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Abstract

We study the predictive power of autoregressive moving
average models when forecasting demand in two shared
computational networks, PlanetLab and Tycoon. Demand
in these networks is very volatile, and predictive techniques
to plan usage in advance can improve the performance ob-
tained drastically.

Our key finding is that a random walk predictor performs
best for one-step-ahead forecasts, whereas ARIMA(1,1,0)
and adaptive exponential smoothing models perform bet-
ter for two and three-step-ahead forecasts. A Monte Carlo
bootstrap test is proposed to evaluate the continuous pre-
diction performance of different models with arbitrary con-
fidence and statistical significance levels. Although the pre-
diction results differ between the Tycoon and PlanetLab net-
works, we observe very similar overall statistical proper-
ties, such as volatility dynamics.

1 Introduction

Shared computational resources are gaining popularity
as a result of innovations in network connectivity, dis-
tributed security, virtualization and standard communica-
tion protocols. The vision is to use computational power
in the same way as electrical power in the future, i.e. as a
utility. The main obstacle for delivering on that vision is
reliable and predictable performance. Demand can be very
bursty and random, which makes it hard to plan usage to
optimize future performance. Forecasting methods for aid-
ing usage planning are therefore of paramount importance
for offering reliable service in these networks.

In this paper we study the demand dynamics of two time
series from computational markets, PlanetLab1 and Ty-
coon2. Our main objective is to study the prediction abilities

1http://www.planet-lab.org
2http://tycoon.hpl.hp.com

and limitations of time series regression techniques when
forecasting averages over different time periods. Here we
focus on hourly forecasts that could be applied for schedul-
ing jobs with run times in the order of a few hours, which
is a very common scenario in these systems. The main mo-
tivation for this study was that an exponential smoothing
technique used in previous work [12], was found to perform
unreliably in a live deployment.

The general evaluation approach is to model the structure
of a small sample of the available time series, and assume
the structure is fixed over the sample set. Then perform
predictions with regularly updated model parameters and
benchmark those predictions against a simple strategy using
the current value as the one-step-ahead forecast (assuming
a random walk).

We focus our study on the following questions.

• Can a regression model perform better than a strategy
assuming a random walk with no correlations in the
distant past?

• How much data into the past are needed to perform
optimal forecasts?

• How often do we need to update the model parame-
ters?

The answers to these questions depend on both the size of
the sliding window used for the forecast and on the length
of the forecast horizon. Our goal is to give general guide-
lines as to how forecasts should be performed in this envi-
ronment.

When predicting demand in computational networks in-
stantaneous, adaptive, flexible, and light-weight predictors
are required to accurately estimate the risk of service degra-
dation and to quickly take preemptive actions. With the
increased popularity of virtualized computational markets
such as Tycoon, this need for prediction takes a new di-
mension. Successful forecasts can now reduce the cost
of computations more directly and explicitly. However,



high volatility and non-stationarity of demand complicates
model building and reduces prediction reliability.

The main objective of this study is to investigate which
time series models can be used when predicting demand in
computational markets, and how they compare in terms of
predictive accuracy to simpler random walk and exponen-
tial smoothing models. Since modeling and parameter es-
timations need to adapt quickly to regime shifts, a simple
fixed static model of the entire series is not likely to pro-
duce any good results. In this work we make a compromise
and fix the structure of the model but update the parameter
estimates continuously.

The contribution of this work is threefold:

• we perform ARIMA modeling and prediction of Ty-
coon and PlanetLab demand,

about predictor model performance,

• and we identify common statistical properties of Plan-
etLab and Tycoon demand.

The paper is structured as follows. In Section 2 our eval-
uation approach is discussed, and in Section 3 we model
and predict the PlanetLab series. In Section 4 we perform
the same analysis for the Tycoon series. Then we compare
the analyses in Section 5 and discuss related work in Sec-
tion 6 before concluding in Section 7.

2 Evaluation Method

In this section, we describe the method used to construct
models and to evaluate the forecasting performance of mod-
els of the time series studied.

2.1 Modeling

We first construct an autoregressive integrated moving
average (ARIMA) model of a small sample of the time se-
ries in order to determine the general regression structure
of the data. The rationale behind this approach is that the
majority of the data should be used to evaluate the forecast-
ing performance. During forecasting the model parameters
are refit, and to compensate for possible changes in struc-
ture we evaluate a number of similar benchmark models.
Furthermore, in a real deployment, we ideally want to re-
evaluate the regression structure infrequently compared to
the number of times the structure can be used for predictions
to make it viable. The sample used for determining the re-
gression structure is discarded in the forecasting evaluation
to keep the predictions unbiased. Conversely, no measured
properties of the time series outside of the sample window
are used when building the models of the predictors.

The general model and the benchmark models are then
fit to partitions of the data in subsequent time windows. In

each time window the model parameters are re-evaluated.
The fitted model then produces one, two, and three-step-
ahead forecasts. The forecasts are thus conditioned on the
assumption of a specific structure of the model. The size of
the time windows are made small enough to allow a large
number of partitions and thus also independent predictions,
and kept big enough for the ARIMA maximum likelihood
fits to converge.

2.2 Forecast

The fitted ARIMA model structure is compared to
two standard specialized ARIMA processes. The first
benchmark model used is the random walk model (RW),
ARIMA(0,1,0), which always produces the last observed
value as the forecast. The second model is the Expo-
nentially Weighted Moving Average (EWMA), a.k.a. the
exponential smoothing model, which can be represented
as an ARIMA(0,1,1) or IMA(1,1) process producing fore-
casts with an exponential decay of contributions from val-
ues in the past. This representation is due to Box et al. [2]
who showed that the optimal one-step-ahead forecast of the
IMA(1,1) model with parameterθ is the same as the expo-
nential smoothing value with factorλ = 1 − θ.

For each set of time-window predictions performed, the
mean square error (MSE) is computed. To facilitate com-
parison, the MSEs are normalized against the random walk
model as follows

ǫ̂ = ln(em/eb) (1)

whereem is the MSE of the model studied, andeb is the
MSE of the benchmark. Thus an̂ǫ > 0 means that the
model generated more accurate forecasts than the bench-
mark. Hence, we have

Fm,b = Pr(em ≤ eb) =

∫
0

−∞

fǫ̂ (2)

wherefǫ̂ is the probability density function (PDF) of̂ǫ.
Thus we have constructed a statistic for evaluating the mod-
els based on the cumulative distribution function (CDF) of
the log ratio of the model and the RW benchmark MSEs,
which we callnormalized distribution erroror NDE. This
statistic is similar in spirit to the MSE measurement itself,
but to avoid a bias towards symmetric error distributions,
we base our statistic on the median as opposed to the mean.
One might argue that highly incorrect predictions, therefore,
are not penalized strongly enough, but we are more inter-
ested in the reliability aspect of predictions here, i.e., which
model can be trusted to perform better in most cases. If the
error distribution has many outliers it should be reflected in
the width of the confidence bound instead. We thus focus
next on building such unbiased confidence bounds.



2.3 Statistical Test

With the NDE statistic we have a metric to decide when
a model performs better than a benchmark, but in order to
render claims of statistical significance and prediction con-
fidence bounds, a measure of error variance is needed. Due
to a limited set of original data points (one MSE for each
sample window size), the approach is to use bootstrap sam-
pling based on the empirical distribution ofǫ̂. Using (2)
the null hypothesis isH0 : Fm,b > .5, that is, the stud-
ied model predicts more accurately than the benchmark in
a majority of the cases. The alternative hypothesisHa is
then obviously that the studied model performs worse than
the benchmark in a majority of the cases. The bootstrap
algorithm is as follows

1. Calculate thêǫ values for thenw different sample win-
dows

2. Pickns samples of sizenw from theǫ̂ valueswith re-
placement

3. Calculate theα/2 and the1−α/2 per cent points from
the empirical distribution function of the selected sam-
ples, as the lower and upper confidence bounds respec-
tively

4. Reject the null hypothesis and accept the alternative
hypothesis if the upper bound is< .5, and accept the
null hypothesis and reject the alternative hypothesis if
the lower bound is> .5 at the 100α per cent signifi-
cance level. If the bound overlaps with.5 we say that
the model performson parwith the benchmark.

R code which implements this test is available in Ap-
pendix A. This Monte Carlo bootstrap algorithm is used for
two reasons, first to avoid making any assumptions about
the distribution of the normalized MSEs in the test, and
second to easily map MSE uncertainty to bounds on our
NDE statistic. The NDE bound[lower, upper] can be in-
terpreted as there being a 100(1− α) per cent likelihood of
the model performing better than the random walk model in
100·lower per cent to 100·upper per cent of the cases.

In the following sections we apply this evaluation
method to the PlanetLab and Tycoon series.

3 PlanetLab Analysis

PlanetLab (PL) is aplanetary-scale, distributed com-
puting platform comprising approximately 726 machines at
354 sites in 25 countries, all running the same Linux based
operating system and PlanetLab software. The user com-
munity is predominantly computer science researchers per-
forming large-scale networking algorithm and system ex-
periments. The time series is from December 2005 to De-
cember 2006. We calculate demand by aggregating the load

value across all hosts and averaging in hourly intervals with
a 5-min sample granularity. This load measures the number
of processes that are ready to run on machine.

3.1 Model

We select the first month of the trace (707 values out
of 8485) as our sample to construct the general ARIMA
model. The sample series is shown in Figure 1. There is
one big spike in the sample, and we might be tempted to
treat it as an outlier, but as seen from the full trace these
spikes are quite common and thus need to be accounted for
in our model. We instead perform a Box-Cox [1] transform
to address non-stationarity in variance. The Box-Cox plot
for the sample is shown in Figure 1(c). Aλ value of0.8 is
thus used to transform the series prior to the ARIMA anal-
ysis. Thisλ value is somewhere between a

√
Zt and aZt

(no) transform. From Figure 2 we note that the ACF has a
slow decline in correlation, and that the PACF is near unit
root in lag 1. Now to formally test for unit root we perform
the augmented Dickey-Fuller test [5], and obtain a t-statistic
of −2.0294 which has an absolute value less than the5 per
cent critical value−3.41, so we cannot reject the null hy-
pothesis of a unit root.

Therefore, we difference the series and then see that the
differenced ACF in Figure 2(c), does not exhibit any clearly
significant correlations. Hence, we model the series as as
an ARIMA(0,1,0) process or random walk. We note that
there appears to be small significant seasonal correlations
around lags 6,8,10,14 and 16. But we decide to ignore those
because of our small sample size, and to keep the predictor
simple. To summarize, the entertained model is

(1 − B)Zt = at (3)

whereB is the backshift operator andat is the residual
white noise process. A Box-Ljung test [8] of serial cor-
relations of the residuals of this model gives aχ2 value of
228.297 and a p-value of4.974 · 10−12 for 100 degrees of
freedom, so there is still structure unaccounted for. Our tests
showed that at least an ARIMA(16,1,0) model was needed
before the Box-Ljung test succeeded, which is not practical
for our purposes, so we stick to our ARIMA(0,1,0) model.
Because this model is one of our standard benchmarks (RW)
we also add an ARIMA(1,1,0) model to our evaluation to
simplify comparison.

3.2 Forecast

We now compare the MSE of the one-, two- and
three-step-ahead forecasts of the RW, EWMA, and
ARIMA(1,1,0) models. The time windows used for pre-
dictions range from100 to 150 hours. Each empirical nor-
malized MSE distribution thus has50 measurements. The



evaluation of the forecasts of the ARIMA(1,1,0), and the ex-
ponential smoothing models against the random walk model
can be seen in Figure 3. We note that a value less than0 in
the plot means that the model predictor performed better
than the random walk predictor. We observe that both the
ARIMA(1,1,0) and the exponential smoothing model pre-
dictors seem to perform better than the random walk predic-
tor for the two and three-step ahead predictions. We further
note that there are more high peaks than deep valleys both
for ARIMA(1,1,0) and EWMA, and that the EWMA peaks
are lower. This pattern indicates that the RW model is more
immune to extreme level shifts, and that EWMA handles
these shifts better than ARIMA(1,1,0).

Next, we use the statistical test constructed in the previ-
ous section to verify the significance of the differences.

3.3 Statistical Test

Table 1 shows the NDE bound results for the PlanetLab
models at significance level 5% wherens was set to1000.
The random walk row displays the errors in proportion to
the true value observed, calculated as

ǭ =
1

T

T∑
t=1

|ŷt − yt|
yt

(4)

whereŷt is the predicted value at timet andyt is the ac-
tual value; andT is the number of time windows used in
the test (50). We see that the errors ranged from4.07% to
6.98% with the longer horizon forecasts performing worse.
From the NDE statistic bounds for the ARIMA(1,1,0)
and EWMA rows in Table 1 we can conclude that the
ARIMA(1,1,0) model generates predictions on par with the
random walk model, for one and two-step-ahead predic-
tions, and better at significance level5 per cent for three-
step-ahead forecasts. The EWMA model performs better
for longer forecasts but not at a significant enough level to
pass our test. To summarize, the only strong conclusion we
can draw from these simulations is that the ARIMA(1,1,0)
predictor performed better than a random walk predictor for
three-hour ahead forecasts, but in general the RW model se-
lected performs relatively well.

4 Tycoon Analysis

Tycoon is a computational market where resources, such
as CPU, disk, memory, and bandwidth can be purchased
on demand to construct ad-hoc virtual machines. The price
of the resources is in direct proportion to the demand, in
that the cost of a resource share is dynamically calculated
as the ratio between the bid a user places on the resource
and the bids all other users of that resource place. The Ty-
coon network currently comprises about 70 hosts. Usage

Table 1. PlanetLab Model NDE Bounds at5% Sig-
nificance Level with Random Walk (RW), Exponentional
Smoothing (EWMA) and ARIMA(1,1,0) models, using 1,2
and 3-step ahead (SE) Forecasts.

1 SE 2 SE 3 SE

RW .0407 .0554 .0698
ARIMA(1,1,0) [.353, .627] [.471, .725] [.540, .800]
EWMA [.314, .588] [.373, .647] [.392, .667]

is sparse and spiky, and is mostly generated from different
test suites that are designed to evaluate the system. A trace
was recorded of the aggregated CPU price in hourly inter-
vals with a 10-min granularity during a period of 17 days in
July-August 2007.

4.1 Model

We select the first five days of the trace (119 values out of
404) as our sample to construct the general ARIMA model.
The sample and the full series are shown in Figure 4. Due to
suspected non-stationarity in variance a Box-Cox transform
is again performed. As seen in Figure 4(c), theλ value ob-
tained was−3. We note that the ACF decays slowly and the
PACF has a high first lag in Figure 5. So we again difference
the series. Now the ACF shows only one significant lag, so
we can model it as an IMA(1,1) process. The correlations
of the residuals of this model can be seen in Figure 5(d). To
summarize, the entertained model is

(1 − B)Zt = (1 − θB)at (5)

whereB is the backshift operator andat is the residual
white noise process. Theθ coefficient was found to be sta-
tistically significant at a5 per cent significance level, and
was fit to .511. A Box-Ljung test of serial correlations of
the residuals of this model gives aχ2 value of87.758 and a
p-value of.804 for 100 degrees of freedom, hence we con-
clude that the model does not have any serial correlations
and is accurate. Because this model is one of our standard
benchmarks (EWMA) we also add an ARIMA(1,1,0) model
to our evaluation to simplify comparison.

4.2 Forecast

We now compare the MSE of the forecasts of the RW,
EWMA, and ARIMA(1,1,0) models. The model parameters
are evaluated before each forecast. The time-window used
for model fitting ranged from 50 hours to 100 hours into
the past, and thus again50 measurements were generated.
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Figure 1. PlanetLab Series
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Figure 2. PlanetLab Autocorrelation Functions
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Table 2. Tycoon Model NDE Bounds at5% Signifi-
cance Level with Random Walk (RW) and Exponentional
Smoothing (Exp) Benchmarks, using 1,2 and 3-step ahead
Forecasts.

1 SE 2 SE 3 SE

RW .144 .199 .243
ARIMA(1,1,0) [.333, .588] [.392, .647] [.431, .706]
EWMA [.255, .510] [.353, .627] [.412, .686]

The evaluation of the ARIMA(1,1,0), and the exponential
smoothing models against the random walk model is shown
in Figure 6. We recall that a value less than0 in the plot
means that the model predictor performed better than the
random walk predictor. It is not as clear as in the Planet-
Lab series that RW has fewer extremes of bad predictions.
However the ARIMA(1,1,0) model does seem to produce
less extreme peaks and valleys than EWMA, i.e. the oppo-
site of what was observed for the PlanetLab data. Due to
high volatility it is difficult to draw any conclusions about
which model performs best from these plots, so we again
have to resort to our statistical test.

4.3 Statistical Test

Table 2 shows the NDE bound results for the Tycoon
models at significance level 5 per cent wherens was set to
1000. We see that the RW model performed much worse for
this time series compared to in the PlanetLab series. Aver-
age errors range from14.4 per cent to24.3 per cent. This
apparent difficulty in predicting the series also reflects the
results. We see that both the ARIMA(1,1,0) and EWMA
models performed on par with RW for all forecasts. So at
the5 per cent significance level no strong conclusions can
be drawn about which model performed best. We however
note, for the three step-ahead forecasts, that ARIMA(1,1,0)
is close to being significantly better than RW, and for one
step-ahead forecast, EWMA is close to being significantly
worse than RW. The same pattern is apparent here, as in the
PlanetLab data; the higher order ARIMA models perform
better for longer forecasts.

5 Series Comparison

In this section we compare the dynamics of the Planet-
Lab series to the Tycoon series using the full traces, and give
both quantitative and qualitative explanations to the differ-
ences.

Table 3. Mean Normalized Quartiles and Range
Min Q1 Median Q3 Max

PlanetLab .494 .811 .936 1.12 6.55
Tycoon .452 .763 .860 1.10 5.70

Table 4. Volatility Characteristics
Coef of Variation Skewness Kurtosis

PlanetLab .362 4.03 28.29
Tycoon .511 3.67 24.38

Table 3 shows the range and the quartiles of the series,
normalized by the series mean. The Tycoon series has a me-
dian which is further away from the mean, and the range of
values is slightly tighter. The narrower range is expected
because of the time horizon difference in the two series.
However, overall the statistics for PlanetLab and Tycoon
are strikingly similar. This is a bit surprising since Tycoon
is just in an early test phase with very limited usage and de-
mand, whereas PlanetLab is a mature system that has been
in operation for several years.

The volatility statistics of the two series are compared
in Table 4. We conclude that the variance is higher in Ty-
coon, but the right tail of the PlanetLab series distribution
is longer, and the PlanetLab series is also more prone to
outliers. Again it is remarkable how closely the tail and
outlier behavior of the much smaller Tycoon sample fol-
lows the PlanetLab statistics. To determine whether any of
these series exhibit heteroskedasticity, we take the squared
residuals from an ARIMA model of the full series and fit an
AR model. Then according to Engle [7] heteroskedasticity
exists if

1 − χ2

s((n − s)R2) < α (6)

wheren is the number of values in the series,s the order
of the AR model fit to the squared residuals,χ2

df is theχ2

density function withdf degrees of freedom, andα is the
significance level. The complete PlanetLab series follows
an ARIMA(3,1,0) model and the complete Tycoon series
follows an IMA(1,2) model. The residuals and their squares
of these models can be seen in Figure 7.

We find that both the PlanetLab and Tycoon series pass
the significance test at the5 per cent significance level.
Furthermore, both the Tycoon and the PlanetLab squared
residuals follow AR(3) models, i.e., they have very similar
volatility dynamics structure.

It is easy to see that this heteroskedasticity could cause
more outliers and higher kurtosis in a static model. Intu-
itively, if the first moment fluctuates, the second moment
increases, and similarly if the second moment fluctuates
there is a greater likelihood of more spikes or AR model
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Figure 6. Tycoon IMA and Exponential Smoothing (dotted line) vs. Random Walk Model Forecast Errors



outliers, which would increase the kurtosis. High volatility
and dynamics in structure could also explain why ARIMA
predictions assuming static volatility and regression struc-
ture perform so poorly compared to a simple random walk
predictor. However, we note that a random walk predictor
does not accurately estimate risk of high demand, which is
more apparent for forecasts with a longer future time hori-
zon. An alternative approach to studying volatility and risk
over time is the approach of measuring long term mem-
ory or dependence. This was done in [11], and we found
that non-Gaussian long term dependencies did exist, which
could cause so called workload flurries with abnormally
high demand.

The ARIMA(1,1,0) model performs better in PlanetLab
than in Tycoon, which may indicate that PlanetLab has
longer memory of past values than Tycoon. This may be
attributed to the shorter sample period and the nature of the
applications currently running on Tycoon; mostly short in-
tense test applications.

6 Related Work

The algorithm used for the statistical test of significant
differences in predictor performance was inspired by the
Monte Carlo bootstrap method introduced by Efron in [6]
and popularized by Diaconis and Efron in [4]. The boot-
strap method is typically used as a non-parametric approach
to making confidence claims. We, use it to expand a short
sample into a bigger one without any distributional assump-
tions about the MSE terms. A more typical usage is to
shrink a large sample into multiple smaller random samples
that are easier to make statistical claims about collectively.

Tycoon usage has not been statistically investigated be-
fore. Previous work on the computational market character-
istics of Tycoon has used PlanetLab and other super com-
puting center job traces as a proxy for expected market de-
mand [12] or made simple Gaussian distribition, and Pois-
son arrival process assumptions [11].

In this work we support the study of PlanetLab as a proxy
for Tycoon demand, by verifying a large number of sta-
tistical commonalities, both in terms of structure of series
and in terms of optimal predictor strategies. Chun and Vah-
dat [3] have analyzed PlanetLab usage data but not from a
predictability viewpoint. Their results include observations
of highly bursty and order of magnitude differences in uti-
lization over time, which we also provide evidence for. We
note that the PlanetLab trace that Chun and Vahdat studied
was from 2003.

Oppenheimer et al. [10] also analyze PlanetLab resource
usage and further evaluate usage predictors and conclude
that mean reverting processes such as exponential smooth-
ing, median, adaptive median, sliding window average,
adaptive average and running average all perform worse

than simple random walk predictors and, what they call,
tendency predictorswhich assume that the trend in the re-
cent past continues into the near future. They further no-
tice no seasonal correlations over time due to PlanetLab’s
global deployment. We do see some seasonal correlations
in our initial time series analysis but not significant enough
to take advantage of in predictions. Further, our evaluation
approach follows the traditional ARIMA model evaluation
method, and we provide a statistical test to verify and com-
pare prediction efficiency. One major difference between
our studies and thus also the conclusions is that Oppen-
heimer et al. only considered one-step ahead predictions
whereas we also consider two, and three-step ahead pre-
dictors to do justice to the models considering correlations
beyond the last observed step. We finally note that they
studied PlanetLab data from August 2004 to January 2005,
whereas we studied more recent data from December 2005
to December 2006.

7 Conclusions

This work set out to study the predictive power of re-
gression models in shared computational networks such as
PlanetLab and Tycoon. The main result is that no signifi-
cant evidence was found that higher order regression mod-
els performed better than random walk predictions. The ex-
ception was for three-step ahead predictions in PlanetLab
where an ARIMA(1,1,0) model outperformed the random
walk model.

The study also shows the difficulty in composing a model
from a sample and then using this model in predictions if the
structure of the series is changing over time as in the Tycoon
case.

Our study highlighted a number of statistical similarities
between Tycoon and PlanetLab, such as volatility structure,
outlier likelihood, and heavy right tails of density functions,
which motivates further studies and comparisons of work-
loads to improve forecasting.

The ARIMA models were refitted for every 50 to 150
hours to provide as accurate models of the recent past as
possible, but the overall structure of the model was fixed as
the one obtained from the fit of the sample series. Larger
fitting windows were tested for the PlanetLab data without
any effect in the results, but larger windows could not be
tested for the Tycoon series due to the limited trace time
frame (17 days). There was however a clear pattern that
the higher order ARIMA models performed better in the
two and three-step ahead forecasts compared to the random
walk model.

To summarize, we have exemplified the difficulties in
modeling significant regressional parameters for computa-
tional demand dynamics, even if the model is very generic
and the model parameters are re-estimated frequently. It
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(a) PlanetLab Residual Autocorrelation Function
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(b) PlanetLab Squared Residual Partial Autocorrelation Function
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(c) Tycoon Residual Autocorrelation Function
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(d) Tycoon Squared Residual Partial Autocorrelation Function

Figure 7. PlanetLab and Tycoon Volatility Analysis



was found difficult to improve on the random walk process
model for one-step-ahead forecasts, which is a bit surpris-
ing (and contradictory to the main hypothesis in [9]) given
that RW processes, in theory, should generate a normal dis-
tribution of demand whereas the actual measured demand
distribution was very right skewed and heavy tailed, both in
the PlanetLab and the Tycoon series.

We do however see that higher order regressional param-
eters can improve the two-step and three-step ahead fore-
casts. More work is needed to determine how these models
should be discovered and dynamically updated. One pos-
sible extension is to see if there is an improvement in pre-
dictor performance if the model is allowed to changed dy-
namically as well as the parameters based on observed ACF
and PACF behavior. More work is also needed to determine
the computational overhead of the more complicated regres-
sional models and the calculations of fits and predictions.
Accurate random walk predictors can be built very easily
with virtually no overhead, so the improvement in accuracy
needs to be significant to be worthwhile. This work does
however show that there is a potential for improvement of
longer forecasts.
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A Bootstrap Test R-Code

predict_arima <- function(x,ord, window, horizon, mse, la mbda) {
n = (length(x)-window-2)/window
errors=c()
for (i in 0:n) {

start_index = i * window
stop_index = start_index + window -1
outcome_index = start_index + window
model = arima(boxcox_transform(x[start_index:stop_ind ex],lambda), \

order=ord,method="ML")
pred = predict(model, n.ahead=horizon)
if (mse) {

errors = c(errors, (x[outcome_index+horizon-1] - \
boxcox_inverse(pred$pred[horizon],lambda))ˆ2)

} else {
errors = c(errors, abs((x[outcome_index+horizon-1] - \

boxcox_inverse(pred$pred[horizon],lambda))/x[outcom e_index+horizon-1]))
}

}
mean(errors)

}
evaluate_arima <- function(x,ord,from,stop,step,walk, horizon,mse,lambda) {
arima_mse = c()
walk_ind = 1
to = round((stop - from)/step) + from

for (i in from:to) {
window = from + ((i-from) * step)
pred = predict_arima(x,ord,window,horizon,mse,lambda)
if (length(walk) > 0) {

pred = pred / walk[walk_ind]
walk_ind = walk_ind + 1

}
arima_mse=c(arima_mse,pred)

}
arima_mse

}
bootstrap_test <- function(x,sample_size,alpha) {

n=length(x)
x_sample = c()
for (i in 1:sample_size) {

x_sample=c(x_sample,ecdf(sample(x,n,replace=T))(0))
}
sort_sample = sort(x_sample)
c( sort_sample[round(sample_size * alpha/2)], \

sort_sample[round(sample_size * (1-alpha/2))] )
}
evaluate_walk_exp <- function(x,ord,horizons,from,to, step,alpha,samples,lambda)
{

exp_errors = c()
arima_errors = c()
walk_errors = c()
x_evals = c()
x_exps = c()
for (i in 1:horizons) {

walk_error = evaluate_arima(x,c(0,1,0),from,to,step,c (),i,mse=F,lambda)
walk_errors = c(walk_errors, mean(walk_error), mean(wal k_error))
x_walk = evaluate_arima(x,c(0,1,0),from,to,step,c(),i ,mse=T,lambda)
x_eval = evaluate_arima(x,ord,from,to,step,x_walk,i,m se=T,lambda)
x_exp = evaluate_arima(x,c(0,1,1),from,to,step,x_walk ,i,mse=T,lambda)
x_evals = cbind(x_evals, x_eval)
x_exps = cbind(x_exps, x_exp)
# Pr(EXP < RW)
exp_errors = c(exp_errors,bootstrap_test(log(x_exp),s amples,alpha))
# Pr(ARIMA < RW)
arima_errors = c(arima_errors,bootstrap_test(log(x_ev al),samples,alpha))

}
errors = cbind(walk_errors,arima_errors,exp_errors)
attr(errors,’arima’) = x_evals
attr(errors,’exp’) = x_exps
errors

}


