
Monalytics: Online Monitoring and Analytics for Managing
Large Scale Data Centers

Mahendra Kutare
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30318, USA
imax@cc.gatech.edu

Greg Eisenhauer
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30318, USA
eisen@cc.gatech.edu

Chengwei Wang
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30318, USA
wangcw@cc.gatech.edu

Karsten Schwan
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30318, USA
schwan@cc.gatech.edu

Vanish Talwar
HP Labs

1501 Page Mill Road
Palo Alto, CA 94304 USA

vanish.talwar@hp.com

Matthew Wolf
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30318, USA
mwolf@cc.gatech.edu

ABSTRACT
To effectively manage large-scale data centers and utility
clouds, operators must understand current system and ap-
plication behaviors. This requires continuous monitoring
along with online analysis of the data captured by the mon-
itoring system. As a result, there is a need to move to sys-
tems in which both tasks can be performed in an integrated
fashion, thereby better able to drive online system manage-
ment. Coining the term ’monalytics’ to refer to the com-
bined monitoring and analysis systems used for managing
large-scale data center systems, this paper articulates prin-
ciples for monalytics systems, describes software approaches
for implementing them, and provides experimental evalu-
ations justifying principles and implementation approach.
Specific technical contributions include consideration of scal-
ability across both ‘space’ and ’time’, the ability to dynami-
cally deploy and adjust monalytics functionality at multiple
levels of abstraction in target systems, and the capability to
operate across the range of application to hypervisor layers
present in large-scale data center or cloud computing sys-
tems. Our monalytics implementation targets virtualized
systems and cloud infrastructures, via the integration of its
functionality into the Xen hypervisor.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.4.4 [Communication Management]: Network Com-
munications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’10, June 7–11, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0074-2/10/06 ...$10.00.

General Terms
Design, Measurement

Keywords
Monitoring, Management

1. INTRODUCTION
Performance and program monitoring are well-established

areas of research. Traditionally concerned with performance
debugging [23], a more recent focus of online monitoring has
been to help deal with the ever-increasing complexity and
scale of modern IT and data center facilities. Here, monitor-
ing is used to continually measure and assess current system
or application behaviors [18], to detect and diagnose prob-
lems, or even for purposes of business analytics. The data
used by such analyses is captured by a wide variety of tools,
operating in specific subsystems, running at different lev-
els of abstraction [14], on entire parallel machines [22, 23],
or addressing the distributed nature of underlying infras-
tructures [19, 21, 26]. These data collection and dissemina-
tion tools may be integrated with problem diagnosis sys-
tems [20], with program development systems (to better un-
derstand the applications being monitored) [22], and they
may themselves be managed to improve how monitoring is
performed [16]. In most such settings, however, the primary
purpose of monitoring is to improve the ways in which sys-
tems and applications operate, measured in terms of perfor-
mance, reliability, power usage, the ability to meet service
level agreements (SLAs), and similar metrics important to
applications and IT infrastructure providers [17]

Monitoring to Manage Large-scale Systems..
Our research is developing methods and infrastructures to

improve the manageability of future data center systems [17].
This paper is focused on a necessary element of system man-
agement, which is efficient and scalable online system mon-
itoring. Concerning scale, recent reports indicate that al-
ready, up to 25% of enterprise data today is from systems
monitoring, with almost 240 terabytes produced annually,

and this number is only going to increase with next gener-
ation facilities. Furthermore, scale goes beyond raw system
size in that one also has to take into account the multi-
ple time and length scales at which different system com-
ponents and levels of abstraction operate. Concerning the
‘length’ scale, consider operator queries about current data
center health for large-scale systems vs. providing detailed
information about the state of a specific disk subsystem, for
instance. Concerning time scales, consider the high rate at
which web requests are received and serviced by system-level
threads running across multiple processors, compared with
the lower rate at which the virtual machines running these
threads migrate across machines when being consolidated;
or consider the management done to differentiate service lev-
els for (high rate) disk requests vs. the relatively low-rate
power management actions applied to the processors that
run such disk-centric applications

The examples described above illustrate that when the
purpose of monitoring is to better manage systems or ap-
plications, monitoring must operate across multiple time
scales, across different size systems, and at multiple lev-
els of abstraction – from application-centric entities like ’re-
quests’ to infrastructure-centric entities like blades or racks.
Furthermore, monitoring must go beyond data capture and
dissemination to also understanding and analyzing captured
data [16], in addition to support intelligent problem determi-
nation methods [11], as needed by subsequent management
actions.

Monalytics..
We refer to our combined monitoring and analysis system

as ’monalytics’. This paper identifies and explores several
important properties of ‘monalytics’ that are key to its ap-
plicability to large-scale IT infrastructures.
Data-local analysis – for low latency response, that is, in or-
der to limit the delays between when monitoring data is first
captured to when interesting insights are derived from that
data, it must be possible to perform select analyses ’close’ to
data sources. While traditional systems have eschewed such
solutions due to the potential perturbation caused by addi-
tional monitoring loads [23], given that modern machines are
increasingly bound in performance by memory bandwidth
rather than CPU speed, we advocate an approach in which
data-near analysis is used both to reduce monitoring data
volume and to rapidly gain insights from captured data. In
other words, we posit that it is often cheaper to quickly an-
alyze data and then send out data summaries or abstracts
than it is to copy raw captured data items – this fact has also
been shown to hold for data dissemination across networked
machines [7], and we note that for the same reasons, phys-
ical systems using smart sensors are increasingly common.
For monitoring, this implies the need to combine the flexi-
ble data capture done in traditional monitoring systems [23]
with low overhead methods for associating light-weight anal-
ysis methods with capture mechanisms.
Operation at multiple time scales – it is well-known that
monitoring rates (e.g., sampling rates) depend on the arti-
facts and behaviors being watched, as do window sizes (e.g.,
sample sizes). Further, systems exhibit multi-time scale be-
haviors for different hardware sensors (e.g., slowly changing
thermal sensors vs. rapidly changing cache miss rates) as
well as for instrumented software. As a result, adjustable
monitoring rates, window sizes, and associated noise reduc-

tion and data filtering constitute the base functionality re-
quired by any monalytics system. A corollary is the need to
analyze data across multiple time scales, which for analytics,
typically requires analysis-specific methods, as when trying
to correlate observed temperature changes with changes in
IT loads and/or processor utilization. Our monalytics in-
frastructure makes it easy to adjust rates and window sizes,
and to associate filtering and data smoothing codes with
capture mechanisms. Also shown in this paper is a useful
multi-scale analysis technique, using entropy-based meth-
ods.
Scalability to different system sizes – as with the ’scope in
time’ implied by window sizes, monitoring must also use
‘scope in space’, meaning that it must be possible to limit
the number of entities being monitored to those of current
interest. A corollary is that for different entities of interest,
it must be possible to use different ways of attaining scale,
an example being the use of hierarchical monitoring struc-
tures like aggregation trees [28] for physical entities such as
processors, blades, and racks vs. the use of peer-to-peer
relationships for information dissemination and aggregation
in distributed systems [21]. To permit such variety, we use
zones as useful partitions of physical systems. Within each
zone, data capture agents are connected to monitoring bro-
kers using zone-specific structures, where the term monitor-

ing topology refers to the structure used to connect data
capture/analysis agents with data aggregators/monitoring
brokers. Within the agents and brokers providing the physi-
cal containers for capturing and analyzing monitoring data,
each specific monitoring task being performed is represented
as a computational communication graph [3], and agents and
brokers are internally multiplexed to operate any number of
those graphs.
Runtime discovery, configuration, and adaptation – data cen-
ter machines are subject to dynamic change in usage and
load, but at the same time, we desire predictable latencies
from monalytics. This means that it must be possible to
change what, where, and how monitoring is done, including
to deploy at runtime monitoring and analysis codes to where
they are needed, to change the actual monalytics methods
being used as well as the associated monalytics structures,
and to dynamically discover and attach monalytics to new
data sources when needed. Our work uses dynamic binary
code generation and deployment to help obtain these capa-
blities.

In summary, scalability demands that the monalytics com-
ponents for data collection, aggregation, and analysis be
flexible, ranging from simple centralized solutions to highly
distributed ones. Further, solutions should scale up and
down efficiently, particularly when monalytics drives real-
time decision making like resource management to guaran-
tee application SLAs and/or meet data center-level require-
ments like constraints on power usage [17].

Contributions and Results..
This paper makes the following technical contributions:
• The concept of monalytics is introduced, along with a

software architecture for realizing it in large-scale data
center systems.

• Scalability is also sought with respect to time and size
scales, and to operate across the different levels of ab-
straction at which modern IT systems are described and
implemented. The time scale is particularly relevant

Figure 1: Monalytics Topology

to online management, since it may be important to
quickly react to dynamic changes in conditions and re-
quirements.

• The utility of monalytics and its scalability principles
are demonstrated with representative hardware and ap-
plications, and with micro-benchmarks.

Monalytics has been implemented for virtualized comput-
ing infrastructures. A prototype constructed for the Xen
open source hypervisor is shown to add little to no additional
overheads to the execution of typical data center codes. A
transactional web application, variable request loads, and
performance and fault behaviors are recognized and con-
trolled, and the potential for scalability is demonstrated via
adaptable filtering and ’failure-proportional’ monalytics ac-
tions.

2. SYSTEM ARCHITECTURE AND IMPLE-
MENTATION

The realization of monalytics is based on three principles:
(1) monalytics actions are deployed as a computational com-
munication graph in the data center; (2) such graphs are
elastic and reconfigurable based on monalytics needs, cur-
rent state, and load in the data center; and (3) graph layouts
and implementations are dynamic with respect to their use
of centralized, hierarchical, or peer-to-peer structures, lever-
aging the best of the infrastructure but without having to
subscribe to any one of them statically.

These principles give rise to the software architecture de-
scribed in Fig. 1. Agents capture and locally process desired
data; they reside at multiple levels of abstraction in target
systems, including at application-, system-, and hypervisor-
level. Agents also access hardware and physical sensors, such
as hardware counters provided by computing platforms and
power draw values exported by PDUs. Brokers aggregate
and analyze outputs from multiple agents, and they are
linked in ways that respect available communication and
hardware structures. Each set of agents/broker are inter-
nally multiplexed to execute multiple logical structures –

Figure 2: Monalytics Logical View

monalytics actions represented as computational communi-
cation graphs – that each represent specific captured data
and the analysis methods applied to it. In other words, as
with multiple threads in a single process, agents and brokers
internally maintain and operate multiple monalytics graphs.
Agent representations differ depending on target systems be-
ing monitored, including the use of specialized device drivers
when interfacing agents with hardware data collection sys-
tems. Brokers can execute in specialized virtual machines
(e.g., management VMs), on dedicated hosts (e.g., manage-
ability engines), or both. Important in this context is that it
must be possible to separately provision brokers and agents,
so that latency and QoS guarantees can be made for mon-
itoring and management, unaffected by current application
actions and loads. Earlier work described how agents and
brokers interact in a uniform manner, using a channel ab-
straction, termed m(anagement)channels [17]. The current
implementation of monalytics has not yet been integrated
with m-channels, but that work is in progress. Zones indi-
cate physical subsystems, such as sets of racks on a single
network switch in a data center, front end vs. back end ma-
chines, etc. Applications, typically comprised of ensembles

of virtual machines, can span multiple zones, an example be-
ing web applications whose request schedulers run on data
center front end machines, whereas its database servers run
on the center’s backend machines in a different zone. Zones,
therefore, are a vehicle for delineating data center subsys-
tems or substructures, or even the multiple physical data
centers located in a single public/private cloud.

Applying these principles, Fig. 2 shows the logical view,
with our core contribution being an overlay service and a col-
lection of composed monitoring brokers that perform corre-
lation, aggregation, and analysis functions. The overlay ser-
vice provides the underlying communication/routing mech-
anisms as well as discovery and namespace registration for
a collection of monitoring brokers. Together, they result in
a monitoring computation graph (see Fig. 1), with multiple
graphs multiplexed onto shared brokers, as also indicated.

The computational communication graphs used for mon-
alytics perform the distributed monitoring functions in the
data center in a cooperative manner. They are created and
operate as described next.

The bootstrap creation phase starts by an initial assign-
ment of monitoring brokers to logical zones by a planning al-
gorithm at a central management station (CMS) [18]. Phys-
ically, a zone is a collection of nodes associated with a unique
identifier communicated to the brokers on each physical node.
After the assignment to zones, the monitoring brokers elect
a leader for their respective zones using a leader election al-
gorithm. The elected leaders of the respective zones then
elect a leader among themselves (leader of leaders). The
resulting inter-connection among the leaf node monitoring
brokers, zone leaders, and inter-zone leaders is the initial
monalytics graph after bootstrap. However, brokers only
provide the physical containers that run monalytics graphs.
This means that a primary role of leaders is to deploy and
configure monalytics graphs across sets of brokers and su-
pervise their execution.

During system operation, the role of monitoring brokers is
to execute two functions: (1) they run the portions of mon-
alytics graphs assigned to them, applying data aggregation
and analysis functions on monitoring data streams, and rais-
ing alerts of anomalous behavior when detected (e.g., to en-
able local policies to be applied ‘close’ to the source of mon-
itoring data); and (2) they propagate raw and/or analyzed
local data streams to the other entities participating in each
of their computation graphs, often ending at the zone-leader
for zone-level aggregation. Along with such ’data plane’ op-
erations, there are ‘control’ actions, an example being a reac-
tion to the fact that zone-level aggregation completion time
exceeds an acceptable threshold. When that happens, the
zone-leader may trigger reconfiguration of the monalytics
graph within the zone, including those that switch the in-
terconnections between monitoring brokers and leader from
say, a centralized configuration to a multi-hierarchy topol-
ogy, a completely peer-to-peer topology, or a combination of
both.

When the aggregation for a polling interval completes, this
triggers the execution of some management policy on the ag-
gregated data. Processes like these occur across all levels of
the monalytics graphs and may continue across zones, ex-
cept that it now takes place among zone-level leaders. Sim-
ilar reconfiguration of the computation graph (as within a
zone) can take place across the leaders of the zones based
on system load.

In summary, the monalytics system design leads to a pro-
active, elastic, and distributed monitoring system that sup-
ports hybrid topologies in a flexible manner. Its desirable
properties include (1) applying analysis/anomaly detection
policies local/close to source of monitoring data, (2) satisfy-
ing SLAs on aggregation/analysis completion times, such as
an upper bound on those times, irrespective of scale in the
system, (3) incurring overhead proportional and better than
the scale and load in the system achieving elastic balancing,
(4) flexibility of configuration and definition of SLA/metrics.

Fig. 3 depicts the Xen prototype of the monalytics in-
frastructure. The monitoring agents provide mechanisms to
start, stop, and pause monitoring tasks. Each such task
is represented as a computational communication graph,
with graph nodes representing simple data processing opera-
tions and links denoting data transfers. Graphs can operate

Figure 3: A Simplified Monalytics Architecture

within individual entities, such as an agent implementing
a local feedback loop, and they can extend across multiple
agents, brokers, and ultimately, zones.

The monalytics implementation separates control and data
planes, where control actions can dynamically change the
ways in which data is captured, processed, and transported.
Current agents, for instance, are flexible with respect to how
much and at what rates data is captured, and as to how
data is combined and filtered. Most analyses are performed
in brokers, including data aggregation from multiple agents.
The current implementation maintains a list of predefined
functions for these purposes, whereas runtime binary code
generation and parametric controls are used to affect how
agents operate. Selected brokers – leaders – run the ‘coordi-
nator’ functions that control the data plane, i.e., create and
re-configure the computational communication graphs that
implement monalytics functionality.

We next describe in more detail the data capture agents
and the analysis functions used in agents and brokers.

Data Measurement, Capture, and Analysis
The monalytics infrastructure offers several abstractions for
capturing and analysis data:

1. Data capture – underlying monalytics are subsystem-
and tool-specific components used for extracting data
from systems and applications; to retain information
about how this is done, monalytics maintains for each
captured data item the tuple 〈capture id, level id,

sampling rate, sensor info〉.
capture id represents the mechanism with which data
is acquired, such as the unix /proc or Xen’s libvirt.
level id identifies the level of abstraction at which data
is captured, such as the virtualization layer, operat-
ing system, platform or rack, etc. The actual data
acquired in this fashion, sensor info, is described as

〈time stamp, name, value〉 tuple of metric data. The
time stamp represents the time at which metric is cap-
tured, and value contains the metric’s value. sampling

rate represents the frequency of sampling monitoring
metrics.

2. Data representation – once captured, data is repre-
sented as groups or windows. group – a group of data
is always of some specific type and is captured in some
context group type, sensor info, where measurement
are collected in sets like cpu metrics, disk metrics,
cpu and memory metrics e.t.c. and sensor info is as
above; an example is a group of cpu metrics that de-
scribe cpu utilization as cpu system, cpu user, and cpu

idle values; window – most analysis methods operate
over window of values, motivating the implementation
of a window as 〈window type, window size, sensor info〉
tuple; window type can be of type time or event, window

size represents sizes such as 10sec or events, and sensor

info are as above.

To combine monitoring with analysis, monalytics permits
low-level analysis actions to be associated with data cap-
ture. Such actions are represented as binary codes and can
be customized to each specific data capture activity. Actions
associated with data capture, for example, include a sam-
ple of violation counts for a group of metrics used – termed
concise sample. Concise sample analysis is applied as post-
processing actions to the event or time window actions to
create a violation event for the last few seconds or events. It
is likely that additional analysis actions will become built-in
elements of data capture activities as the monalytics sys-
tem evolves. Higher level analyses, however, are use- and
application-specific; they are programmed explicitly and/or
use mathematical and statistics libraries, with future work
to offer interfaces to mathematical libraries like MatLab to
assist end users in programming complex analysis actions.

Data Transport and Processing
The data transport and processing layer of monalytics uses
the EVPath eventing system [23] to implement the com-
putational communication graphs embedded in agents and
brokers. Graphs are constructed as sets of linked stones

traversed by events (i.e., structured data objects), where
stones can perform event data filtering, data transformation,
event multiplexing and demultiplexing, and event transmis-
sion to other stones. Stones can be linked within or across
address spaces, the former via shared memory, the latter
via standard communication protocols. Events are repre-
sented in efficient binary forms, via a portable binary for-
mat implemented in monalytics. Data is converted into this
format upon entry to the monalytics system (e.g., via XML-
to-binary conversion). Each stone is associated with a set
of actions. Actions are codes that operate on the mes-
sages/events handled by the stones. Stones also have the
ability to temporarily hold events, retain limited state, and
can be created or destroyed at runtime. Finally, higher level
actions defined on sets of stones can reconfigure them and
their linkages [18].

Stones can carry out arbitrary actions. (a) An output ac-

tion causes a stone to send messages to a target stone across
a network link. (b) A terminal action specifies an applica-
tion handler that will consume incoming events. (c) A filter

action allows handlers that filter incoming data to determine
if it will be passed to subsequent stones. (d) A split action

allows incoming events to be sent to multiple stones. The
target stones of a split action can be dynamically changed
by adding/removing stones from the split target on the fly.
(e) A transform action transforms event data from one data
type to another, and it can be used to perform complex cal-
culations on events, such as sampling, averaging, and com-
pression. Actions are implemented by handlers written in C
or via runtime generated binary codes, the latter specified
in E-Code, a portable subset of the C language. Runtime
action deployment, then, uses dynamic linking or dynamic
code generation, respectively.

Monalytics implementations can be built on substrates
other than EVPath, of course, but there are multiple prin-
ciples embedded in EVPath that contribute to the scalable
design of monalytics. These include the runtime creation
and deployment of meaningful data capture and analysis
actions, the ability to dynamically reconfigure monalytics
(both in terms of actions and graph structure), the capabil-
ity to operate efficiently both ‘in the small’, e.g., in a single
address space, and ‘in the large’, i.e., across the many agents
and brokers present in a large scale data center. Efficiency
‘in the small’ is provided in part by use of compact binary
representations of data coupled with compiled action im-
plementations. The compact binary formats in current use
include formats that define groups, event and time windows,
encodings for various metrics, etc. Efficiency ‘in the large’
is supported by runtime reconfiguration of the monalytics
structures spanning many agents and brokers.

The default EVPath execution model is push-based, where
agents continuously capture sensor data, process it via lo-
cal actions, and send it to brokers (as defined by monitor-
ing graphs), and brokers carry out global actions. To sup-
port adhoc monalytics queries, we have added a pull-based
model, where queries posed to brokers cause agents to ac-
quire and provide certain data, as and when needed. In
addition, we are currently implementing efficient techniques
for storing or caching select and/or adhoc state present in
monalytics structures, a concrete example being a DHT used
to maintain state for popular or common queries [26]. The
methods available for controlling how monalytics graphs op-
erate are described next.

Controlling Monalytics
Monalytics is implemented to separate control from data
paths, where data capture, processing, and forwarding are
done via monalytics structures, and control actions are taken
by coordinators associated with these structures. Techni-
cally, this means that agents and brokers jointly execute
monalytics graphs, but that select brokers like zone leaders
also run coordinator processes that control how monalytics
graphs function.

Control actions of interest to this paper include the ability
to dynamically change (a) the capture rate for monitoring
metrics data, (b) the monitoring graphs’ processing points,
i.e., actions, (c) the targets for the processing points in the
monitoring graphs and between agents and brokers, the lat-
ter enabling higher level functions that reconfigure graph
topologies. For (c), for instance, a split stone can use a ’tar-
get list’ of various targets to be used, and this list can be
changed at runtime. Changes may be triggered by stone
arrival/departure or by link creation/deletion. The experi-
mental evaluations in Section 4 use (a) and (b), for instance,
when dynamically switching from lightweight monitoring for

abnormal behavior detection to undertaking diagnostic mon-
itoring for problem resolution.

Implementation Comments
The current monalytics prototype is implemented in C/C++
using EVPath as its base communication layer. Our next im-
plementation steps concern higher level facilities like those
needed for leader election and like runtime structure re-
configuration (e.g., see our earlier work on iFlow [18] for
ways to implement such functionality). We have not yet
integrated monalytics with the vManage infrastructure de-
scribed in [17], a first step in that work now underway
being the placement of brokers into separate ‘Management
VMs’ (virtual machines dedicated to carrying out monalyt-
ics functions) that can be deployed to machines at runtime
when and if needed. This means that currently, the agents
placed into Xen’s dom0 (the ’driver domain’) use statically
created links to pre-created Management VMs containing
brokers. Finally, the data capture methods used in monalyt-
ics exploit hypervisor level facilities like libvirt, system-level
APIs like /proc, and select adhoc application-level moni-
toring. For generality, future work will deal with the use
of monitoring standards like CIM, additional capture meth-
ods like those exploiting xentrace, and interfacing to higher
level support for application-level monitoring provided by
systems like Ganglia [19] or Tau [22].

3. THE NEED FOR MONALYTICS
The development and evaluation of monalytics principles,

functionality, and infrastructure are driven by typical data
center use cases. These cases and their motivation are de-
scribed next. Additional detail appears in Section 4 of this
paper.

Understanding Application and System Behaviors..
For large-scale data centers, it is critical to understand the

dynamic behavior of infrastructure and systems, as well as
of the applications running on data center hardware. An op-
erator, for instance, will want to ascertain ‘current health’
by asking high level queries about certain system or ma-
chine states. Such queries go beyond simple questions about
which machines currently appear to be up or down to ques-
tions that include the following: (1) are certain machine and
subsystem (e.g., disk or network) utilizations within certain
bounds, or (2) what is the current utilization of processors,
memory, disk, network subsystems, or (3) what are the ther-
mal and power draw values normalized by current system
utilization, or (4) are certain application SLAs being met?

As evident from these questions, the data required for an-
swering them must be captured at and traverse multiple lev-
els of abstraction (e.g., platform sensors used for thermal or
power draws vs. application-level measurements for ascer-
taining SLAs), and even conceptually simple questions like
whether or not SLAs are being met will typically require
captured data to be analyzed over certain time windows
and for certain statistical likelihoods, perhaps even including
economic or risk analyses [8]. Also evident is the fact that
there is considerable parallelism in how such questions are
answered, an example being the many entirely concurrent
platform-local analysis actions that aggregate utilization val-
ues in conjunction with power draw and thermal data. At
the same time, there is a necessity for global actions like ag-

gregation in order to display results to operators and more
importantly, to understand cross-cutting behaviors, perform
historical analyses, and enter data in long term logs. Fi-
nally, the sources of questions like the above are not just
human operators, but also automation engines like those
performing datacenter provisioning, accounting, compliance
checking, intrusion monitoring or spam detection, or similar
continuous management tasks.

Questions like those above motivate several functionali-
ties of monalytics. (1) Data-local actions are important to
encourage parallelism in analysis. (2) Data reductions are
enabled by combining data capture with analysis, as when
reporting window averages rather than entire windows (e.g.,
to answer questions about current utilization) or when re-
porting bound violations for certain systems or applications.
As stated earlier, both (1) and (2) are critical to attaining
the scalability across time and length scales and levels of ab-
straction required for large-scale system management. (3) A
final functionality is the need for dynamic control over what
and how monitoring is performed, in conjunction with con-
trol over where decisions are made concerning the reactions
to discovering certain phenomena: locally, globally, or both.
An example is load balancing on a single multi-core plat-
form to vacate as many cores as possible to reduce platform
power draw, driven by temporary variations in application
behavior and concurrency, coupled with additional, lower
rate virtual machine movement across many platforms and
racks for consolidation and power savings purposes, the lat-
ter perhaps driven by diurnal changes in load.

Experimental evaluations in Section 4 demonstrate the
basic functionality of monalytics and establish the benefits of
using source-near filtering or analysis. We also demonstrate
our ability to dynamically control how and what monitoring
is carried out.

Assessing and Managing Data Center Systems..
A typical issue in utility data center and cloud computing

systems is misbehavior triggered by overloads, failures [4],
or unusual application or system conditions. Such problems
must typically be recognized and addressed quickly [9], in
order to prevent congestion from worsening, failures from
spreading to other subsystems, or the occurrence of catas-
trophic events like shutdowns. Continually assessing appli-
cations and systems, the paper’s experimentation section
evaluates the ability of monalytics to deal with a concrete
scenario concerning failures. Three facts are of importance
to monalytics in this context: (1) the ability to quickly rec-
ognize issues, by continuously and with low overhead check-
ing relevant system or application behaviors on all nodes
and for all application components involved; (2) the abil-
ity to link runtime detection to corrective actions, where
‘local’ linkages are key to reacting with low delay; and (3)
the capability of dynamically moving from lightweight su-
pervisory monitoring to detailed monitoring for problem di-
agnosis. Further, such actions must again be taken across
multiple levels of abstractions, depending on the ability and
methods used to detect overloads or failures.

Meeting Application Requirements..
Monalytics can be used to adjust and manage systems and

applications in order to provide certain guarantees to end
users, including response times, throughput levels, etc. It is
typically not possible to implement such functionality with-

out operating across the multiple levels of abstraction and
many subsystems existing in IT infrastructures. Further,
since applications can be mapped onto different machines,
including dynamically through runtime consolidation, mon-
alytics must be capable of ’following’ application compo-
nents to wherever they run. Finally, recognizing the reasons
why application requirements are not met can be quite com-
plex. It may require detecting whether a system has failed
or not, for example, and it typically requires global in ad-
dition to local analysis actions. Global analysis in turn re-
quires monalytics to use aggregation trees and similar data
dissemination structures to make appropriate data available
to sophisticated methods for cause recognition and decision
making.

The next section uses concrete instances of the general use
cases described above to demonstrate and evaluate associ-
ated monalytics functionality.

4. EXPERIMENTAL EVALUATION
The experimental evaluation is divided into multiple sub-

sections. The first subsection, describes the testbed, work-
load and target system used. The second subsection de-
scribes specific experimental scenarios and their use of mon-
alytics features with results.

The experiments used in this section use a small testbed
comprised of several multicore servers running the RUBiS
[10] three-tier web services benchmark’s servlet version on
virtualized environment using the Xen hypervisor, with Apa-
che, Tomcat, and MySQL each using different domUs. For
some experiments we also use an open loop workload gener-
ator [24] and a simple load balancer [1]. Monitoring agents
code run on each of the backend nodes. The agents, by de-
fault, monitor the cpu and memory utilization metrics of
domUs and dom0.

Experimental Scenarios
Monalytics is evaluated in specific scenarios representing
typical datacenter events or behaviors. The first two sce-
narios model misbehaviors due to software bugs and appli-
cation misconfiguration, leading to corrective actions per-
formed at different levels of abstraction. The third scenario
demonstrates scalability achieved through data local analy-
sis, using monalytics filtering functionality. Finally, we show
how monalytics can be used in a large-scale decision analysis
method [27]. In each of these scenarios, the cpu and memory
utilization with monalytics infrastructure is less than 2% on
brokers and broker leaders.

Runtime Component Misbehavior
This scenario demonstrates the usefulness of monalytics to
‘assess and manage’ data center systems. Here, we dynam-
ically instantiate a monalytics control loop to deploy a cor-
rective action, when monitoring and fault detection identify
a faulty backend RUBiS instance.

We recreate an apache bug that causes segfaults and fi-
nally stops all interactions between certain RUBiS compo-
nents. The effect of the bug is also observed at the load-
balancer’s receive channel that interacts with the respective
RUBiS instance. In this experiment, the behavior is de-
tected by monitoring (1) the cumulative packets transmitted
between apache, tomcat, and mysql domUs, and (2) the cpu
utilization of RUBiS VMs along with the cumulative num-
ber of bytes received via the loadbalancer channels during

Table 1: Impact Of Monalytics On End User Metrics

Case Total Requests Unsuccessful
Requests

W/O Control Action 53535 13976
With Monalytics 52535 5763

the experiment run. Misbehavior is diagnosed when each
of these metrics show no change in their values over some
period of time.

For experimental runs, we inject one of the five RUBiS
instances with the buggy Apache VM, generate workload
requests at 1000requests/sec for 600sec, and start monitor-
ing at 5 sec sampling rate.

With monalytics, fault detection is followed by a decision
operation that sends an event to a trigger operator to trigger
a corrective action, thus instantiating the aforementioned
control loop. The action used simply restarts the Tomcat
and Apache servers of the faulty RUBiS instance. Toward
this end, we export libvirt’s actuation APIs to start/stop a
VM and then use the runtime code generation facilities of
monalytics that calls these APIs.

Table 1 demonstrates the utility of associating simple anal-
ysis actions directly with data capture, as supported by mon-
alytics. Utility is measured in terms of end user metrics –
total unsuccessful requests over the period of the experiment
run. During the run, once a fault is detected, analysis ac-
tion recognize the application’s need for corrective action, to
prevent the Apache bug from unduly damaging application
progress. This action is realized in the monalytics infrastruc-
ture, i.e., it is created via dynamic binary code generation
and deployed on the faulty node. Similar in spirit to micro-
reboots [9], it simply stops/starts the VM in question.

Table 1 reports the utility measured over the period of ex-
periment run in two cases: (a) in worst case, if we do not take
any corrective action and (b) using the monalytics-deployed
corrective action. As known from prior work [9], such cor-
rections help reduce the number of unsuccessful requests, in
this case from 26% to 11%. More generally, the example
demonstrates two important elements of the monalytics ap-
proach to system management: (1) runtime code generation
and deployment of corrective actions, since one cannot as-
sume prior knowledge of all actions that might be used in a
large-scale system, and (2) the use of local vs. global control,
that is, the placement of control actions ’near’ where issues
occur, to prevent undue monitoring traffic and encourage
small delays between failure detection and reaction.

Performance Aware Load Balancing
This scenario demonstrates the use of continuous monalytics
for to help applications meet their requirements (i.e., SLAs).

We emulate a degradation in the performance of critical
bidding requests on one of the RUBiS instances servicing
them. This is done by manipulating the maximum num-
ber of workers (MaxClients) and server limit (Server Limit)
parameters on the Apache VM used by this instance. Ma-
nipulations cause longer processing time for bidding requests
on this vs. other RUBiS instances, the effects of which are
also observed at the loadbalancer’s receive channel interact-
ing with the instance. In the experiment, this behavior is
detected by monitoring (1) the current number of busy work-
ers and the request processing rate in each Apache VM and

Table 2: Impact Of Monalytics On End User Metrics

Case Total Requests Requests
Meeting SLA

W/O Control Action 32213 21334
With Monalytics 32213 27763

(2) the cumulative number of bytes received via the load-
balancer channels during the experiment run along with the
cpu utilizations of RUBiS VMs. Performance is considered
degraded when these metrics consistently exhibit lower val-
ues for one RUBiS instance compared to others over some
period of time.

There may be many causes for misbehavior, of course,
but the objective of this experiment is not to identify fail-
ure causes but instead, to demonstrate the need for certain
monalytics functionality. Specifically, monalytics must not
only be able to to change how monitoring and analysis are
done, but should also be able to dynamically inject simple
management or corrective actions at different levels of ab-
straction and/or in different subsystems. In the previous
experiment, corrective actions were taken by the hypervisor
in monalytics leaf nodes, via VM stops/starts. In this ex-
periment, actions are application-specific and are associated
with the loadbalancer, i.e., in non-leaf nodes of monalytics
topologies.

For these experiment runs, we inject misconfiguration on
one of the three RUBiS instances serving bidding requests,
generating workload at 1500requests/sec for 600sec. As the
experiment proceeds, misbehavior detection causes the in-
stantiation of a corrective action in the loadbalancer. The
action simply flags the loadbalancer’s degraded channel and
then uses this information to change future load balancing
decisions. This is implemented by modifying and export-
ing the loadbalancer API to mark up loadbalancing deci-
sions and then again using runtime code generation to cre-
ate codes on the loadbalancer node that call these APIs.
We observe that such functionality can be implemented and
changed separately from systems and application codes.

Table 2 reports the utility measured over the period of
experiment run in two cases: (a) in the worst case, if we do
not take any corrective action and (b) using monalytics to
deploy a corrective action. Online monitoring and analysis
via monalytics, coupled with the runtime installation of a
simple control action, leads to an increase from 66% to 86%
in the number of bidding requests that meet deadlines.

Scalability via Local Analysis
One way to attain scalability in monitoring is to immediately
analyze data to the extent possible. A known useful purpose
of local analysis is to use it to filter monitoring information,
thereby reducing total data volumes passed across mona-
lytics topologies. Runtime code generation and deployment
can be used to attain this goal, as demonstrated next.

Data filtering is particularly important for high volume
monitoring tasks like tracing. As an example, we trace the
http requests processed by the Apache webserver. The trace
record includes several fields, including: server timestamp,
request url, request params, request time, client ip, server ip.
In the experiment, we inject requests at 100 requests/sec for
600sec on a single webserver, and trace data is sent to the
broker leader. The leader tracks the requests and their pro-

cessing times and once a defined number of requests crosses
some processing time threshold (200 ms), this triggers the
decision to deploy a ’filter’ operator at the apache webserver.
This operator analyzes request trace data to send to the
broker leader only those requests that have processing times
above 200 ms and for such requests, it only forwards their
url and running counts.

Without runtime filtering, tracing quickly leads to large
monalytics volumes and overheads, resulting in 1.46 MB of
request trace records for a 600 sec run. With filtering, the
broker leader receives only 60.45KB of filtered data. This
is because as with many such uses of tracing, in this exper-
iment, only 2.3% of all requests exceed the stated process-
ing time threshold, resulting in much data being transferred
‘uselessly’ when filtering is not used. More importantly, in
actual systems, filtering criteria are dynamic, depending on
current conditions and requirements.

Zoom-In Analysis
Building on the previous example demonstrating the impor-
tance of runtime data filtering, we next describe a more re-
alistic set of decision methods used for this purpose. The
goal is to demonstrate potential scalability via ’failure-

proportional’ rather than ’system size-dependent’ mona-
lytics actions.

The methods used here are based on our ongoing devel-
opment of the EBaT lightweight, anomaly detection meth-
ods [27]. We again monitor the RUBiS application, where an
agent in each machine’s dom0 collects local virtual machine
metrics (vcpu utilizations) and calculates a local entropy
timeseries. These metrics, entropy timeseries, are then sent
to a broker. Local entropy analysis results in low messaging
overhead, because the metric transferred is a single entropy
value of type float. The broker collects values provided by
all agents and computes a global entropy timeseries. This
ensures that any anomalies observed in the local entropy
timeseries are reflected in the global timeseries, as well. A
global entropy decomposition process is triggered after an
anomaly in the global timeseries is detected. As the coordi-
nator has the composite of each global entropy value, it can
then ‘zoom in’ to the appropriate local entropy value/values
that contribute to the abnormal global value change, thereby
identifying the associated servers. Upon identification, ad-
ditional monitoring and analysis are triggered in the appro-
priate local agents to further diagnose the anomaly, with
sample values captured including application level data like
number of busy threads, request rates, etc. This is done
using a decision tree constructed using the machine learn-
ing method for system monitoring and failure diagnosis pro-
posed in [12].

With zoom-in, rather than always monitoring all pos-
sible values of interest for detailed problem identification,
monalytics’ runtime methods for code deployment are used
to dynamically install detailed monitoring only on where
and when it is required. This means that monalytics over-
heads are proportional to the severity of failures – failure-
proportio-nality – rather than being dependent on raw sys-
tem or application size. To illustrate, consider the use of
zoom-in analysis in large scale data centers, with a repre-
sentative system considered in our work with EBaT [27]
comprised of 81,920,000 virtual machines. Conservative es-
timates using say, one virtual machine to deploy one Apache
server and observing 50 different monitoring metrics, results

in over 4G of monitoring data (assuming 10 bytes per metric
per second) and in 40G bytes of data per second transferred
to logging servers, generating undue data volumes and over-
heads. In contrast, when using the dynamic code generation
and deployment capabilities of monalytics, runtime filtering
operators use custom local decision trees for data-local anal-
ysis, moving select computations to data rather than moving
excessive data amounts to analysis or logging nodes.

To demonstrate the feasibility of zoom-in analysis, a 10
hour experiment is measured for 3 hours, with 100 anomalies
randomly injected into the RUBiS application. We compare
a centralized method that (1) gathers all of the metrics from
all agents, and (2) uses a typical threshold-based method for
anomaly detection [27] with the proposed EBaT method. As
shown in [27], EbAT outperforms the common threshold-
based approach in terms of anomaly detection rate, false
alarm rate, and accuracy. Similar results are obtained with
the experiment run for this paper, but those are not shown
for reasons of brevity. More important to this paper is the
fact that with the zoom-in method, the monalytics overlay at
runtime transfers a total of only 123.32 KB of local decision
data, whereas almost three times as much data, 394.08KB, is
transferred with the centralized solution. With offline anal-
ysis, for 10 hour runs, the centralized solution generates 1.15
MB of data against a 345.6KB data volume with data-local
analysis. This again indicates that scalability can be at-
tained by leveraging the dynamic and data-local processing
capabilities of monalytics. Simple qualitative arguments for
larger monalytics topologies can be used to further underline
this argument.

5. RELATED RESEARCH
There are many partial or subsystem-level solutions to sys-

tems management. At one end of the spectrum, there are
rich all-encompasing commercial monitoring and manage-
ment solutions such as HP System’s Insight Manager, IBM’s
Tivoli, and VMware’s vCenter for data center environments.
These systems perform centralized data collection and anal-
ysis, and provide some support for script-based triggering
mechanisms. There is also hardware-level support focused
on certain physical subsystems, such as HP’s iLO or IBM’s
Director solutions for blade centers. None of the these solu-
tions currently scale to the sizes needed in next generation
data center systems.

There exist several open source tools for collecting mon-
itoring data and for cluster-level monitoring [19]. [19] uses
a hierarchical approach to monitoring where attributes are
replicated within clusters using multicast methods and ag-
gregated via a tree structure. Aggregation structures are
evaluated in several related efforts, including [21,26,28]. [15]
supports on-demand but not complex queries. [6] constructed
on top of hadoop provides monitoring and analysis for large
data-intensive codes and systems, focused on large volumes
logs for failure diagnosis.

Note that most of the projects described above focus on
scalability in data distribution and aggregation, supporting
continuous or one-shot queries via certain hierarchical or
peer-to-peer topologies, and they may use gossiping tech-
niques or data structures like DHTs to access and distribute
monitoring data. The monalytics approach to large-scale
data center management can leverage the robustness and
scale properties of such methods, but differs in also (1) com-
bining data collection and aggregation with arbitrary anal-

ysis tasks, (2) permitting dynamic deployment and recon-
figuration of monalytics graphs and operators, (3) providing
scalability through data local analysis, and finally, (4) ex-
tending analysis with local management functions.

Monalytics leverages some of the concepts from earlier
work on data streaming systems, including [5, 25], and our
own research on the ECho publish/subscribe system [13] and
the iFlow [18] event-based infrastructure, applied to high
performance and to enterprise scale systems.

6. CONCLUSIONS AND ONGOING WORK
This paper presents the concept of monalytics along with

the software architecture for realizing it in large scale data
center environments. It provides concrete data center usage
scenarios to establish the need for monalytics. Experimen-
tal evaluations demonstrate how simple actions integrated
with monitoring can be helpful, particularly when it comes
to issues of scale. We demonstrate the usefulness of mona-
lytics through its features – deploying local control loops as
corrective actions, installing them at different levels of ab-
straction or in different subsystems via monalytics leaf- or
non-leaf nodes, and attaining scalability through data local
analysis and failure proportionality for larger scale systems
or tasks.

Ongoing work in this project includes (1) the integration
of monalytics with the vManage [17] architecture, (2) its
deployment in larger scale testbeds, including those pro-
vided by the OpenCirrus cloud computing infrastructure [2],
and (3) additional experimental evaluations ranging from
micro-benchmarks, to using parallel analysis operators, to
demonstrating multiple distributed control loops in larger
scale applications operating across different length and time
scales.Also in progress are larger-scale experiments on the
high performance machines accessible to our group [3].

Future work with monalytics concerns our ability to use
and manage monalytics topologies, including dynamic topol-
ogy configuration and the use of additional data aggregation
and organizational methods, such as DHTs [26]. We are also
exploring power-performance tradeoffs [17] in utility cloud
computing systems, through detailed measurement and eval-
uation of commodity servers in an instrumented data cen-
ter at Georgia Tech, including consideration of thermal and
cooling issues.

7. REFERENCES
[1] Balance http://sourceforge.net/projects/balance/.

[2] Open Cirrus HP/Intel/Yahoo Open Cloud Computing
Research Testbed https://opencirrus.org/.

[3] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky,
K. Schwan, and F. Zheng. DataStager: Scalable Data
Staging Services for Petascale Applications. HPDC,
2009.

[4] S. Agarwala, F. Alegre, K. Schwan, and
J. Mehalingham. E2EProf: Automated End-to-End
Performance Management for Enterprise Systems.
DSN, 2007.

[5] L. Amini, N. Jain, A. Sehgal, J. Silber, and
O. Verscheure. Adaptive Control of Extreme-Scale
Stream Processing Systems. ICDCS, 2006.

[6] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang,
and M. Yang. Chukwa: A Large Scale Monitoring
System. Cloud Computing And Its Applications, 2008.

[7] F. Bustamente, G. Eisenhauer, P. Widener,
K. Schwan, and C. Pu. Active Streams: An Approach
to Adaptive Distributed Systems. HotOS-VIII, May
2001.

[8] Z. Cai, Y. Chen, V. Kumar, D. S. Milojicic, and
K. Schwan. Automated Availability Management
Driven by Business Policies. IM, 2007.

[9] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot - A Technique for Cheap
Recovery. OSDI, 2004.

[10] E. Cecchet, J. Marguerite, and W. Zwaenepoel.
Performance and Scalability of EJB Applications.
OOPSLA, Nov 2002.

[11] H. Chen, G. Jiang, K. Yoshihira, and A. Saxena.
Ranking the Importance of Alerts for Problem
Determination in Large Computer Systems,. ICAC,
2009.

[12] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and
E. Brewer. Failure Diagnosis Using Decision Trees.
ICAC, 2004.

[13] G. Eisenhauer, F. Bustamente, and K. Schwan. Event
Services for High Performance Computing. HPDC,
2000.

[14] D. Gupta, R. Gardner, and L. Cherkasova. XenMon:
QoS Monitoring and Performance Profiling Tool
http://www.hpl.hp.com/techreports/2005/HPL-2005-
187.html.

[15] J.Liang, S.Y.Ko, I.Gupta, and K.Nahrstedt. MON:
On-Demand Overlays For Distributed Systems
Management. Workshop on Real, Large Distributed

Sytems, 2005.

[16] E. Kiciman and B. Livshits. AjaxScope: A Platform
for Remotely Monitoring the Client-side Behavior of
Web 2.0 Applications. SOSP, 2007.

[17] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan,
and K. Schwan. vManage: Loosely Coupled Platform
and Virtualization Management in Data Centers.
ICAC, 2009.

[18] V. Kumar, Z. Cai, B. F. Cooper, G. Eisenhauer,
K. Schwan, M. Mansour, B. Seshasayee, and
P. Widener. Implementing Diverse Messaging Models
with Self-Managing Properties using IFLOW. ICAC,
2006.

[19] M.L.Massie, B.N.Chun, and D.E.Culler. The Ganglia
Distributed Monitoring System: Design,
Implementation and Experience. Parallel Computing,
2004.

[20] J. H. Perkins, S. Kim, S. Larsen, et al. Automatically
Patching Errors in Deployed Software. SOSP, 2009.

[21] R.V.Renesse, K.P.Birman, and W.Vogels. Astrolabe:
A Robust and Scalable Technology For Distributed
System Monitoring, Management and Data Mining.
ACM Transactions on Computer Systems, 2003.

[22] T. Sheehan, A. Malony, and S. Shende. A Runtime
Monitoring Framework for the TAU Profiling System.
International Symposium on Computing in

Object-Oriented Parallel Environments, December
1999.

[23] M. L. Simmons, A. H. Hayes, J. S. Brown, and D. A.
Reed. Debugging and Performance Tuning for Parallel

Computing Systems. IEEE Computer Society Press,
1992.

[24] C. Stewart, T. Kelly, and A. Zhang. Exploiting
Nonstationarity For Performance Prediction. Eurosys,
2007.

[25] R. Strom, G. Banavar, T. Chandra, M. Kaplan,
K. Miller, B. Mukherjee, D. Sturman, and M. Ward.
Gryphon: An Information Flow Based Approach to
Message Brokering. International Symposium on

Software Reliability Engineering, 1998.

[26] S.Y.Ko, P. Yalagandula, I.Gupta, V.Talwar,
D.Milojicic, and S.Iyer. Moara: Flexible and Scalable
Group Based Querying Systems. Middleware, 2008.

[27] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan.
Online Detection of Utility Cloud Anomalies Using
Metric Distributions To appear. NOMS, 2010.

[28] P. Yalagandula and M. Dahlin. SDIMS: A Scalable
Distributed Information Management System.
SIGCOMM, 2004.

