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ABSTRACT   

The Transverse Field Detector (TFD) is a filter-less and demosaicking-less color sensitive device that easily allows the 
design of more than three color acquisition channels at each pixel site. The separation of light into different wavelength 
bands is based on the generation of transverse electric fields inside the device depleted region, and exploits the properties 
of the Silicon absorption coefficient. In this work we propose such a device for the joint capture of visible and near 
infrared (NIR) radiation, for possible applications in videoconferencing and 3D imaging. In these applications the 
detector is used in combination with suitably generated NIR structured light. The information of the fourth acquisition 
channel, mainly capturing NIR signals, can be used both for sampling NIR light intensity and for subtracting unwanted 
NIR crosstalk from visible channels thus avoiding the need for the IR-blocking filter. Together with the presentation of a 
4-channel sensor, a suitable algorithm for the processing of signals generated in the visible and infrared bands is 
described. The goal of the algorithm is to minimize the crosstalk of NIR radiation inside the visible channels and, 
simultaneously, to maintain good color reproduction and noise performance for the sensor, while holding a good 
sensitivity of the NIR channel up to 900 nm. The analysis indicates that the algorithm reduces the crosstalk of infrared 
signals inside R, G and B channels from 31%, 12% and 5% respectively to less than 2%. Concerning noise propagation, 
the worst coefficient of the color conversion matrix (CCM) is -2.1, comparable to those obtained for CCM of Bayer 
Color Filter Arrays. 
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1. INTRODUCTION  
The combined acquisition of images in the visible (VIS) and infrared (IR) bands of the spectrum has several advantages 
for a large number of applications. In digital imaging, concurrent infrared acquisition has been proposed as a mean to 
enhance photographs both in terms of dynamic range (improving contrast and details)1, and in terms of image quality, 
avoiding the degradation caused by atmospheric haze2. In 3D imaging systems, it is possible to use the IR channel to 
recover the depth information of the scene or part of it3,4. In surveillance systems, using the IR channel allows to 
differentiate the patterns of objects at different temperatures down to approximately 600 K. Night-and-Day vision 
systems obtained combining visible and infrared signals have been proposed also for automotive cameras23. 
Nevertheless, the use of two separate imaging sensors and optics for the VIS and IR band (see e.g. ref 3,17) has so far 
made unpractical the implementation of a low-cost VIS-IR imaging device. 

A solution to the need for two separate sensors can be the use of a single Silicon sensor in which the IR filter (or “hot 
mirror”) is removed, so that near infrared (NIR) and VIS radiation can be captured simultaneously and in some way 
distinguished (Silicon is indeed inherently sensitive up to 1107 nm). In 2008 Koyama23 proposed a modified CFA with a 
fourth channel for infrared acquisition: a subtraction of the NIR signal from visible channels was made to reduce the 
crosstalk, that however remained still large (9%, 4% and 21% for R, G and B channels respectively). Their device used 
photonic crystal based filters instead of commonly available organic CFA. In 2009 Lu5 proposed an optimization 
algorithm for the design of a Color Filter Array for the joint capture of VIS and NIR radiation: the CFA optimization was 
done in the Fourier domain, considering the demosaicking issues, and resulted in an uncommon 4x4 CFA including 15 
visible/NIR filters and one NIR-only filter. In a recent work24, Kawada demonstrated the selective deposition of an on-
chip IR filter onto RGB channels only of an RGBW CFA. In this way the W channel remained sensitive to NIR radiation 
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while RGB channels showed usual spectral responses of visible imaging devices. However the selective deposition was 
not obtained with a standard process but with a dedicated process step of deposition of multiple layers of SiO2 and TiO2. 

Due to the physical properties of Silicon, the absorption of NIR radiation happens with a deeper penetration length 
(several μm) than VIS radiation (fractions of μm for blue light, few μm for red light). Similarly to what has been 
proposed for RGB sensors7,8,9 using layered junctions, one can thus think to collect radiation from different depths in 
Silicon to distinguish the different contributions. Following this approach, in 2007 Lyu6 proposed  a device combining a 
Bayer CFA with a vertically integrated photodiode structure for NIR capture. However, due again to the physical 
properties of the absorption (exponential decay of the radiation flux propagating into a mean), a complete physical 
separation of photo-carriers generated by different wavelength bands inside a monolithic Silicon detector is not possible. 
While this issue is not critical for visible light in RGB sensors (where some overlap of the spectral responses in the R, G 
and B sub-bands is on the contrary required), it represents a source of crosstalk for a detection system whose aim is to 
separate information from VIS and NIR bands. No information on the effects of the crosstalk between VIS and NIR 
channels was however provided in 6 and the combination of RGB and NIR images, having different resolution, was not 
discussed. 

In this work we present a 4-channel implementation of the Transverse Field Detector (TFD), a previously presented 
Silicon sensor for visible imaging based on the Silicon absorption properties (i.e. without color filters). Carrier separation 
as a function of the generation depth is obtained through a suitable transverse electric field configuration obtained in the 
device depleted region. Carriers generated at different depths are in this way driven to different R, G and B surface 
contacts. Beside these three channels, in an improved version we have built a fourth channel9. In this work we show that 
through a geometrical optimization and a new device design, this fourth channel can be used for NIR acquisition. With 
respect to other sensors based on the photon absorption properties in Silicon, the TFD has a great advantage in that it 
requires no specific technology to provide 4 channels. On the contrary, passing from three to four channels for detectors 
based on layered junctions would require further process steps to design a very deep implant. While this latter idea was 
proposed in 10, as far as the authors know there has been no published scientific retinue so far. With respect to the device 
proposed by Lyu6, in the TFD the resolution of the NIR channel is the same as for the VIS channels. 

Together with the presentation of a simulated 4-channel sensor – based on experimental results obtained on a device built 
for the validation of the working principle – a suitable algorithm for the processing of the information generated in the 
visible and infrared bands is described. The algorithm takes into account the final quality of the images: its goal is to 
minimize the unwanted crosstalk of NIR radiation inside the visible channels and, simultaneously, to maintain good 
color reproduction and noise performance for the sensor, while holding a good sensitivity of the NIR channel up to 900 
nm. All these requests depend on the shape of the TFD spectral responses and are often in contrast, so that the best 
solution is necessarily a compromise. 

In particular, the algorithm is based on the mathematical analysis of the absorption of infrared light in the four channels 
of the device (R, G, B and NIR). Tested on a Matlab® simulated TFD device, the algorithm recovers, from the original 
four channels, three spectral functions (R’, G’ and B’) that well match the ones that would be obtained using an IR 
blocking filter. The correction is linear and requires a minimum negative coefficient value around -1. In this way the 
crosstalk of infrared radiation inside the visible channels is corrected, without significant propagation of noise. A further 
Color Conversion Matrix (CCM) is used for transformation to the standard CIE XYZ color space. In particular, the device 
simulation is optimized for a final application in 3D imaging and videoconferencing, where the infrared light is provided 
by a structured light path generated by a led with a peak wavelength around 850 nm (see Fig. 1: coded structured IR 
radiation is considered one of the most reliable techniques for recovering depth information and it is based on the 
correspondence between coded projected points and imaged points12,13). At this wavelength the sensitivity of the IR 
channel is still larger than the 30% of its peak sensitivity. 

Finally a possible implementation of a real TFD detector to be used with this algorithm is shown. The device is designed 
exploiting the features and respecting the rules of a 130 nm CMOS standard technology, and it is simulated using an 
electron device simulator, Dessis from ISE-TCAD®. The device biasing respects the critical technological issues  in terms 
of leakage and punch-through currents. The obtained photoresponses well match the previous simulations and 
demonstrate the feasibility of such a device. 
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4. VISUAL AND NIR INFORMATION PRE-PROCESSING 
Each 4-channel TFD pixel outputs four values corresponding to the integral of the incoming radiation spectral density 
s(λ) multiplied by the corresponding channel sensitivity: · ,      · ,      · ,      ·                           (1) 

Quantitatively, the integration starts to be significant roughly at a wavelength of 300 nm, below which the Silicon 
sensitivity is almost null due to surface charge recombination. As no hot mirror is used, the integral takes radiation up to 
1100 nm, corresponding to the Si bandgap. The extraction of the VIS and the NIR information from the four signals 
collected by the detector requires: 

1) a mapping from the TFD four dimensional color space [r(λ), g(λ), b(λ), nir(λ)] to a three dimensional color space 
[r’(λ), g’(λ), b’(λ)]. This operation corresponds to the subtraction of the unwanted infrared-generated signals inside the 
visible channels and it is obtained through a 3x4 matrix MNIR. The derived spectral responses R’, G’ and B’ should at this 
point resemble RGB responses typically obtained when a hot mirror is used (i.e. cut-off around 700-750 nm); 

2) the conversion from the three dimensional sensor color space [r’(λ), g’(λ), b’(λ)] into the standard CIE XYZ color 
space [x’(λ), y’(λ), z’(λ)] through a second matrix MCCM. As usual, also in this work this matrix is obtained considering 
the matching of the values obtained from the 24 patches of the Macbeth Color Checker (MCC). 

The two operations above can be clearly combined in a single matrix but it is preferred here to separately put in evidence 
the effects of the two steps: 

, , ,, , ,, , , · , , , ,, , , ,, , , , · , , ,, , ,, , , ·                                          (2) 

The combined use of these conversions should determine: 

a) a low propagation of noise, which corresponds to the presence of small negative coefficients in the two matrixes MNIR 
and MCCM (though signal is subtracted, noise is always added, thus lowering the SNR); 

(b) a mean color reconstruction error (generally expressed in the CIELAB color space) that is acceptable for the target 
application (e.g. ΔEa*b* ~ 3 in photography). 

Both these requirements, together with the requirement of a sufficient sensitivity in the NIR channel at the wavelength 
corresponding to the peak of the structured light, depend on the maximum collection depths of the different channels. 
The device optimization corresponds to an optimum choice of the four different depths xi 

4.1 Subtraction of NIR-generated signals from the visible channels 

Consider the NIR portion of the spectrum (i.e. the wavelength range λ > 780 nm) in Fig. 2b. Due to the fact that at these 
wavelengths the inverse of the absorption coefficient 1/α (that is the penetration depth) is much larger than xi, one can 
express the exponential absorption law through its linear approximation. The efficiencies of the different channels thus 
become: · ,       · · ,       · · ,       · ·    (3) 

These expressions, marked by an asterisk, are valid only in the near infrared range. Given the different depths xi, it turns 
out that, in this range, the quantum efficiencies are linearly proportional, as evident from the right portion of the response 
spectra in Fig. 2b. On the contrary in the short wavelength range (λ < 500 nm), the NIR response is almost null. It thus 
turns out that infrared can be cancelled from visible channels simply by means of a linear subtraction. As a result, the 
matrix MNIR has the quasi diagonal elements di,i which are almost unitary, the elements of the fourth column di,4 which 
are negative (representing the subtraction of NIR) and the remaining elements that are almost null. In particular, the three 
negative coefficients are always very small as (from Eq. 3) they are strictly related to the sampling depth xi as follows: 
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,   ,            ,   ,              ,                                                     (4) 

As the coefficients are small, the application of the conversion matrix MNIR does not cause a significant propagation of 
noise across the colored image. The obtained R’, G’ and B’ values represent the color coordinates in the sensor color 
space after the subtraction of unwanted infrared radiation. 

4.2 Color conversion 

In order to be interpreted by an external peripheral, the color coordinates must be converted into a standard color space, 
as for instance the CIEXYZ. This operation is done by considering a set of reference colors, the 24 patches of the MCC 
illuminated by the D65 standard source. The X, Y and Z triplets of these patches form a 3 x 24 matrix A. 

Correspondingly, another 3 x 24 matrix B can be formed by considering the R’, G’ and B’ values obtained by integrating 
the product of the TFD responses r’(λ), g’(λ) and b’(λ) obtained above, again by the power spectral density of the 24 
patches illuminated by the D65. The color conversion matrix can then be found as the product of the matrix A by the 
pseudo-inverse of the matrix B: · · ·                                                                                                                                             (5) 

The modulus of the maximum negative coefficient of the resulting matrix depends on the shape of the spectral responses 
and on their relative amplitude and overlap. Also the goodness of the set of responses, expressed by the residual color 
conversion error11 depends on these shapes. As a consequence an optimization of the spectral responses shape that takes 
into account these issues, together with the minimization of the crosstalk as described in section 4.1, must be done. 

4.3 Optimum spectral responses 

Considering realistic maximum absorption depths for the different channels in the TFD8,9, the parameters were swept 
with xB є [0.5 μm - 1 μm], xG є [1.2 μm - 1.8 μm], xR є [1.8 μm - 3.6 μm] and the maximum thickness xNIR є [3 μm - 8 
μm]. For every simulation, the algorithm considers the minimum negative coefficient p1 of the infrared subtraction 
matrix MNIR, the minimum negative coefficient p2 of the color conversion matrix MCCM and a parameter p3 representative 
of the color reconstruction error. The quality is then evaluated by minimizing the weighted sum: · · ·                                                                                                                              (6) 

In Eq. 6 the weighting coefficients α, β and γ are used to give more or less relative importance to the constraints 
discussed above. Giving more weight to α and β leads to a reduction of noise propagation; giving more weight to γ leads 
to a crosstalk reduction and to an improvement in the color reconstruction error of the noiseless sensor. 

In case α = β = γ  (that corresponds to the case of the best compromise) the values of the optimized depths turn out to be 
xB = 0.5 μm, xG = 1.4 μm, xR = 2.2 μm and the active layer thickness is xNIR = 4.5 μm. The obtained matrixes are: 

 1.015 0.022 0.298 0.2310.079 0.885 0.3832 0.9700.052 0.074 1.800 0.500   ,   
8.495 2.210 2.3520.582 1.284 1.3320.006 0.715 2.126  

 

It can be observed that maximum negative coefficients are -0.97 and -2.21 respectively. This means that noise 
propagation is not significantly worsened by the crosstalk correction algorithm. 

Fig. 3a shows the obtained result in terms of photoresponses, plotting the original response spectra r(λ), g(λ), b(λ), nir(λ) 
together with the reconstructed response spectra r’(λ), g’(λ), b’(λ) on the whole wavelength range of interest in the 
optimal case. This case considers a slightly different geometrical width with respect to Fig. 2. Thanks to the subtraction 
algorithm, the crosstalk of the infrared signals inside the visible channels is reduced from 4.5%, 12.5% and 31.1% to 0.7 
%, 1.2 % and 1.9% for the blue, green and red channels respectively. The corresponding geometry is reported in Fig. 3b, 
and a detail of the reconstructed responses in the visible range only is represented in Fig. 3c. Putting the latter 
photoresponses in the ISET® software [11], the mean color reconstruction error in the L*a*b* space, for the 24 patches 
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of the Macbeth Color Checker illuminated by a D65 standard source, turns out to be ΔEa*b* ~ 3.8, an acceptable value for 
fidelity in photographic color reproduction.  

  
(a) (b) 

         
(c)                                                                             (d) 

Figure 3. Optimum set of spectral responses obtained through Matlab simulations, sweeping over the different maximum 
collection depths xi (a). Corresponding optimum geometry with xB = 0.5 μm, xG = 1.4 μm, xR = 2.2 μm, and xnir = 4.5 
μm (b). Close up view of the responses r’(λ), g’(λ), b’(λ), reported normalized and in the visible range only (c). 
Sensitivity of the infrared channel only: at the emission wavelength λ = 850 nm of the structured light source the 
sensitivity is still larger than the 30% of the peak value (d). 

 

5. CMOS IMPLEMENTATION OF THE DEVICE 
A CMOS implementation of the device is simulated using the Dessis software, considering the drift-diffusion model for 
the FEM solution of the electron device. In this simulation the design rules of a CMOS 130 nm are respected, and the 
doping profiles inside the semiconductor are realistically designed. In particular, the structure is formed using 7 N-type 
regions (two lateral N wells and five surface N+ implants) with interjected P-type surface implants and Shallow Trench 
Isolation (STI) to provide better isolation from punch-through leakage current25. The overall pixel width is 6 μm but only 
half pixel (3 μm) is simulated, exploiting the symmetry of the structure.  

The device doping configuration and the iso-potential lines are depicted in Fig. 4a and 4b. The contacts are biased at the 
following voltages: V1 = 0.5 V, V2 = 2.2 V, V3 = 2.7 V and V4 = 4.0 V.  A detailed view of the electric field streamlines, 
representing carrier collection trajectories in the depleted region, is reported in Fig. 4c. It can be seen that the contacts 
collect carriers up to different depths. Contact n. 4 collects also from a larger depth by means of carrier diffusion. 
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