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ABSTRACT
In this paper we present the implementation of a system that
allows audio-based real-time coordination of a group of users
with mobile devices. Use cases include, real-time meeting
point coordination, im-to-voice communication, and social
sports tracking. The assumption is that at least one person
in the group is able to easily enter text from a keyboard-like
control, e.g. from a desktop, PC or tablet. This person,
who we call the coordinator, can then communicate with
one or more people, called operatives, with mobile devices
and engaged in an activity that makes it hard or impos-
sible for them to see the screen of the device and to use
touch-based input mechanisms. Examples include driving,
running, biking, and walking. We scope our work to only
look at use cases where the operatives never have to provide
any explicit input back to the coordinator apart from au-
tomatically detected device properties, such as geolocation.
A secondary goal is that the only system requirement both
for the coordinator and the operatives is a browser capable
of rendering HTML 5 content to allow coordination across
a diverse fleet of devices. The main lesson learned from our
work is that audio cues can be very useful in a mobile setting
to convey system information, activity by friends, as well as
direct possibly translated text-to-speech messages. Exper-
iments show that our infrastructure can potentially handle
up to 78 people submitting locations in real-time (every 10
seconds) to a coordinator within the same group.
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1. INTRODUCTION
As mobile devices are becoming as common-place as PCs,
and connectivity anywhere, anytime as well as geo-location
sensing (e.g. GPS) have become the norm, a new wave of
location-based services (LBS) have appeared. Most mobile
LBS applications assume that the users are able to inter-
act directly with the device through a touch interface or
soft keyboard, and by monitoring the screen. There are,
however, many mobile scenarios where this assumption is
violated or where it renders the interaction impractical or
unsafe, such as when driving a car, biking or running. Ap-
plications with voice-based, turn-by-turn directions provide
a great example of how one-way voice interactions can be
useful in such settings. Collaborative one-way audio appli-
cations with the purpose of coordinating and communicating
within ad-hoc groups of people have, however, not been ex-
plored to a great extent so far. In the work described here,
we want to enable live, social, location-based, turn-by-turn
inspired audio interactions in order to allow communication
in mobile situations where you would not be able communi-
cate effectively today. In our system the text that is read to
the mobile client does not come from a road feature database
but is rather entered in real-time by your friends. The per-
son entering the text can see where a dynamically created,
short-lived group of friends are located in real-time in or-
der to send them coordination messages through the audio
channel. Some messages are also auto-generated to make
the mobile users aware of each other’s whereabouts.

A simple example is when you are in a meeting and want
to communicate in real-time with your friend who is driving
a car. A phone call might be optimal for the driver while
IM or SMS would be optimal for you. In this case our sys-
tem provides the optimal interface for each user while still
allowing them to communicate in real-time.

There are two key challenges in this work:

1. how to seamlessly set up private ad-hoc groups to share
location and voice messages across a wide array of
smartphone and Web clients, and

2. how to represent real-time activity in a scalable way
with high fidelity.

Our main contribution in this paper is lessons learned from
implementing and deploying an end-to-end mobile voice co-
ordination system. Some of these lessons relate to the state
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of new Web technologies, such as HTML 5 geolocation, au-
dio and real-time sockets on various mobile platforms. Our
secondary contribution is a real-time Web and mobile device
throughput experiment.

We first review some related work in Section 2, then we give
an overview of the main features of the system in Section 3.
In Section 4 we present the architecture and technology used
to build the system. Section 5 details some use cases, and in
Section 6 and Section 7 we discuss lessons learned from some
field testing and evaluate the real-time throughput of the
system. Finally, in Section 8 we conclude with an outlook
on possible future extensions of this work and related use
cases to explore.

2. RELATED WORK
There is a wide array of location sharing applications. In
line with the analysis made by Tang et al. ([5]), we dis-
tinguish earlier purpose-driven location sharing tools such
as the “Whereabouts Clock” [1] or “WatchMe” [2], from the
more recent, one-to-all and socially driven, location sharing
mobile applications, like Foursquare 1. The latter category
of applications, which relies mostly on micro-blogging plat-
forms, is enjoying great success in spite of a persistent debate
over privacy concerns [6]. Our approach differs from both
categories in that you share your location by joining a group
for a limited time; and sharing stops when you close your
browser window. From this standpoint, our work is more
closely related to real-time online collaborative text pads
like Etherpad 2 or TypeWith.me 3.

AsyncVoice 4 is a research project at Ericsson Labs. The
project has similar goals to our project of providing voice
communication to multiple parties over the Web. How-
ever, the system bases the communication on RSS, Atom,
and Pubsubhubbub push technology as opposed to real-time
HTML 5 WebSocket communication. Furthermore, it sends
the actual voice data, not the text across the wire, and it
is not based on a TTS engine at its core. All these differ-
ences make our solution more lightweight and appropriate
for small chatty and frequent real-time messages. A major
difference is also our integration with location-casting fea-
tures.

Sawhney and Schmandt have developed a wearable audio
interaction device, the “Nomadic Radio” [3] which provides
hands-free audio interaction capabilities for general purpose
computer interactions such as reading email, checking your
calendar, and reading news. This type of application has
been referred to as “everywhere-messaging” [4]. We focus
on more specific mobile use cases, where your and your
friends’ locations are central and need to be shared. Fur-
thermore, we provide our system on standard smart phone
Web browser platforms and your device may simply be in
your pocket while using the application. We deliver text-to-
speech but currently do not address speech recognition since
microphone access is still not supported from most mobile
Web browsers.

1http://foursquare.com
2http://etherpad.com
3http://typewith.me
4http://asyncvoice.com

Glympse 5, is a new app recently introduced on the iPhone
and Android markets. It allows you to broadcast your loca-
tion to friends for a predefined amount of time. Our solution
differs from Glympse in that we allow voice communication
and sound cues as well as monitoring and coordination of a
larger group of mobile users concurrently. We also allow the
session to end at any time requested by the sharing party.
Architecturally, our solution is built on pure Web technolo-
gies, whereas Glympse adopts the common model of having
different native apps for each platform. The obvious advan-
tage of levering standard Web technologies is a much smaller
effort to port to new devices and platforms, by taking ad-
vantage of standard browser capabilities. Furthermore, it
allows us the reuse many existing JavaScript libraries devel-
oped for and used by widely successful social media applica-
tions today. Examples include the Google Maps API 6 and
JQuery 7, which in turn have already implemented many
features to be portable and render nicely across many plat-
forms.

3. FEATURES
Our system, RESA (REal-time, Social Audio and location
casting), allows ad-hoc chat-room-like interactions, where
anyone can create an audio-location group and invite mem-
bers simply by sharing a URL. Two real-time streams of
events may be subscribed to, corresponding to whether you
are a coordinator or operative. Operatives will continuously
send their location to the coordinator stream. Coordina-
tors will send text messages to the operative stream. These
messages are then translated in real-time to speech in the
language of choice of the operative.

The coordinator has a map interface where the traces of
operatives’ paths, and their last location updates are visual-
ized. In addition to the map interface there is also an instant
messaging interface where text messages can be broadcast
to all members of the group or to a subset of members. All
interactions are handled through a standard web browser.
A screenshot of the coordinator interface is shown in Fig-
ure 1. This interface for the coordinators has the following
map-related features:

• see traces of all operatives’ movements in the group

• have the map automatically adjust to fit all the oper-
atives

• let the map follow a particular user

• see the streetview level map move and rotate based on
the followed user’s heading

• define a target position

The interface also has these communication features:

• broadcast text messages to all operatives in a range of
languages that are then translated and communicated
through synthesized voice to operatives

5http://www.glympse.com
6http://code.google.com/apis/maps/index.html
7http://www.jquery.com
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• send text messages to individual operatives

• invite new operatives to the group

• monitor when the operatives sent their last position

The operative interface is also offered through a Web in-
terface in a browser. However, this interface is designed
to be hands-free and eyes-free. Some status messages are
displayed for debugging, but in general all information is
communicated with sounds without requiring any touch or
visual access to the device (see Figure 2). It is easy to switch
into visual mode and act as a coordinator in the same group
in order to monitor others visually. Whether you are a co-
ordinator or an operative in a group is just determined by
which information stream you subscribe to and what user in-
terface you are presented with. Groups may have any num-
ber of both coordinators and operatives, although at least
one of each is assumed. Coordinators may invite operatives
to join a group and operatives may invite coordinators to
join a group. The same user may be both an operative and
a coordinator at the same time by opening up the two in-
terfaces in two browser windows. Similarly, a user may be
an operative and coordinator in many groups concurrently,
although at least the former is not as likely in the use cases
we are currently considering.

The sounds communicated fall into three broad categories:

• Coordinator messages. Text messages from the coor-
dinator are converted to speech on the fly using an
on-line TTS engine. These messages can be sent to all
operatives or restricted to a specific one.

• Client status. Audio tones, denoting success and error,
are played when a connection to the server is estab-
lished and when the connection drops off, respectively.
If the GPS and internet connectivity allow accurate
enough information to be shared via the coordinator
stream, a subtle audio tone is played.

• Operatives’ location (optional). The location of opera-
tives is reverse-geocoded into addresses, and broadcast
in real time. If a target position is defined, the distance
of operatives to this target can also be broadcast.

To monitor a group simply open the coordinator URL 8:
http://root/monitor.html?group=group

The root parameter is in our case www.crowdee.com/realtime.
To join a group from a mobile device a user may simply open
the operative URL:
http://root/group.html?group=group&name=user&pic=url

The pic parameter is optional. To test the coordinator in-
terface with simulated operatives you can add the sim pa-
rameter to the mobile device (operative) URL above, speci-
fying an integer between 1 and 15. We also provide a URL
shortening service that coordinators could use to create and
email/SMS clients to visit the URLs above. Devices gener-
ate a unique id which is used to identify messages coming

8On a desktop/laptop Chrome is the preferred browser and
Android 2.2+, webOS 2.0+, or iOS 4.1+ are currently pre-
ferred as mobile clients

Figure 1: RESA Coordinator Interface. Web interface

with ability to track RESA users and send them voice

messages.

Figure 2: RESA Operative Interface. Mobile Web in-

terface with ability to automatically broadcast location

and listen to voice messages.
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from the same user. However, group authentication is not
done by the service itself but can be done by the clients
by using customized messages. Currently only two message
primitives are used:

• Move. Signals new coordinates for a user

• Talk. Broadcast of a message from coordinator to
client.

4. TECHNOLOGY
The overarching design goal is to provide lightweight ubiq-
uitous access to both the coordinator and the operative
clients using state-of-the-art Web technologies. The back-
end server is a state-less asynchronous real-time messaging
bus that may be federated on many servers. The only restric-
tion is that all messages within a group need to be channeled
through the same bus. The main technologies we base our
solution on are HTML 5 features such as geolocation API 9,
native browser audio (a.k.a. the audio tag), and WebSock-
ets 10. Given that browsers in general and mobile browsers
in particular have very limited support for these relatively
new features we also provide fallbacks to older technologies
such as flash to support our goal of ubiquitous access. The
system architecture can be seen in Figure 3.

Figure 3: RESA System Architecture. Back-end ser-

vices are stateless and may thus easily be replicated or

loadbalanced to handle more concurrent clients.

Apart from state-of-the art browser implementations of HTML
5, our solution currently also relies on the eSpeak toolkit 11

for text-to-speech, the Socket.IO 12 WebSocket server and
client libraries for cross browser WebSocket support, and
Node.JS 13 for asynchronous and real-time messaging. We
have tested our solution on mobile client platforms such
as Android, iPhone and webOS, and PC platforms with
Chrome, Safari and Firefox browsers. Both the TTS and

9http://dev.w3.org/geo/api/spec-source-v2.html
10http://dev.w3.org/html5/websockets/
11http://espeak.sourceforge.net
12http://socket.io
13http://nodejs.org

the Messaging bus servers are stateless and can easily be
replicated in various public cloud deployments.

The WebSocket protocol is fundamentally text-based (UTF-
8), but in our case the text always represents valid JSON
strings. Broadcasts are made on two channels per group.
One channel is used for the coordinator(s) and the other
for the operative(s). That way, clients can easily subscribe
and unsubscribe to both of these channels depending on the
amount of messages they can consume. This design ensures
higher scalability in the case of many operatives sending
their locations in real-time. It also makes the smartphones
connected to slow mobile networks more responsive. The
Move messages are sent on the coordinator channel whereas
the Talk messages are sent on the operative channel. A
Node.JS library was written to extend the Socket.IO Web-
Socket communication to send real-time messages to groups
and to individual users within groups. The clients join
groups whenever they send a message designated for a group,
and they leave a group when they disconnect from the Web-
Socket. That way the group membership (being the only
state maintained in the server) does not have to be per-
sisted. If the Node.js server goes down it will recreate the
group membership data lazily as new messages come in. The
group library also caches the last sent message to piggy-back
it on disconnect operations so the coordinator(s) know(s)
which user has disconnected.

5. USE CASES
Here we discuss some concrete use cases for which the RESA
system can and has been used.

5.1 Real-Time Meeting Point Coordination
A number of people are meeting at a remote location for
a social lunch, with most attendees being unfamiliar with
this location. A coordinator can monitor where everyone
is, help people who seem lost or in search for parking, and
verify that everyone has arrived.

5.2 IM-to-Voice Real-time Communication
You are in a meeting or in a noisy environment so you cannot
make phone calls but you need to communicate in real-time
with your friend who is in his car driving. Your friend cannot
IM you because of safety concerns while driving. You can
then IM your friend while he can get voice SMS delivered in
real-time from you.

5.3 Social Sports Tracking
A number of friends decide to bike (or run) in a long distance
road race. Some will staff water stations and cheer the bikers
on from the sidelines. The spectators can then monitor their
friends’ locations in real-time to pay extra attention when
they pass by, and cheer them on with personalized or group
based messages when they are not nearby. Individual bikers
can also get updates on where their friends are in the race.

5.4 Real-time Translated Announcements
You are organizing a multi-cultural gathering and you want
to communicate some announcements in real time to all
event participants who may be spread out across a theme
park. Depending on where they are in the park you can send
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them different messages and you can also send personal mes-
sages if someone e.g. is approaching a dangerous location.
You communicate your messages in English but participants
can receive real-time voice messages in their own language.

6. LESSONS LEARNED
We have tested the RESA application in various biking, run-
ning and driving scenarios. The first issue we faced was
that mobile Web browsers stop running JavaScript when
the screen goes into standby. Some phones allow you to ex-
tend this time but only up to a very limited maximum time,
ranging from 3 minutes (webOS) to 30min (Android). To
solve this issue we built lightweight native apps for these
platforms that simply load the operative web page on a reg-
ular basis. For Android we also use the local TTS engine
to save on bandwidth and response time and get a higher
quality voice.

The second issue we encountered was related to coverage
being spotty and connections dropping intermittently. If lo-
cation updates are lost for a short period of time it does not
affect the user experience very much but if voice messages
are lost or location updates are unavailable for longer pe-
riods of time the communicating parties may get confused.
We therefore added a simple history function that allows all
communicating parties who are disconnected for some pe-
riod of time to request a replay of the last few messages.
Note, the replay does not need any user input but can be
triggered whenever a new connection is established. Ini-
tially we did not report on system status to the operatives
so they could move around for a long time without realizing
that their connection was lost or that location updates were
never sent. We therefore added some subtle sound cues to
represent connection establishment, connection dropping, as
well as location information being sent.

Finally, the most challenging issue to solve was how to make
mobile browsers dynamically load and play audio reliably.
We currently adopt five different solutions:

1. HTML 5 Audio tag. The audio tag is inserted dynam-
ically with JavaScript. This works well on Android
2.3+ platforms.

2. jPlayer 14. jPlayer is a jQuery audio compatibility
library. Like with the HTML 5 audio tag we insert the
jPlayer tag dynamically in JavaScript. This library
works well on iOS 4.1+ devices.

3. Flash. We implemented our own lightweight Flash 9
compatible audio library in ActionScript. This library
works well on webOS 2+, and 3+ devices.

4. Android. In our Android wrapper we take advantage
of the JavaScript-to-Native bridge to play audio using
the native Android media player.

5. Popup. If everything else fails we allow audio to be
played in a popup browser window. This works on
almost all old and new mobile and desktop browsers,
but the user experience is not great. However, given
that this interface is supposed to be hands-free and

14http://www.jplayer.org

eyes-free it could be a reasonable trade-off on older
devices.

7. EVALUATION
To evaluate the infrastructure and the real-time experience
on actual devices, we ran some location throughput experi-
ments using three mobile devices as well as browser clients.
We inject artificial location updates at regular intervals into
the same group and coordinator client. The coordinator
client for the group was a standard Chrome 7 browser on
a 64bit Linux (Ubuntu Lucid Lynx) host inside a corporate
firewall (using a http proxy to communicate with our server).
As background load, we used Firefox and Chrome browser
clients running on 64bit Linux and Windows XP. So the
experiment group had updates coming in from a total of 7
clients. The mobile clients used were LG Optimus V running
Android 2.2, iPod Touch first generation running iOS 3.1,
and HP Pre 3 running webOS 2.2. The mobile clients ran
on AT&T’s 3G network (iPod and Pre), or Virgin mobile’s
3G network (Android).

In the first experiment the mobile clients were configure to
send location updates every two seconds, in the second ex-
periment they were configured to send updates every ten sec-
onds. The background updates were configured to generate
roughly the same load in the two experiments, 4 updates/s
and 4.6 updates/s respectively. The results of the experi-
ments are summarized in Table 1. Each experiment ran for
10 minutes, and a minute-by-minute throughput graph can
be seen in Figure 4. The mobile clients drop about 5-7 mes-
sages per minute (17-23%) in the two-second-interval experi-
ment and 0-1 message per minute (0-17%) in the ten-second-
interval experiment. We note that the HP Pre seems to drop
fewest messages, although the differences are marginal. For
the ten-second experiment the Pre even pushes too many
messages. This behavior is probably due to a drop being
overcompensated for as seen in Figure 4 between four and
five minutes into the experiment. In conclusion we were able
to get good throughput to provide a real-time experience for
seven clients under heavy load running on the major mobile
phone operating systems. All our clients in the real system
are currently configured to not submit more than one loca-
tion update every two seconds, like in the first experiment.

The maximum load we were able to inject in our experiment
was about 7.8 updates per second. This would correspond to
a group of 15-16 people submitting updates every 2 seconds,
a group of 78 people submitting updates every 10 seconds or
a group of 234 people submitting updates every 30 seconds.
This shows that our infrastructure can handle reasonably
large groups of people broadcasting location updates in real-
time.

8. CONCLUDING REMARKS
One major technical challenge that we have yet to address is
how to run this service in the background on client devices
without native wrapper apps. HTML 5 does have some work
in this direction but nothing has been standardized yet apart
from Web Workers 15 which allow background threads if you
have active foreground threads, but suffers from the same is-
sue as standard JavaScript code if the browser window is not

15http://dev.w3.org/html5/workers/
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Table 1: Experiment Summary for 2s and 10s Update

Intervals

Experiment Device Updates/minute
2s Android 22.5

iPod 23.7
Pre 24.8
Background 167.3
Total 238.3

10s Android 5.3
iPod 5.2
Pre 6.9
Background 255.9
Total 273.3
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LG Optimus V− Android 2.2
iPod Touch− iOS 3.1
HP Pre 3− webOS 2.2

Figure 4: Location Update Throughput for 2s (upper

curves) and 10s (lower curves) update interval configu-

ration.

active. As future work we are considering adding an audio
sensor to the client application to be able to communicate
some information back to the coordinator via ad hoc voice
or other sound recordings.

From a use-case perspective we are considering testing and
evaluating this solution more in the field and offering it as
a public cloud service. Our investigation has shown that
the modern mobile platforms have powerful enough technol-
ogy to both communicate and interact with audio directly
from the browser. This opens up a whole new slew of inter-
esting use cases and opportunities to leverage the explosion
in smart phone deployments and improvements in ubiqui-
tous connectivity. However, HTML 5 is not ready for this
revolution yet so some functionality still needs to fall back
on Flash (which now is also becoming available on many
mobile platforms e.g. Android 2.2+ and webOS 2.0+) or
other workarounds. We have shown in experiments that
even with these fallbacks and with the common obstacle of
a corporate firewall it is feasible to communicate real-time
locations within large groups of people, 16-234 depending
on update frequency, just using Web technologies.
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