
vManage: Loosely Coupled Platform and Virtualization
Management in Data Centers

ABSTRACT
Management is an important challenge for future enterprises. Previous
work has addressed platform management (e.g., power and thermal
management) separately from virtualization management (e.g., virtual
machine (VM) provisioning, application performance). Coordinating the
actions taken by these different management layers is important and
beneficial, for reasons of performance, stability, and efficiency. Such
coordination, in addition to working well with existing multi-vendor
solutions, also needs to be extensible to support future new management
solutions potentially operating on different sensors and actuators. In
response to these requirements, this paper proposes vManage, a solution
to loosely couple platform and virtualization management and facilitate
coordination between them in data centers. Our solution is comprised of
registry and proxy mechanisms that provide unified monitoring and
actuation across platform and virtualization domains, and coordinators
that provide policy execution for better VM placement and runtime
management, including a formal approach to ensure system stability from
inefficient management actions. The solution is instantiated in a Xen
environment through a platform-aware virtualization manager at a cluster
management node, and a virtualization-aware platform manager on each
server. Experimental evaluations using enterprise benchmarks show that
compared to traditional solutions, vManage can achieve additional power
savings (10% lower power) with significantly improved service-level
guarantees (71% less violations) and stability (54% fewer VM
migrations), at low overhead.

Categories and Subject Descriptors
D.4.0 [Operating Systems], C.0 [Computer System Organization]

General Terms
Management, Algorithms, Performance, Standardization

1. INTRODUCTION
The effective use of IT infrastructure strongly depends on easily
and efficiently managing server hardware, system resources, and
applications. However, rising complexity and scale in today’s
enterprise data centers has led to increased costs for such
management (in some cases, up to 60-70% of the total IT budget
[1]). The adoption of virtualization and the consequent need to
manage virtual machine (VM) migration and mappings between
physical and virtual resources [2,3] can further exacerbate these
challenges.

There has been significant industry investment and prior work to
improve the ways in which systems are managed. These solutions

can be classified as either platform management or virtualization
management. The former is concerned with managing the
hardware; examples include server configuration, hardware
monitoring, and power and thermal management [4,5,6]. The
latter is concerned with managing VM resources and application
performance. Some examples include VM provisioning, runtime
monitoring, SLA management, and data backup [7,8,9,10,11].

Traditionally, platform management and virtualization
management solutions have been designed in isolation (in
“silos”). The increased adoption of virtualization and the resulting
blurring between the virtual and physical domains, however,
argue for coordinating these solutions. This can avoid ineffective
management with respect to stability and efficiency caused by the
autonomous actions taken in current isolated designs. Figure 1
presents an illustrative excerpt from a 13-node experimental setup
(discussed later in Section 4) when a power manager and a
virtualization manager are deployed in isolation. The figure
illustrates (1) the power consumption and the number of times the
power budget (corresponding to the cooling provisioned in the
system) is violated, as well as (2) the response time and the
number of times the Service Level Agreement (SLA) is violated.
As the figure illustrates, often the SLA and power violations
happen approximately around the same time. This is because one
violation triggers the other. Specifically, the power violations
cause the power manager to reduce the CPU frequency;
unfortunately, this leads to SLA violations. These SLA violations,
then, trigger the power manager to increase the CPU frequency,
which cause further power violations, and the cycle continues.
Hence, this baseline “silo-ed” system not only violates both the
power budget and response time guarantees significantly, but it

Sanjay Kumar

Intel Corp.

Hillsboro, OR

sanjay.k.kumar@intel.com

Vanish Talwar

HP Labs

Palo Alto, CA

vanish.talwar@hp.com

Vibhore Kumar

IBM Research

Hawthorne, NY

vibhorek@us.ibm.com

Parthasarathy Ranganathan

HP Labs

Palo Alto, CA

partha.ranganathan@hp.com

Karsten Schwan

Georgia Tech

Atlanta, GA

schwan@cc.gatech.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICAC’09, June 15–19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-564-2/09/06...$5.00.

Figure 1: Illustration of problems with non-coordinated
platform and virtualization management

also suffers from oscillatory instability between power and SLA
violations due to the lack of coordination.

Similarly, in another scenario and again in the absence of
coordination, a virtualization manager that migrates VMs in
response to insufficient CPU cycles, and a power manager that
increases CPU frequency for the same reason, may result in
redundant actions causing wastage of system resources and hence
system inefficiency. Extending this problem more generally
within a data center, one can imagine uncoordinated VM
migrations resulting in undesirable effects such as VM ‘ping-
ponging’ (continuous migration of VMs among a set of hosts). All
of these inefficiencies are due to isolated platform and
virtualization management, ultimately resulting in higher data
center costs.

Coupling the virtualization and platform management solutions
avoids redundant and overlapping management functions, and
results in greater efficiency and stability in the data center.
However, effective coordination comes with several challenges.
Manual or ad-hoc approaches can be time-consuming and
potentially very costly in human costs. Similarly, while it may
seem plausible at first glance to develop a well integrated
platform-virtualization solution to achieve such coupling, a
solution that is too tightly-coupled may not actually be viable.
This is both for practical reasons, such as the need for concurrent
development of platform and virtualization management solutions
in multi-vendor scenarios and to preserve investment in existing
products, and for theoretical reasons, such as the difficulty of
finding effective general methods for controlling multi-layer
systems and applications [12]. Additionally, any solution that is
developed needs to be extensible to support different management
solutions, different sensors, different actuators, while allowing
coordination policies to be developed independent of low-level
implementation issues.

In this paper, we present vManage, a practical coordination
solution that loosely-couples platform and virtualization
management in future data centers. The solution is comprised of
registry and proxy mechanisms that provide unified monitoring
and actuation across platform and virtualization domains, and of
coordinators that provide policy execution for platform-aware
virtualization management and virtualization-aware platform
management. In addition, we provide for `plug-in’ components,
an example being one for stability management for coordinated
VM placement in the data center, termed stabilizer. The vManage
design has several useful features such as the ability for the
coordinators to interface with existing management controllers, be
easily portable across hardware platforms in an implementation
independent manner, and flexibility and extensibility in allowing
new management solutions to participate in a “plug-and-play”
fashion.

We have implemented vManage in a Xen-based infrastructure
with coordination policies for improved VM placement and better
runtime management. We have evaluated the solution in a cluster
with 28 VMs running a mix of business, web, internet services,
and batch workloads. Our results show that the vManage
coordinated approach achieves improved power savings (10%
lower power) and significantly better QoS (71% less violations)
with better stability (54% fewer VM migrations), all at low
overheads and minimal interference with host workloads.

The remainder of the paper is organized as follows. Section 2
discusses in detail the vManage solution for coordinated platform

and virtualization management. Section 3 describes the
implementation for vManage. Evaluation results are presented in
Section 4. Finally, Sections 5 and 6 discuss related work and
conclude the paper respectively.

2. vMANAGE SOLUTION
2.1 System Model
Figure 2 shows the vManage solution for coordinating platform
and virtualization management in the data center. Each node has
multiple virtualization and platform sensors/actuators. Examples
include power and thermal sensors, application SLA sensors,
utilization monitoring daemons, ACPI p-state actuators (that vary
performance for lower power), and VM migration actuators.
Monitoring data from these sensors are aggregated across multiple
nodes and stored in cluster-level repositories (e.g, see the system
utilization and power usage repositories in Fig. 2). In addition,
each node hosts a platform manager for hardware-related
attributes such as power, and a cluster management node hosts a
virtualization manager to manage VMs through their lifecycle. In
such a system, we introduce coordination at two levels (as
indicated in Fig. 2) -- platform-aware virtualization management
at the cluster management node, and virtualization-aware platform
management on each node.

In order to keep the system loosely-coupled and to be portable
across multiple hardware platforms, we make two design choices.
First, we introduce a registry & proxy service that is responsible
for discovering and registering the individual sensors and
actuators at a unified location using publish-subscribe
mechanisms. Second, we introduce a coordinator that can be
plugged into existing virtualization and platform managers. This
coordinator interfaces with the registry & proxy service, and
through it, becomes aware of and obtains data from available
platform and virtualization management sensors. The coordinator
then uses the unified data from these diverse sensors to implement
control policies for better coupling. The policies are executed
using actuators from both platform and virtualization management
domains, similarly discovered and accessed via the registry and
proxy service. In addition to the registry & proxy service and the
coordinators, a key aspect of our solution includes the stabilizer,
to which the coordinators interface. The stabilizer ensures system
stability and prevents coordinators from taking redundant and
unnecessary actions. We describe these elements below in the

Figure 2: vManage: Loosely-coupled platform and
virtualization management.

Registry & Proxy
Service

Power Usage
Repository

Utilization
Repository

ManagementNode

Stabilizer

Virtualization Manager

Coordinator

Coordinator

Platform Manager

Virtualization Sensors &
Actuators

Platform Sensors &
Actuators

Node

Platform-aware
Virtualization
Management

Virtualization-
aware Platform
Management

context of the operation of the coupled virtualization and platform
managers as has been used in our prototype.

2.2 Platform-aware Virtualization Management
The coordinator plug-in to the virtualization manager implements
policies for providing integrated VM placement considering both
VM requirements such as CPU, memory, network bandwidth, VM
priority, etc., as well as platform requirements such as power
budget (or other platform attributes like reliability or physical
location). It is invoked during initial provisioning of VMs and
also subsequently when a suitable host is to be chosen during VM
migration.

When invoked, the coordinator first obtains a list of nodes
(provided by the virtualization manager) that satisfies the new (or
migrating) VM’s various requirements (CPU, memory, etc.).
Thereafter, it queries the registry and proxy service to obtain
information on the available power usage repositories in the
cluster. When found, the power usage repository is queried to
obtain the current power consumption for all nodes satisfying the
VM’s requirements. Power budget filtering is then applied on
these nodes checking that the node will not violate its power
budgets when the VM is deployed on it. From these filtered
nodes, a final node is selected for VM placement using a pre-
determined policy. For example, the coordinator can select the
first “matching” node that satisfies VM and platform
requirements, or perform a best match (e.g., the most idle host for
a VM). Alternatively, and preferably, the coordinator chooses a
node that ensures system stability, i.e., would satisfy both the VM
and platform requirements for a sufficient period of time into the
future with the stability checks provided through the stabilizer
described in Section 2.4. Once the final node is selected by the
coordinator, the virtualization manger deploys the VM on that
chosen node based on the selection.

This approach for selecting a node considering both the VM and
platform attributes avoids bad decisions that lead to early power
budget violations or system downtimes. It also reduces the use of
expensive runtime techniques like workload balancing to handle
such violations or host failures. Furthermore, this approach also
allows the coordination to be implemented as a plug-in to existing
virtualization managers. More specific implementation details and
quantitative benefits are presented in Sections 3 and 4.

2.3 Virtualization-aware Platform Management
We now explain the coordinator plug-in at the platform manager.
This plug-in implements policies for providing better runtime
management considering sensor data and actuators from both the
platform and virtualization management domains. Below is the
specific operation.

Periodically, the coordinator in the platform manager interfaces
with the registry & proxy service and obtains access to application
SLA sensors deployed in guest VMs (in addition to the power
sensors). Two types of SLA notifications are used in our
prototype: SLA violation and SLA restore. SLA violation is
generated when a VM’s or its application’s SLA is violated. SLA
restore on the other hand is generated when a VM’s or its
application’s SLA metrics (e.g., application response time) are
“well below” violation levels. In addition, the coordinator also
queries the registry & proxy service to obtain access to the
multiple actuators in the system across the platform and
virtualization layers (ACPI p-states and VM migration). Given
such an access to monitoring data and actuators from both the
platform and virtualization layers, the coordinator in the platform

manager implements SLA-based power management decisions,
and executes a consolidation VM migration policy that deals with
both SLA and power violations. More specifically, the
coordinator executes the following policy -- if it receives a SLA
violation notification from a VM, it increases the frequency of the
CPUs running the VM using ACPI p-state actuators; on the other
hand, if it receives a SLA restore notification or a power violation
notification, it decreases the frequency of the CPUs also using
ACPI p-state actuators; however if either the SLA or power
violation has been persisting for long enough beyond an
acceptable threshold, the coordinator triggers a different actuator -
VM migration, and contacts the coordinator agent plug-in at the
virtualization manager to choose an appropriate host to which to
migrate the VM, considering both the VM and platform metrics.

With such a policy, we ensure that local scaling p-state knobs are
first employed for runtime management decisions, and if they do
not satisfy either SLA or platform requirements, we use global
VM migration knobs and leverage other available nodes in the
data center to achieve combined goals. Our approach improves on
traditional platform management solutions (e.g., HP’s
PowerRegulator) that typically make decisions only based on
lower level metrics obtained through hardware sensors and
performance counters, with no direct feedback from higher
virtualization layers. Similarly, our solution also improves on
traditional virtualization management solutions (e.g., VMWare
DRS, which manages VM migrations to meet performance goals)
that make their decisions based on higher level metrics only
obtained through virtualization and application sensors. These
traditional solutions do not leverage local platform management
knobs (ACPI p-states, reliability, etc.) in a combined manner with
SLA goals to achieve their runtime objectives. With the policies
executed in the coordinator, vManage avoids redundant actions
(e.g, migrations and power management knobs enabled at the
same time), improves data center efficiency (power usage, number
of migrations) and restricts violations (SLAs and power).

2.4 Stability for Coordinated VM Placement
In typical settings, the resource and platform requirements
associated with a hosted application, and therefore the container
VM, may vary with time. Such variations, if not accounted for,
can quickly render a seemingly sound initial placement or
migration decision into one that causes further violations (SLA,
power, etc.) on the new host and results in more migrations.
Similarly, a failure to recognize the transient nature of variations,
which manifest themselves as intermittent SLA and/or power
violations, may lead to several unnecessary VM migrations. It is
therefore important that the decision on when, which VM, and
where to migrate should not only be based on the prevailing
operational conditions but also on the validity of such a decision
into some time into the future. We define the stability of a
decision (placement or migration) as the probability with which
such a decision continues to remain valid over certain duration
into the future. The intuition is that more stable decisions will lead
to a more stable system, and thereby prevent unnecessary VM
migrations. The remainder of this section discusses how vManage
formalizes the notion of stability outlined above.

Let M(m1, . . . , ml) represent the set of l VMs deployed on a
particular host, and R(r1, . . . , rn) be the set of n resources (e.g.
CPU, Memory, etc.) that affect the placement or migration
decisions. We represent the resource requirements for a VM mi

M using the set Vi, where each element)(tvi
j represents the time

varying requirement for the resource rjR. We also define the set

A, where each element)(ta j represents the amount of resource rj

R available with a host with no VMs deployed on it1.

For a resource requirement)(tv i
j , since its variation is not known

exactly, we model it using a time varying mean)(tμ
V

i
j

, a standard

deviation)(tσ
V

i
j

, and a corresponding probability density function

(PDF) expressed as)(tx,
V

i
j

f . We assume that fand, σμ which

correspond to a VM are known a priori or can be calculated by
making use of methods like offline profiling or online calibration
[36,37,10]. Using the PDF one can calculate the probabilistic
resource requirement at time instant t. For instance, by plugging-
in x = x0 and t = t0 one can calculate the probability with which
the VM represented by mi will require x0 amount of resource rj at
time t0.

To make further computations easier and more comprehensible,
we now define a few additional variables that are derived from the
ones defined above. In particular, we make use of the cumulative

distribution function (CDF))(tx,
V

i
j

F which can be derived from a

PDF [38]. Using the CDF with x = x0 and t = t0 one can find the
probability with which the VM mi will require x0 or lesser amount

of resource rj at time t0. We also define)(tvM
j which represents

the net requirement for the resource rjR by all the VMs in M.
Furthermore, the quantities Ff and, σ,μ are also defined for the

net resource requirement variable)(tvM
j , an instance of specific

derivation of these will be presented later in the section.

The stability of a host, which corresponds to the decision of
assigning a set M of VMs to a particular host, can be calculated as
the average probability with which the host can continue to
provide sufficient resources to the VMs in M for a given time T
into the future. Mathematically, this probability, for the time
interval (t0, t0 + T), can be calculated using the following product
equation.





Rr

r T)),((pT),P(

j

j 0000 tttt

(1)

Where the individual probability in turn is,

T

t)dt(t),(a

T),(p

T

v

r

M




0

0

t

t
00 tt

j
j

j

F

(2)

Here,)(tx,M
V j

F represents the CDF corresponding to the net

resource requirement)(tvM
j . The above computations essentially

calculate the combined probability with which the net resource

requirement)(tvM
j for the resources rjR can be satisfied by the

resources)(ta j available with the host in question.

To see how the above computations can be put into practice,
consider the scenario where the VMs in M are running

1
We model the platform resources as a function of time because these can change
due to events like CPU frequency scaling, failure of a disk in a disk array, etc.

independent workloads (implying independent resource
requirements). Therefore, the mean and the standard deviation for

the net resource requirement)(tvM
j corresponding to a resource rj

R can be calculated by summing the corresponding quantities
from the VMs in M.





Mm

vv
(t)μ(t)μ M

i

i
jj

|i (3)





Mm

2
v

2
v

(t)σ(t)σ M

i

i
jj

|i (4)

Further, if we assume that the PDF)(tx,
V

i
j

f for any time instant t

follows a normal distribution (this worked well for the workloads
used in our experiments when CPU resource usage was
considered), then we can calculate the CDF for the net resource

requirement)(tvM
j using standard statistics [38]:

)
2(t)σ

(t)μx
erf(1

2

1
t)(x,

M

M

M

v

v

v

j

j

j
F




(5)

The error function in this term – erf – cannot be evaluated in
closed form, and consequently, this requires discretization of the
quantities when Equation 5 is substituted in Equation 2. Thus the
resulting formulation of stability for a host hosting a set M of
VMs can be summarized by the following equation. As mentioned
earlier, it calculates the average probability with which the host
can continue to provide sufficient resources to the VMs in M for a
given time T into the future.










Rr

T

v

T

t)(t),(a

T),P(

M

j

j
jF

0

0

t

t
00 tt

(6)

One can calculate the stability of system composed of multiple
hosts by calculating the product of the stability of the individual
hosts. Whenever a new VM arrives for initial deployment or when
a VM needs to be migrated, the stabilizer generates a new set of
assignments by adding the VM in question to the set M
corresponding to different hosts. The new assignment which
results in the highest value for system stability among the
different hosts is chosen for deployment. The approach can be
easily extended to handle arrival of multiple VMs for initial
deployment or when multiple VMs need to be migrated.

2.5 Discussion
The vManage design approach as outlined in this section provides
several qualitative benefits summarized below.

vManage takes a structured approach to designing cross-layer
coordination, thereby eliminating or improving on manual or ad-
hoc approaches. Additionally, vManage uses standards-based
protocols and leverages existing CIMOM [25] deployments (more
in Section 3) to ensure broader community adoption for greater
automation benefits.

vManage provides a framework whereby sensors and actuators
from multiple vendors and types across multiple domains can be
added and removed from the system easily without any
dependencies. This is achieved through the registry & proxy
service discovering their presence or absence and informing the
policy system in the coordinators accordingly.

Additionally, the separation of the registry & proxy services from
the policy execution in the coordinators allows the policies to be
developed without having to deal with low-level implementation
issues, such as how to communicate, how to discover the diverse
sensors across the virtualization and platforms domains, how to
access diverse software vs. hardware sensors, etc. This also aids in
portability.

Also, coordinators can be merged with existing controllers as
loosely-coupled plug-ins. From a practicality perspective, this
preserves prior industry investments in existing products and
leverages existing industry trends (e.g., VMWare DRS [7], HP
SIM [4] plug-and-play architecture).

vManage is also unique in its implementation of a stabilizer that
avoids system oscillations (in terms of continuous VM
migrations) when reconciling different individual local constraints
and transient workload behavior. Our results in Section 4 discuss
how the stabilizer module is key to minimizing the number of VM
migrations while achieving effective coordination.

Finally, vManage facilitates coupling of several different policy
actions and actuators across multiple management solutions. For
example, it facilitates coordination between power, thermal,
performance, and reliability management solutions. While our
current prototype demonstrates the unification of a limited set of
sensors/actuators, additional sensors and actuators such as those
for shutting down machines with VM consolidation, fan control,
and reliability monitoring can be integrated into the prototype and
coordination policies related to these can be implemented in a
fairly straightforward manner.

3. PROTOTYPE IMPLEMENTATION
The implementation of vManage is based on Xen (Figure 3). The
virtualization-aware platform manager is implemented in a
separate privileged driver domain in Xen (Dom-M in Figure 3),
and the platform-aware virtualization manager is implemented on
a management node. We explain the implementation for these two
managers next.

The virtualization-aware platform manager on each node relies on
IPMI [28], XenMon [29], and application SLA tools for sensor
data. XenMon (for VM utilization) is deployed in Dom0, whereas
IPMI and special management hardware drivers (such as to access
the management processor [13]) are deployed in Dom-M for
power data. The application SLA sensors are deployed in each of
the guest VMs. To implement these sensors, we wrote Perl scripts
that monitor application throughput and response time logs and
infer SLA violation or restore. Specifically, they capture the
average execution time for the application periodically (e.g., every

1 second), and record a SLA notification whenever the response
time exceeds the SLA threshold. For example, when response
time is above 10ms, a violation notification is generated and when
the response time is below 50% of 10ms, a restore notification is
generated. We have written these SLA sensors for all the
applications used in our study.

The registry and proxy service for the virtualization-aware
platform manager is instantiated within Dom-M at each node. It
relies on CIM (Common Information Model) [25] to connect with
the diversity of available sensors and actuators. We use CIM since
it appears to be the common standard on which the industry is
converging; though our solution can work equally well with other
standards. Specifically, a CIM object manager (CIMOM) is
installed in each of the guest VMs, as well as in Dom0, Dom-M,
and the management hardware. Sensors and actuators in each of
these respective domains register to their local CIMOM through
CIM providers and are exposed to the outside world through CIM
classes. The registry and proxy service then discovers these
individual CIMOMs using the Service Location Protocol (SLP)
[40]. Once discovered, the registry and proxy service contacts the
individual CIMOMs and through the CIM classes, it gathers the
meta-data information in the various management domains. In this
way, the registry and proxy service is able to gather the diverse
meta-data across different management entities at a single unified
location. When a request is made for monitoring or actuation, the
registry & proxy service redirects the call to the appropriate
CIMOM in the respective domain and the monitoring is initiated.
The registry and proxy service is able to deal with dynamics (e.g,
dynamic addition of VMs or migrations) through the use of leases
as part of the discovery process of individual CIMOMs.

The management node hosts the power usage and system
utilization repository as LDAP directories. Simple daemons in
Dom-M periodically send the power usage, XenMon utilization
data, and other attribute values (e.g., reliability) of each node to
the management node. This aggregated information for all nodes
is stored in the LDAP directories. A separate registry and proxy
service is implemented at the management node for the platform-
aware virtualization manager. Its current implementation is
straightforward and the information about the available
repositories is known apriori to the registry and proxy service.

The coordination support for the virtualization and platform
managers is implemented at application level, as multithreaded
processes where one or more threads perform the monitoring,
protocol exchange, coordination, and actuation tasks. They
interface with the registry service and bind to the API libraries.
The policies described in Section 2 are implemented in the
coordinators as C++ functions. We also implemented traditional
platform and virtualization managers into which the coordinators
are statically compiled to make the virtualization manager
platform-aware and the platform manager virtualization-aware.
Although the prototype currently requires a static compilation of
the coordinator, this limitation is being removed through our
current efforts to architect the code using commercial plug-in
frameworks [39]. This will provide support for dynamic and on-
demand plug-ins.

The traditional (non-coordinated) virtualization manager
implementation is loosely-based on VMware DRS. (We
implemented our own equivalent of this manager given that our
prototype was on Xen.) This solution does initial VM placement
by considering the VM resource utilization requirements. When
CPU utilization exceeds a certain threshold (>80%), it triggers a

Figure 3: Prototype implementation.

Application

OS

Xen Hypervisor

Guest VM(s) Dom-M

Power Manager

Registry & Proxy
Services

x86 Hardware
Management

H/W (e.g., iLO)

Platform-aware Virt. Management &
Virt.-aware Platform Management

x86 Hardware

Power
Sensors &
Actuator

Mgmt.
Firmware

Virt.
Placement
Manager

Coordi
nator

Registry &
Proxy

Services

System Util.
Repository

Stabilizer
Power
Usage

Repository

Node Management Node

Coordinator
SLA

Sensors

Dom 0

Virt.
Sensors,
Actuators

VM migration to maintain SLAs. The first host meeting the
migrating VM’s requirements is chosen as the destination.

The traditional power manager implementation does utilization-
based power regulation and power budget capping and is loosely-
based on HP’s PowerRegulator and PowerCapper, but with APIs
exposed for coordination. For power regulation, if the system
utilization exceeds a certain threshold (80%), CPU frequency is
increased by one level, and when CPU utilization drops below a
certain threshold (20%), CPU frequency is decreased by one level.
(To obtain system utilization, our implementation uses values
reported by XenMon; commercial products use hardware
performance counters for this purpose, but the functionality is the
same.) The power capper periodically monitors the power budget
and reduces CPU frequency by one level on a power budget
violation. As mentioned earlier, this power manager is deployed
in Dom-M, and the virtualization manager is hosted on the
management node.

The stabilizer is written as a separate C++ application and is
deployed on the management node. It implements the algorithms
described in Section 2.4. Specifically, it considers the probability
of each host satisfying the migrating VM or new VMs’
requirements over a certain period in the future (this period is kept
to 15 minutes in our experiments) and picks the host with the
highest probability. In the experiments reported in this paper, the
stabilizer uses a priori knowledge of the workload model (by
analyzing workload traces offline) to arrive at VM resource
utilization model. Only the CPU resource type is considered
during probability calculation. Experimental studies considering
other resource types (e.g., memory) are planned for future work.
The coordinator in the virtualization manager requests the
stabilizer application for probability values during placement
decisions. Similarly, the per-node coordinator in the power
manager requests the virtualization manager coordinator
whenever a VM migration placement decision needs to be made.

Overall, our prototype consists of about 4000 new/modified C++
and Perl script lines of code.

4. EVALUATION

4.1 Experimental Setup and Results
vManage is evaluated in an experimental testbed consisting of
thirteen machines connected through a gigabit network – seven of
these are Dell PowerEdge 1950 (compute nodes) which host
virtual machines, four of them are client machines generating
workload requests for the VMs, and the final two are configured
as a storage node (providing VM disk images over NFS), and a

management node (running the platform-aware virtualization
manager), respectively. The compute nodes are dual-core dual-
socket machines containing Intel Xeon 5150 processors with
support for three different operating frequencies (2.66 GHz, 2.33
GHz, and 2.0 GHz) and have 4 GB of memory each.

Multiple workloads are used to emulate the typical data center
environment. They include the RUBiS [30] online auctioning
application (representative of a business application), the Nutch
[31] search engine (Web 2.0), WebServer (Internet services)
serving static files, and batch mode applications running tight
CPU computation (engineering, HPC). RUBiS is a three tier
application with an Apache webserver, Tomcat application server,
and a MySQL database server. Two application servers are used
between the webserver and database server for load balancing. All
servers are run inside VMs. Hence, one RUBiS instance consists
of 4 VMs. All VMs are uni-processor VMs and depending on the
workload, have different requirements for CPU cycles and
memory.

We use two end-user request traces to generate workload for the
VMs: (i) EPA-HTTP web traffic trace from the LBL Repository
[26] to generate workload for the RUBiS applications and (ii)
request traces from the Travelport [27] website to generate
workload for Nutch and for the static WebServers. The two web
traces contain traffic for more than an entire day. We replay these
day-long traces multiple times to model a 50-day experiment, and
to save time condense the 50 day experiment into a 20 hour
experiment (by condensing the 24-hour trace into a 24 minute
trace while preserving its shape and other properties). All of the
workloads are primarily CPU bound since we are currently
considering only CPU resource.

For our power measurements, in the absence of real-time power
metering capabilities in the Dell systems in our testbed, we use a
model based on CPU utilization that has been proposed and
validated in several previous studies (e.g., [5,6,17]). Specifically,
our power sensor assumes power consumption varies according to
P = K*U + I, where P is consumed power, K is a constant, U is
the CPU utilization and I is the idle power. K depends on the
current operating frequency (i.e., p-state) of the CPU. We
determine the values of K and I offline, by calibrating the hosts
using a power meter. While not presented here, we also developed
a smaller testbed with HP-based servers that do support real-time
power metering through the iLO management processor, and our
results were qualitatively similar.

Figure 4 summarizes the overall benefits in data center efficiency
(power savings, VM migrations) and VM guarantees (SLA
violations) gained from coordination. For these experiments, we
used 10 instances of Nutch, 3 instances of RUBiS, and 6 instances
of static WebServers, resulting in a total of 28 VMs (12 RUBiS
VMs, 10 Nutch VMs, and 6 WebServer VMs) on 7 nodes in the
``mini" data center. The base case represents the traditional
virtualization and power managers without the coordinator plug-
ins – these model commercial products in the market currently.
The coordinated case is our proposed vManage solution obtained
by enabling the registry & proxy service, and the coordinator
plug-ins in our prototype. Each result corresponds to the average
of four 20-hour runs.

As seen in Figure 4, the vManage solution offers significant
benefits. The number of SLA violations in the coordinated
solution is reduced by 71% compared to the base case (Figure 4a).
The average power reduces from about 250W to 225W, providing

Figure 4: Results. The vManage architecture achieves more power
savings and significantly better QoS while negating the potential ill-
effects of migrations through the stabilizer, all at low overhead and
with minimal interference to host workloads.

210

220

230

240

250

Base (no
coordination)

Coordinated
Solution

(vManage)

Average Power
(Watts)

0

20

40

60

80

100

120

Base (no
cordination)

Coordinated
Solution

(vManage)

Stability
(# VM migrations)

0

0.5

1

Base (no
coordination)

Coordinated
Solution

(vManage)

SLA Violations
(normalized to Base)

approximately 10% power savings (Figure 4b). In addition, as
seen from Figure 4c, the number of VM migrations decreases
dramatically – by 54% -- from 110 in the base case to only 51 in
the coordinated case.

These benefits can be attributed to three key characteristics in the
vManage coordination solution – richness of information, richness
of actuators, and the stabilizer. We next consider each of these
characteristics and present results from controlled sub-
experiments that characterize how they individually benefit the
efficiency and QoS of the system.

Richness of information in coordinated solution: vManage’s
coordinated solution has access to information from sensors
across the platform and virtualization domains. Policies
implemented using such a holistic view of the system have
system-wide impact by improving both data center efficiency and
VM QoS metrics, as opposed to improving only one of them. We
illustrate this point through a controlled experiment that shows the
benefit of using vManage’s application SLA feedback (richer
information) compared to the traditional processor utilization
usage (obtained through performance counters by current power
management products) for power regulation. This experiment uses
one instance of RUBiS and one instance of the Nutch server on a
single host.

Figure 5a shows the response time of the application for both the
power regulation policies. For visual simplicity, we show only
Nutch; RUBiS' behavior is similar. The SLA threshold is set at 10
ms, so any request execution time above 10 ms is considered an
SLA violation. We see that the request execution time and SLA
violation characteristic are similar for both policies. Concerning
power consumption, however, Figure 5b, which plots the power
consumption trace over time for both policies, demonstrates that
host power consumption under the SLA-based policy is less than
under the utilization-based policy. The SLA-based policy reduces
power consumption by 8%. These improvements reflect the fact
that high utilization is not often the most appropriate metric to
approximate higher-level application SLAs. An application at
high utilization may still be maintaining its SLAs and may not
need a higher CPU frequency. As a result, power regulation
directly done based on SLA violations can often run the CPU at
lower frequencies even under high CPU utilization.

This example, though straightforward, serves to illustrate how
richer semantic information contributes to improved results in our
baseline. Similarly, though not plotted here in interests of space,

our controlled experiments demonstrate that the richness of
information at the virtualization manager helps it make better
placement decisions that not only satisfy VM SLAs, but also
reduce power violations.

Richness of actuators in coordinated solution: For this
controlled experiment, similar to the SLA-based power regulation
controlled experiment; we host one instance of RUBiS and one
instance of the Nutch server on a single host. However, in
addition, we also run two batch mode applications in two other
VMs on the host to increase power consumption so that it violates
the power budget (360 watts) set for the hosts. In the first
instance, we execute a traditional power capper which on a power
budget violation reduces the CPU frequency. This, however,
causes SLA violations. In the base case, this SLA violation,
detected through an increase in system utilization, is handled
concurrently through two mechanisms: (i) a VM migration
triggered by the virtualization manager, and (ii) a CPU frequency
increase triggered by the power manager. Both of these actions
take place in a non-coordinated manner, which results in poor
efficiency.

The triggering of a VM migration (mechanism (i)) as soon as the
utilization exceeds a threshold is naïve, since the SLA violation
can likely be handled by just increasing the local CPU clock
frequency. This would have avoided the heavy-weight VM
migration. However, since the virtualization manager does not
have access to platform actuators (ACPI p-states), it is limited to a
solution that uses the heavy-weight migration operation only.

Similarly, the second option of increasing the CPU frequency
(mechanism (ii)) can also lead to system oscillations when
employed in a non-coordinated manner as described in Figure 1
(Section 1). Such oscillations can be broken if the power manager
has access to additional actuators - VM migration in this case -
which would help reduce power consumption below the allocated
budget without loss in performance. However, since the power
manager in the base case is limited in its actuators, both power
and SLA violations continue to happen.

Furthermore, in the worst case, it is possible that both mechanism
(i) and mechanism (ii) are activated at the same time, resulting in
a duplication of actions to address the SLA violations. This leads
to unnecessary cost (migration) and wastage of power (p-state
increase).

In order to mitigate these problems with the traditional
approaches, we run a second instance that uses vManage. Figure

(a) (b)

Figure 5: SLA-based power regulation.

6a shows the results. As seen in the figure, local power
management p-state actuators are used until the 52nd second, but
after this point, the SLA and power violations at Host 1 cross the
threshold that triggers a VM migration of the RUBiS AppServer.
This finally brings down power consumption, and it reduces the
SLA violation of the Nutch server significantly. The variation in
the RUBiS application response time is shown in Figure 6b as it
migrates from Host H1 to H2. We see that the migration lasts for
about 8 seconds. Note that during this period, RUBiS experiences
very high response times because of the VM migration costs
(shadow mode paging, VM suspension, and network bandwidth),
again demonstrating the importance of reducing the number of
migrations. The response time behavior for Nutch application is
also shown in Figure 6b.

Figure 6c shows how both power violations and SLA violations
are reduced with vManage making it desirable from both a
datacenter operator and VM manager’s perspective. More
generally, the experiment demonstrates vManage’s coordinated
approach leveraging multiple actuators (p-states, migrations) and
coordinating them for multiple metrics (SLA, power violations)
enables better SLA and power savings, while reducing heavy-
weight VM migrations.

Effects of stabilizer in coordinated solution: We next illustrate
the benefits of the stabilizer for our improved coordination
solution results. Figure 7a shows the evaluation of three
placement strategies in the same experimental setup as for the
baseline results in Figure 4. The base case is also repeated for
reference. The remaining policies all use the same virtualization-
aware platform manager, but differ in the placement strategy at
the platform-aware virtualization manager, both during initial
provisioning and migration. Coord1 (C1) uses “first fit” - the first

host that satisfies both VM and power budget requirements,
Coord2 (C2) uses “best fit” – the most idle host for a VM
satisfying power budget requirements, while Coord3 (C3) uses the
stability-aware equations developed in Section 2.4 when deciding
which host to pick.

As seen in Figure 7a, the use of Coord1 results in significantly
better power savings compared to the base case. However, it also
incurs slightly more SLA violations and VM migrations because
of the reactive nature of the SLA-based policies as compared to
the proactive utilization based policies of the base. However, we
see that Coord2 can mitigate this drawback through a better
placement by using a best-fit destination host matching both VM
and power requirements compared to a first fit algorithm. This
reduces the total number of SLA violations and VM migrations
significantly. Coord3 takes this one step further; the stabilizer
uses the probability of a host satisfying VMs’ CPU requirements
for 15 minutes (in the condensed time) in the future when making
decision to minimize migrations. This results in an additional 55%
reduction in SLA violations and 53% fewer VM migrations
compared to the Coord2, and 71% reductions in SLA violations
and 54% fewer VM migrations compared to base.

Figure 7b further highlights this point through a timeline graph of
CPU utilization for 3 hosts. Without the stabilizer, we see that a
bad placement leads to workloads not finding sufficient CPU
resources to meet their required workload demands (indicated by
the total required utilization on the hosts exceeding 100%). This
leads to a performance loss (SLA violations) which is then
handled by the system through VM migrations. With the
stabilizer, the good placement ensures sufficient resources are
available to meet the workload’s demands. As a result, SLA
violations are reduced and additional VM migrations are avoided.

(a) (b) (c)

Figure 6: Virtualization-aware power capping.

47
44

21
16

SLA Violations Power Violations

Traditional Power Manager

vManage Power Manager

(a) (b)

Figure 7: Illustrating effects of placement algorithms and benefits of stabilizer.

0

0.2

0.4

0.6

0.8

1

Base C1 C2 C3

SLA Violations
(normalized to Base)

0.84

0.88

0.92

0.96

1

Base C1 C2 C3

Power
(normalized to Base)

0

20

40

60

80

100

120

Base C1 C2 C3

Stability
(# migrations)

Without Stabilizer
With Stabilizer
(no additional migrations)

SLA
violations
resulting in
multiple
additional

migrations

4.2 Quantifying vManage Overheads
The previous sub-section demonstrates the benefits of the
coordination architecture in vManage. A key question, however,
pertains to the additional overhead added for vManage
mechanisms and policies. We performed several measurements
and additional controlled experiments to determine the overheads
of our solution. Our results are summarized below:

 The static phase during which only the registry services are
active, performing discovery and meta-data registration has
very negligible overhead (<1%), and it has almost no impact
on the runtime operation of the system workloads.

 The CPU usage for runtime unified monitoring when
initiated by the virtualization-aware platform manager is less
than 2%. Similarly, the additional latency for monitoring
introduced by our architecture is very modest (< 1%). These
small overhead numbers were observed even when the
number of VMs was varied from 1 to 32.

 The average CPU usage for policy execution at the
coordinator in the virtualization-aware platform manager is
less than 5% for typical policies, including under stress
conditions.

 For the coordinator providing platform-aware virtualization
management at the management node, we ran a simulation
experiment where we increased the number of hosts from
100 to 2500. We found that the CPU usage and the policy
execution time increase linearly, with the maximum values
for these metrics, at 2500 hosts, being 8% and 6ms,
respectively. These numbers include the effects of the
stabilizer as well. This shows that the coordinator plug-in and
stabilizer scale well for sizes typical for small data centers.
For larger systems, a data center may be divided into
multiple smaller sizes, separately managed clusters,
coordinated in a tree-like structure.

 vManage has negligible interference on the host workloads;
measurements on our testbed showed no overheads on
performance when vManage was enabled.

4.3 Summary
Overall, the results demonstrate that the vManage solution
achieves more power savings and significantly better QoS with
better stability than silo-ed solutions. Specific results show over
71% less SLA violations, with 10% power savings, and 54%
fewer migrations. Our individual experiments demonstrated how
these overall benefits can be related back to the richness of
information and actuators provided by the coordination solution
and the dynamic assessment of decisions by the stabilizer.
Furthermore, vManage achieves these benefits at low overhead
(<5%), and minimal interference to the host workloads. In
addition, the loose-coupling provided by our approach provides
several qualitative advantages like minimal disruption to existing
management controllers and entities, transparency to low-level
implementation issues, and extensibility for future sensors,
actuators, and controllers.

5. RELATED WORK
To the best of our knowledge, our work is the first to consider a
more systematic loosely-coupled and practical approach to
coordination across platform (hardware) and virtualization
management (software) layers. The loosely-coupled coordination
approach provides the advantages of working with most of the

existing management infrastructures, easy plug-and-play of
coordination policies, and reduction in dependencies among
individual controllers as well as the coordinator in normal system
operation. We are also the first to consider a stability formulation
to reduce the number of migrations in a coordinated solution.
Furthermore, unlike several previous studies that rely on
simulation, we implement our approach in a prototype and present
results with enterprise benchmarks running on a large number of
virtual machines.

There are several platform and virtualization management
solutions today – some of these are available as industry products
[4,7,8,13] and many others are published in the research literature
[9,10,14,15,16,17]. However, these solutions exist in isolated silos
and represent partial sub-system level solutions. Indeed, the
individual uncoordinated controllers in our baseline experiments
model many of these approaches. Where attempts have been
made to provide more unified management, e.g., with VMWare
DPM [32], the solutions are designed to deal with limited
actuators only (e.g. only the power shut-down actuator for DPM).
vManage on the other hand provides a holistic framework that can
be leveraged by existing management products for the use of
multiple sensors and actuators so as to provide more effective data
center management. There has also been a large body of work on
distributed middleware and publish-subscribe solutions proposed
in the literature [33,34,35]. While vManage is the first to consider
these in the context of datacenter coordination, we leverage these
known mechanisms where appropriate. Our work similarly
leverages industry standards and emerging protocols [25,34]
where appropriate.

A few recent studies have started addressing issues surrounding
coordinated management across the platform and virtualization
layer. Raghavendra et al. [5] and Nathuji et al. [6,18] have
developed point solutions addressing the coordination among
power controllers and the virtualization layer. Verma et al. [19]
propose power & migration cost aware application placement
addressing various policies using simulation. Kephart et al. [20,
21] address the coordination of multiple autonomic managers for
power/performance tradeoffs by using a utility-function approach
in a non-virtualized environment. Gmack et al. [22] take an
integrated approach to resource pool management by combining a
workload placement controller with a reactive controller. Chen et
al. [23] conduct energy-aware server provisioning for Live
Messenger workloads. Finally, GRACE [24] has explored global
resource adaptation through cooperation and demonstrated
benefits of power and performance coordination for multimedia
workloads. None of these approaches have taken a systematic
systems/architecture approach to the coordination problem across
the hardware-software layer. They have focused on integrated or
ad-hoc solutions or have only demonstrated modeled or simulated
results. Further, several of these approaches have not considered
virtualized environments or implementations on actual hardware
and testbeds.

6. CONCLUSIONS AND FUTURE WORK
Current industry offerings and most academic work on platform
and virtualization management have been designed in isolation
without any emphasis on the interaction across these layers. The
benefits from cross-layer coordination – in terms of better
performance, stability, and efficiency – motivate new solutions for
future data centers.

In this paper, we present vManage, a loosely-coupled solution for
achieving coordinated cross-layer management across
virtualization and platform managers. Our solution makes several
design choices to address practical considerations in future
datacenters including compatibility (and minimal disruption) to
existing multi-vendor management controllers and entities,
transparency to low-level implementation issues, and extensibility
for future sensors, actuators, and controllers. In particular, our
design incorporates the use of a (1) registry and proxy service to
discover and register the individual sensors and actuators in the
various layers, and (2) coordination plug-ins that can implement
federation or loose-coupling across individual controllers,
including a stabilizer that provides a formal approach to avoid
excessive VM migrations and redundant actions. To the best of
our knowledge, we are not aware of any prior work that has
examined such a design. Our solution has been implemented in
Xen, and evaluation results show significant improvements in
overall data center efficiency and in meeting service-level
agreements, at small additional overhead compared to unmanaged
or silo’ed systems.

As part of future work, we are planning to release to the broader
research community, a standards-based coordination toolkit
encapsulating the design that we discussed in this paper. We are
also working on extending the framework for larger scale data
centers using distributed coordinators and scalable registry and
proxy services, and incorporating trust and security.

References

[1] Gartner TCO Reports. 2005-08. www.gartner.com/

[2] C. Clark et al. Live migration of virtual machines. NSDI’05.

[3] S. Kumar and K. Schwan. Netchannel: a VMM-level
mechanism for continuous, transparent device access during
VM migration. In VEE, 2008.

[4] HP Proliant Esentials, Systems Insight Manager.
www.hp.com/go/proliantessentials, www.hp.com/go/sim

[5] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and
X. Zhu. No “power” struggles: coordinated multilevel power
management for the data center. In ASPLOS, 2008.

[6] R. Nathuji and K. Schwan. VirtualPower: Coordinated power
management in virtualized enterprise systems. In SOSP’07.

[7] VMWare Virtual Center. www.vmware.com/products/vi/vc/

[8] Microsoft Virtualization Management.
www.microsoft.com/VIRTUALIZATION/solution-tech-
management.mspx

[9] T. Wood et al. Black-box and gray-box strategies for virtual
machine migration. In NSDI, 2007.

[10] P. Padala et al. Adaptive control of virtualized resources in
utility computing environments. Eurosys 2007.

[11] V. Kumar et al. A state space approach to SLA based
management. In NOMS, 2008.

[12] J. Hellerstein et al. Feedback Control of Computing Systems.
John Wiley & Sons, 2004.

[13] HP iLO Management Processor, www.hp.com/go/ilo

[14] J. Chase et al. Managing energy and server resources in
hosting centers. SOSP 2001

[15] J. Donald and M. Martonosi. Techniques for multicore
thermal management: Classification and new exploration. In
ISCA 2006

[16] C. Lefurgy et al. Energy management for commercial
servers. In IEEE Computer, pp. 39-48, December 2003.

[17] P. Ranganathan et al. Ensemble-level power management for
dense blade servers. In ISCA 2006.

[18] R. Nathuji and K. Schwan. VPM tokens: virtual machine-
aware power budgeting in datacenters. In HPDC 2008.

[19] A. Verma et al. pMapper: Power and Migration Cost Aware
Application Placement in Virtualized Systems. In
Middleware 2008.

[20] Jefferey O. Kephart et al. Coordinating Multiple Autonomic
Managers to Achieve Specified Power-Performance
Tradeoffs. In ICAC 2007.

[21] R. Das et al., Autonomic multi-agent management of power
and performance in data centers. In AAMAS 2008

[22] D. Gmack et al. An Integrated Approach to Resource Pool
Management: Policies, Efficiency and Quality Metrics. In
DSN 2008.

[23] G. Chen et al. Energy-Aware Server Provisioning and Load
Dispatching for Connection-Intensive Internet Services. In
NSDI 2008.

[24] S. Adve et al. The Illinois GRACE project: Global resource
adaptation through cooperation, SHAMAN 2002.

[25] Common Information Model.
http://www.dmtf.org/standards/cim/

[26] EPA-HTTP - a day of HTTP logs from EPA WWW server.
http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html.

[27] Worldspan by Travelport. http://www.worldspan.com

[28] Intelligent Platform Management Interface (IPMI).
http://www.intel.com/design/servers/ipmi/index.htm.

[29] D. Gupta, R. Gardner, and L. Cherkasova. Xenmon: QoS
monitoring and performance profiling tool. Technical Report
HPL-2005-187, HP Labs, 2005.

[30] RUBiS: Rice University Bidding System.
http://rubis.objectweb.org/

[31] Nutch: Open Source Web-Search Software.
http://lucene.apache.org/nutch/

[32] VMWare Distributed Power Management (DPM).
http://www.vmware.com/files/pdf/DPM.pdf

[33] ObjectManagementGroup, The Common Object Request
Broker: Architecture and Specification, 2.0 ed, July 1995.

[34] Web-based Enterprise Management (WBEM).
http://www.dmtf.org/standards/wbem/

[35] P.R. Pietzuch “Hermes: A Scalable Event-Based Middle-
ware”. Ph.D. thesis, Computer Laboratory, Queens' College,
University of Cambridge, February 2004.

[36] B. Urgaonkar et al., Resource overbooking and application
profiling in shared hosting platforms. In OSDI 2002

[37] V. Talwar et al., Modeling remote desktop systems in utility
environments with application to QoS management, To
Appear IM 2009.

[38] A. Allen. Probability, Statistics, and Queueing Theory with
Computer Science Applications. Academic Press
Professional, Inc. 1990.

[39] Qt Plug-Ins. http://www.qtsoftware.com/products/

[40] E. Guttman, E. Service Location Protocol: Automatic
Discovery of IP Network Services. IEEE Internet Computing
3, 4 (Jul. 1999).

