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Abstract

Gradient information is used in volume rendering to classify and color samples along a ray. In this paper

we present an analysis of the theoretically ideal gradient estimator and compare it to some commonly used

gradient estimators. A new method is presented to calculate the gradient at arbitrary sample positions, using

the derivative of the interpolation �lter as the basis for the new gradient �lter. As an example we will discuss

the use of the derivative of the cubic spline. Comparisons with several other methods are demonstrated.

Computational e�ciency can be realized since parts of the interpolation computation can be leveraged in the

gradient estimation.
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I. Introduction

The computation of dataset gradients is an essential operation in many visualization techniques. Visualizing

a given three dimensional dataset can be done by surface rendering algorithms, such as the Marching Cubes

Algorithm [24] [9] or by direct volume rendering algorithms, eg. raycasting [8] or splatting [21]. For direct

volume rendering methods the voxel intensity, gradient direction and magnitude are often used to shade and

classify the dataset. For surface rendering techniques the gradient is used as an estimation of the surface

normal which is used for shading.

Gradient operators are also often used during the classi�cation of data as well. The classi�cation procedure

provides an optical density value for each voxel in the dataset, called opacity. Opacities are typically calculated

using either voxel intensities or a combination of voxel intensities and gradient information.

Once the dataset is classi�ed and opacity and color is calculated, it is rendered. Color and opacity values

are composited to achieve the �nal two dimensional projection. Several rendering techniques are known. An

important distinction between the techniques is the order in which the voxels are processed to create an image,

image-order vs object-order algorithms. Examples of image-order algorithms are raycasting [8] and Sabella's

method [17]. Examples of object-order algorithms are the splatting algorithm [22], V-bu�er algorithm [20]

and the Slice Shearing algorithm [5]. An additional class of volume rendering algorithms are those employing

frequency domain techniques to achieve fast rendering speeds [10] [19].

It is possible to classify and shade as a preprocessing step, yielding two new voxel datasets, the opacity

and color datasets. During the rendering stage the color and opacity at sample points (generally not at voxel

positions) are calculated by interpolation. This may reduce the quality of the image, and an alternative is to

calculate the color and opacity during rendering at the sample positions. As we will see this has consequences

for the complexity of the algorithm.

This paper analyses some commonly used gradient operators, and introduces a new method based on taking

the derivative of the interpolation function itself. Speci�cally, in section two ideal interpolation will be brie
y

discussed. Section three discusses the notion of ideal gradient estimation. Then in section four some well known

gradient estimators are discussed and analyzed with respect to the perfect gradient estimator. Section �ve

discusses the frequency analysis of gradient estimators. In section six gradient estimation and interpolation are

combined. Section seven proposes a di�erent view to designing a gradient estimator by using the derivative

of the interpolation function as the gradient estimator. An example which uses the cubic spline is given.

Section eight evaluates the proposed cubic spline based gradient �lter. Section nine analyzes the performance

of several gradient �lters at di�erent o�sets between voxels. Section ten discusses the implementation of the

cubic spline based �lter in volume rendering. Section eleven discusses the computational expense of this �lter.

Section twelve gives some results and section thirteen discusses the proposed methods.

II. Ideal Interpolation

The process of interpolation is a fundamental operation in digital signal processing and computer graphics.

Its purpose is to calculate intermediate values of a continuous signal f(x; y; z) from a discrete signal. In volume

rendering interpolation is used to calculate the values on sample positions along rays, since it is unlikely these

points will be positioned on gridpoints.

According to the sampling theorem [18] a signal can be reconstructed exactly by the ideal interpolation

function if it is bandwidth-limited and sampled at the Nyquist rate, or higher. The ideal interpolation

function is the sinc function

r(x)ideal = sinc(x) =
sinx

x
(1)

Since the magnitude of the sinc function is a pulse in the frequency domain, it is able to remove all replicates

of the frequency spectrum introduced by sampling the original continuous function.

In computer graphics one has a set of discrete points, an image or volume. This set of points is often obtained

by sampling the continuous function f(x; y; z) in the three dimensional case. Often the discrete dataset

does not exactly represent the continuous function f(x; y; z) one wishes to process because of undersampling

(sampled at a rate lower than the Nyquist rate) or because this continuous function is not bandwidth limited.
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If this is the case the set of discrete points of course still can be manipulated and interpolated. The sinc is

still the ideal reconstruction �lter, but it will reconstruct a continuous function f 0(x; y; z) that is (slightly)

di�erent from the one originally sampled.

This sinc function, however, is de�ned over an in�nite spatial interval, and can therefore not be used as an

interpolation function. Other methods must be used, such as the nearest neighbor, linear and higher order

interpolation functions [1],[7],[13],[14].

Throughout this paper we assume interpolation �lters that will exactly reproduce the original voxel values

if resampling is done on the voxels themselves. In [12] the more general family of cubic �lters de�ned by

piecewise cubic polynomials is discussed. Although these �lters are useful for function approximation, in

general the continuous function that they reconstruct do not pass through the given data points. We restrict

our analysis to interpolating �lters.

III. Ideal Gradient Estimation

The gradient of a 3-D intensity function is the partial derivative of that intensity function with respect to

all three directions. Given a function f(x; y; z) the gradient is:

rf(x; y; z) =

�
@f

@x
;
@f

@y
;
@f

@z

�
(2)

In volume rendering, a 3-D dataset consists of discrete samples of f(x; y; z) called voxels. If this function

f(x; y; z) is not known, which in general is the case, the gradient is calculated using these voxels.

Gradient estimation can be analyzed in a manner similar to interpolation. When the gradient is needed at

a location other than a given voxel point, some kind of reconstruction �lter has to be used to estimate the

derivative (in each direction) of f(x; y; z). Compare this to interpolation which interpolates f(x; y; z) itself at

a sample point.

Since the gradient is the partial derivative of the original function f(x; y; z) and ideal interpolation with the

sinc function will reconstruct that function, the gradient can be reconstructed exactly by using the derivative

of the sinc function as a reconstruction kernel.

In one dimension the ideal gradient reconstruction �lter is:

d

dx

�
sin�x

�x

�
=

�x� cos(�x)� sin(�x)�

�2x2

=
cos �x

x
�

sin�x

�x2
=

cos(�x)� sinc(�x)

x
(3)

This result is consistent with the results found in [16].

ωπ−π

|H| sinc

derivative of sinc

Fig. 1. Frequency response of the ideal gradient estimator and of the sinc function.

In order to analyze the �lter of equation 3 we will look at its frequency response. The Fourier transform of

the sinc function is a pulse in the interval �� � ! � �. Using the derivative theorem for Fourier transforms

[3] we �nd that the Fourier transform of the derivative of the sinc is j! times the Fourier transform of the

sinc itself. This results in a spectral magnitude with constant slope in the frequency domain for the ideal
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gradient �lter in the interval 0 � ! � �. See Fig. 1. Not shown in Fig. 1 is the constant phase shift introduced

by mulitplying by the deriviative operator j!.

IV. Some commonly used gradient estimators

Several methods exist to estimate a local gradient in volume datasets. The gradient of a surface to be

visualized is an important value, since both the shading and opacity values may depend on the gradient of

the surface. One of the most commonly used methods in volume rendering calculates the gradient with a

6 neighborhood function. This is also referred to as the central di�erence method. The gradient at voxel

(x; y; z) is calculated as follows:

g(x; y; z) = rf(xi; yj ; zk) =
1

2
(f(xi+1; yj; zk)� f(xi�1; yj ; zk)); (4)

1

2
(f(xi; yj+1; zk)� f(xi; yj�1; zk));

1

2
(f(xi; yj; zk+1)� f(xi; yj; zk�1))

Alternatively, all 26 neighbors of a voxel can be used to calculate the gradient. This is usually a better

estimation of the gradient, but takes more time to calculate. Another disadvantage is that additional smooth-

ing is introduced. See [6] and [15]. The Zucker-Hummel 3-D edge operator [26] is one example of a 26 point

gradient estimator.

For small objects in the dataset even a 6 voxel neighborhood gradient estimator may be too large. An

algorithm which adapts to the thickness of the object was proposed in [15]. It selects between 3-6 adjacent

voxels to compute the gradient. For the x component of the gradient it works in the following way: If the

voxel value at (i; j; k) is larger (smaller) than the value of the neighbors at (i � 1; j; k) and (i + 1; j; k), it

uses the di�erence between the voxel itself and the neighbor with the lower (higher) gray value; otherwise

it uses the di�erence between both neighbors. The same method is used for the y and z components of the

gradient vector. This method can be generalized to all 26 neighbors and is called adaptive gray-level gradient

estimation.

Another adaptive method is proposed in [25]. The authors propose to segment the volume �rst into small

contexts which do not contain any discontinuities. Then for each voxel in each context the gradient is

estimated. The gradients will not vary greatly within a context. The disadvantage is that the method relies

on a segmentation step and a pre and post�ltering step besides the gradient estimation itself.

Bosma et al. [2] propose a slightly di�erent method than the central di�erence method. They calculate the

gradient using two neighboring values. In that case the gradient is calculated in between the original voxel

positions. Estimating the gradient on sample positions requires a linear interpolation between the closest

gradient values. We refer to this method as the intermediate di�erence method.

Mathematically the intermediate and central di�erence methods can be described as follows.

Suppose we have the values f(�1); f(0); f(1); f(2). Using the central di�erence method, gradients are

calculated on voxel positions as follows:

g(0) =
f(1)� f(�1)

2
(5)

g(1) =
f(2)� f(0)

2
(6)

Where g(x) denotes the gradient at position x. Using the intermediate di�erence method, gradients are

calculated in between voxel positions:

g(�0:5) = f(0)� f(�1) (7)

g(0:5) = f(1)� f(0) (8)
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If the gradient is required on position x with x between 0 and 0:5, the approximation with the central

di�erence method equals:

g(x) = (1� x)g(0) + xg(1)

= (1� x)
1

2
(f(1)� f(�1)) + x

1

2
(f(2)� f(0)) (9)

=
1

2
(f(1)� f(�1)) + x(

f(�1)

2
�
f(0)

2
�
f(1)

2
+
f(2)

2
)

Here we used linear interpolation to get the gradient on position x. The intermediate di�erence method

results in:

g(x) = (1� (
1

2
+ x))g(�0:5) + (1� (

1

2
� x))g(0:5)

= (
1

2
� x)g(�0:5) + (

1

2
+ x)g(0:5) (10)

=
1

2
(f(1)� f(�1)) + x(f(�1)� 2f(0) + f(1))

Note that on the voxel positions these methods yield identical results!

Goss [6] proposes a gradient operator of which the frequency response can be varied, thus allowing the user

control over the amount of smoothing introduced in the �nal image. This �lter is discussed in section VIII.

V. Frequency domain analysis

To compare some of these practical gradient estimators to the ideal case we compare the frequency transforms

of these estimators to the frequency transform of the ideal case.

To analyze discrete signals in the frequency domain, the discrete Fourier transform (DFT) can be applied.

For samples of a periodic function with period NT , the DFT transforms a �nite sequence of samples x(n) of

length N to the frequency domain by:

X(k) =

N=2�1X
n=�N=2

x(n)e
�2�ikn

N (�N=2 <= k <= N=2� 1)) (11)

Since gradient operators are typically non-causal, we follow Bracewell [3] in using a version of the DFT

centered at zero.

The ideal gradient �lter magnitude has constant slope between �� and �, as shown earlier. First we will

look at truncating the ideal gradient �lter given in equation 3. In Fig. 2 the e�ects in the frequency domain

can be seen of using such a �lter truncated to a width of 4,6 and 10. These plots have been numerically

generated using the DFT.

The frequency response of the central di�erence method can be calculated analytically. The DFT of the

three element sequence:

hc(n) = [
1

2
; 0;�

1

2
] n = [�1; 0; 1] (12)

is given by:

Hc(k) =
1

2

�
e2�ik=N � e�2�ik=N

�
= i sin 2�

k

N
(13)

The frequency response of the intermediate di�erence method can also be calculated analytically. The DFT

of the two element sequence:

hi(n) = [1;�1] (14)
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Fig. 2. Frequency response of the truncated ideal gradient �lter.

and shifted by half a voxel to match the individual grids results in:

Hi(k) = e2�ik
1

2
=N � e�2�ik

1

2
=N = 2i sin�

k

N
(15)

There are two important di�erences between the DFT of the central di�erence method and the intermediate

di�erence method. The amplitude of the DFT of the intermediate di�erence method is twice as high and the

period is twice as low. This makes the intermediate di�erence a better gradient �lter in the passband, but

worse outside. See Fig. 3.
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Fig. 3. Frequency response of the central di�erence and intermediate di�erence estimator.

VI. Combining gradient estimation and interpolation

Frequencies above the cuto� frequency � in Fig. 2 and Fig. 3 are aliased back since the interpolation �lter,

used to calculate the gradient on non voxel positions, is not ideal. If the interpolation �lter was perfect, it
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would not matter what the energy content of the gradient estimator is for frequencies above � since these

would be �ltered out by the interpolation.
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Linear interpolation   
Effective central diff.
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Fig. 4. Frequency response of central di�erence and linear interpolation and their product.

Fig. 4 shows the e�ect of estimating the gradient on a sample position by using central di�erences to

calculate the gradient on voxel positions and linearly interpolating the gradient to the sample position. This

is the conventional method of calculating the gradient. In the frequency domain this can be viewed as �rst

�ltering with the frequency transform of the central di�erence operator, and then �ltering with the frequency

transform of the linear interpolation operator. This means that we can take the product of these transforms

to form one e�ective �lter which describes the e�ects of the standard method. We will call this resulting �lter

the e�ective central di�erence operator. These three �lters are plotted in Fig. 4. Compared to Fig. 3 the

e�ective central di�erence operator falls o� even quicker at frequencies below � but has less aliasing energy

in the stop band at frequencies above �.

VII. Using the derivative of the interpolation function

As described before, the gradient is the �rst derivative of the continuous function f(x; y; z). f(x; y; z) itself

is gotten by convolving our sampled dataset with some interpolation function. One method of computing the

gradient of the continuous function is to apply the gradient operator to the interpolation function itself and

then convolve the dataset with the resultant continuous gradient operator. An example of such a procedure

from the image processing literature is the use of the Laplacian of Gaussian (L.O.G.) edge operator which

results from taking a second derivative of a gaussian convolution kernel [11]. This approach is valid due to

linearity of both the interpolation and di�erentiation operator. This is contrasted to the more conventional

volume rendering approach which evaluates gradients only at voxel postions, and may then interpolate these

down to the sample points.

In [13] [7] [14] and [1] it is shown that the cubic spline1 interpolation function de�ned in Equation 16

performs very well for interpolation. In this section we will discuss the cubic spline �lter and its application

as a gradient estimator.

The general cubic spline is given by:

r(x) =

8><
>:

(a+ 2) jxj3 � (a+ 3) jxj2 + 1 0 � jxj � 1

a jxj3 � 5a jxj2 + 8a jxj � 4a 1 � jxj � 2

0 jxj > 2

(16)

1In [13] and [7] the authors use the term cubic convolution. In [14] and [1] the authors use the term cubic spline. They all

however are referring to the same function as de�ned in Equation 16. We adopted the latter naming convention.
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This can be rewritten as:

r(x) = r0(x) + ar1(x) (17)

Where:

r0(x) =

(
2jxj3 � 3jxj2 + 1 0 � jxj � 1

0 otherwise
(18)

r1(x) =

(
jxj3 � jxj2 0 � jxj � 1

jxj3 � 5jxj2 + 8jxj � 4 1 � jxj � 2
(19)

This leaves the parameter a free to be chosen. The parameter a is the slope of r(x) at x = 1. In [7] it is

shown that for a = �0:5 the reconstructed function g(x) matches the Taylor expansion of f(x) exactly up

till the third order term. This case is also known as the Catmull-Rom spline [4] [12] and is often used for

interpolation. If a = �1 then the slope at x = 1 is the same as the slope of the sinc(x) at x = 1. a = �0:75

assures that the second derivative at x = 1 is continuous, which may be important if the derivative of the

cubic spline is used as the gradient estimator. Finally, if a = 0, the spline function reduces to a 2-point

interpolation function.

The derivative of Equation 17 is:

r0(x) = r00(x) + ar01(x) (20)

with:

r00(x) =

(
6jxj2 � 6jxj 0 � jxj � 1

0 otherwise
(21)

r01(x) =

(
3jxj2 � 2jxj 0 � jxj � 1

3jxj2 � 10jxj + 8 1 � jxj � 2
(22)

The performance of this gradient �lter will be compared to other methods in the next section. In order

to do so, the Fourier transform of Equation 20 is needed. It can be shown that the Fourier transform of

Equation 17 is:

R(j!) = R0(j!) + aR1(j!) (23)

Where the capital R stands for the Fourier transform of the cubic spline interpolation function. Now:

R0(j!) =
12

!2
[sinc2(!=2)� sinc(!)] (24)

R1(j!) =
8

!2
[3sinc2(!)� 2sinc(!)� sinc(2!)] (25)

The derivation of R0(j!) and R1(j!) can be found in the appendix. Note that at the Nyquist or fold over

frequency ! = � the magnitude of R(j!) is independent of a and is equal to 48=�4. The Fourier transform of

the derivative of the cubic spline (Equation 20) is j! times Equation 23.

In Fig. 5 a plot of r(x) for di�erent values of a is shown. The same �gure shows r0(x) also for di�erent

values of a, while Fig. 6 shows the respective Fourier transforms.

Fig. 6 shows the frequency responses as a function of a. By varying this parameter the response to higher

frequencies can be adjusted as desired. In Fig. 6 bottom all energy above the Nyquist frequency � is aliased

back. This is due to imperfect interpolation with the cubic spline. See the top of Fig. 6 for the frequency

response of the cubic spline.

VIII. Evaluation of gradient filters

While most of the gradient estimators show a good approximation of the ideal �lter at lower frequencies,

they show a rapid fall o� at higher frequencies. See Fig. 7. This �gure shows several e�ective gradient

estimators. Thus the e�ect of linear interpolation to the sample point is already included in the plots for the

intermediate di�erence, central di�erence and adjustable �lter [6]. Since �ne details, like bone fractures in
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Fig. 5. The cubic spline (top) and its derivative (bottom) for di�erent values of a.

medical images, contain a lot of high frequencies, some errors will occur. Although this is a disadvantage, fall

o� at higher frequencies has also some desirable properties. Volume data often contains unwanted noise and

energy in the stop band, especially for PET and SPECT data. This energy may be concentrated along the

high frequencies. The gradient �lter has its greatest sensitivity along these high frequencies. Attenuation of

these high frequencies reduces artifacts caused by noise and aliasing. As always, a trade o� has to be made. If

it is possible to adjust the frequency response the user can control this trade o�. In [6] an adjustable gradient

�lter is discussed. This �lter is based on truncating cos(x)=x and windowing that truncated �lter with a

Kaiser window. The Kaiser window of N samples is de�ned as:

w� (n) =
I0 (�)

I0 (�)
�
N

2
� n �

N

2
(26)
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Fig. 6. The Fourier Transform of the cubic spline (top) and the Fourier Transform of the derivative (bottom) for

di�erent values of a. The thick lines denote the ideal cases.

where I0(x) is the order 0 modi�ed Bessel function [23] of x, and � is calculated from � as

� = �

s
1�

�
2n

N � 1

�2
(27)

By adjusting the Kaiser window parameter � the frequency response can be varied. Fig. 7 shows a plot of

this �lter with � = 4 as the Kaiser window parameter.

Note that the cubic spline (and its derivative) only needs 4 samples to evaluate in the 1-D case, compared

to 6 for the adjustable gradient �lter proposed in [6]. Furthermore, this adjustable gradient �lter calculates

gradients on voxel positions, not on sample positions. In order to get the gradient on sample positions, some

sort of interpolation has to be done between the gradients on voxels positions. The cubic spline with the a

parameter set to a = �1:0 falls of at a higher frequency than the e�ective adjustable gradient �lter but has

more energy at frequencies higher than �. See Fig. 7.

In Fig. 8 a comparison is made between the cubic spline derivative �lter for several values of a and the

truncated version of the ideal gradient estimator on sample positions. All the �lters have an extent of 4 in

the spatial domain. Three cubic spline based �lters are plotted, with values of the a parameter of -0.75, -1.5

and -2.0.
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Fig. 7. Frequency responses of di�erent methods to estimate the local gradient. The thick line is the ideal case.

Ideal          
Truncated ideal
a = −0.75      
a = −1.5       
a = −2.0       

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

frequency in rad/s

m
ag

ni
tu

de

Fig. 8. Frequency responses of the ideal estimator truncated to 4 voxels and of the derivative of the cubic spline for

di�erent values of a.

Fig. 8 shows that the cubic spline derivative �lter with a = �2:0 approximates a constant slope up to a

slightly higher frequency than the truncated ideal �lter, but it has much more energy above the fold over

frequency �. The cubic spline derivative �lter with a = �1:5 is nearly identical to the truncated ideal �lter

up to �. Above that it has somewhat more energy.

Knowing this, the truncated ideal gradient �lter performs best, but it is not adaptive. If small features in

the original data should be detected with more sensitivity, the cubic spline based method with a = �2:0 gives

a better high frequency behavior. Of course the aliasing energy in this case is much higher than using the

truncated ideal �lter.

IX. Sampled gradient filters

When the gradient �lters are used in practice, sampled gradient functions must be considered with di�erent

o�set values. By o�sets we mean the distance of the current sample point to the nearest voxel in each axis.
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The resampling will alias any data which is passed above the Nyquist frequency into the pass band. This

results in considerably di�erent performance compared with the unsampled gradient �lters discussed in the

previous sections. In [14] a similar analysis is done for interpolation �lters.

For the resampling of the intermediate di�erence and central di�erence gradient �lters, the interpolation step

is taken into account (the so called e�ective central di�erence and e�ective intermediate di�erence gradient

�lters). This is not necessary for the cubic spline based gradient �lter, since this �lter calculates the gradient

on the sample position directly. In Fig. 9 and 10 the sampled gradient �lters are shown for o�sets of 0; 0:2; 0:4;

and 0:5.

Several observations can be made from Fig. 9 and 10. The e�ective central di�erence method performs

best at zero o�set. If the o�set increases, the performance at higher frequencies deteriorates. The e�ective

intermediate di�erence method performs much better, especially at higher frequencies for increasing o�sets.

Note that at zero o�set the frequency response of the e�ective intermediate di�erence method is equal to

the frequency response of the e�ective central di�erence method. The e�ective central di�erence gradient

�lter has its best response at zero o�set, while the e�ective intermediate di�erence gradient �lter has its best

response at an o�set of 0:5. This is due to the fact that the original gradients are calculated in between

integer positions (at an o�set of 0:5) and then linearly interpolatated to other o�set positions. The worst

performance for the intermediate di�erence �lter is obtained at zero o�set.

Although the e�ective intermediate di�erence method performs much better than the e�ective central

di�erence method, the cubic spline based gradient �lter performs even better, as is seen in Fig. 10. At

zero o�set, this gradient �lter response is equal to the other two �lters. This is because the �lter coe�cients

of the cubic spline based gradient �lter at zero o�set are proportional to the other �lters (positions 0;�2 and

2 are zero and positions �1 and 1 are non-zero, as can be seen in Fig. 5(bottom)). If the o�set increases, the

performance of the gradient �lter also increases. Above an o�set of 0:3, the response of the cubic spline based

gradient �lter closely approximates that of the ideal gradient �lter.

X. Implementing the cubic spline based gradient filter

This section will address two di�erent ways of implementing the cubic spline based gradient �lter in volume

rendering. First the two dimensional case will be discussed followed by an extension into three dimensions.

In Fig. 11 the two dimensional situation is shown, with Pi the sample position. Px;y are the known pixel

(3D: voxel) values.
Using an interpolation kernel r(x; y), Pi can be estimated as follows:

Pi(x; y) =

P
�2;�2r(x � 2; y � 2) + P

�1;�2r(x � 1; y � 2) + P0;�2r(x; y � 2) + P1;�2r(x + 1; y � 2) +

P
�2;�1r(x � 2; y � 1) + P

�1;�1r(x � 1; y � 1) + P0;�1r(x; y � 1) + P1;�1r(x + 1; y � 1) +

P
�2;0r(x � 2; y) + P

�1;0r(x � 1; y) + P0;0r(x; y) + P1;0r(x + 1; y) +

P
�2;1r(x � 2; y + 1) + P

�1;1r(x� 1; y + 1) + P0;1r(x; y + 1) + P1;1r(x + 1; y + 1) (28)

This means that in order to interpolate Pi the pixel values are multiplied with a 2-D kernel of which the

weights are determined by r(x; y). One method to achieve this is to sample r(x; y) and store these values in a

lookup table which reduces the interpolation to 16 multiplications and 15 additions. We call this non-separable

interpolation.

For separable interpolation kernels (which has been assumed throughout this paper), r(x; y) can be calcu-

lated as a product of two 1-dimensional interpolation kernels.

r(x; y) = r(x)r(y) (29)

Now Equation 28 can be rewritten as:

Pi(x; y) =

r(x� 2)[P�2;�2r(y � 2) + P�2;�1r(y � 1) + P�2;0r(y) + P�2;1r(y + 1)] +

r(x� 1)[P�1;�2r(y � 2) + P�1;�1r(y � 1) + P�1;0r(y) + P�1;1r(y + 1)] +

r(x)[P0;�2r(y � 2) + P0;�1r(y � 1) + P0;0r(y) + P0;1r(y + 1)] +
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Fig. 9. Amplitude spectra of the sampled gradient functions, (a) is the e�ective central di�erence

gradient method and (b) the e�ective intermediate di�erence gradient method.
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Fig. 10. Amplitude spectrum of the sampled cubic spline based gradient �lter (a = �0:5).

r(x+ 1)[P1;�2r(y � 2) + P1;�1r(y � 1) + P1;0r(y) + P1;1r(y + 1)]

= r(x� 2)A+ r(x� 1)B + r(x)C + r(x+ 1)D (30)

Where A::D are interpolated values in the Y -direction. 20 multiplications and 15 additions are needed to

compute Pi(x; y). Fig. 11 shows this separable interpolation method.

The computational expense of calculating the gradient on the sample position (x; y) depends on the way

the interpolation is done. In the non-separable case it is not possible to use any results of the interpolation

to speed up the gradient calculation. If a separable �lter is used, this is possible.

The gradient at the sample position (x; y) is the partial derivative in the x and y direction of Pi(x; y):

Gi(x; y) = [Gix; Giy] = [
@

@x
Pi(x; y);

@

@y
Pi(x; y)] (31)

This leads to the following gradient in the x-direction:

Gix =

r0(x� 2)[P�2;�2r(y � 2) + P�2;�1r(y � 1) + P�2;0r(y) + P�2;1r(y + 1)] +

r0(x� 1)[P�1;�2r(y � 2) + P�1;�1r(y � 1) + P�1;0r(y) + P�1;1r(y + 1)] +

r0(x)[P0;�2r(y � 2) + P0;�1r(y � 1) + P0;0r(y) + P0;1r(y + 1)] +

r0(x+ 1)[P1;�2r(y � 2) + P1;�1r(y � 1) + P1;0r(y) + P1;1r(y + 1)]

= r0(x� 2)A+ r0(x� 1)B + r0(x)C + r0(x+ 1)D (32)

Where r0(x) is the derivative of r(x). Thus the x-component of the gradient can be calculated using the

interpolated values A;B;C and D. If interpolation is done using a separable �lter these values already were

computed. Thus calculating the x-component of the gradient only requires 4 multiplications and 3 additions.

If on the other hand interpolation is done using a non-separable �lter, no savings can be achieved.

Giy can be derived in the same way:

Giy = r0(y � 2)E + r0(y � 1)F + r0(y)G+ r0(y + 1)H (33)

Where r0(y) is the derivative of r(y). Unfortunately the values E;F;G and H are not available and have to

be computed too.
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Fig. 11. Two dimensional interpolation situation. Pi is the sample position.

The above can be easily extended to the 3-D case:

Pi(x; y; z) =

1X
j=�2

1X
k=�2

1X
l=�2

Pj;k;lr(x+ j; y + k; z + l)

=

1X
j=�2

1X
k=�2

1X
l=�2

Pj;k;lr(x+ j)r(y + k)r(z + l) (34)

=Pi

= 1D Interpolated sample in Z direction

= 2D Interpolated sample in YZ plane

X
Z

Y

(x,y,z)

Fig. 12. Three dimensional interpolation situation.

Fig. 12 shows how this 3-D interpolation is split into consecutive 1-D interpolations. Shown is interpolation

in the z-direction, then in the y-direction and �nally in the x direction. The order in which this is done can

be chosen arbitrarily.

The local gradient at the sample position is:

Gi(x; y; z) = [Gix; Giy; Giz] = [
@

@x
Pi(x; y; z);

@

@y
Pi(x; y; z);

@

@z
Pi(x; y; z)] (35)

If we now rewrite Equation 34:

Pi(x; y; z) =

1X
j=�2

r(x+ j)
1X

k=�2

1X
l=�2

Pj;k;lr(y + k)r(z + l) (36)

Then the x-component of the local gradient is:
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@

@x
Pi(x; y; z) =

1X
j=�2

r0(x+ j)
1X

k=�2

1X
l=�2

Pj;k;lr(y + k)r(z + l) (37)

The summations over k and l are already computed in Equation 36. Thus the calculation of the x-component

of the gradient takes only one 1-D interpolation with r0(x) in the x-direction.

For the y-component of the local gradient a similar scheme can be applied.

@

@y
Pi(x; y; z) =

1X
k=�2

r0(y + k)
1X

j=�2

r(x+ j)
1X

l=�2

Pj;k;lr(z + l) (38)

The summation over l is already computed in Equation 36 for every kj pair. This means that only 4 1-D

interpolations in the x-direction with r(x) have to be done, over the solid black circles in Fig. 12, and one

�nal 1-D interpolation in the y-direction with r0(y) to calculate the y-component of the gradient.

For the z-component of the local gradient no savings can be achieved. It has to be computed completely

from scratch, either using 21 interpolations or a 3-D table of r(x; y; z) and a brute force calculation or a hybrid

method with a 2-D table of r(x; y) or a 1-D table of r(x).

XI. Computational expense of the new gradient filters

Interpolation in 3-D with a nonseparable �lter of extent 4 requires 64 multiplications and 63 additions.

This assumes that the interpolation �lter is sampled and that all possible combinations of r(x; y; z) are stored

in a lookup table. This can possibly be a very large lookup table. Gradient estimation requires three times

as much computation and a lookup table to store the sampled derivative of the interpolation �lter r0(x; y; z)

in. Thus interpolation and gradient estimation with non-separable �lters in total amounts to 4 � 64 = 256

multiplications and 4� 63 = 252 additions.

A 3-D interpolation using a separable �lter with an extent of 4 points in one dimension requires 4�5+1 = 21

1-D interpolations2, or convolutions with the interpolation �lter r(x). In that case the x-component of the

gradient can be calculated with one 1-D convolution with the gradient �lter r0(x). The y-component can be

computed with 5 more 1-D convolutions. For the z components however, a totally new interpolation scheme

must be applied to obtain the 4 interpolated points, necessary to calculate the z gradient components. That

means that a total of 1 + 5 + 21 = 27 convolutions3 are needed to obtain the complete gradient vector. Thus

the calculation of the gradient vector is slightly more expensive than the interpolation itself, which cost 21

convolutions. A 1-D convolution requires 4 multiplications and 3 additions. Thus interpolation and gradient

estimation together amount to 4 � (21 + 27) = 192 multiplications and 3 � (21 + 27) = 144 additions. This

assumes however that the interpolation function r(x) and its derivative r0(x) are sampled and the values stored

in a lookup table. Note that this lookup table will be much smaller than the one needed for a non-separable

�lter.

It is cheaper to use a separable �lter to do interpolation and gradient estimation. Note that no extra

memory fetches are required to calculate the gradient. The gradient vector calculation uses the same memory

addresses as the interpolation unit.

XII. Results

Fig. 14 and 15 present renderings using various gradient estimators. The original datasets are shown in

Fig. 13(a) and 13(b). They are rendered using the cubic spline based gradient �lter with a = �0:5.

Fig. 13(a) shows a volume rendering of a dataset from the University of North Carolina Volume Rendering

Test Dataset Volume II. The dataset is a 256� 256� 109 magnetic resonance image of a head with the brain

surface exposed.

2A 4 � 4 2-D interpolation requires 5 1-D interpolations. See Fig. 11 and 12.
3One convolution in the x direction and 5 convolutions in the y direction because values calculated in the interpolation stage

can be reused to calculate the x and y component of the gradient. 21 convolutions because this is not the case for the z direction.
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Fig. 13(b) shows a volume rendering of a CT dataset from the Mayo Clinic. The size of the dataset is

256 � 256� 46.

Fig. 14(a),(b),(c) and (d) show closeups of the dataset shown in Fig. 13(a) but rendered using di�erent

gradient estimators. Fig. 15(a),(b),(c) and (d) show closeups of the area above the nose of Fig. 13(b) also

rendered using various di�erent gradient estimators.

Fig. 14(a) and 15(a) show the standard gradient and opacity method in which the opacity and color is

calculated on grid points and interpolated to estimate the color and opacity on sample positions. Gradient

estimation was done using the central di�erence method. Fig. 14(b) and 15(b) were rendered using the

intermediate di�erence method to estimate the gradient. Linear interpolation is used to estimate the gradient

on the sample positions, used for the opacity calculation. Fig. 14(c) and 15(c) were rendered using the gradient

method we propose, the derivative of the cubic spline interpolation function with the parameter a = �0:5.

Fig. 14(d) and 15(d) were rendered with the same gradient method, but with a = �2:0.

(a) (b)

Fig. 13. See text also. (a) Rendering of the whole MR brain dataset. (b) Rendering of the whole

CT dataset.

As can be seen in the �gures there is a substantial di�erence between the image quality with precalculated

color and opacity and direct gradient estimation. The di�erences between the intermediate di�erence method

and the cubic spline based gradient method are smaller. However, for detecting �ne features the cubic spline

method performs better. Fig. 14(d) shows the most details because high frequencies are better preserved.

XIII. Discussion

In this paper several existing gradient estimation methods were analysed. The most commonly used gradient

�lter, the central di�erences method, is a �xed operator and can not be tuned for optimal balance between

�ne details on the one hand and aliasing and noise rejection on the other. The adjustable �lter techniques of

Goss [6] does have this feature.

We presented a new class of volumetric gradient operators that are adjustable as well. These operators

take the gradient of the interpolation function itself, and we demonstrated a family of examples based on the

cubic-spline as an interpolation function. Performance of these cubic spline derivative �lters in the frequency

domain was analysed. We demonstrated the computational advantages of such seperable �lters and showed

that calculations used in interpolating to a sample point can be reused in the gradient computation, reducing

its complexity. We also provided an analysis of frequency preformance of various gradient operators as a

function of subvoxel o�set. In general the o�set value having optimum performance varies among the various

�lters.
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(a) (b)

(c) (d)

Fig. 14. Di�erence between gradient �lters rendering the MR brain dataset. (a) Zoomed in

using precalculated color and opacity on grid positions. (b) Zoomed in using the intermediate

di�erence method. (c) Zoomed in using the cubic spline based gradient method with a=-0.5.

(d) Zoomed in using the cubic spline based gradient method with a=-2.0.
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(a) (b)

(c) (d)

Fig. 15. Di�erence between gradient �lters rendering the CT head dataset. (a) Zoomed in using

precalculated color and opacity on grid positions. (b) Zoomed in using the intermediate

di�erence method. (c) Zoomed in using the cubic spline based gradient method with a=-0.5.

(d) Zoomed in using the cubic spline based gradient method with a=-2.0.
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APPENDIX Fourier transform of the cubic spline interpolation function

In this appendix the Fourier transforms of the cubic spline interpolation function will be derived analytically.

If f(x) is an arbitrary function in the spatial domain, the Fourier transform F (j!) is given by:

F (j!) =

Z
1

�1

f(x)e�j!xdx (39)

The inverse Fourier transform is given by:

f(x) =
1

2�

Z
1

�1

F (j!)ej!xd! (40)

The cubic spline interpolation function is given by:

r(x) =

8><
>:

(a+ 2)jxj3 � (a+ 3)jxj2 + 1 0 � jxj � 1

ajxj3 � 5ajxj2 + 8ajxj � 4a 1 � jxj � 2

0 otherwise

(41)

For convenience the cubic spline equation can be written as:

r(x) = r0(x) + ar1(x) (42)

Where:

r0(x) =

(
2jxj3 � 3jxj2 + 1 0 � jxj � 1

0 otherwise
(43)

r1(x) =

8><
>:
jxj3 � jxj2 0 � jxj � 1

jxj3 � 5jxj2 + 8jxj � 4 1 � jxj � 2

0 otherwise

(44)

The Fourier transform of r(x) can be calculated using r0(x) and r1(x) and the linear property of the Fourier

transform:

�f(x) + �g(x)() �F (j!) + �G(j!) (45)

Then the Fourier transform of r(x) = R(j!) equals:

R(j!) = R0(j!) + aR1(j!) (46)

R0(j!) and R1(j!) are the Fourier transforms of r0(x) and r1(x) respectively.

First the Fourier transform of r0(x) will be derived. It is easiest to use the Laplace transform as a means

to derive the Fourier transform 4.

Let p(x) be:

p(x) =

(
1 0 � x � 1

0 otherwise
(47)

Now de�ne g(x) as:

g(x) = p(x)f2x3 � 3x2 + 1g (48)

then:

r0(x) = g(x) + g(�x) (49)

and:

R0(j!) = G(j!) +G(�j!) (50)

4The Fourier transform is a special case of the Laplace transform. Let s = �+ j! for the Laplace transform. Setting � = 0 will

then result in the Fourier transform.
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G(j!) is the Fourier transform of g(x). The Laplace transform of Equation 48 can be computed using the

derivative theorem of the Laplace transform. If:

P (s) =

Z
1

�1

p(x)e�sxdx (51)

Then:

dP (s)

ds
=

Z
1

�1

�xp(x)e�sxdx (52)

Or in words, P 0(s) and �xp(x) are a Laplace transform pair. The same reasoning holds for the second and

higher order derivatives:

�xp(x) () P 0(s)

x2p(x) () P 00(s)

�x3p(x) () P 000(s) (53)

Where () denotes a Laplace transform pair. Thus the Laplace transform of Equation 48 has the following

form:

G(s) = �2P 000(s)� 3P 00(s) + P (s) (54)

P (s) is the Laplace transform of p(x) and is:

P (s) =

Z
1

0

e�sxdx =
1� e�s

s
(55)

Now:

P 0(s) =
se�s � 1 + e�s

s2

P 00(s) =
�s2e�s � 2se�s + 2� 2e�s

s3

P 000(s) =
s3e�s + 3s2e�s + 6se�s � 6 + 6e�s

s4
(56)

So:

G(s) = �2P 000(s)� 3P 00(s) + P (s)

=
1

s3
(�6� 6e�s) +

1

s4
(12 � 12e�s) +

1

s
(57)

By substituting s = j! we go back to the Fourier transform.

R0(j!) = G(j!) +G(�j!)

=
6

j3!3
(ej! � e�j!)�

12

j4!4
(ej! + e�j! � 2)

=
12

!2

�
sinc2

�
!

2

�
� sinc(!)

�
(58)

Now the Fourier transform of r1(x) will be derived.

r1(x) =

8><
>:
jxj3 � jxj2 0 � jxj � 1

jxj3 � 5jxj2 + 8jxj � 4 1 � jxj � 2

0 otherwise

(59)

Again the function p(x) is used and also the function q(x):

q(x) =

(
1 1 � x � 2

0 otherwise
(60)
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g(x) is now de�ned as:

g(x) = p(x)fx3 � x2g+ q(x)fx3 � 5x2 + 8x� 4g (61)

Then:

r1(x) = g(x) + g(�x) (62)

and:

R1(j!) = G(j!) +G(�j!) (63)

Using the same strategy, G(j!) can be calculated. Again the Laplace domain is used for convenience.

G(s) = �P 000(s)� P 00(s)�Q000(s)� 5Q00(s)� 8Q0(s)� 4Q(s) (64)

Q(s) can be calculated using the Laplace transform:

Q(s) =

Z
1

�1

q(x)e�sxdx =

Z
2

1

e�sxdx =
e�s � e�2s

s
= e�sP (s) (65)

This results in the following derivatives of Q(s):

Q0(s) = e�sP 0(s)� e�sP (s)

Q00(s) = e�sP 00(s)� 2e�sP 0(s) + e�sP (s)

Q000(s) = e�sP 000(s)� 3e�sP 00(s) + 3e�sP 0(s)� e�sP (s) (66)

Substitution yields:

G(s) = �P 000(s)[1 + e�s]� P 00(s)[1 + 2e�s]� P 0(s)[e�s]

= �
1

s3

�
2 + 8e�s + 2e�2s

�
�

1

s4

�
6e�2s � 6

�
(67)

By substituting s = j! R1(j!) equals:

R1(j!) = G(j!) +G(�j!)

=
8

j3!3

�
ej! � e�j!

�
+

2

j3!3

�
e2j! � e�2j!

�
�

6

j4!4

�
e2j! + e�2j! � 2

�

=
8

!2

�
3sinc2(!)� 2sinc(!)� sinc(2!)

�
(68)

Finally the Fourier transform of the cubic spline interpolation function is given by:

R(j!) =
12

!2

�
sinc2

�
!

2

�
� sinc(!)

�

+a
8

!2

�
3sinc2(!)� 2sinc(!)� sinc(2!)

�
(69)

Note that at the Nyquist fold over frequency ! = � the magnitude of R(j!) is independent of the parameter

a and is equal to 48=�4.
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