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In computer graphics we have traditionally rendered images of data sets specified spatially,
Here, we present a volume rendering technique that operates on a frequency domain representa-
tion of the data set and that efficiently generates line integral projections of the spatial data it
represents, The motivation for this approach is that the Fourier Projection-Slice Theorem allows
us to compute 2-D projections of 3-D data seta using only a 2-D slice of the data in the frequency
domain. In general, these “X-ray-like” images can be rendered at a significantly lower computa-
tional cost than images generated by current volume rendering techniques, Additionally, assur-
ances of image accuracy can he made.
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1. INTRODUCTION

Volume rendering entails the conversion of multidimensional data sets into
two-dimensional (2-D) images without the use of intermediate geometrical
primitives, such as polygons. Often, the data sets one wishes to view are
point samples of some scalar quantity taken uniformly in three-dimensional
(3-D) space, or that can at least be converted to such a representation.
Current volume rendering techniques fall into two main classes: a screen
space approach and an object space approach [ 11– 13, 16]. In the screen space
approach [14, 19], a ray is cast for each pixel, and preprocessed data are
uniformly sampled and blended along the ray. In the object space approach
[8, 20, 22], data are traversed either front to back or back to front, and each
sample is progressively blended into the image.

In some sense, both of these approaches have complexity of O(N 3) for an
N x N X N data array, since each sample point should be visited. Some
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adaptive volume rendering techniques can avoid accessing every sample of
the data set. For example, in ray cast volume rendering one can terminate
front-to-back rays when ray opacity values are close to unity [15]. Also,
hierarchical data structures can be used to avoid visiting volumes of empty
space. Speed improvements gained by such techniques are highly data-set
dependent, and complexity remains 0(N3).

We present a technique that computes projection images of an N3 scalar
array with complexity O(N 2 log N) after a preprocessing step. In practice, the
computational complexity is even better than this, since an O(N 2) resampling
cost dominates the computation for practical values of N. In fact, these
projection images can typically be computed with one to two orders of
magnitude fewer operations than either the screen space approach or the
object space approach. 3-D spatial data are first transformed into the fre-
quency domain with a one-time preprocessing operation. This is accomplished
with either the 3-D Fast Fourier Transform (FFT) or the Fast Hartley
Transform (FHT). Once this is done, projection images at arbitrary angles
can be quickly generated by resampling along a plane oriented perpendicular
to the viewing direction and by taking an inverse 2-D transform of the
resultant array. A similar approach was independently developed in [10].
Here we also present filter design and spatial data preprocessing techniques
that allow for artifact-free renderings.

2. NOTATION

For clarity, we refer to continuous functions in script and to discrete func-
tions in reman type ( f( x, y, z), ffx, y, z)). Also, we use lowercase to denote the
spatial domain and uppercase to denote the frequency domain
( f(x, y, z), F(wX, Wy, w=)). We also restrict our discussion to N x N x N cubic
data arrays, where N is a power of 2. This simplification allows Radix-2 FFT,
FHT procedures to be used.

3. TOMOGRAPHY

Volume rendering can be seen loosely as the inverse problem of tomographic
reconstruction. In tomographic reconstruction, our goal is to compute the
unknown distribution ~( x, y, z) that leads to a set of measured projections.
On the other hand, in volume rendering we are given the distribution and are
asked to compute projections of it. In CAT scan reconstruction, we start with
a set of one-dimensional (l-D) projections of the 2-D density distribution we
are trying to measure. These are usually collected by sweeping an X-ray
emitter/detector pair at some angle, as shown in Figure 1, yielding a
projection “shadow”:

p,(r) = -log
(-)= J:mf(’jy’ds,

where 10(r) and Z(r) are emitter and detector amplitudes, respectively.
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x-ray emitter 

Fig. 1. CAT scan projection geometry. 

This is repeated for several hundred angles and reconstruction techniques 
are used to compute the object’s 2-D X-ray density distribution from this set 
of 1-D projections. One way to achieve this reconstruction is through the use 
of the Fourier Projection-Slice Theorem [4, 6, 91. If F( W, , ulY) is the Fourier 
transform of f(x, y) and P,(w,> is the Fourier transform of p,(r), then this 
theorem states that 

Graphically, this is illustrated in Figure 2. In words, the 1-D Fourier trans- 
form of a projection of an object at some angle 13 is a slice of the 2-D Fourier 
transform of the object at that same angle 0. 

Figure 3 provides some intuitive explanation of why this might be true. 
Shown are a 2-D function and two of its frequency components, both in the 
spatial and frequency domains. Any point in the frequency domain corre- 
sponds to a sinusoid with some amplitude, phase, and orientation. If the 
sinusoid is not aligned with the projection direction, its projection will sum to 
zero. However, those components aligned with the projection direction sum to 
some finite value. This set of components with nonzero projections can be 
found in the frequency domain along a line perpendicular to the projection 
direction. 

The Fourier Projection-Slice Theorem can be used for tomography in the 
following way: A set of 1-D projections of some object f(z, y) are collected, 
each at a unique projection angle. If a 1-D Fourier transform is taken of each 
of these projections, they can be interpolated into a 2-D array F(w, , w,), each 
at the angle that they were acquired at. When enough samples have been 
taken to represent this 2-D function sufficiently, a 2-D inverse transform of 
F(w,, wY> can be taken to recover this original density function f(x, y). There 
are difficulties with this simplified approach to tomography, namely, the 
interpolation stage. However, these details are beyond the scope of this paper 

[5, 171. 
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Fig. 2. Fourier Projection-Slice Theorem. 

Fig. 3. Frequency components and their 
projections. 

The Fourier Projection-Slice Theorem also holds in higher dimensions, 
where it is useful for volume rendering. Graphically, this is shown in Figure 
4. 

If we start with a 3-D continuous distribution f(x, y, z) and its 3-D Fourier 
transform F( w,, wY, w,), given by 

F( w,, wY, w,) = /Io,/_mmj~mf( x, y, z)e-2~i(xw~+yw~+zw~)dxdydz, 

then a parallel projection of f(x, y, z> can be computed by evaluating 
F(w,, wy , to,> along a plane defined by the arbitrary orthonormal vectors 
(Figure 4) 
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Fig. 4. Fourier volume rendering. 

yielding 

P(w,>w,J = F(w,,w, + w,,Lu,~w,~w, + ~,~ut~w,,wu + wvzwv). 

Taking its inverse 2-D Fourier transform yields the projection p(u, u) along 
t: 

p( u, u) = Lrn irn P( w,, w,)e2~i(uw~+UW~)dw,dw,. 

This technique is referred to as Fourier volume rendering @‘VR). The 
primary motivation for this approach is that, once the forward 3-D transform 
is computed as a preprocessing operation, we can compute projections at 
arbitrary angles quickly by working with only 2-D manifolds of the data in 
the frequency domain. 

4. WHAT FVR COMPUTES 

FVR computes the function 

p(u,u) = /9 f(t,u,v)dt. 
-co 

Unfortunately, this type of linear projection is order independent along the 
line of projection (t), and therefore, hidden surface effects are not present. 
This limits us to transparent imagery, and the results often look like X-rays 
of the data set [23]. Although slower, current volume rendering techniques 
use opacity and color values per voxel to achieve either transparent or 
surfacelike effects. Some people, especially physicians, prefer X-ray style 
images due to their familiarity and lack of rendering effects. An image 
computed via FVR is shown in Figure 5, along with its frequency domain 
representation. 
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Fig. 5. FVR image of cranial CAT data set. 

5. IMPLEMENTATION DETAILS 

Up to now we have mainly discussed continuous functions and their continu- 
ous projection images. However, in volume rendering we are given discrete 
samples f(x, y, z) and are asked to compute a discrete image p(u, v). Various 
assumptions have been made in previous work about the nature of the 
continuous function, f(x, y, z>, that is being modeled by the given set of 
discrete data samples values, f(x, y, z). Traditionally, the voxel model as- 
sumed that f(x, y, z> consisted of constant values within a volume element. 
Although attractive because of its computational simplicity, this assumption 
leads to discontinuous step functions between voxels. Assuming that f(x, y, z) 
is given by trilinear interpolation of f(x, y, z) leads to an improved model, 
since it removes these discontinuities [14, 201. However, discontinuities still 
exist in the first derivative of f(x, y, z). Quadratic interpolation is, of course, 
possible, leading to discontinuities in the second derivative [211. 

Our model of f(x, y, z) is that of a band-limited function whose highest 
frequency content is given by the spatial sampling rate of f(x, y, z). In this 
case, not only is f(x, y, z) infinitely differentiable, but it is also specified 
completely by f(x, y, z). Furthermore, f(x, y, z> can be specified exactly by an 
arbitrary resampling rate greater than that given by Rx, y, z). This does not 
hold for lower-order interpolation techniques. The discreteness of our data set 
and desired image leads to additional considerations that will now be dis- 
cussed. 

5.1 Discrete Transforms 

Either the FFT or the FHT can be used for the transformation both to and 
from the frequency domain required by FVR. The Fourier Projection-Slice 
Theorem holds for the FHT as well as for the FFT, the former being defined 
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in the forward 3-D discrete case as

1 N-l N-l N-l

[(
z z z f(x, y,z) Cos 2Txk’+y:’+zk’)r-r(kx, ky~kz) ‘~,.. ~.O Z=CI

(

xkX + ykY + zk,
+sin 2~

N )1
The inverse 2-D discrete FHT we need is given by

H-l(u, v) =
N-1 N-1

H

uku + vkv
~ ~ f(ku, kv) COS 27r ., )

k,, =o kv=O 1~ N }

( uku + vk,
+sin 2W )1N“

Refer to [2], [3], and [24] for fast implementations of these. We choose to use
the FHT over the FFT since our input data set will most likely contain real
data. Whereas the FFT of a real data set will, in general, yield a complex
result, the FHT of a real data set is real. Since the FHT of a signal can be
seen as taking the even part of the FFT and subtracting its odd part, we see
that the two transform domains contain the same information about a signal:

~(~x,wy,w,) =F(fet,”(x, y,z)) –F(fodd(x, y,z)).

For this reason, we mostly use the FFT in subsequent discussions about
resampling filters due to its greater familiarity.

As with any application of FFTs or FHTs, attention must be paid to the
format of the data arrays to be transformed. In particular, since zero Hertz
and zero spatial position are typically held in the first location of the
respective arrays, it may be necessary to shift both the spatial and frequency
data logically by N/2 in each axis before and after any transformations are
taken.

5.2 Resampling Considerations

After the initial preprocessing 3-D transformation step, two operations are
performed to generate 2-D projections at some angle, First, one must resam-
ple the 3-D array along a plane, as shown schematically in 2-D in Figure 6.
Next, we take an inverse transform of this array, yielding the resultant
projection. The resampling step is usually the more computationally complex
of the two and must be performed accurately to avoid aliasing artifacts.

Resampling in the frequency domain is similar to resampling in the spatial
domain, involving the use of a reconstruction filter. A set of discrete samples
in the frequency domain represents an infinitely periodic spatial signal [2]. In

our case, the original data set is repeated over and over in each axis. Our
original “space-limited” function can be retrieved by convolving our discrete
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The inverse transformation of this function is a cube of value 1.0 within the
region occupied by the data set and 0.0 outside of it. We know from the
Convolution Theorem that multiplication in the spatial domain is equivalent
to convolution in the frequency domain. Therefore, since we can reconstruct
our original nonperiodic spatial signal by multiplying this cube in the spatial
domain, this amounts to convolving our discrete data set in the frequency
domain by the sinc( ) function given above. This is shown graphically in
Figure 7.

This forms the basis of using sinc( ) functions for exact reconstruction.
Note that this convolution needs to be evaluated only on the 2-D lattice of
points that we will pass to the 2-D inverse FHT. In practice, the sinc( )

function given above is an unacceptable reconstruction filter, since it is of
infinite extent. We must find approximations that will introduce minimal
error.

5.2.1 2x Resampling. The Fourier Projection-Slice Theorem tells us that
the Fourier transform P( WU,Wu) of the continuous projection P(U, U) of

f(x, Y, Z) lies along a plane of F( WX,w,, WZ) that passes through the origin.
P(k., k,) must sample P( WU,WU)at a high enough rate to prevent aliasing. If
the samples used for the inverse FHT are taken at the same spacing that the
data are given in the frequency domain, then aliasing errors can inadver-
tently be introduced. This aliasing occurs in the spatial domain as a simple
overlapping of copies of the original data set. The more familiar example of
aliasing is overlapping in the frequency domain, as when a continuous spatial
signal is not sampled at a high enough rate. However, here the overlap occurs
in the spatial domain, since we are sampling in the frequency domain. If
F( WX,WY,WZ) is represented by samples at a spacing F. in each axis, then
sampling at a spacing of less than FO/ ~, the diagonal of a cube, ensures
that no overlap occurs in the spatial domain. As a practical matter, we
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Fig. 7, 1-D continuous reconstruction from frequency domain samples.

sample at a slightly higher rate given by Fe/2 filling an array containing
(2N)2 entries that can readily be transformed by a radix-2 FHT or FFT.

5.2.2 Band-Limited Resampling Filters. As mentioned earlier, the sinc( )

function is an unacceptable reconstruction filter due to its infinite extent and
needs to be replaced by some finite-extent approximation, g( x, y, z ). We have
explored two techniques for generating g( x, y, z), both leading to practical
filters. The first of these involves windowing the sinc( ) function. Of course,
one could clip our sinc( ) to some region by multiplying it with a cube of some
extent. However, this amounts to convolving the spatial representation of the
sinc( ), a cube, with the transform of the clipping cube, and we are left with a
reconstruction filter that is finite in the frequency domain, but that has
considerable “tails” in the spatial domain. A better choice for a clipping
function in the frequency domain is the Hamming Window, which has the
following form:

[ ( )][) = a+(l–a)cos 27T:
( )]

WY
W(w, ?w,y?w, a + (1 – a)cos 27r~

1 1

[ ( )]
a+(l–a)cos 2T; ,

1

where F1 is the width of the window and a = 0.54348. This leads to a lower
side lobe height in the spatial domain than windowing with a cube.

5.2.3 Projection on Convex Sets. An approach we find more effective in
designing a reconstruction filter is the use of the Projection on Convex Set
(POCS) technique. POCS theory is omitted here due to its complexity, but can
be found in [7] and [ 18]. In short, it allows constraints in both the frequency
and spatial domains to be optimized or satisfied, if possible. The filter we are
looking for has two constraints. First, we would like the filter function in the
frequency domain, G( Wr, w,,, w,), to be of finite, in fact, small, extent, since
larger filters lead to more operations required to evaluate each reconstruction
point in the frequency domain. Second, we would like the function also to
have limited extent in the spatial domain, since the role of the spatial
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function is to limit our infinitely periodic spatial signal to a single cycle,
corresponding to our data set. We would like g( x, y, z) to approximate a cube
the size of our data set. The two constraints can never be satisfied, since the
Uncertainty Theorem tells us that a spatially limited function must have
infinite extent in the Fourier domain and vice versa. However, we can use
POCS to find functions that are truly limited in the frequency domain and
that are of low amplitude outside some region in the spatial domain.

To use POCS for our application, we start with some approximation to the
sinc( ) function, such as a Hamming windowed sinc( ), GO(ZU=,WY,Wz). We
transform this filter into the spatial domain, yielding an infinite extent
function with “tails.” We now apply our spatial constraint by chopping off the
tails of this function, yielding a space-limited function, gl( x, y, z). This is
transformed back into the frequency domain, and the frequency domain
constraint is applied by chopping off G I(WZ, WY,w=), yielding the band-limited
GJ Wx, WY,WZ). This concludes one POCS iteration. This procedure is iterated
until the change from one iteration to the next is below some threshold. We
stop this procedure with the truncation in the frequency domain, so that we
are left with a filter that is truly limited in the frequency domain. This will
limit the number of samples involved in the convolution.

5.2.4 Spatial Premultiplication. Figure 8 shows a 1-D reconstruction fil-
ter in both the frequency and spatial domains, along with the spatial function
it is approximating. Although we design and employ much better filters, we
have chosen a triangle function corresponding to linear interpolation, since
difficulties with any filter are easy ta see with this example. Although our
reconstruction filters are 3-D, we show their 1-D analogs for clarity. Realiz-
able filters have two problems. First, they are not of constant amplitude
within the first cycle region, indicated by the dotted line. Since W( x, y, z)
operates by multiplying the spatial data, this leads to an overemphasis of the
central region of the data set, compared with the perimeter area. This effect
can be compensated for exactly by multiplying the original data set by
l/(g( x, y, z)) over one cycle, as a preprocessing operation, before the forward
3-D transformation is taken. Note that this requires one to choose a recon-
struction filter in advance. We term this operation spatial premultiplication.
Figure 9 shows one axis of a separable spatial premultiplication function that
would be used in conjunction with a trilinear interpolation resampling filter.
The second limitation is given in the next subsection.

5.2.5 Spatial Zero-Padding. A second limitation of our reconstruction
filter is that g( x, y, z ) is nonzero outside of the first cycle of the data set.
Conceptually, we can think of g( x, y, z) as multiplying our itilnitely periodic
data set before the projection is taken. This is because the convolution with
G{ w,, WY,w=) can be thought of as taking place over the entire frequency
domain data set, which we then point sample along a plane. Of course, we
never compute the results of the convolution except at the points we are
interested in. If the convolution occurs before the projection, errors intro-
duced by inexact reconstruction filters occur in all three dimensions to our
original data set. This implies that we will be projecting a function that
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Fig, 8. Linear interpolation reconstruction filter

consists of our original data set periodic in each axis, albeit at a lower
amplitude outside of the first cycle. At arbitrary projection angles, these
copies will accumulate, leading to another aliasing artifact. We can only
minimize, not eliminate, this error by designing a good reconstruction filter
and by zero-padding the original data set by some small amount. The
zero-padding allows the filter response, modified by data-set spatial premulti-
plication, as shown in Figure 9, to drop down to an acceptable level. Fortu-
nately, for practical reconstruction filters with compact support, we can
ensure that this aliasing error is less than one gray level for an 8-bit per color
image.

Figure 10 shows the effect that reconstruction filter size (m x m x m) has
on average aliasing performance for filters designed with the POCS method.
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Fig. 9. Spatial premultiplication.

The actual amount of aliasing is dependent on the content of the data set.
Although we must use filters with an extent of at least 5 X 5 X 5 samples to
yield sub-gray-level errors, in practice, filters of size 3 x 3 x 3 seem to be
adequate to avoid visible artifacts. Figure 11 shows such a projection image
generated with a 3 X 3 X 3 POCS filter.

6. COMPLEXITY

In Figure 12 we compare the number of real multiplications and additions
involved in three volume rendering techniques, namely, raytracing [14],
object space compositing [22], and our FVR algorithm. The analysis given is
rather simplistic and reflects only a first-order estimation. Unfortunately,
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Fig. 10. Resampling filter performance. 

Fig. 11. FVR spatial and frequency images. 

there are too many free parameters for us to show how complexity is affected 
by all of them. We choose to show the dependence on data-set size, and 
attempt reasonable assumptions for the rest. For example, image size is set 
to 1024 x 1024, and we assume that we have precomputed the color and 
alpha values for each voxel, in the case of raycasting and voxel space 
cornpositing. For the scene geometry, we assume a view roughly in line with 
one of the axes of the data set. This assumption is made solely to simplify the 
complexity analysis. We further assume that the data set fills the image. 

Adaptive rendering techniques, such as terminating rays early, are not 
analyzed here, since they are highly data-set dependent. All three techniques 
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Fig. 12. Volumerenderingcomplexityfor lK x lK image.

discussed allow the use of such adaptive techniques. For FVR we are free to
ignore those regions of frequency domain that have energy below some
threshold during the resampling stage. This is similar to ignoring regions of
the spatial domain with zero opacity, as can be done in both the screen space
and object space approaches.

For simple raytracing we send off one ray per pixel and sample an average
of N points along each ray. Trilinear interpolation requires roughly 13
additions and 14 multiplications per component. 1 Since we need to trilinearly
interpolate both opacity and color values at each sample point (a, r, g, b), this
brings us to 52 additions and 56 multiplications. Blending this sample point
into the current ray color requires 6 multiples and 4 adds, bringing us to 56
additions and 62 multiplications per sample point. Thus, we have roughly
5.87 x 107N additions and 6.50 x 107 N multiplications for a full-screen ray-
cast image.

For voxel space compositing, we assume that all blending kernels are
precomputed and that a parallel projection is taken. Each voxel is blended
into the image with a 2-D kernel, assumed here to be rectangular for
simplicity. To prevent holes in the composite image, blending kernels must
be large enough to overlap somewhat; here we set the overlap to 10 percent in

10ne subtraction each for generating Ax, Ay, Az offsets, and one subtraction each for generating
(1 – Ax), (1 – Ay), (1 – Az). We then generate four points that interpolate x, each having one
addition and two multiplications. From these we generate two points that interpolate in y, and
one final point that interpolates in z. This brings us to 13 additions and 14 multiplications.
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each axis (x, y). For the assumed geometry, this implies a kernel size of
(1.1 x 1024/N) X (1.1 X 1024/N) pixels. For each pixel of these kernels, 10
multiples and 4 adds are required .2 Since we have Ns voxels, this implies a
total of 1.27 x 107N multiplies and 5.08 x 10GN additions.

Finally, for FVR we have to resample the frequency domain along a plane
and perform an inverse 2-D transformation. Notice that the shifting opera-
tions mentioned previously simply affect the order in which the arrays are
filled and do not contribute to the overall complexity. The highest complexity
arises from the resampling operation. For a stored (m x m x m) reconstruc-
tion kernel, the resampling stage incurs 3. 4m3 (IV(1 + Z ~))2 multiplications
and 3. 4(m3 – 1)(N( 1 + Z ~))2 additions. Z ~ is the percentage of zero-padding
in each axis, set here to 10 percent, FVR can be performed independently for
each color component, resulting in the factor of 3 above. The factor of 4 arises
because we are resampling along the plane in the frequency domain with
twice the number of samples that the data set contained in each axis. The
FVR algorithm generates an image of size 2N x 2N. For a fair comparison of
the techniques, we include the complexity of interpolating this into a larger
1024 X 1024 image.~ This causes the roll-off in performance seen for small
data sets in Figure 12. Note that the complexity of the forward 3-D prepro-
cessing transform is not shown graphically, but is 6N3 log ~ N multiplies and
6N3 logz N additions [9].

In Figure 13 we perform a complexity comparison assuming an N x N
image size, instead of holding this fixed at lK x lK, as done in Figure 12.
The assumptions made are similar to those just discussed with two excep-
tions. First, for the voxel projection algorithm we hold the blending kernel
size fixed at 3 X 3. Second, no screen space interpolation is now needed for
FVR.

7. FREQUENCY DOMAIN DATA REPRESENTATION ADVANTAGES

There are a number of advantages to working with a frequency domain data
representation, as opposed to a spatial representation. First, progressive
refinement is a natural consequence of the representation. We are free to
limit the samples taken to the low-frequency region of the slicing plane near
the origin. This allows the complexity of both the resampling and inverse
transformation stages to be reduced, resulting in a smaller image that can be
interpolated up to arbitrary size.

Spatial filtering operations are also simple and computationally inexpen-
sive to implement with a frequency domain representation. Spatial filtering

2Voxel colors and a’s are weighted by the footprint kernel values. This requires 4 multiplies per
kernel pixel. (1 – a,) is also required by the over operation, which needs 2 multiplies and 1 add
for each of the three color components. Therefore, we need 10 multiplies and 4 adds for each pixel
of the blending kernel associated with each voxel.
‘]Screen space interpolation can be done in two passes, one in each axis, Between two points in y,
we incur one subtraction, one shift, and (1024/2N – 1) adds. There are roughly 4N 2 pairs of
such points. In x we incur the same number of operations per pair of points, but now there arc
2048N such pairs. This yields a total of (2N + 1024)Z operations.
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Fig. 13. Volume rendering complexity for N x N image.

is often applied in image processing, where mild high-boost filters can lead to
the overall appearance of increased image sharpness. Arbitrary low, high,
and bandpass filters can all be defined and implemented in the frequency
domain as simple multiplications of each frequency value by a precomputed
filter coefficient. This is to be contrasted with performing a more expensive
convolution in the spatial domain.

Cross-correlations are useful for feature detection in image processing and
can also be employed for 3-D scalar data sets [1]. If a feature q(x, y, z), with
transform Q(wX, WY,w, ), is present in our data set, then it can be found by
finding the maximum of the cross-correlation:

N-IN–IN–1
Z(x, y,z) = ~ ~ ~ f(x, y,z)q(x +tx, y+ty, z+tz).

tz=o ty=o tx=o

For typical discrete 3-D data sets, however, this operation is expensive. For
large data sete, this computation can be performed more efficiently in the
frequency domain, since

z(wx, wY, w.) =F(wx, wy, wz)Q*(w,, wy, wz),

where Q*( ) is the complex conjugate of Q( ). Therefore, using the frequency
domain representation, we only need to compute

z(x, y,z) = FFT-l[F(wX, wY, wZ)Q*(wX, wY, wZ)~

and to find its maximum.
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8. CONCLUSION AND FUTURE WORK

We have developed a technique for using the Fourier Projection-Slice Theo-
rem in volume rendering. It allows one to compute the projection of a 3-D
scalar function by evaluating only a 2-D slice of the function represented in
the frequency domain. The technique is computationally less expensive than
current approaches and should allow interactive display when implemented
on current digital signal processing chips. The projection image computed is a
strict line integral of the function, which gives it the quality of looking like an
“X-ray” of the data set. The difflcult problem of overcoming this limitation
and of introducing hidden surface effects, perhaps through the use of altern-
ativenonlinear transforms, is an unexplored issue.
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