
Understanding Performance in Coliseum, an
Immersive Videoconferencing System
H. HARLYN BAKER, NINA BHATTI, DONALD TANGUAY,
IRWIN SOBEL, DAN GELB, MICHAEL E. GOSS, W. BRUCE
CULBERTSON AND THOMAS MALZBENDER
Hewlett-Packard Laboratories, Palo Alto, CA.
__

Coliseum is a multiuser immersive remote teleconferencing system designed to provide collaborative workers
the experience of face-to-face meetings from their desktops. Five cameras are attached to each PC display and
directed at the participant. From these video streams, view synthesis methods produce arbitrary-perspective
renderings of the participant and transmit them to others at interactive rates, currently about 15 frames per
second. Combining these renderings in a shared synthetic environment gives the appearance of having all
participants interacting in a common space. In this way, Coliseum enables users to share a virtual world, with
acquired-image renderings of their appearance replacing the synthetic representations provided by more
conventional avatar-populated virtual worlds. The system supports virtual mobility—participants may move
around the shared space—and reciprocal gaze, and has been demonstrated in collaborative sessions of up to ten
Coliseum workstations, and sessions spanning two continents.

Coliseum is a complex software system which pushes commodity computing resources to the limit. We set out
to measure the different aspects of resource, network, CPU, memory, and disk usage to uncover the bottlenecks
and guide enhancement and control of system performance. Latency is a key component of Quality of
Experience for video conferencing. We present how each aspect of the system—cameras, image processing,
networking, and display—contributes to total latency. Performance measurement is as complex as the system
to which it is applied. We describe several techniques to estimate performance through direct light-weight
instrumentation as well as use of realistic end-to-end measures that mimic actual user experience. We describe
the various techniques and how they can be used to improve system performance for Coliseum and other
network applications.

This paper summarizes the Coliseum technology and reports on issues related to its performance – its
measurement, enhancement, and control.

Categories and Subject Descriptors: H.4.3 [Information Systems Applications]:
Communications Applications – Computer conferencing, teleconferencing, and
videoconferencing

General Terms: Telepresence, Videoconferencing, View Synthesis, 3D Virtual Environments, Performance
Measurement, Streaming Media, Network Applications.
__

1. INTRODUCTION

For decades, videoconferencing has been sought as a replacement for travel. Bandwidth

limitations and the accompanying issue of quality of the enabled experience have been

central to its delayed arrival. Resolution and latency lead the way in objectionable factors

but, were these resolved, close behind would come the issues that separate mediated from

Authors’ addresses: 1501 Page Mill Road, Palo Alto CA, 94304-1120; email: {harlyn.baker, nina.bhatti,
donald.tanguay, irwin.sobel, dan.gelb, mike.goss, bruce.culbertson, tom.malzbender}@hp.com..
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2005 ACM 1073-0516/01/0300-0034 $5.00

 2

direct communication; the sense of co-presence, access to shared artifacts, the feeling of

communication that comes from the passing of subtle through glaring signals that

characterize face-to-face meetings. In the Coliseum project, we are working toward

establishing a facility to meet these communication needs through a thorough analysis of

the computational, performance, and interaction characteristics demanded for universally

acceptable remote collaboration and conferencing. Our goal has been to demonstrate, on

a single desktop personal computer, a cost-effective shared environment that meets the

collaboration needs of its users. The solution must provide for multiple participants–from

two to tens or more–and support them with the required elements of person-to-person

interaction. These elements include:

• Acceptable video and audio quality, including resolution, latency, jitter, and
synchronization

• Perceptual cueing such as motion parallax and consistent reciprocal gaze
• Communicating with words, gestures and expressions over ideas, documents and

objects
• Joining and departing as easy as the walking into a room

Traditional telephony and videoconferencing provide some of these elements,

including ease of use and audio quality, yet fail on most others. Our Coliseum effort aims

to advance the state of videoconferencing by applying recent advances in image-based

modeling and computer vision to bring these other elements of face-to-face realism to

remote collaboration.

Fig. 1. The Coliseum immersive videoconferencing system

 3

Scene reconstruction, the task of building 3D descriptions using the information

contained in multiple views of a scene, is an established challenge in computer vision

(Longuet-Higgins [1981]). It has seen remarkable progress over the last few years due to

faster computers and improved algorithms (such as Seitz et al. [1997], Pollefeys [1999],

and Narayan et al. [2000]). The Coliseum system is built upon the Image-Based Visual

Hulls (IBVH) scene rendering technology of MIT (Matusik et al. [2000]). Our Coliseum

efforts have shown that the IBVH method can operate at video rates from multiple

camera streams hosted by a single personal computer (Baker et al. [2002]).

Each Coliseum participant works on a standard PC with LCD monitor and a rig

housing five video cameras spaced at roughly 30 degree increments (shown in Figure 1).

During a teleconferencing session, Coliseum builds 3D representations of each

participant at video rates. The appropriate views of each participant are rendered for all

others and placed in their virtual environments, one view of which is shown in Figure 2.

The impression of a shared space results, with participants free to move about and

express themselves in natural ways, such as through gesture and gaze.

Handling five video streams and preparing 3D reprojection views for each of

numerous coparticipating workstations at video rates has been a formidable task on

current computers. Tight control must be exercised on computation, process organization,

and inter-machine communication. At project inception, we determined we needed an

effective speedup of about one hundred times over the MIT IBVH processing on a single

PC to reach utility. Our purpose in this paper is to detail some of the major issues in

attaining this performance.

Fig. 2. Two Coliseum users in a shared virtual environment, as seen by a third.

 4

2. RESEARCH CONTEXT

The pursuit of videoconferencing has been long and accomplished (Wilcox [2000]).

While available commercially for some time, such systems have, in large part, been met

with less than total enthusiasm. Systems rarely support more than two participating sites,

and specially equipped rooms are often required. Frame rates and image quality lag

expectations, and the resulting experience is of blurry television watching rather than

personal interchange. Our intention in Coliseum has been to push the envelope in all

dimensions of this technology—display frame rate and resolution, response latency,

communication sensitivity, supported modalities, etc.—to establish a platform from

which, in partnership with human factors and remote collaboration experts, we may better

understand and deliver on the requirements of this domain.

Two efforts similar to ours in their aim for participant realism are Virtue (Schreer et

al. [2001]) and the National Tele-Immersion Initiative (Lanier [2001]). Both use stereo

reconstruction methods for user modeling, and embed their participants in a synthetic

environment. As in traditional videoconferencing, these systems are designed to handle

two or three participating sites. Neither supports participant mobility. Prince et al. [2002]

use Image-Based Visual Hulls for reconstruction and transmission of a dynamic scene to

a remote location, although not applying it to multi-way communication. Chen [2001]

and Gharai et al. [2002] present videoconferencing systems supporting large numbers of

users situated individually and reorganized into classroom lecture settings. While both

demonstrate some elements we seek—the first examining perceptual issues such as gaze

and voice localization and the second including image segmentation to place participants

against a virtual environmental backdrop—neither reaches for perceptual realism and

nuanced communication in the participant depictions they present.

3. THE COLISEUM SYSTEM

Coliseum is designed for desktop use serving an individual conference participant.

Five VGA-resolution cameras on a single IEEE 1394 FireWire bus provide video, and a

microphone and speaker (or ear bud) provide audio. Coliseum participants are connected

over either an Ethernet Local area Network or an Internet Wide Area Network.

Being a streaming media application, Coliseum has media flowing through a staged

dataflow structure as it is processed. This computational pipeline is expressed within the

Nizza architectural and programming framework developed at Hewlett-Packard

 5

Laboratories (Tanguay et al. [2004]). Figure 3 depicts the simplified processing pipeline

for Coliseum, showing the four stages of image acquisition, 2D image analysis,

reconstruction and rendering, and display. First, the cameras each simultaneously acquire

an image. Second, 2D image analysis (IA) identifies the foreground of the scene and

produces silhouette contours (section 3.1). Third, IBVH constructs a shape representation

from the contours and renders a new viewpoint using the acquired video and current

visibility constraints (section 3.2). Finally, the image is rendered and sent for display at

the remote site.

Coliseum’s viewer renders conference participants within a VRML virtual

environment and provides a graphical user interface to the virtual world for use during a

session. This allows participants to look around and move through the shared space, with

others able to observe those movements.

The Coliseum viewer has features intended to enhance the immersive experience.

Consistent display of participants is achieved through their relative placement in the

virtual world. An experimental facility for head tracking allows alignment of gaze with

the placement of those addressed. In this way, as in the real world, a user can make eye

contact with at most one other participant at a time. Head tracking permits the use of

motion parallax (section 3.3) which can further reinforce the immersive experience by

making an individual’s view responsive to his movements.

Critical to metric analysis of video imagery is acquiring information about the optical

and geometric characteristics of the imaging devices. Section 3.4 describes our methods

for attaining this through camera calibration. This method is meant to be fast, easy to use,

and robust. Sections 3.5 and 3.6 describe the session management and system

development aspects of Coliseum.

Fig. 3. The simplified Coliseum processing pipeline: image acquisition from synchronized cameras, 2D

image analysis, reconstruction, and display of the rendering for a particular view point.

 6

3.1 Image Processing

The image processing task in Coliseum is to distinguish the pixels of the participant

from those of the background and present these to a rendering process that projects them

back into the image—deciding which pixels constitute the user and should be displayed.

Foreground pixels are distinguished from background pixels through a procedure that

begins with establishing a background model, acquired with no one in the scene. Color

means and variances computed at each pixel permit a decision on whether a pixel has

changed sufficiently to be considered part of the foreground. The foreground is

represented as a set of regions, delineated by their bounding elements and characterized

by properties such as area, perimeter, and variation from the background they cover.

Ideally, these foreground computations would be occurring at 30 frames per second

on all five cameras of our Coliseum system. Sustaining an acceptable frame rate on VGA

imagery with this amount of data calls for careful algorithmic and process structuring. In

aiming for this, a few principles have guided our low-level image processing:

• Focus on efficiency (i.e., touch a pixel as few times as necessary—once, if
possible—and avoid data copying), using performance measuring tools to aim effort

• Use lazy evaluation [Henderson et al, 1976] to eliminate unnecessary computation
• Provide handles for trading quality for speed, so host capability can determine

display/interaction characteristics

Following these guidelines, we have made several design choices to attain high

performance:

1. Acquire the raw Bayer mosaic. Avoiding explicit color transmission from the
cameras enables us to run 5 full VGA streams simultaneously at high frame rate on a
single IEEE 1394 bus. Imagers generally acquire color information with even scan
lines of red and green pixels followed by odd scan lines of green and blue pixels (the
Bayer mosaic) which are converted to color pixels, typically in YUV422 format.
This conversion doubles the bandwidth and halves the number of cameras or the
frame rate on a IEEE 1394 bus.

2. Employ a tailored foreground contour extractor. In one pass over the image, our
method determines the major foreground objects, parameterizes them by shape and
extent, ranks them by integrated variation from the background and, accommodating
to luminance changes–both shadows and gradual light level fluxuations–delivers
candidate silhouettes for hull construction. With adjustable sampling of the image, it
finds the subject rapidly while retaining access to the high quality texture of the
underlying imagery. Detecting image foreground contours at reduced resolution by
increasing the sampling step allows greater image throughput without the loss of
image information that accompanies use of a reduced-resolution data source–
throughput increases with the square of the sampling. Contour localization doesn’t

 7

suffer as much as it might with decimated sampling since our method relocalizes
using the full image resolution in the vicinity of each detected foreground contour
element. Figure 4 demonstrates the illumination adaptation, and Figure 5 shows
sampling variations.

3. Reduce foreground contour complexity through piecewise linear approximation. The
cost of constructing the visual hull increases with the square of the number of
contour elements, so fewer is better. Figure 6 shows this processing.

4. Correct lens distortion on foreground contours rather than on the acquired camera
imagery. This means we transform tens of vertices rather than 1.5 million pixels on
each imaging cycle.

5. Resample color texture for viewpoint-specific rendering only as needed (on
demand). With color not explicit (as 1, above), and lens correction postponed (as 4,
above), image data for display must be resampled. The on demand means that only
those pixels contributing to other participants’ view images will be resampled.

6. Parameterize expensive operations to trade quality for speed. For example, rendering
a typical 300 by 300 IBVH resultant image for each participant would require 90000
complex ray-space intersections at each time step across all cameras. For efficiency,
we parameterize this computation through variable sampling and interpolation of the
interior and boundary intersecting hull rays. This and other dialable optimizations
can be used to balance processing load and visual quality to meet performance
requirements.

Figure 5. Various image contour samplings: 1: 4: 8 = 100%, 6%, 1.5% of the image.

Figure 4. Left: background image; Center foreground contours; Right: foreground after shadow suppression.

Fig. 6. 525 segment contour, linear approximations (max pixel error, segments) = (4,66) : (8,22) , (16, 14).

 8

3.2 Reconstruction

We use IBVH to render each participant from viewpoints appropriate for each other

participant. IBVH back projects the contour silhouettes into three space and computes

the intersection of the resulting frusta. The intersection, the visual hull, approximates the

geometry of the user. Rendering this geometry with view-dependent texture mapping

creates convincing new views. While we could send 3D models of users across the

network and render them with the environment model in the Coliseum viewer, less

bandwidth is required if we render all the needed viewpoints of a user locally and then

send only 2D video and alpha maps. We use MPEG4 to compress the video. Since the

majority of displayed pixels comes from the environment model and is produced locally,

the video bandwidth requirements are low (about 1.2Mbps). Figure 7 shows the results of

foreground contouring, displayed with the visual hull they produce, in the space of the

five Coliseum cameras.

While the IBVH algorithm is fast when compared with other reconstruction methods,

it has shortcomings. The quality of scene geometry represented depends on the number of

acquiring cameras, and surface concavities are not modeled. This geometric inaccuracy

can cause artifacts when new views are synthesized. To address this issue, we employed

the extension to IBVH of Slabaugh et al. [2002] called Image-Based Photo Hulls (IBPH)

which refines the visual hull geometry by matching colors across the images. While

resulting in a tighter fit to the true scene geometry and therefore better face renderings,

Figure 7. View of user in Coliseum space: Five cameras surround the rendered user. Each camera

shows its coordinate system (in RGB), video frame, and foreground contour.

 9

the computational cost was significant, and we did not run the system in real-time

sessions with this enhancement. Details may be found in our earlier paper (Baker et al.

[2003]).

3.3 Motion Parallax

A successful tele-immersion system will make its users feel part of a shared virtual

environment. Since our world is three dimensional and presents differing percepts as we

move, head movement before the display should induce a corresponding change in view.

To achieve this, we developed the capability to track user head position and update the

display as appropriate. Unfortunately, the cost of this computation prevented us from

employing it in real-time sessions. Baker et al. [2003] provides details of this head-

tracking capability.

3.4 Camera Calibration

Our scene reconstruction requires knowledge of the imaging characteristics and pose

of each camera. These parameters include:

• Lens distortion, to remove image artifacts produced by each camera’s lens (our use
of wide-angle lenses exacerbates this)

• Intrinsics, that describe how an image is formed at each camera (focal length, aspect
ratio, and center of projection)

• Extrinsics, relating the pose (3D position and orientation) of each camera to some
global frame of reference

• Color transforms, to enable color-consistent combination of data from multiple
cameras in producing a single display image

All of these parameters must be computed before system use and, in a deployable

system such as ours, any of them may need to be recomputed when conditions change.

Figure 8 shows the target we use for parameter estimation—a 10-inch cube with four

colored squares on each face (totaling 24 colors plus black and white). A differential

operator detects contour edges in luminance versions of the images, and then a classifier

verifies that a detected face contains four squares. The large size and color of the squares

make them easier to detect and match, while the multiple faces provides both enough

color for good colorimetric modeling, and opportunity for all of the cameras to be

acquiring geometric calibration data at the same time.

 10

The face components supply the elements for determining the calibration parameters.

Lens distortion correction is computed by determining the radial polynomial that

straightens the target faces’ black boundaries (Devernay et al. [1995]). Intrinsic

parameters are derived from the homographies that rectify the colored squares from their

projected shapes (Zhang [2000]). Camera extrinsics are estimated in a two-stage process

that starts with initial adjacent-pair pose estimates using a nonlinear variant of a stereo

solver from Longuet-Higgins [1981] applied to matched square vertices. These poses are

chained together and iteratively solved in pairs to minimize error. A bundle adjustment

minimizes the total calibration error. The correspondences are implied when observed

faces are matched to the target faces, with this matching made more robust by the

simultaneous visibility of several faces to a single camera. The color of each square is

known—they resemble those of a Macbeth Color Chart—so the colors observed can be

used to determine each camera’s color transform.

3.5 Session management

Session management is performed through the Hub subsystem, built using the

Microsoft DirectPlay API. A Hub host process for each session runs on a central server

and processes connect and disconnect events, notifying session members when other

users join or leave. A new user may connect to any existing session, or initiate a new

session by starting a new host process. Communications among users during a session are

peer to peer. When a new user connects to a session, the local portion of the Hub

subsystem determines compatible media types between itself and other users, and notifies

the local and remote media transmission and reception modules. These media modules

communicate directly using datagram protocols. A multi-stream UDP protocol allows

Fig. 8. Calibration Target

 11

coordination of different media-type network transmissions. Figure 9 illustrates the

dynamic structure of a Coliseum application with session management.

3.6 Software Framework

Streaming media applications are difficult to develop:

• Digital media processing are complex, requiring orchestration among multiple
developers.

• Simultaneous processing of multiple streams uses multithreading and
synchronization.

• Real-time user experience requires optimal performance on limited computational
resources, requiring flow control and buffer management.

In implementing Coliseum, we have created Nizza (Tanguay et al. [2004]), a flexible,

multi-platform, software framework that simplifies the development of such streaming

media applications. This framework allows an application’s processing to be decomposed

into a task dependency network and automates exploitation of both task and data parallel-

ism, partitioning operations across as many symmetric multiprocessors as are available.

A dataflow architecture is designed around the travel of data. By observing the data

lifecycle throughout the application, one may define a pipeline of distinct processing

Fig. 9. Coliseum scalable processing pipeline: On a single participant’s Coliseum station, the shaded sub-

pipelines are added and subtracted from the application as remote participants enter and leave the

conferencing session

 12

stages that can be clearly expressed as a directed graph. Our framework addresses all

three of the difficulties to developing streaming media applications:

• The application is decomposed into well-defined, connected task modules.
• A scheduler analyzes the task decomposition and then schedules execution.
• The task scheduler achieves real-time performance via automated flow control.

This design simplifies development at all stages, from prototyping to maintenance. A

dataflow API hides details of multithreading and synchronization and improves

modularity, extensibility, and reusability. We have implemented the framework in C++

on Windows, Windows Mobile, and Linux platforms. Using this framework, we have

developed a library of reusable components for the Windows platform (e.g., audio

recording and playback, video playback, network connectivity). The streaming media

aspects of Coliseum were built using Nizza and the reusable components.

The framework has three main abstractions: Media (data unit), Task (computation

unit), and Graph (application unit):

• Media objects represent time-stamped samples of a digital signal, such as audio or
video. A memory manager reuses memory whenever possible. The new Media
abstraction inherits an automatic serialization mechanism for writing into pipes, such
as a file or network buffer.

• Task objects represent an operation on Media. The abstraction is a black box of
processing with input and output pins, each specified with supported types of Media.
The Task completely encapsulates the processing details so that the user knows only
the functional mapping of input pins to output pins.

• Graph objects are implicitly defined by the connectivity of multiple Tasks. Several
commands can be issued to a graph including those to start and stop the flow of
Media among its Tasks. Each Graph has its own scheduler, which orders the parallel
execution of Tasks.

This infrastructure provides three distinct benefits:

• It supports an incremental development strategy for building complex applications—
a Graph with a multistage pipeline structure can undergo testing of functional subsets
hooked to real or synthesized data sources and sinks.

• The framework allows for dynamic graph construction. When stopped, an
application can add and remove Tasks, then start again with a new graph while
keeping the unchanged portions intact. We use this technique in the large, dynamic
graph of Coliseum, adding and removing portions of the graph as participants enter
and depart sessions.

 13

• The graph structure supports instrumentation. Individual nodes in a Nizza graph can
be instructed to append timing and related information to data packets, facilitating
data-progression assessment. Keeping a functioning Graph intact, a new Task can
connect to any of its output pins to monitor activity. This ability to listen and report
is useful for gathering statistics in a performance monitor or to effect feedback
control in modifying system parameters on the fly.

A designer of a real-time rich media application can choose from several

componentized, dataflow-style architectures for media processing. Microsoft

DirectShow, for example, may be a good approach for simple applications that use only

prepackaged modules (e.g., compression, video capture). It also has a graphical interface

for constructing and configuring a dataflow application. However, constructing new

modules is difficult, performance metrics are not automatic, it is complex to learn and

use, is dependent on other layers beyond our control (such as COM), and is not supported

on the Linux platform. In addition, its use of processes rather than threads makes it poor

for debugging multi-stream video applications, and its lack of a media scheduler means it

discards untimely work rather than suppressing it, wasting capacity in resource-critical

applications. The Network-Integrated Multimedia Middleware (NMM) project (Lohse et

al. [2003]) is an open-source C++ framework designed for distributed computing. NMM

makes the network transparent from the application graph, but does not have performance

features like Nizza, and is not available for Windows platforms. The Java Media

Framework (Gordon and Talley [2003]) is multiplatform and has integrated networking

via Remote Transport Protocol, but its performance on heavy media (e.g., video) is not

competitive with Nizza’s. Signal processing software environments such as Ptolemy

(Buck et al. [2001]), while operating efficiently on 1-D signals such as audio, are not

appropriate for our “heavy” media, and often don’t support cyclic application graphs,

which we have found useful for incorporating user feedback into a processing pipeline.

VisiQuest (formerly known as Khoros and now available from AccuSoft1) is a

commercial visual programming environment for image processing and visualization.

While an impressive visual environment, it lacks performance enhancements and metrics.

1 http://www.accusoft.com

 14

4. PERFORMANCE

Coliseum is a multi-way, immersive remote collaboration system that runs on modest

through advanced commodity hardware. We have run sessions with up to ten users (all

the Coliseum systems we have available), and between North America and Europe.

Success depends on our ability to provide videoconference functions with sufficient

responsiveness, audio and video quality, and perceptual realism to take and hold an

audience. We evaluate Coliseum’s performance in terms of its computational and

networking characteristics. Since we aim to support large numbers of participants in

simultaneous collaboration, we are reviewing the implications of these measures on the

system’s scalability.

All the measurements presented are collected on the following equipment and

conditions. The application runs on dual Xeon-based PCs with speeds of 2.0, 2.4, 2.8 or

3.06 GHz, each with 1, 2, or 4 GB of memory, and running Windows 2000 or XP.

Machines shared a single 1000SX gigabit Ethernet connected by Cisco Catalyst 4003

10/100/1000 switches and were typically, two to three hops apart for local area tests. The

local network was in use at the time for other HP Lab activities. We also conducted wide

area network measurements on Internet2.2 Imagery was acquired through Point Grey

Dragonfly VGA IEEE 1394 (FireWire) cameras operating at 15 Hz. The PC used for data

collection had dual 2.4 GHz Xeon CPUs and 1 GB of memory.

4.1 What to Measure and How to Measure

When approaching a large scale system like Coliseum it is important to frame the

questions of what will be measured, why, and how. There are a number of techniques that

can be used and the selection of their measures should be based on the intended use.

Our first approach was the common one for measuring performance—using profiling

tools such as prof, gprof, Vtune™,3 etc. which collect run-time, fine grained performance

data. These tools collect resource usage data on a function and module basis through

sampling, resource counter monitoring, or call graph instrumentation. The sampling

method periodically probes the current instruction addresses and provides an accounting

of resource use by the function sample bin. Some processors support continuous counter

monitoring which tracks hardware and software resources over a specified time interval.

2http://www.internet2.edu/
3 http://www.intel.com/software/products/vtune/

 15

However, neither tracks the call graph. The relationships among functions are not

preserved so, while a routine’s total CPU computation is identified, the call sequence is

not. Call graph instrumentation is available but this is accomplished at a cost—

instrumentation of the code forcing each function to execute an accounting preamble.

This changes the execution profile and, for an application such as Coliseum that is

already running near system capacity, it is not practical as full frame rates cannot be

maintained.

We experimented with these traditional measurement methods but found them to be

unsatisfactory. The profiling tools do not show how much time was spend in

synchronization wait states and in the run state for a particular frame set. They only give

this information for a call graph as a whole. For example, we identified that the silhouette

functions consumed the most CPU time, but this did not provide a picture of the data

flow latency.

 We determined that we needed a top-down flow-based view of application perform-

ance. This called for two further types of measures:

• Application measures that can be used to tune performance and understand each
components contribution to overall latency, frame rate and resource consumption.

• End-to-End measures that can confirm the application instrumentation and capture
the user experience that is beyond the application control points.

The application measures are accomplished through instrumentation of our system to

collect timing data at flow control points. Nizza’s modular architecture allowed these

points to be easily accessed (subsequently, provision was made for this information to be

provided automatically at computational nodes in the data chain). Each collection of

“frames” is marked with a unique timestamp. As these frames move through the system,

timestamps are appended when the frame passes a control point. For example, once

contours are extracted for each 5-camera set, their data are available on the 5 input “data-

pins” of the next processing stage. Timing information can be appended here. Similarly,

“camera data available” is a synchronization point whose times are tracked and

propagated with the data. Clearly, these are the timing values we want, since their

integration tells us everything about the system’s behavior as its data moves through.

The observations include those of latency, and processing and synchronization wait

times.

This application instrumentation, while powerful, does not give a complete picture of

the user-experienced end-to-end latency. What about the components outside of the

 16

application? The latency in the camera hardware and its drivers, and the latency from

image composition until it appears on the display are characteristics not accessible from

inside the application. What are the effects of these components on performance?

4.2 Use of Performance Data

The previous section described three ways that we evaluated performance: profiling,

application instrumentation, and end-to-end measurements; in this section we describe

how these measurements can be used to guide system understanding and improvement.

One essential component of performance analysis is repeatability. We repeated

experiments to confirm that measurements were consistent. If measurements change

from run to run then the system metrics cannot provide conclusive evidence. Once the

system is stable, performance data can be used as a system diagnostic to:

• Evaluate different sections of the pipeline. Components can be replaced in our
modular architecture and we can evaluate them before and after to assess the “cost”
of each component. Cost can be assessed by network traffic, CPU load, maximum
frame rate, latency, memory usage, etc. For example, we removed MPEG (encode
and decode), and compared pre- and post-numbers to let us calculate the cost of the
MPEG modules in the pipeline.

• Evaluate a “fix” or “performance improvement” added to the system. Improving
visual computing algorithms can be complex, with both subjective and objective
components. An absolute performance timing measure assures that this part of the
processing has been improved.

• Identify large resource users as targets for improvement. Originally, we believed that
the network was a bottleneck in the system and were prepared to expend effort to
reduce data transmission. After measurement, we realized that this would not have
resulted in significant latency reduction.

MPEG
encode

View
Rendering

Image Analysis
(Silhouettes)

Camera UDP
Xmit

Composite MPEG
decode

Display

Application Instrumentation

End-to-end Measurement

Fig. 10. Application and end-to-end performance measurement.

 17

• As drivers, hardware, or other non-application components change, we use the
measures to quantify the effects. Through profiling we determined that Coliseum
was compute bound. To improve computational efficiency, we systematically
evaluated compilers and compile options under identical test conditions and tracked
the frame rate metric. This brought a 30% increase in frame rate.

4.3 End-to-End Measurements

Latency has a major impact on the usability of a communication system. There are

numerous contributors to overall system latency, and we have measured various stages to

assemble a picture of the delays between actions at one site and observations at the other.

Coliseum’s latency is composed of the time for:

• Camera latency: an event to be imaged and delivered by the camera driver.
• Processing Latency: receiving the image data from the camera system to process,

create the visual hull, render a requested view, and encode this in MPEG4.
• Network Latency: processing by UDP protocol stack, and network transmission.
• Display Latency: dataset reassembly, MPEG decoding, image composition, and

return from providing the data to the display drivers.

Measuring camera system latency requires either fancy synchronization gear or an

externally observing capture device. Choosing the latter, we used a field-interlaced digital

video camera to simultaneously image both an event and the after-processing display of

that event. If an event is instantaneous it is visible at the origination and the display. If it

is not instantaneous then we count the number of frames before it is visible in the output

display. We tried several events but needed one that would be fairy atomic—coming “on”

in one frame. An incandescent light proved to be inappropriate since it took several

frames to reach full illumination. Our event was the illumination from a laser pointer,

directed at a Coliseum camera. The laser and the camera’s display were simultaneously

visible to the observing video camera (see Figure 11). Manual frame-by-frame analysis of

the acquired video provided the numbers we sought (Figure 12). We captured several

such events, and our tables below indicate average values.

We measured end-to-end latency in four situations:

• Simple camera driver demonstration program (TimeSliceDemo). [camera and driver
latencies]

• Standalone version of Coliseum with no network or VRML activity (Carver).
[camera, drivers, image processing, and simple display latency]

• Coliseum test of two users with live networking, with and without MPEG encoding
(Coliseum). [complete system test and measure of MPEG impact]

• Coliseum test where the subject is both the sender and receiver of the view (Glview
Loopback—single person loop-back conference). [end-to-end latency minus
negligible network transmission]

d-trip frame counts, so the

Fig.12. Latency measurement: 1) no light, 2) light on, 3) propagates to display, 4) saturates.

Fig. 11. Capture of laser light onset and propagation to display.
Both the Coliseum and Carver measurements reflect roun
 18

one-way latency is half the observed figure. The third test was done to see the effect of

MPEG processing on latency.

 Figure 13 gives the average video frame count (at 33 ms per frame) for each test. The

observing video camera captured 30 frames per second, permitting us to calculate

latencies and standard deviations. Some of the time intervals we measured were about a

dozen frames, while others were low single digits. Since images are acquired with units

of 33ms delay, estimation precision is better for the former than the latter, but our interest

has been first in ballpark numbers. Refinement could be obtained, where needed, by

 19

measuring on the fields rather than the frames of the interlaced video, and by performing

linear interpolation on the observed illuminant brightness, but this we did not do.

TimeSliceDemo gives us an estimate on the latency that lies beyond our control—it is

the time it takes the camera to acquire the frame and store it in the computer. Of course,

this includes time for the camera to integrate the frame (on average, one half of a frame,

or 16 ms, for the event), to charge transfer, digitize, and ship the frame to the PC (one

frame), to buffer and DMA the data to memory, and the time for the PC to display the

frame after it has arrived (observed as perhaps one frame cycle of the observing camera).

The latter period should be discounted. Figure 14 indicates measures of the instrumented

latency of this same system version and, comparing the Coliseum with MPEG user-

perceived tests to the instrument latency figures, we find differences of 38 and 42

milliseconds. This difference represents the latency that should be added to instrumented

error to derive an estimate of end-user experienced latency.

System Frames

Mean
Latency

(ms) stdev
TimeSliceDemo 4.25 142 16.67
Carver, MPEG 11.63 194 28.05
Coliseum, no
MPEG

14.30 238 32.12

Coliseum, MPEG 16.30 271 27.28

We observe that the absolute user-experienced latency in Coliseum ranges from 244

to 298 milliseconds. Enabling MPEG encoding and decoding increases latency by 33

milliseconds. MPEG encoding reduces the amount of data each participant sends, but

does this at the cost of additional processing. This indicates a tradeoff we must consider

in our control considerations in system balancing.

There is a 77-millisecond difference between Coliseum and our standalone Carver

application. This is attributable to the VRML viewer and network activity. We will see

that network activity load is minimal and that the addition is due to the VRML control,

which currently (and inappropriately) uses a busy-wait loop for its user interface.

Glview Loop-
back, subject Latency Difference
User 233 38
Bottle 229 42

Fig. 13. Absolute user-perceived latency tests. Fig. 14. Instrument measure of latency (ms).

 20

4.4 Application Instrumentation

We instrumented the code both for the Carver application (non-networked) and for

Coliseum itself (see Figure 15). The instrumentation collects continuous timing data.

These data are sent with each frame set to the corresponding host. Timing data were

collected using a light-weight system call (windows XP’s QueryPerformance-

Counter) that sampled the processor clock. Each resulting data set contained time

stamps indicating when the camera frame set was first available (t0). After the image

analysis is complete, another timestamp is taken (t1). The receiving host records the time

it received the frame (t’2), and the timestamp after decoding, compositing, and displaying

the resultant image (t’3). ∆t’ is the time the system waits to piggyback timing information

onto the outgoing frameset of the receiving host, indicated by “Wait for Camera Data.”

This piggybacking avoids the introduction of additional network traffic and brings only

nominal overhead. The bottom of the figure shows the return part of the journey.

Processor clocks are not synchronized, so we cannot directly compare timestamp

values across machines. Machine clock rates are stable, however, and elapsed time

values can be used across host boundaries. We make extensive use of this fact to derive

the timing contributions of each component of the timeline. The round time (RT)—

Fig.15. Performance measurement: data routing and measurement taps.

camera to display then next camera data back to originating display—is calculated as the

time from the camera data to when a corresponding frame was received from the other

host minus the time waiting to piggyback the data:

() tttRT ∆−−= 03

The total network time (NT)—protocol stack processing time and transmission—can be

determined from the roundtrip less the time in each host for processing, MPEG,

composition, and display:

() () () ()01232301 ttttttttRTNT ′−′−′−′−−−−−=

One way network time is half NT since NT was a round trip measure.

Figure 16 presents data for the Coliseum and Carver tests. We tested each application

with four different ded dataset of a user, a phantom 5-gallon

water bottle, and a

placed at approxim

user’s head. The p

frame rate limita

performance. For e

network delay, and

and CPU utilizatio

system and therefo

latency results.

System Subject
1-way

Latency
Image

Generation Network Display

Frames
/

sec
CPU

Utilization
Coliseum User 112 71 3 35 15.00 80%
 Prerecorded User 151 121 4 40 15.36 83%
 Bottle 130 95 4 45 15.00 80%

 Prerecorded
Bottle 134 102 3 39 17.68 78%

Carver User 78 68 NA 10 15.00 75%
 Prerecorded User 93 77 NA 14 20.99 100%
 Bottle 65 57 NA 7 15.00 61%

 Prerecorded
Bottle 95 71 NA 21 22.42 100%

Fig. 16. Analysis of latency (ms)
subjects – a user, a prerecor
21

prerecorded dataset of the bottle (see Figure 17). The bottle subject is

ately head height but is stationary and several times larger than a

rerecorded data allow us to exercise the systems without the camera

tion, although memory and disk accesses can similarly affect

ach subject, we give the one-way latency, time to generate the image,

 display time. The table also shows the achieved average frame rate

n. Note that these data were compiled from a later release of the

re should not be directly compared to the data for the user-perceived

 22

4.5 Networking Requirements

Though video usually requires considerable network bandwidth, Coliseum’s

bandwidth needs are quite modest. This is because the virtual environment usually

occupies the overwhelming majority of the area on a Coliseum screen and, being

maintained locally, is not part of the video

stream. MPEG4 further reduces the bandwidth

requirement. At 15 fps, we measured a typical

Coliseum video stream to be 616 Kbps. While

Coliseum can use TCP or UDP as a transport,

all tests were conducted with UDP. Using UDP

there could be hundreds of Coliseum video

streams before overloading a gigabit network.

We measured latency in our local area

network where the two participant hosts were

two network-switched hops apart. The average

latency was 3 milliseconds, so the network

contributes about 2% to overall latency. To

characterize the wide area performance of the

system, we measured latency on Internet 2 from HP Labs Palo Alto to a site at the

University of Colorado in Boulder. Our tests showed an average network latency of 25

milliseconds.

4.6 Other Measures of Performance

While much of the above discussion centers around latency, we include other

measures of performance as well. We focused a lot of work on latency because of the

challenges in measuring latency. The Carver and Coliseum applications provided

continuous monitoring of frame rates and network traffic. In the profiling and application

instrumentation tests, we measure CPU and memory usage. We did not vary image

quality or size as a result of system load so we did not measure these metrics. Our system

is designed to provide the maximum frame rate possible. In the tests of large numbers of

users, the frame rate degrades as CPU load rises in accommodating the increase in

simultaneous renderings.

Fig.17. Bottle used as phantom for
performance measurements

 23

4.7 Scalability

Since a major goal of Coliseum is to support video conferencing among large groups

of people, scalability is an important system characteristic. We measured the system’s

scalability by conducting sessions of increasing population, from 2 to 10 participants (10

being the number of Coliseum systems on site). Figure 18 shows that, as session size

increased, system performance (fps) dipped due to the increased workload of creating

images and MPEG streams for the expanding number of view renderings required. While

frame rate degraded, the total aggregate bandwidth sent by one user remained fairly

constant, which means that the system adapts to more users in a work conserving manner.

Figure 19 shows that bandwidth climbed from 616 Kbps to 1178 Kbps as the CPU

utilization saturated and then leveled off after the 6-user session. All in all, the bandwidth

varied 16% over the course of these session sizes. At least this much variation is expected

over any collection of runs, as the bandwidth is sensitive to user movement and image

size.

0
2
4
6
8

10
12
14
16

2 3 4 5 6 7 8 9 10

Session Size

Fr
am

es
/se

co
nd

0 %

2 0 %

4 0 %

6 0 %

8 0 %

10 0 %

C
PU

 U
til

iz
at

io
n

0

2 0 0

4 0 0

6 0 0

8 0 0

10 0 0

12 0 0

14 0 0

2 3 4 5 6 7 8 9 10
Session Size

BW
 (k

bp
s)

4.8 Performance Summary

In two-way sessions, we have achieved a rate of 15 frames per second, the maximum

the FireWire bus can support (five cameras at higher rates on FireWire is only possible

with image size reduction). Our throughput to date indicates that we have achieved about

a thirty-five-times speedup from algorithmic and architectural innovations and a three-

times speedup through processor evolution, meeting our beginning requirement of a

hundred-fold speedup. From tests on larger numbers of users, we find that the

computational complexity of the system dominates performance. There are a number of

parameters that can be used to reduce computation at the expense of visual quality, and

adjustment of these would allow support of more users while maintaining interactive

Fig. 18. Change in fps and cpu utilization for
increasing Coliseum session sizes.

Fig. 19. Aggregate bandwidth for different size
Coliseum sessions.

 24

frame rates. The current system reduces frame rate but maintains image quality. As the

numbers of users grows, performance stabilizes, with bandwidth served remaining

relatively constant.

Our extensive measurements of Coliseum provides a clear breakdown of latency

• Camera latency: 20%
• Processing Latency: 50%
• Network Latency: 2% to 10% (local or wide area)
• Display Latency: 25%

These measures can direct strategies for controlling delay and improving system

performance for large numbers of users. Since Coliseum is a highly compute-intensive

application, we have the potential to control the end node behavior and therefore overall

system performance. With facility for graph-level performance monitoring (section 3.6)

and control parameters for adjusting the quality—and therefore speed—of image

processing and display computations (section 3.1), we have the tools we need for

balancing throughput with user needs. While statically configured for the evaluations we

report here (with an image sampling step of 2 pixels, a four-pixel maximum deviation for

linear approximations, and a hull ray sampling step of 4 pixels), these parameters may be

adjusted over time and across cameras to meet bandwidth and throughput demands.

5. CONCLUSIONS

Coliseum creates an immersive experience by building dynamic, 3D user models,

embedding them in a shared, virtual space through which users are free to move, and

generating unique views of the space for each user. The views convey reciprocal gaze

and can be made responsive to head movements. Interactive performance is achieved

through streamlined image processing and a software framework that is tuned for

streaming media applications. This represents the first implementation of an immersive

collaboration system supporting an arbitrary number of users and aimed at three-

dimensional realism. While the possibility of such systems has often been discussed,

actual implementations have been incomplete, operating only one-way, using cartoon

avatars, or requiring substantial special purpose hardware. Employing commodity PCs

and simple video cameras, we have run fully symmetric Coliseum sessions with as many

as ten users.

 25

Instrumenting the system with timing recorders enabled precise post hoc as well as

on-the-fly performance measurement. This tooling permits review of system

performance, as described, for computational assessment and restructuring and, as

proposed here, dynamic system adjustment to attain required levels of service.

6. FUTURE WORK

Coliseum continues to evolve to meet a new set of goals. As it stands, it presents an

effective mechanism for the proverbial “talking heads” videoconferencing—with the

twist that the participants are 3D renderings of themselves and the environment is

synthetic. Realistically, there are numerous developments that remain before this could

be considered a viable alternative to travel for collaborative remote conferencing.

Obvious improvements include increasing the frame rate, reducing latency, raising the

quality at which people are displayed, and reconfiguring computation to enable more

advanced features (such as head tracking). We are addressing these advancements in

several ways:

• Frame rate. Development of a multi-camera VGA capture system that streams
synchronized video from two dozen or more cameras at 30Hz (Baker et al. [2004]).

• Latency. A more effective camera interface (for the above) that simplifies frame-set
organization and reduces camera latency to its minimum.

• Display quality. Higher resolution capture through multi-camera integration (Baker
et al. [2004]). In addition, we may raise the camera imaging resolution from VGA to
XGA in the near future.

• Computation. Migration of compute-intensive image-display operations to PC
graphics processors where possible. This will free up resources to let us do more of
the operations that will increase the quality of the user’s experience (e.g. obtaining
better geometry, tracking heads, or correcting gaze direction).

Objects, documents, and elements of the personal environment (such as white boards)

also play an important role in collaborative interactions. A recent extensive survey of

videoconferencing (Hirsh et al. [2004]) indicates the importance of providing a high

quality experience, one that will lift acceptance above that of audio conferencing for

remote-participation meetings. The survey emphasizes the needs: ease of use, system

reliability, high video quality, and provision of a general environmental context including

the ability to share work-related objects. Although these have all been goals of our

Coliseum work, it is the latter point, most particularly, that has been influencing our

current direction. While always aiming to integrate imaged artifacts into the shared

 26

virtual space of our heads-and-shoulders depiction (i.e. documents, prototype boards,

etc.), we are now moving toward providing full body and workspace coverage as well.

At the same time, we choose to support inclusion of multiple participants at a site. These

changes have major implications for computational performance and the imaging and

display sides of our conferencing: We need larger images—higher resolution in capture

and display—and will move to include projection to accommodate the increased scale of

presentation needed. This direction will continue to put heavy demand on computational

facilities, and increases the demand for thorough understanding of performance issues

and careful allocation of overworked resources.

Advancing the technology base of our collaborative videoconferencing effort must

proceed with a foundation including both innovative design of algorithms and devices,

and transparent mechanisms for instrumenting, monitoring, and adapting the system,

while maintaining constant attention on the needs and preferences of the user. We have

found that augmenting a networked interactive application like Coliseum with monitoring

instrumentation is critical to understanding its behavior and dynamic structure.

ACKNOWLEDGEMENTS

Mike Harville, John MacCormack, the late David Marimont, Greg Slabaugh, Kei

Yuasa, and Mat Hans made important contributions to this project. Sandra Hirsh and

Abigail Sellen directed our user studies enquiries. Wojciech Matusik, Chris Buehler, and

Leonard McMillan provided guidance on the original IBVH system from MIT.

REFERENCES
BAKER, H.H., TANGUAY, D., SOBEL, I., GELB, D., GOSS, M.E., CULBERTSON, W.B. , MALZBENDER,

T. 2002. The Coliseum Immersive Teleconferencing System. In The Proceedings of the International
Workshop on Immersive Telepresence, Juan Les Pins, France, December, 2002, ACM Press.

BAKER, H.H., BHATTI, N., TANGUAY, D., D., SOBEL, I., GELB, D., GOSS, M.E., MACCORMICK, J.,
YUASA, K., CULBERTSON, W.B., MALZBENDER, T. 2003. Computation and Performance Issues in
Coliseum, an Immersive Teleconferencing System. In The Proceedings of the 11th ACM International
Conference on Multimedia, Berkeley, California, USA, November 2003, ACM Press.

BAKER, H.H., TANGUAY, D. 2004. Graphics-Accelerated Panoramic Mosaicking from a Video Camera
Array. In The Proceedings of Vision, Modeling, and Visualization Workshop, Stanford, CA, November
2004, IOS Press.

BUCK, J., HA, S., LEE, E.A., MESSERSCHMITT, D.G. 2001. Ptolemy: a framework for simulating and
prototyping heterogeneous systems. In The Morgan Kaufmann Systems On Silicon Series, Readings in
hardware/software co-design, 527—543.

CHEN, M. 2001. Design of a Virtual Auditorium. In The Proceedings of the ACM International Conference
on Multimedia, Ottawa, Canada, September 2001, 19-28.

DEVERNAY, F., FAUGERAS, O. 1995. Automatic Calibration and Removal of Distortion from Scenes of
Structured Environments, SPIE, volume 2567, San Diego, CA, July 1995.

GHARAI, L., PERKINS, C., RILEY, R., MANKIN, A. 2002. Large Scale Video Conferencing: A Digital
Amphitheater. In The Proceedings of the 8th International Conference on Distributed Multimedia Systems,
San Francisco, CA, September 2002.

GORDON, R., TALLEY, S. 1999. Essential JMF: Java Media Framework. Prentice Hall, New Jersey.

 27

HENDERSON, P., MORRIS, J. H. Jr. 1976. A Lazy Evaluator. In The Proceedings of the 3rd ACM SIGACT-
SIGPLAN Symposium on Principles on Programming Languages, ACM Press New York, NY, USA, 95-
103.

HIRSH, S., SELLEN, A., BROKOPP, N. 2004. Why HP People Do and Don't Use Videoconferencing
Systems. Hewlett-Packard Laboratories, Internal Technical Report HPL-2004-104.

LANIER, J. 2001. Virtually There, Scientific American, April 2001, 66-75.
LOHSE, M., M. REPPLINGER, P. SLUSALLEK, 20003. An Open Middleware Architecture for Network-

Integrated Multimedia, Lecture Notes in Computer Science, Vol. 2515/2002, Springer-Verlag,
Heidelberg, 327-38.

LONGUET-HIGGINS, H.C. 1981. A Computer Algorithm for Reconstructing a Scene From Two Projections,
Nature 293, 133-135.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S., MCMILLAN, L. 2000. Image-based Visual
Hulls, SIGGRAPH 2000, 369-374.

NARAYANAN, R., RANDER, P., KANADE, T. 1998. Constructing Virtual Worlds Using Dense Stereo, In
The Proceedings of the International Conference on Computer Vision, 1998, 3-10.

PESCE, M. 2002. Programming Microsoft DirectShow for Digital Video, Television, and DVD. Microsoft
Press.

POLLEFEYS, M. 1999. Self-calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences.
Ph.D. Thesis, ESAT-PSI, K.U. Leuven.

PRINCE, S., CHEOK, A., FARBIZ, F., WILLIAMSON, T., JOHNSON, N., BILLINGHURST M., KATO H.,.
2002. Real-Time 3D Interaction for Augmented and Virtual Reality. SIGGRAPH 2002 Technical Sketch,
238.

SCHREER, O., BRANDENBURG, N., ASKAR, S., TRUCCO, E. 2001. A Virtual 3D Video-Conferencing
System Providing Semi-Immersive Telepresence: A Real-Time Solution in Hardware and Software. In The
Proceedings of the International Conference on eWork and eBusiness, Venice.

SEITZ, S., DYER, C. 1997. Photorealistic Scene Reconstruction by Voxel Coloring. In The Proceedings of
Computer Vision and Pattern Recognition Conference, 1067-1073.

SLABAUGH G., SCHAFER, R., HANS, M. 2002. Image-Based Photo Hulls, In The Proceedings of the 1st
International Symposium on 3D Processing, Visualization, and Transmission, 704-708.

TANGUAY, D., GELB, D., BAKER, H.H. 2004. Nizza: A Framework for Developing Real-time Streaming
Multimedia Applications. Hewlett-Packard Laboratories, Technical Report, HPL-2004-132.

WILCOX J. 2000. Videoconferencing, The Whole Picture, Telecom Books, N.Y., ISBN 1-57820-054-7.
ZHANG, Z. 2000. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22(11), 1330-1334.

