
Admission Control in a Computational Market

Thomas Sandholm
School of Information and Communication Technology

KTH – Royal Institute of Technology
SE-16440 Kista, Sweden

sandholm@kth.se

Kevin Lai
Information Dynamics Laboratory

Hewlett-Packard Laboratories
Palo Alto, CA 94304, USA

kevin.lai@hp.com
Scott Clearwater
P.O. Box 1252

Los Altos, CA 94023, USA
clearway@comcast.net

Abstract

We propose, implement and evaluate three admission
models for computational Grids. The models take the ex-
pected demand into account and offer a specific perfor-
mance guarantee. The main issue addressed is how users
and providers should make the tradeoff between a best effort
(low guarantee) spot market and an admission controlled
(high guarantee) reservation market. Using a realistically
modeled high performance computing workload and utility
models of user preferences, we run experiments highlight-
ing the conditions under which different markets and ad-
mission models are efficient. The experimental results show
that providers can make large efficiency gains if the admis-
sion model is chosen dynamically based on the current load,
likewise we show that users have an opportunity to optimize
their job performance by carefully picking the right market
based on the state of the system, and the characteristics of
the application to be run. Finally, we provide simple func-
tional expressions that can guide both users and providers
when making decisions about guarantee levels to request or
offer.

1. Introduction

In large-scale shared systems, such as cross-
organizational Grids, the best-effort provisioning model
has dominated because of its scalability, high utilization,
and high availability. Elastic applications that can tolerate
variability in performance thrive in this model. Examples
include batch-processing applications like data mining, and
data warehousing. Other, inelastic applications require
more stringent quality-of-service (QoS) assurances for their

users. Examples of these are interactive applications like
web applications, and media servers. These applications
require an admission control mechanism to prevent high
load from violating QoS assurances. However, admission
control reduces scalability, reliability, and utilization and
introduces the risk of being rejected admittance.

The key difference between best-effort and admission
control is that best-effort imposes more costs (in the elas-
ticity requirement) on applications whereas admission con-
trol imposes more costs (in scalability, reliability, utiliza-
tion, and rejections) on the system provider. Nonetheless,
for many applications, the cost to implement elasticity is
high. As a result, maximizing system efficiency requires
both models, but also incentives for applications to use the
best-effort model. Economic systems (e.g., [12], [27], [23],
[8], [18]) use payment as the incentive. This encourages
applications that can implement elasticity to use best-effort
while also accommodating those that cannot. In addition,
admission control in a priced system provides an opportu-
nity for the provider to do price discrimination and thereby
sustain its profitability.

We examine such a hybrid system (based on the
Tycoon[18] market-based resource allocator) in this paper.
Having two resource models in a system introduces several
questions:

What service model should an application use? Most
applications are neither purely elastic nor purely inelastic.
Instead, a typical application has a specific tolerance for de-
lay. How easily the system can meet delay requirements
varies over time as the system load changes. Moreover, an
application must balance its delay tolerance with its will-
ingness to pay for performance and the current cost of re-
sources, which constantly changes in a market-based sys-
tem.

How much of a resource should a service provider al-
locate to each model? The goal of the service provider is
to maximize its profits. It does this by packaging its limited
resources in a ratio of best-effort and admission control at
prices that are desirable to applications. The ratio and the
prices change over time as applications come and go. The
provider must also increase the price of admission control
resources to include the expected opportunity cost of future
rejected admissions.

Previous studies of admission control have been in non-
economic systems, been tied to a specific scheduling dis-
cipline, and focused on simulations driven by simplified
distributional models. Instead, we focus on the admission
control problem in an economic system and our work is in-
dependent of scheduling. Moreover, we construct and use
workload models derived from a HPC production cluster
and we evaluate an admission control broker in a live com-
putational market cluster, using all the components of the
production system.

Our key contribution is a set of admission control mod-
els based on statistical properties of the demand. Admis-
sion decisions rely both on expected risk of future rejec-
tions, and existing commitments. The risk estimator uses
recent price history to calculate a statistical bound (Cheby-
chev upper bound) on the likelihood of a certain deviation
from the average demand. The price for a reservation is
thus fully dynamic and correlated with the demand, while
inelastic applications still obtain high guarantees.

In our experiments, we measure economic efficiency,
which is the ratio of the utility obtained to the optimal util-
ity (with a theoretical admission model that has full knowl-
edge of future jobs). We show that the economic efficiency
of a system that only provides best-effort is 80 per cent at
low load, but only 55 per cent at high load. In the high
load scenario, inelastic applications have only 35 per cent
efficiency, while elastic applications have 90 per cent effi-
ciency. In contrast, an admission control model offering ab-
solute guarantees is 75 per cent efficient, regardless of load
and application elasticity. Hence, providers have an incen-
tive to choose and partition the admission model based on
resource contention, and users have an incentive to pick an
admission model that fits their job preferences. The results
presented in this paper aid both the provider and the user in
making these decisions dynamically.

The rest of the paper is structured as follows. In Sec-
tion 2 we describe the workload model used in the exper-
iments. The admission models are presented in Section 3.
Section 4 discusses the experiments, Section 5 analyzes the
experiment results, Section 6 compares our approach to re-
lated research, and finally Section 7 provides concluding
remarks.

2. Workload Model

The goal of the workload model is twofold. It should
be representative of workloads observed in a shared clus-
ter production system, and it should enable efficient study
of parameter spaces in our system. All jobs are allocated
and consume real system resources in a full deployment of
a computational market. Therefore, the workloads must be
short enough to make the results easily reproducible while
capturing as much of the statistical traits of the original trace
as possible. Pure simulations 1 are easier to evaluate statis-
tically, but our main contribution in this work is the evalua-
tion of a real, distributed deployment.

Instead of using over-simplified assumptions and gener-
alizing behavior across different clusters and sites, we chose
to capture individual traces in more precise models. Here
we present the results from using the SDSC (San Diego Su-
percomputer Center) Blue Horizon cluster trace from April
2000 to January 2003, containing 223402 jobs [11].

Distributional models for job inter-arrival time (IAT),
runtime (RUN), and number of CPUs used per job (CPU)
were constructed directly from the trace. The techniques
used to model distributions are very generic and can be ap-
plied to a wide range of workload traces. We chose to fo-
cus solely on the SDSC trace for three reasons. First, the
trace is the longest one available from the parallel work-
loads archive, and thus gives us the best statistical stabil-
ity. Second, our main interest is in studying the parameter
space of different admission policies under varying load,
and hence utilizing a single workload model simplifies the
matrix of configurations to be investigated. Third, the trace
showcases characteristics that have been observed in many
other HPC traces [11].

To synthesize workloads with the same statistical proper-
ties as the original trace, we construct a functional represen-
tation of the inverse of the cumulative distribution function
(CDF), sometimes called the percent point function (PPF)
or the quantile function. Many distributions, such as the
Normal or Gaussian distribution do not have simple analyti-
cal representations of the PPF, which also effects our choice
of model. To generate the desired workload the PPF is ap-
plied to a series of uniformly distributed random variables
in the interval (0, 1).
Inter-Arrival Time. The inter-arrival times were found
to follow two different regimes. This bimodality was also
found by just studying the last 1/10 of the trace as well as
in parallel archive workload traces from KTH and OSC, not
presented here. The pattern found was that jobs submitted
within about 10 seconds of each other were overrepresented
and followed a separate distribution compared to all other
jobs. Standard distributional models do not handle multi-
modality and we therefore had to represent this distribution

1see [25] for a similar simulation-based evaluation

with a mixture model. Each distribution in the mixture was
fit to the data using a standard maximum-likelihood estima-
tion (MLE) algorithm. The resulting model, which we call
hyper log-weibull (HypWeib), is represented as follows:

Z = αX + (1 − α)eY (1)

where Z is the random variable of the IAT dis-
tribution, and α was found to be 0.29. Fur-
thermore, if X ∼ Weibull(16.1489, 1.3462) and
Y ∼ Weibull(5.93123, 4.95969) then Z ∼ HypWeib.
The Weibull CDF is easy to invert arithmetically into a PPF,
and therefore our HypWeib distribution is also easily repre-
sentable as a PPF, which can be used to generate a synthetic
IAT workload.
Runtime. The runtime data was also found to be bimodal.
Jobs with runtimes less than 30 seconds followed a differ-
ent distribution than the rest. Since these jobs are unlikely
to have produced any useful work and constitute less than
7 per cent of the data, we do not represent them in our run-
time model. No standard distribution was found with the
maximum-likelihood algorithm that approximated the em-
pirical CDF satisfactorily, therefore we used a polynomial
linear least-squares fit of the CDF. To simplify the arith-
metic inversion into a PPF we used a 2nd order polynomial
as follows:

CDF (x) = −0.0125x2 + 0.3018x− 0.8184. (2)

We call this fit the PolyLin distribution in the discussion be-
low.
Job Size. From the density function of number of CPUs
per job (CPU) it was apparent that values with base 2 were
overrepresented. Only about 1 per cent of the jobs did not
follow this pattern. We therefore neglect these jobs in our
model for simplicity. Again the log base 2 transformed val-
ues do not follow a standard CDF well, but since it is a dis-
crete variable and the number of different values with more
than 3 per cent density are only six, the distribution which
we call Binary Bin (BinBin) can be easily and accurately
represented as a histogram as follows:

Z = 2X+2 (3)

where Z is the random variable in the CPU distribu-
tion, X is distributed as the histogram density function
p(xi) = vi, where x is the vector {1..6} and v is the
vector {0.508, 0.144, 0.126, 0.137, 0.048, 0.035}. Alterna-
tively, this decline in binary exponents can be modeled as a
Zipf(1.4), with a slightly worse fit but with one instead of
six parameters.
Model Evaluation. To obtain quantitative statistics for
how well the models fit the data we utilize the Two-sided
Kolmogorov-Smirnov (KS) test. A bootstrap technique [9]
is used to mimic the experiment setup of small representa-
tive sample runs. We draw 100 random samples from the

empirical and our synthesized workloads, before compari-
son. For each pair of samples we calculate the KS value
(max absolute difference between CDFs), and test the null
hypothesis that the two samples are drawn from the same
distribution at a 5 per cent significance level. We then
record the success-rate, where the null hypothesis could not
be rejected, and the average KS values for the sample tests
as well as a KS test performed on the entire data sets. As a
benchmark we also perform the hypothesis test on the trace
with itself. It is commonly assumed that the job submis-
sions follow a Poisson process (submissions are spread uni-
formly and independently over some time interval), which
results in the IAT being exponentially distributed. As an ad-
ditional comparison we therefore also model the IAT with
an MLE fitted Exponential (Exp) distribution with mean
378.648. Similarly power-law distributions have been ob-
served for process runtimes so we also fit the runtime data to
a Pareto (Par) distribution with location parameter 1.77332,
scale parameter 213.171 and threshold parameter 0, again
obtained using MLE. Table 1 summarizes the goodness-of-
fit results. From these results we can conclude that our three
models, HypWeib, PolyLin, and BinBin, all provide accu-
rate fits to the SDSC trace data. The KS test clearly rejects
the Exp model as a good representation of the IAT distribu-
tion. Furthermore, we calculate the coefficient of variance
(CV = σ/µ) of the IAT data to be 3.86, which also rules
out a Poisson process, which has an expected CV of 1. The
Par model is a good fit to the runtime data, but not as good
as the PolyLin fit. PolyLin provides a slightly worse fit than
HypWeib and BinBin most likely due to the fact that we ig-
nored 7 per cent of the shortest running jobs for simplicity
reasons. To summarize, when taking 1000 samples (with
replacement) of 100 values each from the synthesized dis-
tribution we can get representative values, according to the
KS statistic at a 5 per cent significance level, in 87 per cent
of the samples or more for all of our models.
Job Value. No information about user-specified job valua-
tions are available in the trace that we study. Therefore, a
set of standard distribution models are used. Three distri-
butions, equal importance (Equal), normal (Norm), pareto
power-law (Pareto) are modeled. Equal importance distri-
butions occur when all jobs and all users have the same im-
portance. This model is exemplified in the PlanetLab net-
work. A normal distribution is the most common assump-
tion as it can represent all populations produced by aggre-
gating individually independent random variables with fi-
nite mean and variance, in accordance with the central limit
theorem. Finally, the Pareto distribution was originally used
to model the distribution of incomes, and similar power-law
relationships have been observed in various large-scale net-
work metrics, such as popularity of web sites.
Correlations. Supercomputer jobs are known to exhibit
long-term correlations (or long memory) over time that

Table 1. Goodness-of-fit Results using Kolmogorov-Smirnov tests against the Trace data.
KS Data 1 KS Data 2 KS success-rate KS complete data KS sample mean
Trace IAT Trace IAT 0.948 0 0.1161
HypWeib Trace IAT 0.897 0.0557 0.1337

Exp Trace IAT 0.034 0.2406 0.2901
Trace RUN Trace RUN 0.944 0 0.1174

PolyLin Trace RUN 0.869 0.0718 0.1371
Par Trace RUN 0.818 0.1075 0.1565

Trace CPU Trace CPU 0.989 0 0.0861
BinBin Trace CPU 0.982 0.0165 0.0880

Zipf Trace CPU 0.974 0.0644 0.1040

could lead to periods of anomalously high load [16]. A met-
ric often used to quantify the correlation is the Hurst [13]
and Mandelbrot [20] R/S statistic or Hurst exponent. A
memoryless process (such as white noise) would have a
Hurst exponent of 0.5 whereas processes exhibiting long
memory would have exponents close to 1. Exponents less
than 0.5 indicate anti-correlation, i.e. a past trend is likely
to be reversed. We measured a Hurst exponent of 0.735
for the IAT series in the SDSC data, indicating moderate
long term correlations, which corresponds well to previous
work [16]. To adequately represent a given Hurst exponent
in synthesized data, a very large number of data points need
to be generated, which makes it impractical for our exper-
iments. Instead we run our experiments under a couple of
different load and IAT configurations to represent both reg-
ular operation periods and high load periods. We also ran
some experiments where we induced short-term time corre-
lations in the IAT value series with a simple sort and per-
mute algorithm, and found that the results were largely the
same, with the exception that a purely statistical admission
model performed slightly better, as expected. We further
note that no significant cross-correlations were found be-
tween the inter-arrival time, runtime and job size properties.
Due to space limitations and the complexity of a thorough
treatment, the correlation issue is left out-of scope and as
the focus of future work.

3. Admission Models

In this section three different admission models are
described, best effort (BE), statistical admission control
(SAC), and capacity admission control (CAC). All of these
models take a contract request and produce either an ac-
cepted or a rejected contract. The contract request has two
parts, service level requirements and resource requirements.
The service level requirements contain the budget a con-
sumer is willing to pay for the resources, as well as to-
tal number of work units (CPU cycles in our experiment)
needed per node, parallelism (number of nodes), deadline
and type of contract (BE, SAC or CAC). The resource re-

quirements specify detailed min and max bound preferences
for resources such as CPU, memory, disk, and bandwidth.
The resource requirements are enforced and continuously
evaluated by the market-based resource allocator (Tycoon’s
Xen virtualization layer), and the service level requirements
are enforced at submission time and evaluated at completion
time by the admission model implementation. An approved
contract contains a list of nodes selected to run the job and
their individual funding levels.
Best Effort. In the best effort model the contract is only
rejected if the current spot market price is too high to get
the resources specified in the resource requirements part of
the contract. The service level part is only used to validate
the contract a posteriori. Existing jobs can be preempted
by new arrivals that pay more. Note that preemption here
refers to performance or resource share degradation only,
not necessarily that the preempted job is stopped. The re-
source share obtained is:

q =
b

b + c
(4)

where b is the spending rate (e.g. $/s) derived from the bud-
get and the deadline, and c is the current cost or price of
the resource defined as: c =

∑

i bi where bi is the current
spending rate of consumer i.
Statistical Admission Control. In the statistical admission
control model the contract is rejected if the budget is less
than an estimated future percentile of the price, or if the
current spot market price is too high to get the required
resources. Existing jobs can be preempted. The resource
share obtained with this model will not drop below qmin

with a statistical guarantee g where

qmin =
b

b + F−1(g)
(5)

and F−1(g) is an estimate of the inverse of the cumula-
tive price distribution function for a guarantee in the interval
(0..1). As an approximation of F−1 we use the Chebychev
bound for a given mean and standard deviation of the price.
More details on this technique can be found in [24].

Capacity Admission Control. The capacity admission
control model performs the same statistical check as in the
SAC model to ensure that a minimum price which is higher
than the spot market price is paid for a capacity controlled
contract. If the statistical check succeeds, an additional
check is made to ensure that no currently active contracts
are violated. A contract violation is detected by checking
the resource shares obtained for all running jobs if the new
job were to be admitted. If the share is below what is re-
quired to process the total number of work units for any
job, the contract of that job is violated. Existing jobs can
thus not be preempted in this model. The admission test
(which must be true for a contract request to be accepted)
is:

∀s ∈ S :

n
∑

h

bh(s)

bh(s) + bh(r) + c
≥ qs (6)

where S is the set of all existing contracts including the re-
quested contract, n is the number of hosts, bh(s) is the bid
on host h in contract s, bh(r) is the bid on host h in the
requested contract r, and qs is the minimum performance
share promised in contract s. Enforcement may be done
on a host by host basis or across all hosts in the contract.
We chose the latter in our experiments to allow hosts with a
higher than promised performance to compensate for slower
hosts in the same contract, and thereby cause fewer rejec-
tions.

4. Experiments

4.1. Configuration and Setup

Each job runs a CPU intensive benchmark application
until the runtime has expired or the job has completed. Each
user gets a budget of $100 to split among its jobs, accord-
ing to relative value, runtime, and size (CPUs). After the job
has finished we record the number of work units completed,
which is directly proportional to total number of CPU cy-
cles consumed. The SAC and CAC admission controllers
both use the 60 per cent Chebychev bound as price rejec-
tion threshold (users who are not willing to pay more are
rejected).

A work plan generated using the workload model de-
scribed in Section 2 serves as input to each experiment run.
The work plan contains parameters for each job to be run
including: job id, IAT, runtime, CPUs, value, model, and
user id. The model parameter is best effort (BE), statisti-
cal admission control (SAC), or capacity admission control
(CAC).

An experiment run comprises a 2 hour trace of 50 jobs
executed on a market-based cluster of 15 hosts and 30
CPUs. 10 users submit 5 jobs each with 4-10 CPUs/job,
2-16min runtime/job, and 30s-8min IAT/job. An identical

trace is run with the BE, SAC, and CAC admission models.
In order to make statistical claims about differences among
the admission policies, each experiment run is repeated with
five random traces generated with the same workload model
configuration. The rationale behind this setup is to capture
both aleatory (randomness within a distributional model)
and epistemic (variations due to external factors, in our case
live system behavior not captured in our model) uncertainty
common in risk modeling [21].

The results from five different workload model configu-
rations are presented below: Pareto job value distribution
under low load, Pareto job value distribution under high
load, equal job values under high load, Normal job value
distribution under high load, and finally a random admis-
sion benchmark configuration under high load. A single run
of all the experiments including epistemic repetitions, thus
took about 150 hours (6 days and 6 hours), which explains
why we limited the repetitions to five.

The different load levels were obtained by generating
traces with minimum/mean IAT 90/153.66, and 30/92.36
seconds for low, and high load respectively. The load lev-
els were set to result in moderate and extensive contention
for resources. As the moderate contention workload is less
sensitive to the job characteristics in general and the job
valuation in particular, we only present the results from the
Pareto distribution under low load here.

4.2. Metrics

We are mainly interested in the economic efficiency and
fairness of the system, but some basic properties of the ad-
mission controller must be met. In particular an admission
controller which rejects too many requests will cause under-
utilization of resources. Similarly, an admission controller
that does not decrease the number of contract violations is
of little value. We therefore compare contract violations, re-
source utilization and contract rejections as system metrics
independent of the economic metrics.
Violations. This metric measures the ratio between the jobs
that have been admitted to those that meet their deadlines.
Violations = js

ja

, where js is the number of jobs that suc-
cessfully meet their deadlines, and ja is the number of jobs
that are admitted.
Utilization. Utilization is calculated as the average work
units processed per second, compared to a theoretical maxi-
mum utilization if no resources were idle at any point during
the experiment run. Utilization = w

w∗
, where w is the num-

ber of work units completed in the experiment, and w∗ is
the theoretical maximum.
Rejections The rejection metric is calculated as the ratio of
jobs in the experiment to jobs being rejected at admission
time. Rejections = jr

jt

, where jr is the number of jobs be-
ing rejected, and jt is the total number of jobs.

Demand Correlation. As a measure of global fairness, we
consider the correlation of the demand and the price, seen as
cost by the user and profit by the provider. Because the best
effort model does not reject jobs at admission time with our
experimental workloads, it is used as as an approximation
for demand. Demand Correlation = ρX,Y , where ρX,Y is
the Pearson correlation coefficient of the random variables
X and Y , X is the time series of 5min averages of the price
in the best effort run, and Y is the corresponding time se-
ries of the admission mechanism being measured (SAC, or
CAC).
Efficiency. As an aid to measuring economic efficiency, the
utility function quantifies the payoff a user gets from run-
ning a job. The first part of the utility function represents
users who do not get any payoff unless the job is fully com-
pleted. We call this the inelastic utility.

Ui(wd, p, v) =

{

v − p if wd ≥ w

−p if wd < w
(7)

where, wd is the amount of work completed at the deadline,
p is the price paid for running the job, v is the valuation of
the job (money bid on job), and w is the work requested
in the performance contract. The second part of the util-
ity function represents users who get an incremental payoff
based on how much work they completed. We call this the
elastic utility.

Ue(wd, p, v) = min(wd/w, 1)v − p (8)

A weighted linear combination of (7) and (8) is then the
final utility function

U = αUi + (1 − α)Ue (9)

Taking the sum of all utilities across all jobs, j, gives us
a metric of the social welfare, which compared to the opti-
mal utility (with off-line knowledge) can be seen as the eco-
nomic efficiency of the system. Efficiency = 1

J

∑J

j
U(j)
U∗(j) ,

where U∗ is a theoretical optimal utility obtained from an
off-line admission control strategy with no charges applied
to (9). More elaborate utility functions could have been
used, such as time-decaying utility, or any other quasi-linear
utility transformation. We did run some experiments with
time-decaying utility as well but found that it complicated
the model without providing additional qualitative results.
Our main point is to show the difference between elastic
and inelastic applications with different market models, and
we found the above functions to capture this aspect in the
simplest and most accurate way.

To determine the reliability of the results, we perform a
statistical test based on the mean and the standard deviation
of the metrics. Since only 5 repetitions (experiment sam-
ples) can be used because of time constraints the standard

z-test (e.g [µ − 1.96σ, µ + 1.96σ] as the 5 per cent signifi-
cance confidence bound) cannot be performed and we have
to resort to the pairwise t-student test with sampled standard
deviation.

4.3. Results

All the graphs presented in this section show the average
across the five experiment repetitions, with one standard de-
viation marked with error bars. Non-overlapping error bars
thus give a visual indication of a significant result.
System Metrics. Figure 1 shows that the BE model violates
a large portion of the contracts as a result of heavy load.
SAC addresses this problem but still causes a sizeable por-
tion of violations, whereas CAC has virtually no violations
(a small portion of violations may still occur because of our
choice to base the admission test on the overall performance
of a job as opposed to on a per node basis). The Pareto and
Normal value distributions cause more violations for both
BE and SAC compared to when all jobs are valued equally.
CAC on the other hand is less sensitive to value distribution.
Contrasting this result with Figure 1(b), we cannot see any
clear evidence that the utilization is significantly effected
neither by the value distributions, the load, nor the admis-
sion model used. However, the variation in utilization is
higher with a Pareto value distribution under high load than
with other experiment setups. Further, the rejection ratios
in Figure 1(c) cannot fully explain the significant difference
in contract violations. For example, in the high-load Pareto
value distribution experiment 37 per cent of the jobs were
rejected with CAC, compared to none for BE, but 61 per
cent of the contracts were violated with BE, compared to 1
per cent with CAC. It is also important to point out that both
CAC and SAC reject fewer contracts under low load, which
proves that the admission decisions adapt to the current de-
mand.

A quantitative summary of the significance of these re-
sults is presented in Table 2. It shows a pairwise t-student
test at a 5 per cent significant level, and four degrees of
freedom (critical t-value 2.1318) with the null hypothesis
that the mean value of the metrics (violations and utiliza-
tion) are the same. A rejection of the null hypothesis (a
significant difference exists) is marked in bold.

Based on these results the main conclusion is that SAC
and CAC improved contract fulfillment significantly with-
out causing significant underutilization.
Economic Metrics. Turning to the economic metrics of
fairness and efficiency, we can see in Figure 1(d) that the
demand correlation coefficient is high for both the SAC and
CAC models (about 0.6− 0.8 for all experiments). This re-
sult indicates that the admission control models are not bi-
ased towards the consumer nor the provider, in their pricing
structure, and can thus be considered globally fair. The effi-

ciency graphs in Figure 2 show the sensitivity to the elastic
versus inelastic utility models. Typically a consumer with
a completely inelastic (α = 1) utility would choose the
CAC or possibly the SAC model. We see that the admis-
sion models showed no significant difference in efficiency
under low load. However, when there is high contention for
the resources and there is high variability in the valuation of
jobs (Pareto or Norm), the BE model efficiency deteriorates
significantly with an increasing portion of inelastic utility.
SAC does not suffer as much from efficiency loss as BE,
but it has the same decreasing trend, whereas CAC is com-
pletely independent of the utility model chosen (As seen by
the straight lines in the graphs). We further note that the ef-
ficiency of the SAC and BE models do not decline as much
when all jobs have equal value, compared to when they have
Pareto or Normal value distributions.

The utility function used to calculate efficiency benefits
high-valued jobs with low cost. Comparing Figure 2(a) with
Figure 2(b), we can see that the CAC model and to some ex-
tent also the SAC model maintained a high level of service
for high-valued jobs when the system went from low to high
resource contention, a typical trait of a good admission con-
trol model.

As previously mentioned, lower utilization and fewer
contract violations may be explained as an inherent result
of more rejections, as opposed to a feature of the admis-
sion control model. To study to what extent the behavior of
the SAC and CAC models can be explained by this inherent
effect, we modify the SAC model to just randomly reject
as many requests as in the Pareto high-load CAC scenario
(about 37 per cent). If we first compare the CAC model
to the random admission control model (RAC) in Figure 3,
we see that the contract violations are considerably higher
with the random model although the number of rejections
are the same. This shows that the CAC model makes bet-
ter decisions regarding which jobs to reject. The utilization
and the demand correlation (market fairness) are however
similar. Looking at the efficiency it is clear that the ran-
dom model, which does not consider the valuation of jobs,
performs worse both than the original SAC implementation
and CAC, for both elastic and inelastic jobs. We thus con-
clude that the inherent effect of rejections cannot explain the
contract violation or efficiency properties of the admission
control models that we have implemented. We note that
it is customary to investigate equilibria of the system when
making claims about efficiency in economics. In an exper-
iment which mimics real usage, with randomly configured
batch jobs entering and leaving the system continuously, it
is very hard to observe and reproduce such stable states. As
an alternative we derived our claims from statistically sta-
ble states using techniques such as the t-student test. In the
following section we will complement the statistical verifi-
cation with an analytical verification of the results.

 0

 0.2

 0.4

 0.6

 0.8

 1

CACSACBE

V
io

la
tio

ns

Par(L)
Par(H)
Eq(H)

Norm(H)

(a) Violations

 0

 0.2

 0.4

 0.6

 0.8

 1

CACSACBE

U
til

iz
at

io
n

Par(L)
Par(H)
Eq(H)

Norm(H)

(b) Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

CACSACBE

R
ej

ec
tio

ns

Par(L)
Par(H)
Eq(H)

Norm(H)

(c) Rejections

 0

 0.2

 0.4

 0.6

 0.8

 1

CACSACBE

D
em

an
d

C
or

re
la

tio
n

Par(L)
Par(H)
Eq(H)

Norm(H)

(d) Demand Correlation

Figure 1. Violations, Utilization, Rejections and
Demand Correlation with different Value Distributions
(Pareto/Equal/Normal) and Load (High/Low)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ffi

ci
en

cy

Proportion of Inelastic Utility (alpha)

BE SAC CAC

(a) Pareto (Low Load)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ffi

ci
en

cy

Proportion of Inelastic Utility (alpha)

BE SAC CAC

(b) Pareto (High Load)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ffi

ci
en

cy

Proportion of Inelastic Utility (alpha)

BE SAC CAC

(c) Equal (High Load)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ffi

ci
en

cy

Proportion of Inelastic Utility (alpha)

BE SAC CAC

(d) Normal (High Load)

Figure 2. Efficiency with different Value Distributions
and Load

Table 2. T-student test (t-values) of mean-value difference
for contract violations and utilization. Significant differ-
ences (at a 5% level) are marked in bold. Positive values
indicate that the mean of the first series compared is higher.

BE/SAC Par(L) Par(H) Equal Norm
Violations 2.48 2.08 2.82 3.94

Utilization 4.52 1.67 2.06 1.79

BE/CAC Par(L) Par(H) Equal Norm
Violations 2.99 4.90 4.39 7.09

Utilization 6.30 2.05 3.33 3.74

SAC/CAC Par(L) Par(H) Equal Norm
Violations 1.71 3.25 2.20 5.91

Utilization 2.35 0.72 1.89 2.60

 0

 0.2

 0.4

 0.6

 0.8

 1

CACRACBE

V
io

la
tio

ns

(a) Violations

 0

 0.2

 0.4

 0.6

 0.8

 1

CACRACBE

U
til

iz
at

io
n

(b) Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

CACRACBE

D
em

an
d

C
or

re
la

tio
n

(c) Demand Correlation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ffi

ci
en

cy

Proportion of Inelastic Utility (alpha)

BE RAC CAC

(d) Efficiency

Figure 3. Random Admission Control compared to Best
Effort and Capacity Admission Control

5. Results Analysis

First, we explain the difference in efficiency between ad-
mission control and best effort with inelastic utility analyti-
cally. Let pw ∈ [0, 1], pa ∈ [0, 1], be the probability of ful-
filling the contract, and the probability of admitting a job,
respectively. Using the inelastic utility function in (7) we
obtain U = pa(pw(v − c) − (1 − pw)c). We now study
two cases, Ub where all requests are admitted at the expense
of some not fulfilling their contracts (e.g. best effort), i.e.
pa = 1, and Ug where all jobs fulfill their contract at the
expense of some being rejected (e.g. capacity admission
control) , i.e. pw = 1. Now by comparing

U(pa = 1) = Ub = pw(v−c)−c(1−pw) = pwv−c (10)

and
U(pw = 1) = Ug = pa(v − c) (11)

we get

Ug > Ub ⇔ pav − pac − pwv + c > 0 (12)

Setting q = c/v we have

Ug > Ub ⇔ pa >
pw − q

(1 − q)
. (13)

Using the experimental values of the runs from Figure 2 we
for instance have for
(a):

0.80 <
0.90− 0.10

1 − 0.10
≈ 0.89 ⇒ Ub > Ug (14)

(b):
0.63 >

0.39− 0.14

1 − 0.14
≈ 0.29 ⇒ Ug > Ub (15)

(c):
0.71 >

0.56− 0.12

1 − 0.12
= 0.5 ⇒ Ug > Ub (16)

and (d):

0.60 >
0.33− 0.10

1 − 0.10
≈ 0.26 ⇒ Ug > Ub. (17)

This analytical result explains and mimics the relative
positions of the CAC and BE curves in Figure 2 very well
for high values of α (inelastic utility). With a similar line of
reasoning and setting pd = wd/w (work completion ratio),
we can show that

Ug > Ub ⇔ pa >
pd − q

(1 − q)
(18)

when using the elastic utility function in (8).
To summarize the analytical and experimental results,

poor work completion (low values of pw and pd) and high
cost (high values of q) contribute to a higher efficiency of
the admission control strategies compared to the best effort
strategy if the number of rejections are kept low (high pa),
which corresponds well to intuition.

Based on these results a user with an inelastic job could
compare the cost for a resource on a reservation market
(SAC or CAC) and on a spot market (BE) to the valuation
of the job to get q, and calculate or estimate the likelihood
of fulfilling the contract on the spot market (pw) versus the
likelihood of getting rejected on the reservation market (pa).
The two probabilities may be measured by the user, made
available by a 3rd party monitoring service or the provider
itself. Now if pa > pw−q

(1−q) submitting the job to the reserva-
tion market is more efficient.

Conversely, based on historical data, the provider could
map the current demand, approximated by the measured
IAT, to values of pa and pw. A provider that would like
to optimize the efficiency without any bias towards elastic
or inelastic utility users could evaluate: pa > pw+pd−2q

2(1−q) . If
it evaluates to false, the provider might want to increase the
spot-market partition compared to the reservation partition.
Whether to use SAC or CAC guarantees largely depends
on the level of control the admission broker has over the
resource allocator, but also on the frequency of high con-
tention periods (when CAC tends to outperform SAC). Fur-
thermore, the provider could evaluate how much should be
charged (q or c/v) for the capacity admission control ser-
vice given a certain system state (represented by pw, pa and
pd).

6. Related Work

Related work fall into three broad categories, each dis-
cussed in turn below, market-based resource scheduling and

allocation, IP traffic engineering, and QoS enabled web
servers.

Chun and Culler [4] present a performance analysis of
three different scheduling algorithms, FirstPrice (priorities
paid for on centralized auction market), SJF (short jobs have
priority), and PrioFIFO (three priority queues with different
prices set statically) based on aggregate user utility. First-
Price outperforms both SJF and PrioFIFO significantly for
highly parallel jobs. PrioFIFO was sensitive to changes in
demand and deteriorated in performance if the wait time
in the most expensive queue was long. Our work differs
from this work in that our results are independent of which
scheduling algorithm is used, our workload is constructed
by carefully modeling real traces, and our underlying al-
location mechanism is a continuously cleared decentral-
ized spot market auction. These differences are also ap-
parent in extensions of Chun’s and Culler’s work [14, 22, 1]
that study more elaborate scheduling algorithms and util-
ity functions that take resource price and provider profit
into account. The combination of reservation and spot mar-
ket pricing with statistical guarantees is novel and sets this
work apart from other microeconomic systems that control
job performance in shared clusters for parallel jobs, such
as [27, 26, 29, 6, 28, 15, 5].

There is a substantial body of work on Internet Protocol
quality-of-service enforcement or traffic engineering, rep-
resented by the two IETF specifications IntServ [3], and
DiffServ [2]. The IntServ specification takes the approach
of reserving paths for individual users, and thus does not
scale as well as the DiffServ approach, which is based on
marking individual packets with different per-hop behav-
iors in a stateless and decentralized architecture. We are
facing the same issues and tradeoffs when allocating com-
putational resources across large distributed systems. How-
ever, new virtualization technology and the fact that many
of the resources are localized (e.g. CPU, memory, disk)
makes it worth revisiting the reservation concepts. Knightly
and Shroff [17] provide an evaluation of the different ad-
mission control algorithms available for IP traffic shaping.
The dilemma of choosing between denying access to flows
that might have been served and thereby cause underuti-
lization and serving requests that might break existing QoS
contracts makes it hard to use coarse statistical bounds and
too simplified assumptions about traffic flow distributions.
Put differently, both accuracy maximization and risk mini-
mization are desired. Again, our admission control decision
differs from the IP flow one, in that we can, through virtual-
ization, more directly enforce that an admitted request stays
within its bounds. Our decision is thus more about mak-
ing sure that the provider does not lose out on utilization or
profit by admitting low priority tasks prematurely.

Admission control as a means to avoid service degra-
dation of high priority tasks during overload has also been

extensively studied in the context of Web servers, as exem-
plified in [10, 7, 19]. Priorities of individual requests are
either set explicitly in the server configuration or inferred
implicitly by the admission algorithm. Our admission con-
troller, on the other hand, gives users an incentive to specify
the priority truthfully themselves. Another key difference
is that, in a Web server context, the focus is on optimizing
throughput and response time by applying queuing and con-
trol theory, and estimating expected service time. Our sys-
tem does not use centralized queues and the service times
are not estimated but explicitly requested by the users, as
they can vary greatly. In general, our approach of enforc-
ing contracts by means of resource virtualization provides
much finer-grained control over service-levels than purely
statistical load estimates.

7. Conclusions

Using a statistically accurate, representative and realis-
tic workload model, we have experimentally shown how
a simple statistical admission control mechanism can im-
prove contract fulfillment without causing underutilizition
during times with high resource contention. Based on two
intuitive utility functions, elastic and inelastic, we have also
shown that the system remains efficient, i.e. exhibits high
social welfare or aggregate utility, even under heavy con-
tention and with various job valuation distributions, such
as Equal, Pareto and Normal. The efficiency results were
analytically verified and constraints on resource cost, ad-
mission ratio, and contract violation ratio were derived to
inform which admission policy is best for different utility
functions given a certain system state.

Acknowledgments

We would like to thank our colleagues and collaborators,
Bernardo Huberman, Tad Hogg, Li Zhang, Lars Rasmusson
and John Wilkes for lucid discussions. Thanks also to Cyn-
thia Bailey Lee for clarifying and explaining patterns seen
in the SDSC workload trace.

References

[1] A. AuYoung, L. Grit, J. Wiener, and J. Wilkes. Service con-
tracts and aggregate utility functions. In Proceedings of the
IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC), June 2006.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An architecture for differentiated services. RFC
2475, IETF, December 1998.

[3] R. Braden, S. Clark, and S. Shenker. Integrated services in
the internet architecture. RFC 1633, IETF, June 1994.

[4] Brent N. Chun and David E. Culler. User-centric Perfor-
mance Analysis of Market-based Cluster Batch Schedulers.
In Proceedings of the 2nd IEEE International Symposium on
Cluster Computing and the Grid, 2002.

[5] Brent N. Chun and Philip Buonadonna and Alvin AuYoung
and Chaki Ng and David C. Parkes and Jeffrey Shneid-
man and Alex C. Snoeren and Amin Vahdat. Mirage: A
Microeconomic Resource Allocation System for SensorNet
Testbeds. In Proceedings of the 2nd IEEE Workshop on Em-
bedded Networked Sensors, 2005.

[6] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal.
Scheduling Parameter Sweep Applications on Global Grids:
A Deadline and Budget Constrained Cost-Time Optimisa-
tion Algorithm. Software: Practice and Experience (SPE)
Journal, 35(5):491–512, April 2005.

[7] X. Chen, P. Mohapatra, and H. Chen. An admission con-
trol scheme for predictable server response time for web ac-
cesses. In WWW ’01: Proceedings of the 10th international
conference on World Wide Web, pages 545–554, New York,
NY, USA, 2001. ACM Press.

[8] David C. Parkes and Ruggiero Cavallo and Nick Elprin and
Adam Juda and Sebastien Lahaie and Benjamin Lubin and
Loizos Michael and Jeffrey Shneidman and Hassan Sultan.
ICE: An Iterative Combinatorial Exchange. In Proceedings
of the ACM Conference on Electronic Commerce, 2005.

[9] B. Efron and R. J. Tibshirani. An Introductin to the Boot-
strap. Chapman and Hall, 1993.

[10] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.
A method for transparent admission control and request
scheduling in e-commerce web sites. In WWW ’04: Pro-
ceedings of the 13th international conference on World Wide
Web, pages 276–286, New York, NY, USA, 2004. ACM
Press.

[11] D. G. Feitelson. Parallel Workloads Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/, 2007.

[12] D. Ferguson, Y. Yemimi, and C. Nikolaou. Microeconomic
Algorithms for Load Balancing in Distributed Computer
Systems. In International Conference on Distributed Com-
puter Systems, pages 491–499, 1988.

[13] H. Hurst. Long term storage capacity of reservoirs. Proc.
American Society of Civil Engineers, 76(11), 1950.

[14] D. Irwin, J. Chase, and L. Grit. Balancing Risk and Reward
in Market-Based Task Scheduling. In International Sympo-
sium on High Performance Distributed Computing, 2004.

[15] L. V. Kale, S. Kumar, M. Potnuru, J. DeSouza, and S. Band-
hakavi. Faucets: Efficient resource allocation on the compu-
tational grid. In ICPP ’04: Proceedings of the 2004 Interna-
tional Conference on Parallel Processing (ICPP’04), pages
396–405, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[16] S. D. Kleban and S. H. Clearwater. Quelling queue storms.
In HPDC ’03: Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing,
page 162, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[17] E. W. Knightly and N. Shroff. Admission control for sta-
tistical qos: Theory and practice. ieeenet, 13(2):20–29,
March/April 1999.

[18] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and
B. A. Huberman. Tycoon: an Implemention of a Distributed
Market-Based Resource Allocation System. Multiagent and
Grid Systems, 1(3):169–182, Aug. 2005.

[19] S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau. Admis-
sion control and dynamic adaptation for a proportional-delay
diffserv-enabled web server. In SIGMETRICS ’02: Proceed-
ings of the 2002 ACM SIGMETRICS international confer-
ence on Measurement and modeling of computer systems,
pages 172–182, New York, NY, USA, 2002. ACM Press.

[20] B. Mandelbrot and R. L. Hudson. The (Mis)behavior of
Markets: A Fractal View of Risk, Ruin, and Reward. Ba-
sic Books, New York, NY, USA, 2004.

[21] M. E. Pate-Cornell. Uncertainties in risk analysis: Six lev-
els of treatment. Reliability Engineering and System Safety,
54(2):95–111, 1996.

[22] F. I. Popovici and J. Wilkes. Profitable services in an uncer-
tain world. In SC05: Proceedings of Supercomputing, 2005.

[23] O. Regev and N. Nisan. The Popcorn Market: Online Mar-
kets for Computational Resources. In Proceedings of 1st
International Conference on Information and Computation
Economies, pages 148–157, 1998.

[24] T. Sandholm and K. Lai. A Statistical Approach to Risk
Mitigation in Computational Markets. In Proceedings of the
ACM International Symposium on High Performance Dis-
tributed Computing (HPDC), June 2007.

[25] T. Sandholm and K. Lai. Prediction-based enforcement of
performance contracts. In GECON ’07: Proceedings of the
4th International Workshop on Grid Economics and Busi-
ness Models, 2007.

[26] I. Stoica, H. Abdel-Wahab, and A. Pothen. A Microeco-
nomic Scheduler for Parallel Computers. In Proceedings of
the Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, pages 122–135, April 1995.

[27] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A Distributed Computational
Economy. Software Engineering, 18(2):103–117, 1992.

[28] M. P. Wellman, D. M. Reeves, K. M. Lochner, and Y. Vorob-
eychik. Price prediction in a trading agent competition. J.
Artif. Intell. Res. (JAIR), 21:19–36, 2004.

[29] R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-commerce:
Market formulations controlling resource allocation on the
computational grid. In IPDPS ’01: Proceedings of the 15th
International Parallel and Distributed Processing Sympo-
sium (IPDPS’01), page 10046.2, Washington, DC, USA,
2001. IEEE Computer Society.

