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Abstract: We introduce a technique that allows 3D information to be captured from a conventional flatbed scanner. 
The technique requires no hardware modification and allows untrained users to easily capture 3D datasets. 
Once captured, these datasets can be used for interactive relighting and enhancement of surface detail on 
physical objects. We have also found that the method can be used to scan and repair damaged photographs. 
Since the only 3D structure on these photographs will typically be surface tears and creases, our method 
provides an accurate procedure for automatically detecting these flaws without any user intervention. Once 
detected, automatic techniques, such as infilling and texture synthesis, can be leveraged to seamlessly repair 
such damaged areas. We first present a method that is able to repair damaged photographs with minimal 
user interaction and then show how we can achieve similar results using a fully automatic process. 

1 INTRODUCTION 

Flatbed scanners are commonly available, low cost, 
and commercially mature products that allow users 
to digitize documents and photographs efficiently. 
Recently, flatbed scanner products that incorporate 
two separate and independently controlled 
illumination bulbs have become available (HP, 
2007). The original intent of such a two bulb design 
is to improve color fidelity by illuminating the 
document or photograph with separate chromatic 
spectra, effectively making a 6 channel measurement 
of color instead of the conventional 3 channel 

measurement, improving color fidelity. We 
demonstrate that such hardware can also be used to 
estimate geometric information, namely surface 
normals, by a novel approach to photometric stereo. 

These extracted surface normals can be used in 
several ways. Scanned objects can be relit 
interactively, effectively conveying a sense of 3D 
shape. Normal information can also be used to 
automatically repair damaged surfaces of old 
photographs. We have found that tears and creases 
in old photographs can be reliably detected since 
they are associated with surface normals that are not 
strictly perpendicular to the surface of the scanner 
plate. Once detected, these imperfect pixels can be 
replaced by leveraging infilling and texture synthesis 
methods, effectively repairing the print in an 



automatic manner. Although products do exist on 
the market that specialize in recovery of 3D 
information from physical objects, these are 2-4 
orders of magnitude more expensive than 
commercial flatbed scanners and involve significant 
mechanical complexity. Our method requires no 
hardware modification to current products, no 
additional user interaction, and can scan objects in a 
very short amount of time. 

Section 2 provides an overview of related work. 
Section 3 presents the entire procedure used to 
estimate the surface gradient from a flatbed scanner 
with two bulbs. Sections 4 and 5 describe the 
photograph repair application and the automatic 
process to remove tears and creases. Two methods 
are presented, one that works on two pairs of images 
with an intermediate manual rotation, and another 
method that achieves fully automatic repair from a 
single pair of images. Section 6 summarizes other 
applications and Section 7 provides paper summary 
and conclusions. 

2 RELATED WORK 

In this paper, we use principles from photometric 
stereo to recover per-pixel surface normals of a 3D 
object or photograph. The recent introduction of 
flatbed scanners that employ 2 separately controlled 
light sources greatly facilitates this approach (fig.2). 
As an alternative approach to gathering 3D structure 
from flatbed scanners, (Schubert, 2000) 
demonstrates how they can be used to collect 
stereoscopic images. Although no explicit extraction 
of depth or 3D information is performed, a good 
percept of 3D shape can be achieved with this 
approach. Schubert leverages the fact that in such 
CCD-based scanners, the resulting scanned images 
perform a orthographic projection in the direction of 
the carriage movement, y, but a perspective 

projection in the orthogonal direction, x. By 
repositioning the object with variation in the x 
placement, views of the object from multiple 
perspectives are achieved. Stereograms can be 
produced to good effect by arranging and viewing 
these images appropriately.  

Although the hardware prototype has 
significantly more complexity than a flatbed 
scanner, (Gardner et al., 2003) shows an elegant 
approach using Lego Mindstorm and linear light 
sources to collect normal and albedo information, 
along with higher-order reflectance properties. This 
approach can not be leveraged on today’s flatbed 
scanners due to the fixed geometric relationship 
between the light sources and imagers in 
conventional scanners. A related, unpublished 
approach was independently developed by (Chantler 
and Spence, 2004). Their acquisition methodology is 
similar, and also discusses the approach of 
simultaneously performing registration and 
photometric stereo. However, applications such as 
photo repair and reflectance transformation are not 
pursued. (Brown et. al, 2008) describe an approach 
for digitizing geometry, normals and albedo of wall 
painting fragments using the combination of a 3D 
scanner and a conventional flatbed scanner. Surface 
normals are acquired with a flatbed scanner by 
combining 2D scans. They demonstrate the 
improved normal fidelity that can be achieved by 
photometric stereo as opposed to 3D scanning. 

Our image repair application is motivated by 
earlier work on removing dust and scratch from 
scanned images. (Bergman et al., 2007) describe a 
range of solutions for dust and scratch removal. For 
scans of transparent media, i.e. negative or slides, 
(DIGITAL ICE, 2001) introduced the use of Infra-
red (IR) hardware. The IR light is blocked by dust 
and scattered by scratches, thereby enabling very 
accurate defect detection. For prints, detection is 
based upon characteristics of the defects in the 
digital image, e.g., defects that are light and narrow.  

   
Figure 1: Left: Original scan of a damaged photograph. Middle: 3D structure present on the surface of the print extracted 
by our method. Right: Automatically repaired photograph using 3D structure information and infilling methods. 
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Figure 2: Typical flatbed scanner – side view. Note the 
lighting assembly moves with the imager, effectively 
providing two lighting directions across the entire scan. 

Figure 3: Images captured by our modified HP Scanjet 
4890. Pairs of scans are captured with only one of two 
bulbs actuated independently. For the second pair, the user 
has manually rotated the fossil by roughly 90 degrees. 
This effectively yields 4 lighting directions. 

  
Figure 4: Prediction error for the fossil shown in Fig. 2 
using the SIRPH algorithm. X: rotation, Y: translation in 
y, Z: error. 

While this approach correctly identifies defects, 
it is prone to false detection of image features with 

similar characteristics.  We propose a detection 
method for scanned prints based on 3D surface 
normals.  

3  NORMAL CAPTURE FROM 
FOUR IMAGES  

Given at least 3 images of a surface taken with 
different lighting directions, it is possible to recover 
per-pixel estimates of surface normals and albedo 
using photometric stereo. Flatbed scanners currently 
capture a single image under static lighting 
conditions, but they often employ 2 bulbs to 
illuminate the subject. These two bulbs provide 
illumination from either side of the scan line being 
imaged. If we independently control these 2 bulbs, 
the scanner is capable of taking 2 scans, effectively 
one with lighting from above, and another with 
lighting from below. We have experimented with 
two hardware platforms that allow such scans to be 
acquired. First, we modified an HP Scanjet 4890 to 
allow us to manually activate each of the two bulbs 
separately. Later, when the HP ScanJet G4050 
became available with separate control of each bulb 
supported in software, we switched to this platform. 

Both platforms provide 2 images with different 
lighting. For the first approach we describe, we 
retrieve another pair of images under new lighting 
directions by prompting the user to manually rotate 
the object they are scanning by roughly 90 degrees. 
At this point, two new scans are taken, again with 
each bulb activated independently yielding 4 images 
of the object with 4 different light source direction 
(fig.3). However, the two sets of images are not 
registered relative to each other, so we have 
introduced a difficult registration problem since the 
images are all taken under varying lighting 
directions. We have developed a method to robustly 
solve this registration problem called SIRPH, which 
stands for SImultaneous Registration and 
PHotometric stereo.  

 In section 4.2 we present a method that avoids 
any approximate manual rotation and works directly 
with just 2 images.  

SIRPH exactly solves for the two translation and 
one rotation parameters, (x,y,θ), that are introduced 
by the user rotating the object by roughly 90 
degrees. At the same time, it solves for the surface 
orientation (normals) at each pixel. The SIRPH 
method initializes the rotation and translation 
parameters, then uses  photometric stereo (Barsky et 
al., 2003) on three of the images to compute surface 



albedo and normals per pixels. Two of the images 
used are from one set of scans and a third is taken 
from the other set which is rotated and translated 
according to the current best guess of the rotation 
and translation parameters.  Photometric stereo gives 
us an estimation of normals and albedo of the 
scanned object, which can be used to estimate the 4th 
image by the Lambertian reflectance model: 

 
)( LNI •=′ ρ  (1) 

 
where ρ  is surface albedo, N  is normal vector and 
L  is the vector pointing to the light source. The 
estimated image, I’, is then compared to the actual 
4th image, I4, giving us a prediction error (fig.4) for 
parameters (x,y,θ) as follows: 
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where P is the set of all pixels in an image, and Ip 
corresponds to the pth pixel in image I. 
      Fortunately, this prediction error is typically well 
behaved, and iterative nonlinear optimization 
techniques can be employed to find the well defined 
minimum. After experimenting with several 
nonlinear optimization methods, namely Levenberg-
Marquart, Gauss-Newton and Simplex, we finally 
settled on a simple hierarchical approach that was 
both robust and fast. In our technique, we perform 
an iterative search starting at a low resolution 
working up to the original size image. At each 
resolution level, samples are taken at the current 
position and at a +/- step size increment in each of 
the 3 dimensions of our search space. The lowest 
error of these 8 + 1 sample points is chosen as the 
base for the next iteration. If the same base point is 
chosen, the step size is halved and further iterations 
are taken. Once the step size is below a threshold, 
convergence is achieved and we start the search at 
the next resolution level with the current 
convergence state.  At each level, this technique is 
commonly known as compass-search.  

Because compass-search can get stuck in local 
minima, a good starting point is key to convergence.  
We therefore perform the entire search multiple 
times at the lowest resolution, each “seeded” with a 
different starting point.  Because the optimization 
occurs very quickly at low resolution, we are able to 
use many different starting points that cover a large 
area of the sample space.  We then take the best 
match from all these to start the search at the next 
level.  After we converge on the original resolution 
image, we will have robustly recovered the required 

translation and rotation parameters to register the 2 
pairs of images, as well as a surface normal per 
pixel. We tested this method on a variety of objects 
and notice that it is capable of achieving correct 
convergence in almost all cases, including very 
difficult ones such as circular objects with low 
amounts of texture. 

4  PHOTOGRAPH REPAIR 
APPLICATION 

We have outlined our procedure for extracting 3D 
normals and albedo from objects using a flatbed 
scanner. We now present several applications of this 
method, the most significant being the automatic 
detection and repair of creases and tears in scanned 
photographs. Almost everyone has a one of a kind 
photo of their child, parent or grandparent that has 
been battered over the years. Old photographs often 
have tears, creases, stains, scratches and dust. 
Fortunately, the technology to restore such images 
exists today through a variety of digital imaging 
tools. Your local photo-finishing lab can do it for a 
fee. It can also be done in the home using a scanner, 
printer and photo editor such as Adobe Photoshop. 
This path to photo restoration is fairly tedious and 
requires some expertise in the use of the photo 
editor. 

Although a reliable capability exists already to 
detect and repair defects in transparencies such as 
dust and scratches (using IR illumination), no such 
robust counterpart exists for the detection and repair 
of damaged prints. Infilling techniques from the 
transparency domain can be leveraged for the repair 
process, but the robust detection of damaged regions 
of a print is lacking. Our method provides such a 
capability, since the damage one that is looking for 
is associated with 3D perturbations. Figure 1 shows 
one example of this capability that we have 
prototyped with a HP 4890 scanner. The next two 
sections describe the procedures used for this 
application. We first present the 4 image procedure, 
which has the drawback that it requires the user to 
rotate the photograph. In section 4.2 we introduce a 
2 image process that performs the same task, but 
without any user intervention.  

4.1 Defect Maps from Normals 

The 3D normals give a general indication of the 
location of the defects in the scans. In principle, high 
normal perturbations from the z axis (defined to be 



pointing up from the photograph) indicate a defect, 
and low normal perturbations indicate undamaged 
portions of the print. However, simply taking a 
threshold of such perturbations produces a defect 
map with insufficient accuracy.  

 
 

 
Figure 5: Constructing defect maps using the 4-image 
procedure. Left: Expansion labeling computed from the 
normals. Right: Refinement detection map for light 
defects.  

This map may miss portions of the defect, e.g., 
very fine portions of a crease, and it is likely to have 
some false detections, e.g., the red pixels near the 
boy’s left sleeve in Figure 5 (left). To overcome 
these issues, we use a two step approach. We first 
expand the set of candidate pixels, along features 
such as creases, then apply a refinement stage on the 
expanded mask to select a subset of these pixels that 
will need repair. The expansion phase thresholds the 
3D normal information at two levels. Pixels with 
very high normal perturbations are marked as 
defective. Pixels with less high normal perturbations 
are marked as candidates. A voting algorithm, 
closely related to (Medioni, 2000), extends the 
defects. Connected components of the marked pixels 
are computed. Each component exerts a field of 
influence based on its shape and size. For example, a 
crease extends a field in the direction of the crease. 
The fields of influence from all the components are 
added for an overall vote at each pixel. Defective 
pixels are marked pixels with high votes and 
unmarked, connected pixels with very high votes. 

The purpose of the refinement step is to select a 
subset of pixels identified in the expansion phase as 
the final selection that will require repair. The 
refinement step uses a grayscale representation of 
the image and creates a smoothed reference image 
that does not contain the defects by applying a 
median filter. Defective pixels can either be too light 
or too dark. In both cases the difference between the 
grayscale representation and the reference image is 
significant for defective pixels. Thresholding the 
difference image is prone to detection of some small, 

bright image features, hence we label pixels as 
defective only if they are both in the expanded set of 
candidate pixels and yield a big difference between 
the grayscale and reference images. We further 
refine the defect map by detecting the contour of the 
defect using classification. Looking at a 
neighborhood near a defect we have gray-level data 
and a label for each pixel of clean, defect-light or 
defect-dark. We label several pixels around the 
contour of the defect as unknown and classify them 
using Quadratic Discriminant Analysis (Hastie et al., 
2001). Without contour classification, a trace of the 
tear would remain after repair. 

This refinement step is repeated once for light 
defects and again for dark defects. From a normal 
viewing distance the white areas are the most 
striking defect. A closer look usually reveals dark 
shadows adjacent to the white tear. Indeed, if we 
only repair the white defects, we are left with an 
apparent crease in the image due to the shadowed 
pixels. We obtained the best results by detecting and 
repairing (infilling) light defects and then detecting 
and repairing dark defects. 

4.2  Normal Components from Two 
Images 

The 4-image procedure has the drawback that the 
user must rotate the photograph to compute normals 
(or both surface derivatives along x and y). It is well 
known that photometric stereo requires at least three 
images for a complete gradient computation (Barsky 
et al., 2003). We have developed a method to use 
two images to estimate one component of the 
derivative (in our case the derivative along y, i.e. 
along image columns). In this way, we avoid 
needing the user to rotate the sample manually. 
However, we encounter two limitations. First, we 
have less information to detect defects, and second, 
the algorithm can’t recover tears and creases that are 
precisely aligned with the image columns. We can 
address the first issue with a more complex 
procedure. To avoid perfectly vertical defects, we 
recommend that the user reorient the photo in the 
scanner.  
An unmodified, commercial HP ScanJet G4050 
scanner, which we used for these experiments, 
introduces the further complication that the 
chromatic spectra of each bulb is intentionally 
designed to be different. As mentioned, this was 
done to improve color fidelity effectively making a 6 
channel measurement of color. This chromatic 
difference is problematic for photometric stereo. We 
overcome this issue by recovering 2 separate 3x1 



color transform matrices that map each image into a 
similar one dimensional ‘intensity’ space, in which 
we perform photometric stereo computations. These 
color transform matrices have been derived by 
scanning a Macbeth color chart exposed with each 
bulb independently, and then minimizing the 
difference in transformed response.  

A second problem with flatbed scanners is that 
the mechanical repeatability of the scan mechanism 
is not perfect, causing slight vertical misalignment 
between the pair of scans. To correct this we 
upsample each scanned image in the vertical 
direction, and then we find the misalignment by 
minimizing the integral of the surface gradient in y 
direction.  

We approximate the lighting geometry with 
lighting direction vectors 
 

[ ]
[ ]⎩

⎨
⎧

=
=

222222

111111

cossinsincossin
cossinsincossin

αβαβα
αβαβα

l
l  (3) 

with  
 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−=

+=

===

2

2

6

2

1

21

πβ

πβ

πααα
 

(4) 

 
Using the Lambertian reflectance map (Horn, 

1986) we obtain 
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where I1 and I2 are the images, p and q are surface 
derivative along x and y respectively, L0 is the light 
source magnitude and ρ is the surface albedo. 
Solving for q, we obtain: 
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In this way, we can recover the surface 

derivative value in one direction. Note that although 
this derivative along y is exactly recovered, the 
estimation of the other component of the surface 
gradient with just a pair of images is not possible 

without making some assumption on p, such as 
convexity or smoothness assumptions. 

To solve for the misalignment, we assume, for 
now, that most of our scanned photograph is flat 
(q=0). We find the best alignment minimizing the 
function 
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where usI 2,1  and usq  are the gray level upsampled 
images and scanned surface derivative along y, 
(Δi,Δj) is the misalignment and N and M are 
respectively the number of rows and columns. We 
used upsampled images to compute subpixel 
misalignments. After correcting the misalignment, 
we downsample images to their original resolution.  

 

 

 
Figure 6: UL: Scanned image. UR: Repaired image. LL: 
Absolute value of the y derivative before the alignment 
step. LR: After alignment. 

Fig.6 shows the derivative along y before and 
after the alignment step. We can see, in Fig. 6 LL, 
that there are some image edges that should not be in 
an albedo independent signal (such as the surface 
gradient), while such image content dramatically 
decreases after the images are aligned as shown in 
Fig. 6, right.  



After the color transformation and alignment 
operations, these two source images can be used as 
input to compute a defect map that will indicate 
where tears and creases on the surface of the 
photograph are present. Unfortunately, the q image 
recovered at this point suffers from numerical noise 
in regions where the colors are dark (fall near the 
origin if the RGB color cube). Fig. 7 shows how the 
darkest square is noisier than the others, while the 
brightest gray one on the bottom right is practically 
invisible. Recall that our goal (regarding the 
repairing task) is to differentiate pixels associated 
with tears and creases from flat regions of the 
photograph, not necessarily to recover exact 
estimates of the gradient component. To this end, we 
have found it useful to combine the gradient and 
color difference information to define a composite 
image   
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which is the normalized version of the product of the 
color differences multiplied by the estimated vertical 
derivative: 

 
Figure 7: Left: Scanned image; Right: Recovered gradient 
component along y. 

 
Figure 8: UL: Scanned image. UR: Gradient component 
absolute value along x. LL: Absolute value of the 
difference between the two acquired images. LR: Mask  

),(ˆ yxm  is the input of the defect trimap generation step. 

( ) ( ) ( ) ( )yxqyxIyxIyxm ,,,, 12 ⋅−=  (9) 
 
The gray level difference image has a value near 

zero where q is near zero and doesn’t contain 
numerical errors due to the albedo. This feature is 
useful to eliminate the numerical errors in q, even if 
it adds some albedo dependent signal in regions 
containing defects. Note that we could still have a 
problem if a defect pixel has dark albedo. In practice 
we find that for these pixels, even if the (I1,I2) vector 
has a low magnitude, the difference of its 
components is big enough to distinguish the defect. 
In Fig.8 we can compare the gradient and difference 
images. While the noise in the gradient image is 
evident (we can distinguish the outline of the faces), 
the difference image has almost no numerical noise. 
Note that the defective pixels are also less visible in 
the difference image, but are enhanced in the 
composite image, m, due to the strong signal in the 
gradient.  In short, we have used the gradient to 
enhance the signal in defect regions and use the 
difference image to avoid noise in the flat zones. 
Note that in figure 8 we display the scanned images 
rotated 90 degrees for clarity, effectively placing the 
light sources to the left and right in the figure.  

Fig.8 LR shows the mask ( )yxm ,ˆ  computed 
from the source images. This obtained mask has 
gray level values that must be thresholded in some 
way to decide how high the value must be to identify 
a defect pixel. A single threshold across all photos 
fails to be adequately robust. To this end, we define 
a function m~ : 
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This function is simply a binary image, with γ as 

threshold. The percentage of the image lying above 
this threshold is simply 
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where N and M are respectively rows and columns 
number.  

We compute a trimap by classifying each pixel 
as being either ‘defect’, ‘uncertain’ or ‘non-defect’. 
We choose the 2 thresholds for this classification by 
finding the knee in the relationship between A and γ. 
Specifically, we set two thresholds on the angle the 
curve makes, namely 

8
π−  and 

8
3π− which are 



25% and 75% respectively of the angular range. A 
concrete example may clarify this approach. Fig.9 
shows the function ( )γA  for the sample in fig.8. 
This is a display of the image area as a function of 
threshold γ. Choosing the angle thresholds above 
corresponds to γ thresholds of 0.005 and 0.0094 for 
constructing the tri-map. Fig.10 shows the trimap in 
which red pixels are defect, bright grey pixels are 
non-defect and black pixels are the unknown ones. 
In this example the defects are fairly easy to detect 
yielding a small number of unknown pixels. 

Once such a trimap is constructed we need to 
classify the unknown pixels. For this we use 
Quadratic Discriminant Analysis (QDA) (Hastie et 
al., 2001). As features we use the q and difference 
images as well as the following image: 
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Figure 9: The function ( )γA for Fig. 8a. 

 
Figure 10: The trimap for Fig. 8a: red pixels are defect, 
light grey are non-defect and black are unknown (appear 
sparse and small in this case). 

This equation is derived from eq. 5 by setting L0 
to 1 and p(x,y)=0. After normalizing, f(x,y) has low 
values in the non-defect pixels and high values 
(albedo dependent) in the defect pixels. Note that we 
have computed the albedo using classical 
photometric stereo methods and assuming p=0. 
Although in practice the unknown p does not always 
equal zero, especially for defective pixels, this 

assumption still yields the function, f(x,y), which is 
useful in distinguishing defect from non-defect 
pixels. 

We apply QDA, trained on the known defect and 
non-defect pixels, and applied to the unknown 
pixels, for each photograph independently. This 
yields a labeling of all pixels as being either 
defective or not, which along with the albedo image, 
is processed by the refinement step, as described in 
4.1. We use the albedo instead of one of the original 
images because some low frequency creases are 
removed by simply computing the albedo, even 
when they are present in the source images, as 
shown in Figure 11. We also apply the infilling 
procedure to the albedo image, not one of the 
original source images, since the albedo image is not 
prone to darkening introduced by the interaction of 
the non-perpendicular lights and subtle low 
frequency curvature on the surface of the 
photograph. Fig.12 shows the automatically detected 
defect map, which is the input for the refinement 
step and the repaired image after the infilling 
algorithm.  

 
Figure 11: Subtle, low frequency creases are avoided in 
the albedo image. Left: Scanned image. Middle: 
Recovered albedo. Right: repaired image. 

 
Figure 12: Left: Defect map before refinement step. Right: 
Repaired image after infilling algorithm. 

Methods do exist in the literature that attempt to 
compute all gradient information from two images 
(Onn et al., 1990) (Tu et al., 2003) (Yang et al., 
1992) (Petrovic et al., 2001). Unfortunately, after 
prototyping several of these, we find them 
insufficiently robust in practice. 



5 INFILLING ALGORITHMS 

The input to the infilling algorithm is a digital image 
in which every pixel is classified as either defective 
or non-defective. The non-defective pixels can be 
further classified as candidates or non-candidates for 
replication. A data structure is provided in which 
defective pixels are arranged in connected 
components.  

Our algorithm essentially replaces every 
defective pixel by a value computed from selected 
candidate pixels. A candidate pixel may be any non-
defective pixel of the image. The selection is based 
on (1) the spatial distance between the defect 
location and the candidate location and (2) the 
similarity of pixel values in the local neighborhoods 
of the two pixels. Two parameters govern the 
selection: the width W of a square region around the 
defect in which candidates are examined and the 
width w of a square local neighborhood surrounding 
and including a pixel. Typically, the region width W 
is much greater than the neighborhood width w. For 
example, we used a region of 200×200 pixels and 
neighborhoods of 7×7, 9×9, and 11×11 pixels. 

As a pre-processing step, we compute texture 
descriptors of all the local neighborhoods of 
candidate pixels in the image. In our 
implementation, we used mean and standard 
deviation of values in a surrounding w×w 
neighborhood as texture descriptors. The 
computations are done once for every candidate 
pixel and do not depend on any defective context.  
Pixel reconstruction is done for groups of connected 
components sequentially. The recommended order 
of pixel reconstruction within a single connected 
component is from the outside in. This order of 
computation creates fewer image artifacts. To 
reconstruct a defective pixel, we examine its 
surrounding w×w neighborhood while ignoring 
defective pixels in that neighborhood. The texture 
measures of the local neighborhood are computed, 
namely the mean and standard deviation of the non-
defective pixel values. We then find 10% of the 
candidates in the W×W region around the defect 
whose texture measures best match the texture 
measures of the target neighborhood. To accelerate 
the search for the best 10% of all candidates, we use 
an efficient data structure where all the candidates in 
a region are sorted by both the mean and the 
standard deviation of their surrounding w×w 
neighborhoods. 

For each of the 10% of selected candidate pixels, 
we further compare its w×w neighborhood relative 
to the defective pixel and its neighborhood. 

Neighborhoods are compared by the sum of squared 
differences (SSD) of respective values. Two 
approaches were used to compute the output pixel 
value, resulting in two different algorithms. The first 
approach, which is based on (Efros and Leung, 
1999), takes the best pixel, i.e. lowest SSD. The 
second approach computes a weighted average of all 
the candidates, where the weighting is based on the 
SSD measure as follows. Let Q = q1,q2,…,qw·w be 
the two dimensional neighborhood surrounding the 
pixel to repair and let C be the set of candidate 
neighborhoods. For a neighborhood P in C, we use 
the notation P = p1,p2…,pw·w and denote its central 
pixel by p. Let G=g1,g2…, gw·w be a Gaussian spatial 
filter, and let h be a real value weight filter. For a 
defective pixel i in the neighborhood P, the 
corresponding value of the Gaussian filter gi is set to 
0. The new value for the pixel is 
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Figure 13: UL: scanned image. UR: albedo. LL: 
automatically computed defect map before refinement. 
LR: repaired image using infilling algorithms. 

This method is adapted from the NL-Means 
denoising algorithm (Buades et al., 2005). By 
applying SSD comparisons to only 10% of the 
candidate neighborhoods instead of all the 
neighborhoods in the surrounding region, we attain 
approximately a factor of ten speed up, and no 
visible degradation in image quality. This speed up 
makes these algorithms applicable in practical 



infilling tasks, as those described in subsequent 
sections. 
Note that the accelerated infilling algorithms are still 
slower than simple local operations such as median 
filtering or averaging. These local algorithms 
however tend to blur image details, so they are not 
acceptable for a photo repair application. Fig.13 
shows the entire automatic procedure (using two 
images, the automatic defect detection, the 
refinement procedure and the infilling algorithm) for 
the photograph in fig.1. 

6 ADDITIONAL APPLICATIONS 

In addition to allowing the repair of old photographs, 
the combination of color and normal or reflectance 
data taken from physical objects can be applied in 
other ways. Transforming reflectance data based on 
normal information to enhance surface perception of 
detail has already been demonstrated (Malzbender et 
al., 2001), (Toler-Franklin et al., 2007), (Freeth et 
al., 2006). A further example on data captured by 
our flatbed scanner is shown in fig. 14. Combing 
multiple images taken under multiple lighting in a 
spatially varying manner can also yield enhanced 
visualizations (Fattal et al., 2007). Data captured 
from our scanners can also be used for these 
methods. Lastly, normal information from 
photometric stereo can of course be integrated to 
recover a 3D model of surface structure (Horn, 
1986). This geometry will typically suffer from a 
number of artifacts, such as low-frequency warping 
from the integration of inaccuracies and mishandling 
of discontinuities in the object geometry. 

7 CONCLUSION 

We have presented a technique to recover the 3D 
normal structure of an object using a conventional 
flatbed scanner. This allows relighting, and limited 
geometry capture. We have also demonstrated an 
application to the automatic repair of damaged 
photographs exhibiting creases or tears. Although 
we prototyped this functionality on a particular HP 
scanner, the approach is applicable to any flatbed 
scanner that uses 2 bulbs to illuminate the platen, 
which is the common case. 

Outstanding challenges still remain. First, the 
depth of geometry we can handle is limited by the 
optics of the scanner. For the unmodified scanners 
we used in our work, we measured this to be 

approximately 1 cm. Second, a geometric warp must 
be applied to the raw scanner data to rectify the 
images before registration. This must be done to 
sub-pixel accuracy to obtain reliable normal 
estimates. Also, a limitation of the 2 image approach 
we have taken (but not our 4 image approach) is our 
inability to detect perfectly aligned defects. This can 
however be accommodated in most cases by the user 
simply avoiding such defects with a rotation of the 
photograph to re-align it. 

We have investigated techniques in the literature 
that attempt to recover both surface derivatives 
components, (p,q), from a single pair of images, but 
have found them insufficiently robust. In future 
work, we would like to develop such a robust 
method.  

 
Figure 14: Top: The first of the four scans shown in Fig. 3. 
Bottom: Interactively relit to enhance surface detail.  
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