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Abstract. Grid computing platforms require automated and distributed resource
allocation with controllable quality-of-service (QoS). Market-based allocation
provides these features using the complementary abstractions of proportional
shares and reservations. This paper analyzes a hybrid resource allocation sys-
tem using both proportional shares and reservations. We also examine the use of
price prediction to provide statistical QoS guarantees and to set admission control
prices.
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1 Introduction

Grid applications traditionally run on dedicated machines, with a fixed performance
level that depends on the hardware configuration. In this model, the main source of un-
certainty in predicting job deadlines is the queue waiting time. As a solution to hetero-
geneity, and low resource utilization various virtualized platforms are emerging, such as
Xen, VMWare, and VServer. In a virtualized Grid, where the performance level is con-
figured dynamically based on job requirements and current demand, the main source
of uncertainty is the risk of not being allocated enough capacity. The allocation deci-
sions are complicated by the scale, and distribution of the Grid resources, and the vast
variability and complexity of the job requirements. Therefore, it is not feasible to make
these decisions manually using static configurations or policies.

Market-based allocation is one form of allocation that is automated, distributed, and
provides QoS. Market-based allocation supports two primary resource abstractions:
proportional shares and reservations. A pure proportional share allocator always admits
new resource requests and continuously reallocates resource shares in response to the
current load. This fully utilizes the resources and always admits well-funded resource
requests, but may cause an earlier request to fail a minimum resource requirement. In
contrast, a pure reservation allocator fixes resource shares at purchase time. Admit-
ted resource requests in a reservation system will always (modulo failure) meet their
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resource requirements, but sometimes utilization is low, and sometimes well-funded
requests will be rejected admittance.

In this paper, we examine a hybrid system that mixes both proportional share and
reservation abstractions to achieve the best of both worlds: satisfying quality-of-service
requirements for some applications while maximizing utilization and providing re-
source availability for latecomers. Using simulation, we explore how such a hybrid
system performs for different workloads.

In addition, we examine how prediction algorithms affect the result. Prediction of fu-
ture load is critical to efficient resource allocation. Proportional share allocators require
it so that purchasers can get statistical QoS guarantees. Reservation allocators require
it to set the prices for reservations. However, the effect of universal prediction on a sys-
tem is not obvious. For example, if low prices are predicted for a particular hour of CPU
time, then many resource consumers may try to buy it, thus ruining the accuracy of the
prediction.

We base this analysis on previous work on predicting demand in computational mar-
kets [1,2], where we evaluate different prediction techniques to give accurate percentile
bounds for expected demand for arbitrary probability distributions. We assume here
that we have an approximation for the cumulative distribution function (CDF) of the
demand. Furthermore, we assume a computational market where proportional share re-
source allocations are enforced (e.g., Tycoon [3]).

Our contribution in this work is twofold: 1) we highlight and visualize issues with
statistical guarantees in performance contracts using simulations, and 2) we propose
and implement a solution to these issues using contract admission control.

The paper is organized as follows: Section 2 provides an overview of the mathemat-
ical models used to analyze and simulate our resource allocation scenario, Section 3
presents and discusses the design and results of our simulations, Section 4 reviews re-
lated work, and finally Section 5 sums up our findings with some concluding remarks.

2 Model

2.1 Statistical Guarantees

We are interested in analyzing what bids individually rational resource consumers
should place on their tasks, given that they need a certain performance level to fin-
ish within a deadline. Different guarantee-levels can then be compared based on the
price consumers have to pay for obtaining a performance level.

To formalize the model we use the following standard probability theory notations:

x ∈ X, P (x) = P (X = x) (1)

D(x) =

x∫

xmin

P (ε)dε (2)

where P is the probability function (a.k.a. PDF), and D the probability distribution
function (CDF). To find performance levels based on guarantees it is also useful to look
at the inverse of the distribution function, or percent point function (PPF), defined as:
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D−1(D(x)) = x (3)

The proportional share resource allocation model is defined as:

q =
b

b + c
(4)

where q is the performance level or QoS in terms of resource share (0, 1), given a
consumer’s bid, b, and a measured price, c, of a resource. The price is the sum of all
existing bids on the resource.

A rational consumer would hence bid

b =
cq

1 − q
(5)

for any measured price, c, to maintain a service level q. However, in a competitive com-
putational market the price adjusts dynamically to the resource demand, and can thus
be viewed as a random variable C, which changes continuously over time. Since, q
depends on c it can also be seen as a random variable, Q. The guarantee of deliver-
ing a certain QoS level to the consumer, g, will be expressed in terms of this random
variable Q.

q ∈ Q, c ∈ C (6)

g = P (
b

b + C
> q) = P (C <

b

q
− b) = Dc(

b

q
− b) (7)

where Dc is the price distribution function. Now using the inverse of the price distri-
bution function we can calculate the bids to place given a QoS level and a guarantee

D−1
c

(g) = b(
1
q

− 1) (8)

which gives

b =
D−1

c
(g)

1
q − 1

=
D−1

c
(g)q

1 − q
(9)

The intuition behind this is that the probability of getting a service level greater than
a certain value is the same as the probability of the price being below a particular
value, or

P (Q > q) = P (C < c) (10)

2.2 Admission Control

Now, we would like to offer an admission control service with more than a statistical
guarantee for an additional fee. We calculate this new price as:

b′ =
D−1

c
(g + r)q
1 − q

(11)
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where b′ is the price a user needs to pay to get share q with guarantee g, and r is the
fee parameter. Note that the fee is not simply added to or multiplied with the bid, but
included in the percent point calculation of the price. This ensures that the admission
control service is more expensive when there is a high price difference in offering a
higher guarantee, in order to account for the expected loss the provider makes when
refusing new consumers due to admission control.

In our model, a share of a resource can be requested with either an absolute guar-
antee paying the admission control fee, or with a statistical guarantee paying the spot
(current) market price. The admission controller makes sure that no request is accepted
that violates previously admitted requests with absolute guarantees. Whether a viola-
tion would occur as a result of admitting a new request is determined by enumerating
and evaluating bids and required shares for all active previously admitted requests for
the same resource. Consequently, all requests for the resource will need to go through
the same admission control path in order to ensure reservation-like guarantees. We note
that price volatility in this model is paid for directly by the user, and the admission
controller operates in the interest of the provider to keep the prices at a higher level to
compensate for not being able to preempt existing low-paying allocations in the event
of higher-paying requests. Alternatively, the admission controller could be separated
entirely from the resource being provisioned and operate like an insurance agent to put
in spot market bids on the resources, and then dynamically update the bids using an
insurance fund. For simplicity of evaluation and implementation we chose not to study
this more advanced form of admission control here.

If strict admission control is implemented for all users only one guarantee level
can be provided. To allow any number of guarantee levels, we strictly enforce only
a portion of the allocation request, and make the remaining portion subject to statistical
guarantees.

3 Simulations

In our simulations we study the price guarantees and dynamics, using varying levels
of statistical and admission control guarantees offering multiple competing consumers
service-level guarantees under different work-load situations.

The setup is as follows. A number of concurrent competing consumers submit jobs
with inter-arrival-times (IAT) from an exponential distribution and performance require-
ments drawn from a normal distribution. The performance requirement is obtained from
the number of work units that needs to be completed within a given deadline, and it
translates to the share, q, of a resource that the consumer will bid for.

To simulate the fact that some users do not care about guarantees, but are only in-
terested in best-effort service we designate a certain proportion of the work-load to be
best-effort jobs. Those jobs are submitted by calculating the bid a consumer should
spend based on the assumption that the price stays at the current mean value. This tech-
nically gives the guarantee, g = 0.5. All other jobs try to get a guarantee g ≥ 0.6,
and we then measure the guarantees obtained and the price paid under different levels
of best-effort jobs. Each run of the simulated workload was configured with a single
guaranteed service level, i.e. all jobs competing with best-effort jobs in a simulation
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run request the same guarantee level. We then measure and graph the average bid and
obtained guarantee for a group of eigth subsequent jobs (based on completion time)
requesting a certain guarantee level.

The guarantee obtained in a simulation run is calculated by measuring whether the
current share of a job is greater than the required share each second that the job runs.
The proportional share allocations are also recalculated each second. We configured the
mean of the overall required shares to be higher than the available capacity in order to
simulate resource contention and consumer competition.

The general simulation configuration is summarized in Table 1 and Table 2. #C is the
number of consumers, #J is the number of jobs per consumer, t the deadline, and BE is
the portion of best-effort jobs.

Table 1. General Configuration (All times in seconds)

#C #J q IAT g t
4 32 N(5.5/16, .25) Exp(8) (0.6, 0.9) 16

Table 2. Individual Simulation Configuration

Simulation BE Strategy
I 0.75 statistical guarantee
II 0.25 statistical guarantee
III 0.25 admission control

3.1 Simulation I: 75% Best-Effort with Statistical Guarantees

In the first simulation we look at a work-load with a high portion of best-effort jobs
(75%) that can make way for the smaller portions of jobs requiring guarantees. No
admission control is used in this simulation, just statistical guarantees. In Figure 1,
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Fig. 1. Bids vs. obtained guarantees for statistical guarantees and 75% Best-Effort jobs
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Fig. 2. Price over time for statistical guarantees and 75% Best-Effort jobs
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Fig. 3. Price skewness and variation for statistical guarantees and 75% Best-Effort jobs

where each marked point is an average of eight subsequently completing jobs, we see
that there is a clear separation left to right and from bottom to top between the different
guarantee levels. Jobs with higher guarantee requirements were bidding more (x-axis)
and also obtained a higher guarantee (y-axis). This tells us that statistical guarantees
worked well when giving consumers their guarantees in this scenario.

We also study the price dynamics. In Figure 2 we can see that the price is stationary
although it has a high variance. Note that the first two minutes are not shown because
this time is used to bootstrap the simulations. In Figure 3 the variation is high but
stable, the skew is positive and varies between 0 and 0.5. A positive skew of the price
distribution means that more jobs pay a higher price for a guarantee level than would
normally (e.g. by Gaussian distribution models) be expected from the mean and the
variance. Skewness can thus be viewed as an indication of how risky the computational
market is [4].



Prediction-Based Enforcement of Performance Contracts 77

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7

G
ua

ra
nt

ee

Bid

g=0.6
g=0.7
g=0.8
g=0.9

Fig. 4. Bids vs. obtained guarantees for statistical guarantees and 25% Best-Effort jobs

 0

 5

 10

 15

 20

 25

 2  4  6  8  10  12  14

P
ric

e 
(g

=
0.

6)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2  4  6  8  10  12  14

P
ric

e 
(g

=
0.

7)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2  4  6  8  10  12  14

P
ric

e 
(g

=
0.

8)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2  4  6  8  10  12  14

P
ric

e 
(g

=
0.

9)

Time (minutes)

Fig. 5. Price over time for statistical guarantees and 25% Best-Effort jobs

3.2 Simulation II: 25% Best-Effort with Statistical Guarantees

We now decrease the portion of best-effort jobs to 25% and consequently the portion
of jobs requiring guarantees increases to 75%. In Figure 4 we can see that the guar-
antees obtained for the different guarantee-levels are seemingly randomly layered. The
higher bids and requested guarantees do not necessarily yield a higher obtained guaran-
tee as before. This can be explained by the load being too high for the provider to offer
everyone the required guarantees.

Looking at the price fluctuations in Figure 5, there is a clear trend of inflation in
particular for g = 0.9 (bottom right). Also note that simply compensating for the bid
based on expected inflation would just accelerate this trend. In Figure 6 we see that
both the variance and the skewness of the price distribution exhibit similar behavior as
in Simulation I.
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Fig. 6. Price skewness and variation for statistical guarantees and 25% Best-Effort jobs

3.3 Simulation III: 25% Best-Effort with Admission Control Guarantees

Finally we run a simulation with the same load configuration as in the previous simula-
tion, i.e, 25%, best-effort jobs, but now we offer admission control for all non best-effort
jobs. An admission control fee of r = 0.05 percent points and an enforcement portion
of 30% was used. To simulate the important task of an admission control mechanism
to allow users to defer their job submissions based on admission results, we defer and
resubmit all guarantee jobs that cannot get at least 70% of their work load guaranteed.
The time to wait before resubmission is determined randomly with a uniform distribu-
tion ranging 1 − 10 seconds. In Figure 7 it is now again apparent that higher bids also
give higher guarantees. Although the separation is not as clear as in Simulation I, it is
clearly better than in Simulation II. The separation received is related to the proportion
of the job that is strictly enforced. In the case of the entire job being strictly enforced
all requested levels result in a 100% guarantee. If the enforcement proportion is made
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Fig. 7. Bids vs. obtained guarantees for admission control guarantees and 25% Best-Effort jobs
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Fig. 8. Price over time for admission control guarantees and 25% Best-Effort jobs
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Fig. 9. Price skewness and variation for admission control guarantees and 25% Best-Effort jobs

too low, the reulsts will converge to those of Simulation II, that is, requested guarantees
cannot be met reliably.

Figure 8 indicates that the inflation is now gone, and Figure 9 shows that the price
distribution variation and skewness are similar to the previous two simulations. The
penalty for the higher guarantees for some users rests partly on the best-effort jobs and
partly on the fact that only a portion (70%) of the entire job run is strictly reserved. We
should note that the overall load in this simulation is lower and thus the average bid for
the jobs that are let through are obviously lower due to some jobs being refused to run
by the admission control. The main point here, though, is that we can add admission
control as a compromise between reservations and best-effort allocations in scenarios
when statistical guarantees fail.
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We summarize the results of the simulations in Table 3. Although the price distribu-
tion variation is the same in all the simulations, Simulation II exhibits a higher variance
in guarantee levels delivered, in addition to not being able to deliver on the requested
guarantee level.

Table 3. Summary of mean and variation of obtained guarantee levels when requesting 60, 70,
80, and 90% guarantees. All values are in percent.

Simulation 60 70 80 90
μ σ/μ μ σ/μ μ σ/μ μ σ/μ

I 52 15 61 12 83 3 99 1
II 50 22 50 27 56 22 58 34
III 76 14 79 16 86 11 88 8

4 Related Work

There is a substantial body of work on Internet Protocol quality-of-service enforce-
ment, represented by the two IETF specifications IntServ [5], and DiffServ [6]. The
IntServ specification takes the approach of reserving paths for individual users, and
thus does not scale as well as the DiffServ approach, which is based on marking indi-
vidual packets with different per-hop behaviors in a stateless and decentralized archi-
tecture. Wang [7] gives an overview of lessons learned and the pros and cons of the
reservation approach which can be implemented with IntServ versus the proportional
share approach which can be built on top of DiffServ. The conclusion was that fixed
allocations over a point-to-point path incur too much overhead for most of the web
traffic, it is difficult to determine the resource requirements a priori, inter-ISP relation-
ships make end-to-end reservations complicated, and traffic policing breaks down in
the event of partial allocation failures. All of these factors result in many IP reservation
providers over-provisioning their network capacity, leading to poor utilization. Wang
therefore makes a case for a proportional share model [8] where each user receives a
proportional share of the currently available bandwidth according to her contribution or
spending. We are facing the same issues and trade-offs when allocating computational
resources across large distributed systems. However, new virtualization technology and
the fact that many of the resources are localized (e.g. CPU, memory, disk) makes it
worth revisiting the reservation concepts.

One of the most critical parts of the IntServ architecture is the admission control
component, and consequently there has been an extensive effort on designing efficient
algorithms for deciding which packets are to be dropped versus served, and how routers
and switches should be configured to shape the traffic according to the QoS levels
promised to users. Knightly and Shroff provide an evaluation of the different admission
control algorithms available for IP traffic shaping in [9]. The dilemma of denying access
to flows that might have been served leading to underutilization compared to serving
requests that will break existing QoS contracts makes it hard to use coarse statistical
bounds and too simplified assumptions about traffic flow distributions. Put differently,
both accuracy maximization and risk minimization are desired. The algorithms that
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accounted for economies of scale and not simply looked at the statistical properties of
individual flows were shown to perform much better on average. Again, our admission
control decision differs from the IP flow one, in that we can, through virtualization,
more directly enforce that an admitted request stays within its bounds. Our decision is
thus more about making sure that the provider does not lose out on utilization or profit
by admitting low priority tasks prematurely.

MacKie-Mason et. al. [10] investigate how price predictors can improve users’ bid-
ding strategies in a market-based resource scheduling scenario. Their conclusion is that
even very simple predictors, such as taking the average of the previous round of auc-
tions, help improving expected bidder performance. Another interesting result is that
the main reason the predictor strategies outperform memory-less strategies is the fact
that the binary decision of whether to participate in an auction can save the bidder more
money than accurately estimating exactly how much to bid to obtain a certain perfor-
mance level. Although, the high-level goal of this work is strikingly similar to ours they
investigate a very different allocation and auction scenario, where combinatorial pref-
erences exist and there is a risk of only receiving subsets of the preferred resources.
Furthermore, first price winner-takes-it-all auctions are employed, as opposed to pro-
portional share auctions in our work. Nevertheless, their results are encouraging. An-
other successful use of economic predictions to optimize bidding strategies is described
by Wellman et. al. in [11], where bidding agents determine their bids and auctions to
enter based on the expected market clearing price in a competitive or Walrasian equi-
librium. To find this price they employ the process of tatonnement which involves de-
termining users’ inclination to bid a certain value given a price-level. Wellman et. al.
compare their competitive analysis predictor to simple historical averaging and machine
learning models as employed in the Trading Agent Competition (TAC) and conclude
that strategies not only considering background history data but also instance-specific
data in the predictions provided a competitive advantage. Finally, their competitive pre-
dictor performed on-par with the best machine learning predictor. The conditional prob-
ability of price dynamics given a certain price-level would be very useful to collect in
our case too to get a full picture of the usage pattern. However, in large-scale systems
with users entering and leaving the market at will, and large real-valued price ranges it
quickly becomes impractical for our purposes, so we assume this behavior is incorpo-
rated in the price history itself.

5 Conclusions

We have studied the effects of bidding for virtualized resource shares using price pre-
dictions and admission control. For the predictions to be effective there must either be
a sufficiently large portion of best-effort bidders, who can decrease their shares when
there is contention, or an admission control mechanism refusing access to requests that
would break the existing QoS contracts.

Whether a consumer should spend extra money on getting a higher level of guar-
antee through an admission control contract, thus depends on the contention among
consumers requiring high guarantees. Price history and price distribution analysis serve
as good indicators for determining whether this is the case. Conversely, providers would
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be interested in knowing how to partition their resources between the admission control
market versus the best effort market depending on the price fluctuation characteristics
and usage pattern.

Future work includes reproducing the simulation results in experiments in a live Grid
market deployment (presented in [2]), more in-depth analysis of how providers can dy-
namically partition their resources for contract markets, and adding more sophisticated
option and risk-hedging reservations to the admission control mechanism presented
here.
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