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Abstract
The use of virtualization to abstract underlying hardware can
aid in sharing such resources and in efficiently managing
their use by high performance applications. Unfortunately,
virtualization also prevents efficient access to accelerators,
such as Graphics Processing Units (GPUs), that have be-
come critical components in the design and architecture of
HPC systems. Supporting General Purpose computing on
GPUs (GPGPU) with accelerators from different vendors
presents significant challenges due to proprietary program-
ming models, heterogeneity, and the need to share accelera-
tor resources between different Virtual Machines (VMs).

To address this problem, this paper presents GViM, a sys-
tem designed for virtualizing and managing the resources
of a general purpose system accelerated by graphics proces-
sors. Using the NVIDIA GPU as an example, we discuss
how such accelerators can be virtualized without additional
hardware support and describe the basic extensions needed
for resource management. Our evaluation with a Xen-based
implementation of GViM demonstrate efficiency and flexi-
bility in system usage coupled with only small performance
penalties for the virtualized vs. non-virtualized solutions.

General Terms GPGPU, GViM

Keywords amorphous access, split driver model

1. Introduction
Current trends in the processor industry indicate that fu-
ture platforms will not merely exhibit an increased number
of cores, but in order to better meet market power/perfor-
mance requirements, will also rely on specialized cores –
accelerators, better suited for execution of various compo-
nents of the common software stacks – such as for graph-
ics [26; 3], crypto and security operations [13], commu-
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nications or computationally intensive operations such as
those needed in scientific HPC codes or financial applica-
tions [29; 11]. Such tightly coupled heterogeneous many-
core systems have long been present in the high performance
community [6; 2], but current processor and interconnect
technologies create opportunities for performance levels tra-
ditionally reserved for the HPC domain only, to be supported
on commodity platforms. This is particularly true for many-
core systems with graphics accelerators, and clusters built
with such platforms have already started to penetrate the
ranks of the world’s fastest systems [28; 1].

Concurrently, virtualization technology is making signif-
icant impact on how modern computational resources are
used and managed. In the HPC domain, significant evidence
points out the feasibility of lightweight, efficient virtual-
ization approaches suitable for high end applications [22],
its utility for capacity systems and HPC Grid environ-
ments [23], and the benefits it can provide with respect to
improved portability and reduced development and manage-
ment costs [9]. Furthermore, for HPC platforms used in ap-
plication domains like finance, transportation, gaming, etc.
(see Top500 list for diversity of application areas [1]), virtu-
alization is becoming a de facto standard technology. This is
particularly true of the banking sector, for which some esti-
mate that the top 10 US banks have three times the number
of processors as the top 10 supercomputers.

Our work is exploring efficient virtualization mechanisms
for tightly coupled heterogeneous manycore systems, such
as those (to be) used in HPC environments. Specifically, we
focus on platforms with specialized graphics accelerators,
and on such platforms, we are seeking to efficiently execute
virtual machines (VMs) that run applications with compo-
nents targeted for execution on GPUs. These GPU compo-
nents are referred to as kernels in the rest of this paper.

Our approach, GViM, builds on existing virtualization so-
lutions by integrating novel mechanisms for improved sup-
port of GPU-accelerated Virtual Machines (GViM). In com-
parison to prior work that has begun to consider the vir-
tualization of GPU resources [16], our novel contributions
address these platforms’ performance and flexibility needs,
such as those present in the high performance community:



• Improved programmability and portability – In compari-
son to prior work, GViM virtualizes the graphics acceler-
ator at the level of abstraction familiar to programmers,
leveraging the CUDA APIs [20] and their open source
counterparts [14]. This not only makes it easier to run
and port standard applications, but it also relieves HPC
application programmers of concerns about the physical
positioning of accelerators and about driver and acceler-
ator hardware versions. Deploying GViM requires mini-
mal modification to the guest VMs running on the virtu-
alized HPC platform.

• Efficient accelerator virtualization – GViM-based GPU
virtualization offers low overheads and is competitive
with kernels running in guest OSs that have direct ac-
cess to accelerator resources. Attaining such high perfor-
mance involves the careful management of the memory
and device resources used by GPUs.

• Coordinated resource management – Using the GViM
environment makes it easier for applications to ignore the
issues related to efficiently sharing GPU resources. This
is achieved by integrating methods into GViM for man-
aging an application’s joint use of general purpose and
accelerator cores. This paper establishes the importance
of coordinated resource management for general purpose
and graphics cores.

For large-scale parallel machines, the long-term goal of our
work is to present ‘amorphous’ images of machine resources
to applications, where VMs with special needs (e.g., the
need to run GPU kernels) are deployed onto resources suit-
able and available for running them, without undue program-
mer involvement, and where multiple parallel applications
efficiently share underlying heterogeneous computing plat-
forms. The methods used to attain this goal combine the
virtualization of machine resources with the active manage-
ment of their use. Applications targeted by our work in-
clude compute-intensive physical simulations sharing HPC
resources, high performance codes such as weather forecast-
ing and financial codes, and applications requiring both com-
putational and enterprise services like next generation web
applications. By freely and dynamically using and combin-
ing accelerators with general purpose processing cores via
VMs configured with the appropriate software support for
GPU access, GViM creates rich opportunities for runtime re-
source consolidation and management (e.g., for power sav-
ings [19] and increased reliability [15]).

In Section 2, we describe the general architecture of vir-
tualized GPGPU platforms. In Section 3, we discuss the vir-
tualization of such platforms in detail. This is followed by a
description of ways to coordinate the management of general
purpose and accelerator cores in Section 4. GViM’s evalua-
tion in Section 5 demonstrates its low overheads and moti-
vates the need for coordinated core management. A discus-
sion of related work appears in Section 6 followed by con-
clusions and future work.

2. System Architecture
Figure 1 shows the system architecture of a virtualized
GPGPU system. The hardware platform consists of gen-
eral purpose cores (e.g., x86 cores) and specialized graph-
ics accelerators – multiple NVIDIA GPUs in our prototype
platform. Any number of VMs executing applications which
require access to the GPU accelerators may be concurrently
deployed in the system. The application components tar-
geted for execution on the platform’s GPU components are
represented as kernels, and their deployment and invocation
are supported by the CUDA API.

Figure 1. Virtualization of GPUs

The “split-driver model” depicted in Figure 1 delegates
full control of the physical accelerators and devices to a man-
agement domain (i.e., dom0 in Xen). This implies that all
accesses to the GPU will be routed via the frontend/back-
end drivers through the management domain and that data
moved between the GPU and the guest VM application may
require multiple copies or page remapping operations [24;
25]. While the approach is sufficiently general to handle a
range of devices without additional virtualization-related ca-
pabilities, the overheads associated with it are prohibitive
for HPC applications. This is particularly true for the GPU
accelerators due to the potentially large size of the input
and output data of the kernel that can span many pages
of contiguous memory. The GViM approach described in
this paper adopts the split-driver model described above, but
makes substantial enhancements to make it more suitable for
the performance requirements of HPC applications and the
CUDA API on which many of them rely [30].

First, as CUDA is becoming an important API and pro-
gramming model for high performance codes on GPU-
accelerated manycore platforms, GViM virtualizes the GPU
stack at the CUDA API level. While our choice of CUDA
is a practical one that recognizes its substantial market pen-
etration, it is also principled in that the level at which vir-
tualization is done corresponds to that of other APIs used
for accelerator interaction – IBM’s ALF [12], originally
developed for the Cell processors, the recently announced
OpenCL [14], and many ongoing industry and academic
efforts towards uniform APIs and access methods with asso-
ciated languages and runtimes [7; 27; 17]. Through this ap-



proach, GViM provides for improved productivity, allowing
developers to deal with familiar higher-level APIs, and for
increased portability, hiding low level driver or architecture
details from guest VMs. Furthermore, since CUDA’s paral-
lel programming model does not depend on the presence of
graphics or other types of accelerators, CUDA kernels may
also be deployed on the general purpose cores in the many-
core platform, provided that appropriate binaries or transla-
tion tools exist. This gives GViM an additional level of flex-
ibility to completely virtualize the heterogeneous platform
resources. Our future work will focus on further enhance-
ments to GViM to provide for and exploit such capabilities.

A key property of GViM is its ability to execute kernels
with performance similar to that attained by VMs with direct
access to accelerators. Toward this end, GViM implements
efficient data movement between the guest VM’s application
using the kernel and the GPU running it. The enhancements
to the standard front end/back end model for this purpose are
similar to the VMM-bypass mechanisms supported for high
performance interconnects such as InfiniBand, or developed
for specialized programmable network interfaces [21]. Com-
mon to these approaches is that either the hardware device it-
self is capable of enforcing isolation and coordination across
device accesses originating from multiple VMs (e.g., in the
case of InfiniBand HCAs), or the hardware and software
stack are ‘open’, i.e., programmable, and the device runtime
is programmed to provide such functionality. Neither one of
these features is supported on our NVIDIA GPU accelera-
tors or by their CUDA stack. NVIDIA’s proprietary access
model and binary device drivers make it a ‘closed’ acceler-
ator architecture. In response, GViM offers ‘VMM-bypass’-
like functionality on the ‘data-movement’ path only, which
means that all device accesses are still routed through the
management domain, but then GViM uses lower-level mem-
ory management mechanisms to ensure that the kernels’ in-
put and output data is directly moved between the guest VM
and the GPU. The result is the elimination of costly copy and
remapping operations.

GViM provides for effective sharing of available GPU re-
sources among VMs by exploiting the fact that all acceler-
ator kernel invocations are routed through the management
domain. Policies dealing with a) GPU usage across multi-
ple VMs and for multiple GPUs, and/or b) the coordina-
tion between the actions of the management domain with re-
gards to scheduling the VMs’ kernels on accelerators, with
VMM-level actions concerning the scheduling of VMs on
general purpose cores, are thus enforced in this domain. Sec-
tion 4 describes these mechanisms in greater detail, and ex-
perimental data in Section 5 demonstrates the importance of
such coordination for meeting the performance requirements
of HPC applications.

3. GPU Virtualization
This section describes how GViM virtualizes an NVIDIA-
based GPGPU platform. The NVIDIA accelerator supports

the CUDA higher end parallel execution model with re-
ported speedups ranging from 18x to 140x compared to gen-
eral purpose CPUs. Virtualizing it, however, entails consid-
erable complexity due to its proprietary access model and
binary device drivers (i.e., its ‘closed’ architecture). We vir-
tualize this accelerator on a hardware platform comprised of
an x86-based multicore node with multiple accelerators at-
tached via PCIe devices, using the Xen hypervisor and Linux
as the target guest OS. The platform is designed to emu-
late future heterogeneous manycore chips comprised of both
general and special purpose processors.

3.1 Design
With the Xen hypervisor, a GPU attached to the host sys-
tem must run its drivers in a privileged domain that can di-
rectly access the hardware. An example of a privileged do-
main is Xen’s management domain (henceforth referred to
as ‘Dom0’). This privileged domain, therefore, must also im-
plement suitable memory management and communication
methods for efficient sharing of the GPU by multiple guest
VMs. In the rest of this paper, we assume that the drivers
are run in Dom0 but note that they could also be run in a
separate “driver domain” [8].
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Figure 2. Virtualization components for GPU

Figure 2 shows the implementation components involved
in virtualizing (and sharing) the GPU for access by multiple
VMs. To attain high performance, GViM adapts Xen’s split
driver model in multiple ways, the most important one being
our mechanisms for data bypass, as described in further
detail below.

The following adaptations exist on the guest side, as de-
picted on the right half of Figure 2, which shows a VM and
the software layers being used for GPU access:

1. The GPU application uses the CUDA API – as explained
in Section 2, GViM permits users to run any arbitrary
CUDA-based application in a VM.

2. The Interposer Library provides CUDA access – In a
non-virtualized environment, GPU applications written
with the CUDA API rely on libraries available with the
CUDA SDK. These libraries perform required checks
and pass parameters to the lower level driver that triggers



execution on a GPU. Since the source code of the library
and driver are ‘closed’, the interposer library running in
the guest VM intercepts CUDA calls made by an appli-
cation, collects arguments, packs them into a CUDA call
packet, and sends the packet to the frontend driver de-
scribed below. GViM thus maintains the abstraction level
required for broad application use. The library currently
implements all function calls synchronously and is capa-
ble of managing multiple application threads.

3. Frontend driver - The Frontend driver manages the con-
nections between the guest VM and Dom0. It uses Xen-
bus and Xenstore [5] to establish event channels between
both domains, receiving call packets from the interposer
library, sending these requests to the backend for execu-
tion over a shared call buffer (or shared ring in Xen ter-
minology), and relaying responses back to the interposer
library. GViM’s implementation localizes all changes to
the guest OS within the frontend driver, which can be
loaded as a kernel module.

Function calls are carried out by several components in
Dom0, which are described next and shown in the left half
of Figure 2:

1. The Backend mediates all accesses to the GPU – located
in Dom0, the backend is responsible for executing CUDA
calls received from the frontend and for returning the ex-
ecution results. It notifies the guest once the call has ex-
ecuted, and the result is passed via a shared ring. It is
implemented as a user-level module for easier integra-
tion with the user-level CUDA libraries and to avoid ad-
ditional runtime overhead due to accesses to userspace
CUDA memory.

2. The Library Wrapper functions convert the call packets
received from the frontend into function calls – the wrap-
per functions unpack these packets and execute the ap-
propriate CUDA functions.

3. The NVIDIA CUDA library and driver are provided by
NVIDIA – they are the components that interact with the
actual device.

Jointly, these components enable a guest virtual machine to
access any number of GPUs available in the system. The
stack shown on the VM-side in Figure 2 is replicated in every
guest in the system that wishes to access the GPU, while
the single Dom0 stack is responsible for managing multiple
guest domains as well as multiple GPUs, if available. In
Section 4, we further discuss as ‘management extension’
the interaction between the backend and the scheduling of
requests made by guests.

3.2 Memory Allocation and Sharing
Many HPC applications using GPUs have large amounts of
input and/or output data. Xen does not natively provide ef-
ficient (i.e., non copy-based) support for large data sharing
between guest VMs and Dom0. Prior efforts to improve IO

performance [31; 24] for network and block devices do not
address sharing large numbers of pages with contiguous vir-
tual addresses between a guest domain and a Dom0 back-
end running as a user level process, as required for GViM
applications and as shown in Figure 3, which depicts with
dotted lines the memory-related interactions in GViM. The
dark solid arrows indicate the path of a CUDA call (refer to
Figure 2 for detail). The arrows between guest application,
Malloc memory, and Frontend memory allocator (via Fron-
tend) are explained below.
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Figure 3. Memory management in GViM

In a non-virtualized environment, a memcpy operation in-
voked by a CUDA application has to go through one copy
of data between host memory and GPU memory, managed
by the NVIDIA driver. This can be avoided whenever pos-
sible/desirable by making a call to cudaMallocHost() which
tries to return a pointer to host-mapped GPU memory, as
shown in the left part of Figure 3. This is the pinned mem-
ory case and implies zero-copy of data. To understand the
memory management in GViM in greater detail, it is impor-
tant to understand the different memory kinds that can be
allocated by the user for data movements:

1. 2-copy – A user CUDA application running in the guest
VM can allocate memory for data buffers using malloc.
The buffer is then resident in the user virtual address
space; this makes it necessary to copy that data into a
temporary kernel buffer before passing it on to Dom0 for
some CUDA operation. However, it is possible to share
the kernel buffer in advance with the backend and elimi-
nate the copy from the guest kernel to the backend. The
next step is a copy from host memory to GPU memory,
as described above. Since the data has to go through two
copies, this is the 2-copy solution.

2. 1-copy – From the previous solution, if we remove the
guest ‘user to kernel’ copy before passing the call to the
backend, we can reduce overheads, particularly for larger
data movements. This is done by letting the user call
mmap() into the frontend driver to get memory for its
buffer instead of calling malloc. To avoid changing ap-
plications, the mmap call has been wrapped within cud-
aMallocHost() implementation of the interposer library.
This memory is pre-allocated by the frontend, shared



with the Backend using Xenstore, and managed using the
Frontend memory allocator. In order to allow a contigu-
ous view of the memory at guest user level and at the
Backend, the individual page numbers from the Frontend
allocated buffer are loaded in a page directory structure
that is shared with the Backend at frontend load time and
is remapped by the Backend. We have thus, eliminated an
extra level of copy potentially caused by virtualization.

3. Bypass – The ideal situation is a zero-copy data bypass
whenever possible, as seen from Figure 6 in Section
5. Since the GPU memory is managed entirely by the
‘closed’ driver, we propose to let our Backend make a
call to cudaMallocHost() when the system starts and map
it through the kernel level module that can be loaded
on its behalf into Dom0’s kernel address space. Portions
of this region can be mapped into individual guests and
further used to move data to and from the card, i.e.,
eliminating the ‘host to GPU’ data movement shown in
Figure 3. Inspite of its obvious performance benefit, the
bypass approach limits the data sizes a VM can exchange
with the GPU to the amount of available memory in the
VM’s partition of the driver memory. Therefore the 1-
copy mechanism described above remains useful.

4. Management Extension
The management extension to Dom0 is the software compo-
nent that implements the resource management logic shown
in Figure 4. The main task handled by this extension is
to schedule domain requests for access to accelerator re-
sources. The scheduler interacts with the backend described
in Section 3 and instructs it to accept requests from a partic-
ular number of domains (depending on the number of GPUs
available) for a certain period of time.

Figure 4. Interaction between scheduler and accelerator
backend

Figure 4 shows a diagrammatic representation of the ex-
tension, the presence of which makes it possible to control
access to the GPU ‘above’ the driver level. However, GViM
does not control actions on the actual device, i.e., once the
requests reach the driver. This is due to the closed nature of
the NVIDIA graphics device. Instead, we monitor requests
coming in from a guest over the shared call buffer using
a thread that constantly polls the ring for requests. Since
Dom0 has a shared call buffer per guest, the polling thread
can only poll one guest’s buffer at a time. For the multiple
GPUs shown in the figure, there can be a polling thread cor-
responding to every GPU.

4.1 Scheduling in Management Domain
The concepts used for scheduling include the following:

1. Credits – credits are considered as the currency given to a
guest, which grants it x msec of execution time at the cost
of y credits. This term is adopted from the Xen credit-
based scheduler [5].

2. Xen credits – these refer to the credits that are assigned
to the guest by the user or by default when it boots. These
values can be changed as the guest is running.

To improve compliance of domains with the weights as-
signed to them, GViM implements scheduling of requests
destined for the GPU. However, since we do not have direct
access to the GPU’s hardware threads or to the driver that
controls request scheduling on the GPU, GViM’s scheduling
layer is implemented ’above’ the driver level intercepting re-
quests before they reach the driver. Various scheduling poli-
cies can be implemented in this layer, and we describe two
schemes below. These simple schemes provide basic QoS
guarantees to guests, focusing on fairness.

Round robin scheduling (RR). In this scheme, the polling
thread monitors a guest’s call buffer for a given period of
time, and some guest is chosen every period. Any request
coming from the guest during this period is executed. Of in-
terest about this method is that we poll a domain only after
receiving its first request which establishes some context on
the GPU. Toward this end, the domain queue is checked for
the corresponding initialization request, but the domain is
not polled for the entire assigned time period if no such re-
quest exists. This is to prevent other domains from suffering
due to some domain’s inactivity related to the GPU. Fur-
ther, the queue is always re-checked for additional domain
requests before putting the device into standby mode.

XenoCredit(XC)-based scheduling. Here, we exploit the
fact that guest VMs are assigned Xen credits in order to
provide them with basic QoS or fairness guarantees. The
XenoCredit-based scheduler uses these credits to calculate
the proportion of time a guest call buffer should be moni-
tored. The higher the credits, the more time is given for the
execution of guest requests on the accelerator. For example,
with Dom1 - 1024, Dom2 - 512, Dom3 - 256, Dom4 - 512,
the number of ticks will be 4, 2, 1, 2, respectively. The dura-
tion of ticks is adjustable and depends on the common exe-
cution time of most GPU applications. The credits assigned
to the guests are acquired from the Xen credit scheduler [5]
and are monitored during the lifetime of the domain to track
any changes in their value.

We are currently developing and evaluating additional
and alternative scheduling methods for GPU accelerators.
Our intent is to better coordinate guest domain and acceler-
ator scheduling, both with respect to how the GViM sched-
uler interacts with Xen’s scheduling methods and to explore
scheduling methods appropriate for different classes of end



user applications, ranging from HPC codes to enterprise and
web applications.

5. Experimental Evaluation
Testbed. The experimental evaluation of GViM is con-
ducted on a GPGPU system based on a Xeon quad-core
running at 2.5GHz and 2GB memory. For evaluation of vir-
tualization overhead we have used an NVIDIA 8800 GTX
PCIe card and for resource management experiment we have
used an NVIDIA 9800 GTX PCIe card (with 2 GPUs on-
board). The GPU driver version is 169.09. Virtualization is
provided by Xen 3.2.1 running the 2.6.18 Linux kernel.

Benchmarks. All benchmarks used in the evaluation are
part of the CUDA SDK 1.1. The specific applications are se-
lected so as to represent a mix of data types and dataset sizes,
data transfer times, number of iterations executed for certain
computations and their complexity. These are:
Matrix multiplication – it is easy to change the size of in-
puts and corresponding output data for this benchmark. Ma-
trix multiplication is also an important step in financial, im-
age/signal processing, and other applications. Our evalua-
tion uses 2048x2048 single precision floating point matrices,
which amounts to an exchange of 16MB data per matrix. We
refer to it as MM[2K].

Black Scholes – modern option pricing techniques are
often considered among the most mathematically complex
of all applied areas of finance. Most of the models and
techniques employed by today’s analysts are rooted in a
model developed by Fischer Black and Myron Scholes [4].
The example used has a tunable number of iterations to
improve accuracy and option count. This makes it possible
to vary the runtime of this benchmark, and it also allows us
to measure the scheduling performance of the system over
some given period of time. Unless stated otherwise, it by
default generates values for 1 million call and put option
prices over 512 iterations, labeled as BS[1m,512].

Fast Walsh transform – Walsh transforms belong to a
class of generalized Fourier transformations, used in vari-
ous fields of electrical engineering and in numeric theory.
The sample application used is an efficient implementation
of naturally-ordered Walsh transform (also known as Walsh-
Hadamard or Hadamard transform) with CUDA, with a par-
ticular application to dyadic convolution computation [18].
This example is fairly data intensive, requiring 64MB in in-
put and output buffers (FWT[64]).

5.1 Measurement Results
Experimental results attained with the benchmarks above
and some micro-benchmarks can be classified based on the
properties being evaluated.

Comparison of individual function call timings to study
virtualization overhead – Figure 5 shows the difference in
execution time at a function call level between a virtualized
guest and our base case of Dom0. These functions represent
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the most commonly used CUDA calls in GPU applications.
The number of bytes transferred per CUDA call each way
without data buffers is about 80Bytes which we refer to as
the standard packet size (SPS). With the exception of de-
vprp, setarg, launch, and memcpy (dealt with later), most
calls exchange standard packet data both ways. Most com-
monly used CUDA calls do not see more than a 0.07msec
increase in execution time except devprp (retrieving device
properties) which is called once at the beginning and launch
(cudaLaunch() for a GPU kernel). A typical sequence of op-
erations for compute kernel execution on a GPU is a) con-
figuring a call with appropriate thread and block sizes on the
GPU, b) setting up arguments and c) launching the kernel.
While these calls execute individually in a non-virtualized
environment, we combine them together with launch in the
backend due to requirements imposed by the driver level
API. This leads to a higher launch time but keeps the over-
head for configuring a call smaller.

Impact of input data sizes – The cost of memcpy (memory
copy) varies with the amount of data transferred. These
results become very important when applications transfer
much larger data sizes (possibly multiple times during the
application execution), as discussed in Section 3.
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Figure 6 shows the bandwidth in MB/sec into (upper half
of figure) and out (lower half) of the GPU for the guest VM,
as well as Dom0 for the cases discussed in Section 3. The
results (the Y-axis in figure does not start from 0) are ob-
tained by running the GPU bandwidth test from the CUDA
SDK. Dom0 pageable and pinned in the figure refer to the
1-copy and bypass options respectively for applications run-
ning in Dom0. As seen from the graphs, our 1-copy solu-



tion achieves almost as much bandwidth as Dom0 Pageable.
Since most applications are written to use pageable memory,
this is a very good option for even large benchmarks being
run in guest VM (as long as it has sufficient memory). The
Dom0 pinned case shows much higher bandwidth, and we
are working towards this bypass solution for our virtualized
guests, as well.

Runtimes compared to Linux, Dom0 without GPU virtu-
alization and Guest(s) – Figure 7 shows the total execution
time and time for CUDA calls of the aforementioned GPU
applications in (i) a non-virtualized Linux environment, (ii)
virtualized but with direct access to the GPU in the Dom0
environment, and (iii) with our GPU virtualization stack in a
guest VM. As we can see from the graph, the introduction of
a hypervisor and the execution of the application in Dom0
without going through any virtualization stack does not in-
troduce much overhead. Therefore, the Dom0 times serve as
our base case and the performance target for the GPU vir-
tualization. For all these experiments we have pinned guest
VMs to a physical CPU.
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As seen from the figure, the worst case overhead in total
execution time observed is 25% for BS[1m,512] but the
CUDA contribution in this case is about 6%. On the other
hand, the overhead for FWT is 14% for the total runtime
with a 12% contribution from CUDA execution. The best
case time observed is actually an improvement of 3% in the
CUDA execution time for matrix multiplication with total
time comparable to native Linux. This shows that increase
in virtualized execution time for benchmarks is a function of
memory allocation (FWT has multiple host allocation and
free calls in a tight loop) and transfer as well as the number
of kernel invocations which is in accordance with Figures
5 and 6. Therefore, as VM-VM communication latencies
continue to further improve in next generation hardware,
they will significantly reduce the GViM overheads observed
for the kernel-invocations for more iterative applications.
The improvement seen in MM is attributable primarily to
the conversion of host level CUDA API to driver level API
in the backend. This conversion has been done to allow
the backend to load the compute kernel for an application
explicitly using its name which otherwise requires locating
it from the application binary. This is almost impossible due
to obfuscation of names by the NVIDIA compiler.

Resource Management – In typical HPC scenarios, the
applications tend to expect a chunk of resources to be al-

located to them for their entire duration or a significantly
long time without too much sharing. GViM allows sharing
of GPU resources but also has the option to define the pro-
portions. The XenoCredit scheme described earlier proves to
be pretty useful in letting GViM allow for such resource al-
location. A simple experiment with executing BlackScholes
(for 4096 iterations with expected per iteration time) shown
in Table 1 shows how resource management policies can
be adapted keeping in mind different application require-
ments. The numbers in the table have been acquired from
a host with 2GPUs running 4 VMs that could have overlap-
ping GPU execution. The expected iterations/msec shown is
from explicit profiling of the application without sharing of
resources. As seen from the columns for RR vs. XC, XC
actually comes closer to the expectations of the VM in ac-
cordance with its credits unlike RR which tries to balance
resources equally among all.

VMs Credits Expected RR XC
iter/ms

VM1 512 1.8 2.632 1.867
VM2 256 2.4 2.567 3.12
VM3 256 2.4 2.804 3.213
VM4 256 2.4 2.901 3.3

Table 1. BlackScholes: XenoCredit vs. Round Robin

5.2 Discussion
As evident from experimental measurements, the GViM vir-
tualization stack itself introduces only small additional over-
heads. Bandwidth results show that such overheads can be
reduced further by achieving complete hypervisor bypass.
More interestingly, the XenoCredit scheduling scheme im-
proves system fairness and provides better QoS guarantees
to guest domains, thereby motivating further work on new
methods for resource management in accelerator-based sys-
tems. Specifically, it is evident that request scheduling on
GPUs and more generally, on accelerators must be coordi-
nated with the manner in which guest domains are sched-
uled. The coordination methods used should consider guest
level QoS needs (e.g., required degree of parallelism for
HPC codes or fairness for enterprise codes) and resource
availability on accelerators. With closed accelerators like
NVIDIA GPUs, since coordination does not have access to
details about accelerator resources and their states, we are
currently experimenting with using code profiling for ac-
celerator codes to better use accelerator resources and with
more adaptations to the scheduling scheme based on dif-
ferent application requirements. We are also experiment-
ing with coordination mechanisms and methods suitable for
open accelerators, using IBM’s Cell processor.

6. Related Work
Given the difficulty of virtualizing closed and proprietary
GPUs, there has been very little work in the efficient use
of GPGPUs with hypervisors such as Xen and VMware.



Most systems allow VMs to directly access the hardware
but, unlike GViM, this approach prevents any sharing of
these hardware resources. The most closely related work
to our technique of virtualizing the GPU is VMGL [16], a
method that virtualizes the OpenGL API to allow hardware
acceleration for applications running in VMs. In contrast,
GViM is tailored towards programmatic APIs for GPGPU
access and uses significantly optimizied interfaces, unlike
VMGL’s dependance on TCP/IP as the transfer protocol.

GViM shares its goals with our own prior work on virtu-
alizing the Cellule accelerator [10]. The latter treats the Cell
processor as a stand-alone system instead of the tight inte-
gration favored by GViM. Finally, there is a large body of
work on the efficient virtualization of networking hardware
in Xen [24], including efforts to provide direct multi-VM
access to networking hardware [25]. However, most of this
work has been greatly simplified by the presence of open and
narrow hardware interfaces.

7. Conclusion and Future Work
The GViM virtualization infrastructure for a GPGPU plat-
form enables the sharing and consolidation of graphics pro-
cessors. Resource management methods associated with
GViM provide reasonable guarantees to the guest domains
using GPU(s). Experimental measurements of a Xen-based
GViM implementation on a multicore platform with multiple
attached NVIDIA graphics accelerators demonstrate small
performance penalties for virtualized vs. non-virtualized set-
tings, coupled with substantial improvements concerning
fairness in accelerator use by multiple VMs. With solutions
like GViM, therefore, it becomes possible to simultaneously
run multiple HPC codes on the same platform, without un-
predictably perturbing individual applications.

Our future work will extend the GViM virtualization ar-
chitecture with respect to its resource management meth-
ods, to include methods that use kernel profile information
and accommodate other accelerators like the IBM Cell pro-
cessor. We will also evaluate the scalability and stability of
our scheduling schemes and introduce power-awareness into
GViM’s scheduling policies.
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