
MapReduce Optimization Using
Regulated Dynamic Prioritization

Thomas Sandholm and Kevin Lai
Social Computing Laboratory, Hewlett-Packard Laboratories

Palo Alto, CA 94304, USA
{thomas.e.sandholm,kevin.lai}@hp.com

ABSTRACT
We present a system for allocating resources in shared data and
compute clusters that improves MapReduce job scheduling in three
ways. First, the system uses regulated and user-assigned priorities
to offer different service levels to jobs and users over time. Sec-
ond, the system dynamically adjusts resource allocations to fit the
requirements of different job stages. Finally, the system automat-
ically detects and eliminates bottlenecks within a job. We show
experimentally using real applications that users can optimize not
only job execution time but also the cost-benefit ratio or prioritiza-
tion efficiency of a job using these three strategies. Our approach
relies on a proportional share mechanism that continuously allo-
cates virtual machine resources. Our experimental results show a
11−31% improvement in completion time and 4−187% improve-
ment in prioritization efficiency for different classes of MapReduce
jobs. We further show that delay intolerant users gain even more
from our system.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications; D.2.8
[Metrics]: Performance measures

General Terms
Experimentation, Measurement, Performance

Keywords
MapReduce, Proportional Share, Resource Allocation, Workflow
Optimization, DISC

1. INTRODUCTION
Several recent systems like Sawzall [27], MapReduce [10],

Dryad [16], and Pig [24] have converged on the Data-Intensive
Scalable Computing (DISC) [5] model, characterized by relaxed
consistency, fault tolerance and the ability to scale to thousands of
hosts. Companies like Google, Yahoo!, IBM, and Amazon have
used DISC systems to process vast amounts of web application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS/Performance’09, June 15–19, 2009, Seattle, WA, USA.
Copyright 2009 ACM 978-1-60558-511-6/09/06 ...$5.00.

data. One key DISC benefit is that users with minimal distributed-
programming experience can easily leverage thousands of hosts.
This ease-of-programming and the desire to amortize the cost of
large systems has resulted in DISC deployments with hundreds of
users running thousands of applications per day [22].

Resource allocation affects DISC applications in particular be-
cause of their ability to flex (i.e., make tradeoffs between usage
and performance) both through the scaling of the basic map and re-
duce operations and more advanced optimizations like speculative
execution [10]. Also, since a single DISC framework (e.g., MapRe-
duce) supports many different application types, we can develop
resource allocation improvements to the “thin waist” of the DISC
framework and have them apply across a wide variety of applica-
tions without modification. As a result, good resource allocation
can greatly improve the performance of many DISC applications
with little additional development cost.

The problem that we address is how to prioritize resource allo-
cation for DISC applications based on the MapReduce platform,
given their dynamic and complex nature. One solution is to stat-
ically assign priority to different applications. However, this pre-
cludes the optimization opportunity of varying an application’s pri-
ority over its different stages and components. Another solution
is to use heuristics to infer application priorities. This approach
lacks accuracy initially and becomes less accurate over time as
users learn how to game the heuristics. Another approach is to
rely on cooperative users to identify their applications’ dynamic re-
source requirements. Although this “social scheduling” may work
for small, tightly controlled environments, shared MapReduce de-
ployments tend to be large and open. In such an environment, ju-
dicious users, in the absence of regulation, are more interested in
improving their own application’s performance than that of other
users. The flexing ability of DISC applications in particular allows
users to easily improve their own performance at the cost of others.

In this paper, we examine the optimization of MapReduce ap-
plications using dynamic and regulated priority. Using our system,
users can change the priority of an application over time and as-
sign different priority to different components. We regulate users
by limiting the total priority that they can assign. As a result, they
have an incentive to only give their application high priority when
it is doing important work and to prioritize bottleneck components
over less important ones. More specifically, our contributions are
as follows:

(1) System efficiency metric. Some resource allocation systems
improve the performance of one application at the cost of reducing
it for another. To measure this effect, we introduce a total system
efficiency metric that is based on the average ratio of actual applica-
tion performance in a shared system to the application performance
in a dedicated system. It measures the impact of a prioritization

system on overall system performance. Using this metric, we show
that our prioritization system improves overall system efficiency
across a wide variety of MapReduce applications.

(2) MapReduce virtualization. A shared MapReduce infras-
tructure must be able to isolate the performance of different ap-
plications and quickly shift resources between different applica-
tions. We examine the prioritization of MapReduce jobs running
on a Xen-virtualized infrastructure.

(3) Automated application-independent optimization strate-
gies. The advantage of MapReduce implementations like Hadoop
is their ease of use. We incorporate three prioritization strategies
directly into the Hadoop framework: one that prioritizes entire
workflows, one that prioritizes different stages of a single work-
flow, and one that detects and prioritizes bottleneck components
within a workflow stage. These strategies require no changes in ap-
plication code and we show that they improve performance across
a wide variety of Hadoop applications.

The rest of the paper is organized as follows. We describe a usage
scenario in Section 2 and scheduling for MapReduce/Hadoop jobs
in Section 3. We present our performance and efficiency models
in Section 4, optimization strategies in Section 5, and applications
used for the experiments in Section 6. In Section 7, we describe our
experimental methodology and results, and we present a sensitivity
analysis in Section 8. In Section 9, we review related work, and we
conclude in Section 10.

2. USAGE SCENARIO
This section describes the usage scenario for the system de-

scribed in this paper. We refer to people who run applications in
the system as “users”. They could be application developers, but
they could also just run off-the-shelf applications with custom in-
put. For this paper, we assume that users run MapReduce jobs,
although this is not a requirement of the underlying resource al-
location system. We assume that a process external to the system
assigns a budget (priority income) to the users. The budget could
be in the form of real currency or a virtual currency. The assign-
ment process could be fair share (i.e., each of n users gets 1/n of
the available income) or purchased using real currency. Regardless,
changing the income assignment takes place infrequently and ex-
ternally. We further assume that users know their current income
and savings. These assumptions are consistent with and a general-
ization of existing commercial systems such as Amazon’s EC2.

Once a user has a MapReduce job to run, he or she goes through
the following phases:

(1) How much do I want to spend? We assume that the user
has some knowledge about the maximum budget available. The
user then determines an actual budget which is less than the job’s
maximum budget and meets its deadline. The user computes this
by estimating the application’s running time as a function of re-
sources, and queries the allocation system for resource prices. For
example, a user knows that an application requires 1000 processor
cores to complete within an hour and the current price/core/hour is
$.01, so actual_budget = $10 for this deadline. A related issue
is mitigating the risk of changes in resource supply and/or demand
during the job. More sophisticated systems can automate this phase
based on past running times, but this is a separate problem which
we do not address in this paper (see [32] for techniques for miti-
gating risk). The results in this paper do not depend on an accurate
resource requirements estimate; we simply assume that users ex-
pect a deadline accuracy commensurate with the accuracy of their
resource requirements estimate. However, the ability of this sys-
tem to change job priorities on-the-fly allows users to quickly cor-
rect for inaccuracies in computing job requirements. The output

from this phase can be used by the system to infer a user’s attitude
towards risk and delay tolerance (see [31]).

(2) How do I want to spend? In this paper, we present algo-
rithms (described in Section 5) which automatically allocate the
job’s budget both across hosts and over time, based on the MapRe-
duce application’s workflow of jobs. Users pick and configure a
template based on the structure of their application’s workflow as
well as test runs and their preferences. Users apply the workflow
priority template to change the priority of entire workflows. They
apply the stage priority template when different stages of a single
workflow have different resource requirements. Finally, they apply
the bottleneck elimination template when their application’s input
splits vary significantly in execution time. Users annotate their ap-
plication workflows with these templates and specify parameters
such as total budget (for all templates), division of budget across
stages (for workflow priority), and a optional boost factor, indicat-
ing tolerance for variance (for bottleneck elimination). Note that
none of the strategies require any complex user input, such as a
utility function.

(3) Should I spend more or less? As the user’s application
runs, he or she has the option of monitoring its progress through
a MapReduce monitoring interface. The user has the choice of
spending more to ensure that it meets its deadline, spending less
to meet its deadline while saving currency, or simply doing noth-
ing.

In comparison with commercial price-based systems such as
Amazon’s EC2, our system both improves cost/benefit and usabil-
ity by automating phase (2) above. In comparison with non-price-
based resource allocation systems such as PlanetLab[26], this sys-
tem improves overall performance by regulating resource usage and
individual performance by offering controllable service levels for
no additional user effort.

3. MAPREDUCE SCHEDULING
The basic MapReduce [10] architecture comprises one master

and many workers. The input data is split and replicated in 64 MB
blocks across the cluster. When a job executes, the input data is
partitioned among parallel map tasks and assigned to idle worker
nodes by the master based on data locality. Similarly, the master
schedules reduce tasks on idle worker nodes that read the interme-
diate output from the map tasks. Between the map and the reduce
phases, the intermediate map data are shuffled and sorted across the
reduce nodes. This ensures that all data with a given key are redi-
rected to the same reduce node, and all keys are streamed in a sorted
order during the reduce phase. The master detects and reschedules
failed tasks. Typically, a small number of tasks execute substan-
tially slower than average and delay job completion. As a result,
the master speculatively executes replicated tasks and uses the first
completed result.

Apache Hadoop [12] (the most widely used MapReduce imple-
mentation) has a variety of schedulers. The original one schedules
all jobs using a FIFO queue in the master. Another one, Hadoop on
Demand (HOD), creates private MapReduce clusters dynamically
and manages them using the Torque batch scheduler. In the most
recent approach, Hadoop has a scheduling plug-in framework with
schedulers that extend the original FIFO scheduler with fair-share
algorithms.

These approaches vary in how well they maintain data local-
ity, but share the problems of “social scheduling” and lack user-
controlled scheduling. Social scheduling requires a manual or ad-
ministrative process for determining job priorities. The overhead
of fine-grained social scheduling results in priorities being set in-
frequently and at a coarse grain (e.g., once a year per user). This ad-

ministrative cost precludes fine-grained scheduling optimizations,
regardless of the underlying system’s technical capabilities. A re-
lated problem is that users have no opportunity to tailor their re-
source allocation to fit their application’s requirements.

Our approach retains a coarse-grained process for setting in-
comes (Section 2), but provides users the freedom to optimize their
income allocation across jobs of varying importance, during differ-
ent job stages or to respond to delays caused by unexpected load
spikes, critical job failures or slow nodes. We use proportional
share allocations enforced by a virtual machine monitor (VMM)
to host MapReduce clusters and their services. Figure 1 shows
this architecture for the Hadoop services. The namenode-datanode
services implement the distributed file system, and the jobtracker-
tasktracker services implement the MapReduce job execution sys-
tem.

Figure 1: Virtualized Hadoop architecture.

4. MODEL AND METRICS
In our model there are resource users and resource providers.

Users are granted a resource quota, which we call a budget, period-
ically. When users request resource capacity they specify the part
of their budget that they want to spend over a set duration of time,
which in effect becomes their regulated priority. The spending rate
signals to the provider how important the user’s resource consump-
tion is. The fairness principle implemented in all providers is to
allocate resources to users proportionally to their spending rates
and inversely proportional to the sum of all spending rates of other
users. A job is defined as a pair of map and reduce tasks operating
on the same input. A workflow comprises a series of stages, where
each stage is a job that gets input from the preceding stage and pro-
duces output for the succeeding stage. Finally, an application here
is a type of workflow run repeatedly.

4.1 Proportional Share Allocation
A provider allocates resource share qi to user i at time t as fol-

lows:

qi(t) =
bi(t)/di(t)

bi(t)/di(t) + yi(t)
(1)

where bi is the part of the budget that user i is willing to spend
over duration di, bi/di is thus the spending rate of user i, and yi

is the sum of all existing users’ spending rates. We define yi to
be the demand or price of the resource. Whenever a new spend-
ing rate is set by a user all qi values are recomputed and enforced
instantaneously.

The idea behind this model is to let spending rates vary with de-
mand to give users an incentive to be judicial about when and how
much of a resource they request. Furthermore, the model allows

users with more important tasks to preempt other users. Conse-
quently, there is a disincentive for Tragedy of the Commons [13]
behavior, where low priority tasks of malicious and strategic users
can starve out cooperating users. The key to this is the regula-
tion of budgets across users where the maximum consumption of
each user is effectively capped. This proportional share alloca-
tion mechanism has also been shown to be strategy-proof in strictly
competitive markets (at least two users competing for the same re-
source) [43], which in practice means that the mechanism is not
easily gameable.

If a user runs a workflow over a time period T the total resource
share or aggregate performance of the workflow will be:

pi =

Z T

0

qi(t)dt (2)

analogously the total spending rate or cost for the user (profit for
provider) will be

ci =

Z T

0

bi(t)dt (3)

Hence, a user may change the spending rate on a resource over
time, e.g. by changing the duration (di) parameter, to accommo-
date fluctuating capacity requirements without incurring a higher
overall cost as long as increases are matched by equivalent drops
of equivalent length and size in spending rates. Users can decide
whether they need a large share to complete sooner or a smaller
share to complete later. Finishing later may cause deadlines to be
missed, conversely it might be too expensive to finish sooner based
on current demand. The key idea here is that this model allows
users to change their expensive/fast versus cheap/slow performance
trade-off decisions adaptively according to the workflow character-
istics.

To measure the success of prioritization strategies we need to
define some quantifiable metrics, but before doing so we define
some auxiliary models to represent trade offs in cost and benefit
parameters and to account for attitudes towards variance (risk) in
these parameters. We note that these auxiliary models, which are
based on economic utility theory, are used as an evaluation aid,
and we do not expect or require users to parametrize the functions
defined manually.

4.2 Time Decaying Utility
The correlation between the amount a user is willing to spend on

a resource and the performance obtained allows us to compare the
efficiency of different prioritization strategies, as well as to quan-
tify the overall efficiency of a system with competing users apply-
ing different strategies. To capture that different users have differ-
ent sensitivities to delay, we apply a Jensen time decaying utility
function [18] to measure the payoff a user obtains from executing a
workflow. The utility of user i can then be represented as follows:

Ui = (vi − ci)× exp(−rTi/min(T)) (4)

where vi is the importance or valuation of the workflow expressed
in budget units, ci is the cost paid for running the workflow, r is
the decay rate, and Ti is the total run time of the workflow. To
more easily compare the efficiency between different applications
with different minimal job duration we normalize the decay rate
with min(T). Longer running applications are thus assumed to
have more tolerance to absolute time delay than shorter ones. For
example, if a job that would run for 1 minute without resource con-
tention runs for 3 minutes with competing loads, it degrades the
benefit for the user more than if an hour-long job runs for an hour
and 3 minutes.

4.3 Arrow-Pratt Risk Representation
To represent users’ different risk attitudes in our model we apply

a transformation of the previous utility function as follows:

UR
i (Ui) =

1− exp(−γUi/Uopt)

1− exp(−γ)
(5)

where Uopt is the optimal utility obtainable if there is no resource
contention (copt ≈ 0 and Topt ≈ min(T)), and γ is the Arrow-
Pratt risk-aversion coefficient [1, 29]. This ensures that UR

i (0) =
0, UR

i (Ui)→ 1 when Ui → Uopt, and UR
i (x)→ x when γ → 0.

Hence, γ > 0 for risk averse users, γ = 0 for risk neutral users
and γ < 0 for risk seeking users. For example, risk averse users
(most common in practice in this setting) would spend more than
the average expected price to ensure a high minimal performance,
and risk seeking users would spend less, speculating that the price
is likely to go down.

4.4 Performance Metric
To evaluate the performance improvement of various prioritiza-

tion strategies compared to the default strategy of not changing the
spending rate over the duration of a job, which we call fair-share,
we define the completion time improvement metric as follows:

CI =

Pn
i=1

“
T f

i − T s
i

”
Pn

i=1 T f
i

(6)

where T f
i is the completion time with a fair-share strategy, and T s

i

is the completion time with a dynamic prioritization strategy for
workflow i, and n is the number of workflows in the experiment.
This metric is designed as a sanity check to determine whether there
is an opportunity to increase the performance with certain prioriti-
zation strategies, but does not reflect the full success of the strategy
since it does not take the cost for the performance increase into
account.

4.5 Prioritization Efficiency Metric
Our ultimate metric is thus the prioritization efficiency of a strat-

egy taking both performance and cost into account. It is defined
as:

E =
1

n

nX
i=1

Ui

Uopt
(7)

where n again is the number of workflows and Ui and Uopt are as
defined in Equation 4. When comparing different workloads the
efficiency metric shows how much contention, and thereby priori-
tization optimization opportunity, there is in different applications.
Our metric was inspired by the price of anarchy metric in [25], and
it is also similar in spirit to the R-efficiency metric in [38].

5. OPTIMIZATION STRATEGIES
As alluded to in the previous section, the opportunity to opti-

mize arises from the observation that jobs or workflows may have
fluctuating resource capacity requirements over time. Our general
approach is to closely monitor the workflow and to adjust the ca-
pacity to obtain the optimal utility or value for delivered service
depending on the workflow progress and the state of the system. In
this section we describe some optimization strategies (automated
prioritization agents) that we have implemented.

5.1 Workflow Priority
The simplest strategy is to increase spending on all workflows

that are more important and drop spending on less important work-

flows. Importance may be implied by proximity to deadline, cur-
rent demand of anticipated output or whether the application is in a
test or production phase. The key point is that the system does not
know the importance, since there is nothing inherent in the work-
flow structure that differentiates the instances. Thus the users must
signal the importance using a prioritization strategy that we call
Workflow Priority. For a series, S, of n workflows a user may
specify their relative importance, and our system will then split the
overall budget, bS , accordingly and spend

WPi∈S(w) = bS
wiPn

j=1 wj
(8)

for workflow i given workflow weights w = {w1, w2, . . . , wn}.
5.2 Stage Priority

The Stage Priority optimization strategy is similar to the work-
flow priority strategy in that the system splits a budget according to
user-defined weights. Here the budget is split within the workflow
across the different stages. So, if one stage receives an increased
share of the budget, then the other stages obtain a corresponding
decrease in share to spend the same budget for the workflow as a
whole. The motivation for this is that there is some inherent struc-
ture in a MapReduce workflow, where different stages may exhibit
different levels of resource intensity, e.g. some stages may be more
CPU bound than others. By leveraging this structure and spending
more on phases where resources are more critical, the overall util-
ity of the workflow may be increased. For a workflow, a user may
specify the relative resource intensity (importance) of the n stages
of MapReduce pairs, ℘, and our system will then split the overall
budget, b℘, accordingly and spend

SPi∈℘(w) = b℘
wiPn

j=1 wj
(9)

for stage i given stage weights w.

5.3 Bottleneck Elimination
The Bottleneck Elimination strategy drills further down individ-

ual MapReduce jobs to optimize spending. The observation under-
lying this strategy is that there may be idle as well as bottleneck
resources during some critical synchronization phases of a MapRe-
duce job. For example, when map tasks are about to complete,
reducers may wait for slow mappers before they can start process-
ing their input, or towards the end of a job some tasks may be much
slower than others and thereby drag down the performance of the
entire job. Furthermore, MapReduce job input partitioning is based
on the prediction that all partitions will be processed equally fast,
which in practice is often imperfect even in the absence of failures
and competing load variation, in particular for more CPU-bound
applications. Figure 2 depicts a typical MapReduce bottleneck sce-
nario.

Figure 2: MapReduce bottleneck example.

Our solution is to redistribute the funds from passive idle nodes
to active bottleneck nodes, to boost the overall progress of the job.
This strategy periodically distributes the budget according to Algo-
rithm 5.1. The budget, b, and deadline, d, are defined as in Equa-
tion 1. The boost factor, f , is defined to lie in the interval [0, 1).

Algorithm 5.1: BOTTLENECKELIMINATION(nodes)

idle← GETIDLENODES(nodes)
active← nodes �∈ idle
ni ← SIZE(idle)
na ← SIZE(active)

for each node ∈ active

j
node.spending ←
b/d ∗ (1 + (ni/na) ∗ f)

for each node ∈ idle

j
node.spending ←
b/d ∗ (1− f)

This algorithm ensures that the average spending rate across all
nodes is the same or less than when a constant rate is used for all
nodes throughout the job run. This fact can be deduced from the
following equation of expected spending, E[s], and average spend-
ing, s̄:

E[s] =
na

na + ni
(b/d(1 + (ni/na)f)+

ni

na + ni
(b/d(1− f)) =

b

(na + ni)d
(na + nif + ni − nif) =

b

d
= s̄

(10)

If all the nodes are idle the average spending rate is lower than a
constant spending rate otherwise the same. The complexity of the
algorithm is O(n). The boost factor, f , can be set by individual
users based on the ability to handle variance in performance. How-
ever, since the variance also depends on competing users’ variance,
in practice it makes sense for the system to put restrictions on the
aggregate level of boosting allowed (see Section 7.4).

5.4 Other Strategies
We have also implemented additional strategies, which are out-

side the scope of this paper since they do not target MapReduce
jobs specifically. However, they could be used in conjunction with
our MapReduce strategies to further optimize the cost-benefit ratio
of users, and to improve the overall system efficiency. The Best Re-
sponse strategy [11] continuously collects the current price (aggre-
gate spending rates) of the nodes in the system. Based on a user’s
resource preferences, it decides how to distribute a fixed budget
across the nodes to optimize the aggregate utility. This strategy au-
tomatically reacts to competition from other users and fluctuating
system demand. It is computed efficiently using Lagrangian mul-
tipliers as it reduces to a constrained optimization problem [11].
The strategy assumes that node tasks can easily be moved to differ-
ent nodes and that performance fluctuations are handled gracefully.
We have also implemented a slight modification of this strategy for
one-shot scheduling of scientific Grid batch workloads [33], and
found that it greatly simplified users’ funding decisions for parallel
jobs, as well as improved load balancing in the system as a whole.

The Prediction strategy [32] takes the current price level as well
as historical price levels as input to decide which nodes are the
safest to invest in given the risk preferences of a user. In general,
given two of three parameters (performance, guarantee, and spend-
ing), our system can recommend the third. The rationale for this
strategy is that different users may wish to compute at different

service or guarantee levels, and our model effectively allows the
provider to multiplex not only across performance and criticality
parameters but also across the guarantee and risk attitudes of users.
The value to users is that they are explicitly exposed to the current
risk when making their resource investment, and they can probe the
system with what-if queries to determine the optimal spending rate
based on their risk attitude. We implemented this strategy as a com-
bination of a distributed server-side, on-line price statistics collec-
tor (gathering running moments), a client-side probability density
function estimator, and a what-if probing user interface with three
functions; get_performance, get_price, and get_guarantee [31].

6. CASE STUDIES
We studied a number of MapReduce workflow applications to

evaluate our system and prioritization strategies. The workflows all
have different resource requirements and parallelization character-
istics.

6.1 GridMix
GridMix is a suite of Hadoop programs contributed by Yahoo!

as a representative benchmark of their workloads. The input is cus-
tomized to fit the test cluster. For this case study, our test bed com-
prised 40 dual CPU hosts with 64GiB disk and 4GiB memory each,
so we chose an input data size (uncompressed) of 25 GiB. All jobs
use 100 map tasks and 1-18 reduce tasks depending on the job size.
Further, we selected three benchmark programs to run:

(1) monsterQueries (queries), a three-stage piped MapRe-
duce job with fixed length key and value compressed SequenceFile
(Hadoop’s binary input format that allows intermediate compres-
sion). Each run of the program completes 13 MapReduce jobs, that
run for about 454 seconds without contention.

(2) webdataSort (web), a large sort with variable key and value
sizes processing a large compressed dataset using the SequenceFile
format. Each run of the program completes 7 MapReduce jobs that
run for about 386 seconds without contention.

(3) textSort (text), a text sort exercising the MapReduce API us-
ing variable length keys and values, and the uncompressed text file
format. A run of the program launches 6 MapReduce jobs which
typically complete within 527 seconds if there is no contention.

GridMix is 1) a community de-facto standard for benchmark-
ing, 2) representative for a wide range of workloads, and 3) easy
to configure to fit the test bed. On the other hand, it is not a real
application and, consequently, it is hard to understand the optimiza-
tion opportunities intuitively. We therefore used it as a black-box
test to quantify the optimization opportunity. Furthermore, the test
was resource intensive making it hard for all job stages to com-
plete successfully without a high minimal resource share. Finally,
it is predominantly I/O bound, and only makes limited use of the
CPU(s). To address these problems we implemented two additional
MapReduce workflow applications, which are discussed next.

6.2 Digg
The Digg application performs collaborative filtering on traces

from digg.com, where users submit and “dig” web articles. Our
application analyzes the likelihood that a user would dig a story on
topic X if he or she dug a story on topic Y. The application com-
prises a workflow of three stages of MapReduce jobs depicted in
Figure 3. The first stage joins all stories and diggs (users digging a
story) over the topic field, the second phase calculates the empiri-
cal probability distribution across all topics for all users. The final
phase calculates the Pearson correlation coefficients for all topic
pairs. The advantage of this calculation is that it can be based on
partial sums of products that are computed in parallel on partial

data, and it is therefore very easy to scale the computation up and
down. This application is interesting because it is both I/O bound
and CPU bound in different stages of the workflow. As input we
used one year of traces with 60 million diggs and 6 million stories
on 60 topics. On disk it roughly equated to 2.5 GiB of digg data
and .5 GiB of story data. For this benchmark we used 23 physical
nodes with the same configuration as in the GridMix benchmark.

Figure 3: Digg workflow.

6.3 VideoToon
The VideoToon application transforms streams of video using

a non-photorealistic rendering algorithm developed by color sci-
entists at HP Labs. It applies advanced color reduction tech-
niques [21] to drastically reduce the number of colors in an input
video, thus giving it a cartoon-like appearance. The algorithm takes
a buffer of past video frames into account when rendering subse-
quent frames, so it is not equivalent to rendering each single frame
in parallel. It leverages the MPlayer ringbuffer plug-in framework,
so the different sub stream processors need to get an overlap of in-
put data to process all frames in the original video which further
limits how aggressively the application can be parallelized. Pro-
cessing about 1MB of a video stream in one chunk takes roughly
20 minutes without contention. We used this to guide the maximum
number of splits the application can process in parallel.

We used 18 physical nodes with the same configuration as in
the previous benchmarks and a 16 MB video stream. We used a
moderately sized configuration to allow enough repetitions to get
statistical stability in the results and to make the experiments com-
plete within roughly a day (Section 7). The VideoToon workflow
comprises three MapReduce stages, depicted in Figure 4. The first
stage splits the original stream into sub streams (including a 15
frame overlap). The second phase processes all substreams with
the color-reduction algorithm in parallel, and the last stage joins all
substreams together into the original order.

7. EMPIRICAL EVALUATION
The proportional share algorithm is implemented on top of the

Xen Virtual Machine Monitor [4]. An allocated resource share
(CPU, memory, disk, bandwidth) is materialized and presented to
the user as a virtual machine. This allows us to reconfigure the re-
source capacity at a very fine granularity with good performance

Figure 4: VideoToon workflow.

isolation, and with a very fast reconfiguration time (within a few
seconds) without affecting running applications or any running in-
frastructure services such as the MapReduce services. The down-
side is of course increased overhead compared to not using virtual-
ization.

The proportional share allocation algorithm runs in a daemon on
every node in a cluster and reports statistics on aggregate spending
rates to a central service locator. Users pay for usage by transferring
portions of their granted budget from their own account into the
provider account, in a bank service that we implemented, prior to
placing resource priority requests. More details about the virtual
machine allocation system that we use can be found in [19]. For the
MapReduce implementation we use the Apache Hadoop system,
which also implements a distributed file system (HDFS).

7.1 Experiment Setup
To create resource competition we let two users run the bench-

mark applications repeatedly and concurrently. Additionally there
is a CPU-intensive background task which runs on each node in
a separate virtual machine to ensure that there is substantial re-
source contention between our two benchmark users. Because we
use dual-CPU nodes in the experiments, the two users would sim-
ply be partitioned on two different CPUs without the background
task. A real deployment is also expected to host more than two
users per physical node, and the background task is thus a realistic
approximation of demand from other users.

The users run their own virtual clusters and change their priori-
ties separately to match the strategy and job preferences of the ex-
periment. All benchmarks were hosted on a research test bed with
80 physical nodes, and the experiments used between 18 and 40 of
these as described in Section 6. All nodes have 3Ghz dual CPUs
and run CentOS 5. Each user repeatedly runs the workflows 25-30
times, so we can calculate the variance accurately. In our graphs
we use error bars to indicate the range within ±1 standard devi-
ation off the mean, assuming white-noise errors, to represent the
stability of the results. All prioritization strategies are compared to
the fair-share baseline strategy that funds all workloads the same
amount throughout the whole experiment. The average value per
workflow, v in Equation 4, is set to $1 for all applications. In all
experiments we track the budget spent for each workflow and the
completion time, which constitute the raw data used for all utility
and efficiency calculations. An example from the VideoToon ex-
periment described below is shown in Figure 5.

Since all applications have different minimal duration times, we
normalized the decay rate in utility according to Equation 4 with r
set to 2 across all applications and experiments. Users are assumed
to be risk neutral so γ is set to approximately 0 in Equation 5. We
will relax both of these constraints in our analysis in Section 8 to
see how different delay sensitivities and risk attitudes would affect
the results.

The general methodology underlying the experiments is to max-
imize the differentiation in spending between users applying the
same or different spending strategies for the same application,
while still allowing concurrent workloads to be hosted. Thereby
we obtain an approximation of the maximum benefit practically
obtainable across different applications and strategy mixes under
various competitive (resource contention) scenarios.

7.2 Workflow Priority: GridMix Results
We use the GridMix application to evaluate the Workflow Pri-

ority strategy. The competing users assign different values (im-
portance) to their workflows over time. High priority workflows
are given weight 1 and low priority workflows are given weight
.5, resulting in twice the spending rate being used by high priority
workflows. The sequence of high versus low priority flows is deter-
ministic for both users and was designed to have minimal overlap
where both users increase and drop spending simultaneously. Be-
cause we wanted to show that the system can quickly and dynami-
cally adapt to the workloads, there is no synchronization points or
barriers introduced in the experiment to avoid overlap, hence the
optimal completion time improvement, as defined in Equation 6, is
limited even under ideal circumstances (perfectly proportional split
across all critical resources at all points in time).

Figure 6(a) shows that all benchmarks get a completion time
improvement of 11 − 12% from doubling the spending rate. In
comparison, the fair-share allocation strategy offers no differentia-
tion. We attribute the relatively low increase in performance to the
limited spending differentiation that was possible (without killing
concurrent workloads) in combination with the applications being
I/O-bound. I/O-bandwidth is not one of the resources currently
governed by the proportional share allocator. The bandwidth re-
sources we control include incoming network bandwidth from NIC
to CPU and outgoing network bandwidth from CPU to NIC. I/O-
bandwidth would follow the same model, but due to limited support
in Xen and the Linux kernel to enforce this resource reliably at the
time of conducting this experiment, it was not implemented 1. We
note that only the GridMix series of applications are affected by
this limitation, because the Digg application allows us to be more
aggressive in spending differentiation and the VideoToon applica-
tion is not I/O-bound.

Figure 6(b) shows that the benchmarks run more efficiently
using the workflow priority strategy as opposed to fair share. The
greatest relative improvements are seen in the web and queries
benchmarks. These benchmarks obtain a 10% improvement in
efficiency when using workflow priority allocation as opposed
to fair-share allocation. For the text benchmark the efficiency
improvement is only about 4%. This lower improvement is most
likely due to the non-local resource contention (e.g. cross-node
bandwidth), which we do not control. However, the consistent
improvement across all benchmarks shows that the workflow
priority strategy allows differentiated performance across a variety
of very generic MapReduce applications.

1A recent kernel extension (http://lwn.net/Articles/
306984/) allows us to implement this feature in future versions
of our system.

7.3 Stage Priority: Digg Results
We use the Digg application to evaluate the Stage Priority strat-

egy. In this experiment, one user applies the Stage Priority strat-
egy whereas the competing user uses the fair-share strategy. We
compare three runs of the experiment. In each run we let the user
increase spending in a different stage of the workflow. The purpose
of this set up is to determine the benefit obtainable when optimiz-
ing workflow performance by carefully choosing in which stage of
the workflow to increase spending. Note that the user who applies
the strategy will spend more in each experiment run, because the
fair-share strategy uses the lowest spending rate in all stages. The
completion time is thus also expected to improve by design using
the strategy, although the efficiency may not. The reason why we
decided not to let both users apply the strategy at the same time
with the same average spending rate like in the other experiments
is that the overlap synchronization would be complex and obscure
the main point of the investigation. The spending differentiation in
this experiment is more substantial than in the GridMix experiment
because the Digg application scales down more graciously without
crashing. Therefore we could increase the spending rates with a
factor of 20. I.e. the different weight vectors in Equation 9 em-
ployed were w = {20, 1, 1}, w = {1, 20, 1} and w = {1, 1, 20},
and the fair-share strategy uses w = {1, 1, 1}. The spending vec-
tors were normalized so that all stages with weight 1 received the
same budget. We also ran experiments that normalized the vectors
to all have the same average spending rate, but our metrics did not
show sufficient differentiation then to draw any clear conclusions.

Figure 7(a) shows that increasing spending in stage 2 resulted in
the best improvement, 31%. From Figure 7(b) it is clear that spend-
ing more on stage 2 is the most efficient strategy for this applica-
tion. It yields 187% gain in efficiency, compared to not increasing
spending in any of the stages.

7.4 Bottleneck Elimination: VideoToon Re-
sults

We use the VideoToon application to evaluate the Bottleneck
Elimination strategy. In this case we run the experiment three
times. In the first run one user applies the Bottleneck Elimination
strategy, in the second run both users apply this strategy and in the
third run both users apply the fair-share strategy. The system lim-
its the aggregate boost factor, f as described in Algorithm 5.1, to
0.9. So the first run of the experiment boosts one user with factor
f = 0.9 and the second user with f = 0. The second run boosts
both users with f = 0.45, and the final run sets f = 0 for both
users. We also add a twist to the background load in this experi-
ment. Half of the nodes are picked at random and more load are
induced on those nodes. This setup differentiated our results more
clearly as our strategy is able to adapt better to a heterogeneous
environment than the fair-share approach.

Figure 8(a) shows that this strategy resulted in a 20% completion
time improvement over fair share, according to the metric defined
in Equation 6. From Figure 8(b) we also see that the efficiency
improvement is 62%. Note that User 1 in the 1S,1FS experiment
run (where one user is strategic and the other uses fair-share spend-
ing) is the strategic user and User 2 is the fair-share user in both of
these graphs. The main result here is that multiple users applying
the bottleneck strategy may co-exist in the system with little im-
pact on each other, whereas the efficiency gains compared to the
fair-share strategy is substantial. We note that the efficiency in the
case where both users applied the strategy is slightly higher than
the efficiency obtained if no user employs the strategy. Further-
more, the efficiency of two strategic users is substantially higher
than the efficiency of the fair-share user competing with a strate-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2 4 6 8 10 12 14 16 18 20

Jo
b

D
ur

at
io

n
(s

)

Strategic
Fair Share

(a) Completion Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14 16 18 20

C
os

t (
$)

Strategic
Fair Share

(b) Cost

Figure 5: An example of cost and completion time across experiment jobs. The x-axis shows the finish time of a workflow denoted as hours elapsed
since the experiment started.

 0

 100

 200

 300

 400

 500

 600

 700

 800

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

)

web queries text

Strat Low
Strat High

Fair Low
Fair High

(a) Completion Time
web queries

 0

 0.2

 0.4

 0.6

 0.8

 1

E
ffi

ci
en

cy

text

Strategic
Fair Share

(b) Efficiency

Figure 6: Workflow priority GridMix metrics. The x-axis shows the benchmark run in the experiment.

gic user, although the completion times are roughly the same. This
difference motivates our separate treatment of efficiency and com-
pletion time and also hints that some regulation on the aggregate
boost factor, f , is in order (more aggressive aggregate boosting
would decrease the completion time further and eventually lead to
an efficiency loss too). From a game-theoretic perspective our three
experiment runs show that the choice of using our strategy is domi-
nant, in the sense that regardless of whether the other user employs
the strategy or not we are better off applying the strategy ourselves.
This is seen from our data because both the 1S,1FS and 2S runs
yield higher efficiency to the user employing the strategy than the
fair-share users in run 2FS. Another interesting result is that the
fair-share users showed much larger variance both in completion
time and efficiency than the strategic users. Hence, employing our
strategy improves system predictability too.

The effectiveness of the strategy can be intuitively explained by
the strategic users minimizing their impact on the system by re-
ducing priority on idle nodes, so if the other users happen to have
their bottleneck on one of those nodes, then efficiency is impacted
positively.

In summary, some systems regulate users without allowing con-
trol, leading to efficiency loss. Other systems allow control with-

out regulation, leading to unfairness. We have shown here that our
three optimization strategies improve both control and overall sys-
tem efficiency while regulating users.

8. ANALYSIS
The utility function and thereby also the efficiency metric de-

fined in Section 4 have two dimensions of variability that effect the
results; the decay rate, and the risk-aversion coefficient. For the
results presented so far we have assumed risk-neutral users, and
the decay rate was normalized across all applications to r = 2(see
Equation 4), which approximately corresponds to a 0.5% decay
rate per second for a job that runs for 6.5 minutes without con-
tention (e.g. GridMix web benchmark), and a 0.08% decay rate
for a job that runs for 40 minutes (e.g. the VideoToon application).
Here we relax these assumptions and study the sensitivity of the
efficiency results when changing the r and γ parameters in Equa-
tions 4 and 5.

8.1 Decay Rate Sensitivity
The decay rate reflects how important it is for a user to meet

a specific deadline. In Figure 9(a) we can see what effect differ-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

)

Stage 1 Stage 2 Stage 3

Strategic
Fair Share

(a) Completion Time
Stage 1 Stage 2

 0

 0.2

 0.4

 0.6

 0.8

 1

E
ffi

ci
en

cy

Stage 3

Strategic
Fair Share

(b) Efficiency

Figure 7: Stage priority Digg metrics. The x-axis shows the stage receiving increased funding.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

)

1S,1FS 2S 2FS

User 1
User 2

(a) Completion Time
1S,1FS 2S

 0

 0.2

 0.4

 0.6

 0.8

 1

E
ffi

ci
en

cy

2FS

User 1
User 2

(b) Efficiency

Figure 8: Bottleneck elimination VideoToon metrics. The x-axis shows the user mix of the experiment run where nS denotes n strategic users, and
nFS denotes n fair-share users.

ent decay rates have on the efficiency improvement. The center of
this graph corresponds to the default value (r = 2). The obvious
trend is that the higher decay rate (lower tolerance for delay) the
higher efficiency improvement is obtained from our prioritization
strategies. Because the GridMix benchmark applications showed
an order of magnitude less improvement in efficiency we display
them at a different scale (left y-axis) than the Digg and VideoToon
applications (right y-axis). We can see that the GridMix web and
queries applications show similar improvement in efficiency at the
default delay sensitivity level (r = 2), but our optimization is more
efficient for the queries application for higher decay rates and more
efficient for the web application at lower decay rates. This behavior
showcases that the delay sensitivity of users as well as the structure
of their applications determine how amenable a workflow is to op-
timization.

The interesting question is now what the behavior is when decay
rates approach zero? We can see that most applications maintain
a higher efficiency than the fair-share model (efficiency improve-
ment 0 in the graphs) regardless of the decay rate chosen. How-
ever, the queries and text benchmarks are only more efficient than
the fair-share baseline for decay rates greater than r = .07. We also
note that the Digg and GridMix-queries applications show particu-
larly steep growth in efficiency improvement with increasing decay
rates.

In conclusion even very delay insensitive users may benefit
greatly from optimizing the spending dynamically.

8.2 Risk Sensitivity
The risk attitudes of users reflect how sensitive they are to fluc-

tuations in performance. Figure 9(b) shows how sensitive the effi-
ciency result is to different risk attitudes of users. Previously pre-
sented results assumed risk neutral behavior (risk aversion coeffi-
cient 0). The graph shows that the more risk averse the users are
the less is the efficiency gain of the prioritization strategy and the
less is the difference in efficiency gain among the benchmark ap-
plications. The applications with high decay sensitivity (Digg and
GridMix queries) also show steep decay in efficiency gain with in-
creasing risk aversion (decreasing risk tolerance). A moderately
risk seeking Digg application (γ = −3) can obtain close to 6 times
(600%) gain in utility from using our optimization strategy. To get
an understanding of how risk seeking these users are we also graph
the risk profiles of the extremes, −3 and 3 as risk aversion coeffi-
cients, in Figure 9(c). The gain (U/Uopt) and the utility (UR) are
defined as in Equation 5. In summary, this analysis shows that users
with a high risk aversion coefficient (γ = 3) could still get very
high efficiency gains with our strategies; 65% in the Digg applica-
tion, and 30% in the VideoToon application compared to 187% and
62% respectively for a risk neutral user.

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

G
rid

M
ix

 (
w

eb
,q

ue
rie

s,
te

xt
)

(%
)

A
pp

lic
at

io
n

(d
ig

g,
vt

oo
n)

 (
%

)

Decay Rate

web
queries

text
digg

vtoon

(a) Time Decay Efficiency Improvement

 0

 5

 10

 15

 20

 25

 30

 35

-3 -2 -1 0 1 2 3 4 5
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

G
rid

M
ix

 (
w

eb
,q

ue
rie

s,
te

xt
)

(%
)

A
pp

lic
at

io
n

(d
ig

g,
vt

oo
n)

 (
%

)

Risk Aversion Coefficient

web
queries

text
digg

vtoon

(b) Risk Aversion Efficiency Improvement

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
til

ity
 (

U
R

)

Gain (U/Uopt)

risk prone
risk neutral
risk averse

(c) Risk Profile

Figure 9: Time decay, risk aversion sensitivity and risk profile example.

9. RELATED WORK
Related work falls into five broad categories, shared cluster

scheduling, optimizations within the MapReduce framework, opti-
mizations in alternative data intensive programming models, tradi-
tional database query optimization, and dynamic proportional share
allocation.

First-In First-Out (FIFO) scheduling is a popular model because
of its simplicity, but typically requires social scheduling in large
deployments, and could lead to head of queue blocking and gam-
ing behavior as shown in [7]. Shortest Remaining Processing Time
(SRPT) has some nice theoretical properties such as minimizing
sojourn time (here called completion time), but relies on estimating
job sizes accurately, which could be difficult in practice [17, 40].
Preemption and backfilling strategies can improve the completion
time in these systems. However, the efficiency of the system may
deteriorate under competitive settings when resource contention is
high by solely focusing on optimizing system properties such as
utilization or throughput without taking job importance differences
into account. User-centric, utility-based optimization, developed
in [9, 15, 28], addresses this problem and shows that it can lead to
improvements in aggregate user utility (social welfare) compared
to the traditional scheduling techniques. We extend this body of
work by taking advantage of the MapReduce structure of applica-
tions to distribute spending optimally, and thereby both impose a
lower negative impact on the system as a whole and also improve

the individual cost-benefit ratio of workflows. This design reduces
the burden on end-users, compared to systems where users need to
fully specify utility functions as in [2].

Optimization of workflow execution within a MapReduce frame-
work has been addressed within the PIG system [23]. PIG provides
a SQL-like data access language and the optimization techniques
are therefore similar to database query optimization approaches.
Optimization techniques applied include, reordering of commut-
ing filters, automated collocation of mappers and reducers, optimal
selection of alternative join implementations, and reuse of interme-
diate output across users. The LATE system [42] extends the spec-
ulative execution in Apache Hadoop’s MapReduce implementation
to make better estimates of which job executions need to be dupli-
cated. The key innovation of LATE is to take the system impact
of speculative jobs into account and to make better progress pre-
dictions to resubmit more appropriate tasks. In [6] the MapReduce
scheduling model is extended to account for heterogeneity of the
compute nodes in terms of availability and CPU performance, com-
mon in large scale Grid systems. The Mars system [14] implements
MapReduce optimizations on GPU platforms mainly by aggres-
sively taking advantage of the massive threading capacity. A large
number of mappers and reducers can thus be physically collocated
but run in multiple threads. A similar extension is implemented in
the Phoenix system [30] which is targeted at shared memory clus-
ters. There is, however, no way of enforcing or leveraging cross-

user priorities in the context of a MapReduce job, which is the key
to all of our optimization techniques, in any of these systems.

A number of alternatives to the MapReduce model has been pro-
posed to tackle inefficiencies in the model. Dryad [16] allows spec-
ification and parallel execution of complete DAGs. One key opti-
mization is a divide-and-conquer technique where the job can be
split into sub-parts depending on the size of the input (or interme-
diate output) and the available resources. This dynamic flexing of
resources allocated for a job could be compared to our dynamic
virtual machine capacity boosting approach. The advantage of our
approach is that we can decide to boost the capacity at any point
during the execution of a job and not only when the input data is
split. In [20] an extension to MapReduce is proposed based on
the Mortar stream processor to execute MapReduce tasks continu-
ously over a stream of source data. This avoids some of the inef-
ficiencies of having to resubmit MapReduce jobs to accommodate
partially new data. A similar problem is addressed in the Oivos
system [37], which essentially allows multi-pass MapReduce jobs
to pick up from where they left off in the previous run akin to how
the Unix make program processes source code build workflows in a
Makefile. We do not address any of these inefficiencies in our opti-
mizations but see them as complimentary to our work, because they
still make use of the MapReduce primitives for individual jobs. The
more continuous execution model is also a good fit to our propor-
tional share allocation model, whereas traditional batch scheduling
policies would have a hard time scheduling the streams. In [41]
a junction-tree topology instead of the master-worker topology in
MapReduce is proposed to avoid the master becoming a bottleneck
in large computations. We address this problem by increasing the
spending rate on the master nodes. Our bottleneck strategy is more
flexible, in that it can mitigate worker node bottlenecks dynami-
cally on any nodes as soon as they appear.

Our work is also related to traditional database optimization ap-
proaches such as the adaptive query processing used in the Ed-
dies [3] and Flux [35] systems. These systems are in turn based on
the seminal work in [34] on database query optimization. They rely
on tracking statistics, putting costs on equivalent data access paths,
sharing intermediate results across queries and users, and choos-
ing among alternative join orders and commuting filters. They
are all limited by and tied to the use of SQL and are not appli-
cable for more custom parallel processing allowed by MapReduce
and CPU intensive applications such as our VideoToon application.
The Mariposa system [36] is a distributed database where queries
receive a budget to spend for execution, and each site tries to op-
timize income by selling storage objects and processing requests.
However, Mariposa has no notion of proportional share, virtualiza-
tion nor MapReduce stages, which are all central to our optimiza-
tion strategies.

Dynamic and distributed proportional-share resource allocation
has been investigated in the Lottery Scheduling [39], REXEC [8]
and Tycoon [19] systems. Neither of these systems implement any
workflow optimization strategies, but deploying Hadoop on top of
any of these systems would allow us to apply the strategies presen-
ter here.

10. CONCLUSIONS
We have shown that our approach of isolating MapReduce clus-

ters in virtual machines with a continuously adjustable performance
based on user-determined spending rates can address many of the
resource allocation inefficiencies in existing systems. We how-
ever recognize that the problem of staging in and accessing large
common data sets becomes more complex in a virtual setting. To
this end we intend to investigate different approaches for overlay-

ing MapReduce and HDFS clusters on virtual machines to make
different trade-offs between performance isolation and data reuse.
Another direction of future work is to integrate our system more
closely with the Hadoop scheduler plug-in to allow some of our
optimization strategies to be used in standard (non-virtualized)
Hadoop installations.

Acknowledgments
We would like to thank our colleagues Nathan Moroney, Pere
Obrador and Gabor Szabo for their help with the VideoToon and
Digg applications used in our case study. We would also like to
thank our shepherd Eno Thereska and the anonymous reviewers
for insightful comments that helped improve the final version of
this paper.

11. REFERENCES
[1] K. Arrow. Aspects of the theory of risk-bearing. Helsinki:

Yrjo Jahnsson Lectures, 1965.
[2] A. AuYoung, L. Grit, J. Wiener, and J. Wilkes. Service

contracts and aggregate utility functions. In Proceedings of
the IEEE International Symposium on High Performance
Distributed Computing (HPDC), June 2006.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In ACM SIGMOD: International
Conference on Management of Data, 2007.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. In Proceedings of the ACM Symposium
on Operating Systems Principles, 2003.

[5] R. E. Bryant. Data-intensive supercomputing: The case for
DISC. Technical Report CMU-CS-07-128, Carnegie Mellon
University, 2007.

[6] K. Cardona, J. Secretan, M. Georgiopoulos, and
G. Anagnostopoulos. A grid based system for data mining
using MapReduce. Technical Report TR-2007-02,
AMALTHEA, 2007.

[7] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C.
Parkes, J. Shneidman, A. C. Snoeren, and A. Vahdat. Mirage:
A microeconomic resource allocation system for SensorNet
testbeds. In Proceedings of the 2nd IEEE Workshop on
Embedded Networked Sensors, 2005.

[8] B. N. Chun and D. E. Culler. Market-based proportional
resource sharing for clusters. Technical Report CSD-1092,
University of California at Berkeley, Computer Science
Division, January 2000.

[9] B. N. Chun and D. E. Culler. User-centric performance
analysis of market-based cluster batch schedulers. In
Proceedings of the 2nd IEEE International Symposium on
Cluster Computing and the Grid, 2002.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Symposium on Operating
System Design and Implementation, 2004.

[11] M. Feldman, K. Lai, and L. Zhang. A price-anticipating
resource allocation mechanism for distributed shared
clusters. In Proceedings of the ACM Conference on
Electronic Commerce, 2005.

[12] http://hadoop.apache.org/core, 2008.
[13] G. Hardin. The tragedy of the commons. Science,

162:1243–1248, 1968.
[14] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang.

Mars: a MapReduce framework on graphics processors. In

PACT ’08: Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, pages
260–269, New York, NY, USA, 2008. ACM.

[15] D. Irwin, J. Chase, and L. Grit. Balancing risk and reward in
market-based task scheduling. In International Symposium
on High Performance Distributed Computing, 2004.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys ’07: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2007, pages 59–72, New York, NY, USA, 2007.
ACM.

[17] P. R. Jelenkovic, X. Kang, and J. Tan. Adaptive and scalable
comparison scheduling. In ACM SIGMETRICS’07:
International Conference on Measurement and Modeling of
Computer Systems, pages 215–226, 2007.

[18] E. Jensen, C. Locke, and H. Tokuda. A time-driven
scheduling model for real-time operating systems. In IEEE
Real-Time Systems Symposium , pages 112–122, 1985.

[19] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and
B. A. Huberman. Tycoon: an implemention of a distributed
market-based resource allocation system. Multiagent and
Grid Systems, 1(3):169–182, Aug. 2005.

[20] D. Logothetis and K. Yocum. Ad-hoc data processing in the
cloud. Proc. VLDB Endow., 1(2):1472–1475, 2008.

[21] N. Moroney, P. Obrador, and G. Beretta. Lexical image
processing. In Proceedings of the 16th IS&T/SID Color
Imaging Conference, pages 268–273, 2008.

[22] C. Olston. Pig: Web-scale processing.
http://www.cs.cmu.edu/~olston/pig.ppt,
2008.

[23] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.
Automatic optimization of parallel dataflow programs. In
USENIX Annual Technical Conference, 2008.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for data
processing. In SIGMOD 2008: ACM SIGMOD/PODS
Conference, 2008.

[25] C. H. Papadimitriou. Algorithms, games, and the Internet. In
Symposium on Theory of Computing, 2001.

[26] L. Peterson, T. Anderson, D. Culler, , and T. Roscoe.
Blueprint for Introducing Disruptive Technology into the
Internet. In First Workshop on Hot Topics in Networking,
2002.

[27] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming Journal Special Issue on Grids and
Worldwide Computing Programming Models and
Infrastructure, 13(4):227–298, 2003.

[28] F. I. Popovici and J. Wilkes. Profitable services in an
uncertain world. In SC05: Proceedings of Supercomputing,
2005.

[29] J. Pratt. Risk aversion in the small and in the large.
Econometrica, 32:122–136, 1964.

[30] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for multi-core and
multiprocessor systems. In HPCA’07: IEEE 13th
International Symposium on High Performance Computer
Architecture , pages 13–24, 2007.

[31] T. Sandholm. Statistical methods for computational markets.

Doctoral Thesis ISRN SU-KTH/DSV/R–08/6–SE. Royal
Institute of Technology, Stockholm, 2008.

[32] T. Sandholm and K. Lai. A statistical approach to risk
mitigation in computational markets. In Proceedings of the
ACM International Symposium on High Performance
Distributed Computing (HPDC), June 2007.

[33] T. Sandholm, K. Lai, J. Andrade, and J. Odeberg.
Market-based resource allocation using price prediction in a
high performance computing grid for scientific applications.
In Proceedings of the IEEE International Symposium on
High Performance Distributed Computing (HPDC), June
2006.

[34] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In SIGMOD 1979: ACM
SIGMOD International Conference on the Management of
Data, 1979.

[35] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.
Franklin. Flux: An adaptive partitioning operator for
continuous query systems. Technical Report
UCB/CSD-2-1205, U. C. Berkley, 2002.

[36] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: a wide-area
distributed database system. The VLDB Journal,
5(1):048–063, 1996.

[37] S. V. Valvag and D. Johansen. Oivos: Simple and efficient
distributed data processing. High Performance Computing
and Communications, 2008. HPCC ’08. 10th IEEE
International Conference on, pages 113–122, Sept. 2008.

[38] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared storage
servers. In FAST’07: 5th USENIX Conference on File and
Storage Technologies, 2007.

[39] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In
Operating Systems Design and Implementation, pages 1–11,
1994.

[40] A. Wierman and M. Nuyens. Scheduling despite inexact
job-size information. In ACM SIGMETRICS’08:
International Conference on Measurement and Modeling of
Computer Systems, pages 25–36, 2008.

[41] J. Wolfe, A. Haghighi, and D. Klein. Fully distributed EM
for very large datasets. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, pages
1184–1191, New York, NY, USA, 2008. ACM.

[42] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in
heterogeneous environments. In OSDI’08: 8th USENIX
Symposium on Operating Systems Design and
Implementation , 2008.

[43] L. Zhang. The efficiency and fairness of a fixed budget
resource allocation game. In International Colloquium on
Automata, Languages and Programming, pages 485–496,
2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

