” Pro-

ceedings of the Usenix IVth LISA Conference, December

2000, New Orleans, pp187-196.

[15] Jeff Magee, Jeff Kramer, and Morris Sloman. Construct-

ing Distributed Systems in Conic. IEEE Transactions on

Software Engineering, 15(6):663--675, June 1989

[16] Goldsack, P., et al., “Configuration and Automatic Igni-

tion of Distributed Applications”, 2003 HP Openview

University Association conference.

[17] Anderson, P., et al., “SmartFrog Meets LCFG: Autono-

mous Reconfiguration with Central Policy Control,” Proc.

USENIX LISA’03 pp 173-180, Oct 2003, San Diego, CA.

[18] Wang, Y.M., et al., “STRIDER: A Black-box, State-based

Approach to Change and Configuration Management and

Support,” Proc. of the USENIX LISA’03, pp 159-172, Oc-

tober 2003, San Diego, CA.

[19] Mark Burgess, “A Site Configuration Engine”, USENIX

Computing Systems, Vol8, no 3, 1995, http://

www.cfengine.org

[20] Aiber, S., et al., “Autonomic Self-Optimization According

to Business Objectives,” Proceedings of the International

Conference on Autonomic Computing, pp 206-213, May

2004, New York, NY, USA.

[21] OASIS WSDM WG Charter

http://www.oasis-open.org/committees/wsdm/charter.php

[22] DMTF CIM, http://www.dmtf.org/standards/cim/

[23] OASIS BPEL Working Group Charter:

http://www.oasis-open.org/committees/wsbpel/char-

ter.php

[24] CDDLM Charter Document, https://forge.gridforum.org/

projects/cddlm-wg

[25] Krammer., P., et. al, “Supporting distributed workflow us-

ing HTTP”, Proc. of the Fifth International Conference on

the Software Process, pages 83-94, Lisle, IL, June 1998

[26] Vidal, J.M., et al., “Multiagent systems with workflows”,

IEEE Internet Computing, 8(1):76-82, Jan/Feb 2004.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

