
Managing Service Levels in Grid Computing Systems

Quota Policy and Computational Market Approaches

THOMAS SANDHOLM

Licentiate Thesis

Stockholm, Sweden 2007

TRITA CSC-A 2007:6
ISSN 1653-5723
ISRN KTH/CSC/A--07/06--SE
ISBN 978-91-7178-658-6

KTH School of Computer Science and Communication
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av filosofie licensiatsexamen i datalogi månda-
gen den 14 maj 2007 klockan 10.00 i Sal 304, Parallelldatorcentrum, Teknikringen
14, Kungl Tekniska högskolan, Stockholm.

© Thomas Sandholm, maj 2007

Tryck: Universitetsservice US AB

iii

Abstract

We study techniques to enforce and provision differentiated service levels in Compu-

tational Grid systems. The Grid offers simplified provisioning of peak-capacity for appli-
cations with computational requirements beyond local machines and clusters, by sharing
resources across organizational boundaries. Current systems have focussed on access con-
trol, i.e., managing who is allowed to run applications on remote sites. Very little work
has been done on providing differentiated service levels for those applications that are
admitted. This leads to a number of problems when scheduling jobs in a fair and efficient
way. For example, users with a large number of long-running jobs could starve out others,
both intentionally and non-intentionally.

We investigate the requirements of High Performance Computing (HPC) applications
that run in academic Grid systems, and propose two models of service-level management.
Our first model is based on global real-time quota enforcement, where projects are granted
resource quota, such as CPU hours, across the Grid by a centralized allocation authority.
We implement the SweGrid Accounting System to enforce quota allocated by the Swedish
National Allocations Committee in the SweGrid production Grid, which connects six
Swedish HPC centers. A flexible authorization policy framework allows provisioning and
enforcement of two different service levels across the SweGrid clusters; high-priority and
low-priority jobs. As a solution to more fine-grained control over service levels we propose
and implement a Grid Market system, using a market-based resource allocator called
Tycoon.

The conclusion of our research is that although the Grid accounting solution offers
better service level enforcement support than state-of-the-art production Grid systems,
it turned out to be complex to set the resource price and other policies manually, while
ensuring fairness and efficiency of the system. Our Grid Market on the other hand sets
the price according to the dynamic demand, and it is further incentive compatible, in that
the overall system state remains healthy even in the presence of strategic users.

Keywords: Grid Market, Computational Grid, Service Level Management, QoS,
HPC, Grid Middleware

iv

Sammanfattning

Vi studerar metoder för att tillhandahålla och upprätthålla olika servicenivåer i Grid
system för storskaliga beräkningar. Grid modellen gör det enklare att tillgodose den
maxkapacitet som storskaliga beräkningar kräver genom att möjliggöra ett dynamiskt
och automatiserat utbyte av datorkraft mellan olika organisationer. Dagens Grid system
fokuserar på behörighetskontroll, dvs hanterande av vem som tillåts köra applikationer på
främmande system. Väldigt lite arbete har ägnats åt att erbjuda olika servicenivåer till
de som har behörighet. Detta leder till åtskilliga problem när jobb ska distribueras och
köras på ett effektivt och rättvist sätt. Användare som kör många långa jobb kan, t.ex.
blockera andra körningar, både medvetet och omedvetet.

Vi undersöker kraven som storskaliga beräkningsapplikationer ställer på infrastruk-
turen i akademiska Grid system, och föreslår två modeller för att hantera servicenivåer.
Vår första modell baserar sig på global kvotakontroll i realtid, där forskningsprojekt tillde-
las en kvota datorkraft, som t.ex. CPU timmar, av en centraliserad allokeringsenhet. Vi
implementerar SweGrid Accounting System, ett system för att se till att resurs kvota som
tilldelats forskare av Swedish National Allocations Committee, levereras av ett nätverk
av datorer, SweGrid, som sammanbinder sex super- och parallelldatorcentra i Sverige. Ett
enkelt konfigurerbart policystyrt auktoriseringsramverk tillåter tillhandahållande och up-
prätthållande av två olika servicenivåer ; högprioritets- och lågprioritetsjobb. För att få
ytterligare och bättre kontroll över servicenivå föreslår och implementerar vi en marknad
för Grid resurser som avänder sig av Tycoon, ett marknadsbaserat allokeringssystem för
datorresurser.

Slutsatsen av vår forskning är att trots att SweGrid Accounting lösningen erbjuder
bättre servicenivåstöd än dagens Grid system, visade det sig vara komplicerat att konfig-
urera resurspris och andra policyvärden manuellt, och samtidigt tillförsäkra en rättvis och
effektiv allokering. Vår lösning med en Grid-marknad å andra sidan sätter priser utefter
efterfrågan dynamiskt, och den är incitamentkompatibel, dvs systemet som helhet förblir
effektivt och rättvist trots att det finns strategiska användare som försöker utnyttja det.

Contents

Contents v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Scope . 2
1.3 Approach . 2
1.4 Organization . 3

I Background and Results 5

2 Foundation 7
2.1 Grid Computing . 7
2.2 Market Theory . 11

3 Software 15
3.1 SweGrid Accounting System . 15
3.2 Tycoon Grid Resource Allocator . 17

4 Results 21
4.1 Thesis Papers . 21
4.2 Additional Publication Contributions 24
4.3 Related Work . 25
4.4 Conclusions . 27
4.5 Future Work . 27
4.6 Acknowledgments . 28

Bibliography 29

II Papers 37

v

Chapter 1

Introduction

Large-scale networks are evolving rapidly to become faster, more reliable, and more
accessible, which is exemplified by the enormous technical as well as social impact of
the Internet. This trend is a result of advances in computer science and engineering,
such as more efficient hardware and network protocols, but it is also an indirect
result of the advances in physical and social sciences, such as Bioinformatics, High-
Energy Physics, and Economics demanding increased capacity for data processing,
storage, and transfer. These demands are typically fluctuating over time, making
it impractical to purchase dedicated hardware that is unutilized most of the time,
and furthermore quickly becomes obsolete. As hardware, operating systems, and
networking software are commoditized, it becomes more feasible to share these
resources. A new array of computing systems thus evolved to govern the sharing of
resources in large-scale networks.

The power-grid utility paradigm is often used to describe such systems. It should
be as easy to upgrade your computing capacity as plugging in your appliance into a
power socket and turning a knob to get more electricity. One set of problems that
need to be tackled to achieve this involves agreeing on standards for communication
interfaces and protocols, another is related to ensuring that the shared resources
are correctly used in a secure way and that the usage is accounted and charged
for regardless of where it was provisioned. A final set of problems involves offering
a variety of service levels for customers with different needs and preferences in an
economically fair and efficient manner.

The state-of-the-art Grid systems have made great progress in interface stan-
dardization recently and have also tackled many of the security related problems
involved in executing applications remotely. Grid Accounting systems are in devel-
opment but not yet widely deployed, and not yet standardized, which complicates
charging for compute resource usage. However, the most apparent shortcoming of
today’s Grid systems is the lack of provisioning and enforcement of service lev-
els. The problem has been addressed from a linguistic perspective by inventing
new service level agreement languages and negotiation protocols, but very little

1

2 CHAPTER 1. INTRODUCTION

has been done to facilitate provisioning and enforcement of these agreements. As
a result it is hard to make the current Grid deployments economically sustainable
and thereby offered in a commercial setting as opposed to in a government-funded
research project.

1.1 Problem Statement

In this thesis we1 investigate what infrastructure can be added to existing HPC
Grid systems to automatically provision and enforce service levels more accurately
and easily.

Provisioning of service levels is the process when resource providers offer and
advertise different levels of service performance to users, whereas enforcement, a.k.a.
policing, of service levels involves making sure that the promised levels are indeed
delivered. These two activities are deeply interrelated, and we thus consider the
combination, referred to as service-level management here.

1.2 Scope

We examine service-level management from a middleware perspective. That is,
we study what tools can be developed to help Grid application programmers take
better advantage of the shared resources while still assuring that the overall state
of the system is healthy. Our focus is not on advancing research in the graphical
end-user interface design nor the design of the networking fabric, but rather to
improve the technology that bridges the two.

1.3 Approach

We have investigated two different approaches to service-level provisioning and
enforcement in Grids. The first approach relies on a Grid accounting system, which
we developed, that allows centrally set project quota policies as well as locally
configured resource provisioning policies determine the service-level for users across
HPC clusters. The second approach is based on resource virtualization and slicing
in a proportional share, market based resource allocator.

Simulations, benchmarks, experiments, and analyzes of production system de-
ployments with real users are all methods used to verify the results and the fea-
sibility of our models and their implementation in different settings and against
alternative solutions.

1The term we is used throughout this thesis to denote the work lead and performed by the
author while collaborating with other researchers. Where there are joint contributions, the parts
done by the author are explicitly stated.

1.4. ORGANIZATION 3

1.4 Organization

The thesis is organized as follows. In the first part we summarize the background
and results of our work. Chapter 2 presents the problem domain and the underlying
technology and theory. The software that was developed as part of the thesis
research is described in some more detail in Chapter 3 and then the contributions
and the thesis papers are summarized with future work in Chapter 4.

In the second part we include the thesis papers previously published in a journal,
conference proceedings, a technical report, and a research manuscript.

Part I

Background and Results

5

Chapter 2

Foundation

In this chapter, we discuss the foundational concepts and theory of the work pre-
sented in this thesis. First, we describe the new paradigm of computing emerging in
Computational Grid systems. Second, we review the underlying theory of markets
including game theory, and fundamental micro-economic theory.

2.1 Grid Computing

In the context of this thesis the Grid refers to a collection of computational re-
sources shared across organizational boundaries to deliver non-trivial Qualities of
Service (QoS) [28, 27, 5]. Non-trivial here means that services beyond pure in-
formation sharing, as typical in the World Wide Web, are offered. What is in
common for these more advanced services offered by a Grid is that they typically
involve large-scale resource consumption within a dynamic community of users and
providers spread across a large geographic area. One of the first super computing
projects to span multiple organizations and utilizing a cross-Atlantic Grid was the
I-WAY project [17], which paved the way for Grid computing as a scientific field.
This community is known as a Virtual Organization (VO) [26]. An example VO
architecture is shown in Figure 2.1.

Security

Many of the trust, privacy and general security issues appearing in the Grid revolves
around management of rights within a VO. The idea is that a VO is a web of
trust where information exchange and resource sharing can take place just like in
a corporate Intranet. The difference is that Virtual Organizations may be created,
managed and destroyed in a more dynamic manner. Examples include ATLAS 1, a
particle physics experiment utilizing the computational Grid of the Large Hydron
Collider at CERN; and HapGrid, a bioinformatics project performing haplotype

1http://atlas.web.cern.ch/Atlas/

7

8 CHAPTER 2. FOUNDATION

Figure 2.1: Virtual Organization Example.

reconstruction and frequency estimation using the SweGrid computational Grid
resources [2].

The trust verification mechanism in Grid systems is based on the Public Key
Infrastructure (PKI) [36], with extensions to allow delegation of rights and single
sign-on using self-signed proxy certificates [65, 69]. A user will have a secret key on
her local machine and then distribute a public key to all communication partners. A
message can then be signed or encrypted with the private key by the sender to allow
the recipient to verify the authenticity of the message including non-repudiation,
and protection against denial-of-service (DoS) and replay attacks. The PKI hand-
shake protocol where authenticity is verified has two main advantages compared
to more traditional username and password based authentication protocols. First,
no personal secret such as a password or private key needs to be sent across the
communication link exposing it to eavesdropping. Second, mutual authentication
of senders and receivers is seamless, making it a good fit for peer-to-peer like sys-
tems, such as the Grid. Another fundamental concept is the Certificate Authority
(CA), which is a trust anchor asserting the identity of its users by signing their
credentials (public keys). CA’s may be established for individual VO’s, a collection
of VO’s using a particular Grid environment, a country for its citizens, etc. Cer-
tificate Authorities may also be organized hierarchically, where the parent nodes
assert the identity of their child nodes.

The use of proxy certificates allows brokers or agents to act on behalf of users

2.1. GRID COMPUTING 9

to complete a task. The broker will not simply receive the private key of the user,
as it would violate the rule of strong authentication, which states that no long-lived
personal secrets should be distributed as part of the identity verification process.
Instead the user creates a temporary key-pair, signs it, encrypts it, and sends it
to the broker. Proxy certificates thus enables single-sign on across a network of
brokers.

Policy Management

In cross-organizational wide-area networks with community overlays, such as Vir-
tual Organizations in Grid systems, managing policies for all stakeholders becomes
a challenging task. The policies of resource providers, funding agencies, virtual or-
ganizations, and users must be combined in order to make accurate authorization
and service-level decisions. Policies may either be pulled in from 3rd parties, by
intercepting the message flow and making call-outs, or pushed to decision makers
by attaching capability assertions to the message payload [69]. Combinations of
the push- and the pull-models are also common and the policy decisions may be
made both on the client and on the server side in a client-server interaction [47].
Policy-based systems aim to manage resources by enforcing, evaluating, retrieving,
administering and combining policies with standard protocols. By communicating
with all the heterogeneous resources in the same way, generic tools can automati-
cally manage arbitrarily complex networks of resources and stakeholders by means
of control feedback-loops, a.k.a. the MAPE (Measurement, Analysis, Planning,
and Execution) or autonomic self-management model [41]. Policy-based manage-
ment systems can dynamically change the configuration of resources in response
to events that in turn were triggered by various system states occurring. A key
to designing efficient policy-aware systems is to separate the policy-related tasks
into different layers and making them agnostic to the application code. These lay-
ers, often referred to as policy points, can be stacked and combined in arbitrarily
complex policy-decision trees. The different layers and their responsibilities, sum-
marized below, comprise a common architecture and nomenclature for policy-based
systems [1].

• A Policy Enforcement Point (PEP) intercepts the execution path and call-
ing decision points, i.e. a PEP integrates the application with the policy
mechanisms.

• A Policy Decision Point (PDP) combines and evaluates local as well as exter-
nal policies, and may call information points to retrieve policies to base its
decision on. The result from an evaluation is typically permit, deny, or not
applicable. The result may also contain obligations that must be met for the
result to take effect.

• A Policy Information Point (PIP) stores and retrieves policies, e.g. returns
roles that an authenticated user has in an RBAC (Role-Based Access Control)

10 CHAPTER 2. FOUNDATION

system [21]. The additional information can then be used by the PDP and is
sometimes called evidence or context credentials.

• A Policy Administration Point (PAP) sets and configures policies used by the
PDP and PIP layers.

Accounting and Systems Integration

Grid middleware services include secure remote execution management, remote
data storage and replication, monitoring services, and high-volume file-transfer ser-
vices. What distinguishes these services from other network services such as FTP,
WWW, and LDAP, is that a Grid needs to handle higher volumes of data to transfer
and store; and allow VO-enabled access control, and execution of arbitrary appli-
cations. Furthermore, all users and Virtual Organizations are accountable for their
resource usage in a Grid, in order to promote fair sharing.

Accounting services thus play a fundamental role in Grids. Grid accounting
systems must be able to handle VO-scoped accounting of the usage of heteroge-
neous resources. Standard accounting records that translate and coalesces resource
and site specific usage need to be exchanged and coordinated across the Grid.
This process is complicated by the diversity of resource management technology
and policies (e.g., security, accounting, auditing) in HPC centers offering Grid re-
sources [57, 19, 58].

Resource heterogeneity in Grid systems was first addressed by the Open Grid
Services Infrastructure protocol [66], which specifies a standard protocol interface
for managing the state of a Grid resource [25]. It was founded on state-of-the-art
systems integration technology of the time, including the XML Web services stack
with extensions, and it was adopted by the Global Grid Forum (GGF) standardiza-
tion body. This work later evolved into the Web Services Resource Framework [30],
within the OASIS standards group, which now makes up the backbone infrastruc-
ture of various distributed management standards, such as OASIS WSDM [10] and
GGF WS-Agreement [3].

Resource Allocation

Service level and QoS enforcement was addressed in a Grid context in the Grid Ad-
vanced Reservation and Allocation (GARA) [22, 23] project allowing CPU, band-
width and OS process resource capacity enforcement at different levels of service.
Here resources were configured using resource specific control mechanisms, such as
DiffServ and RSVP router management [6, 8], and DSRT CPU scheduling con-
trol [49]. This work evolved into the SNAP protocol [15] and then eventually
was standardized in the WS-Agreement specification [3], by GGF, which also bor-
rows many concepts from IBM’s WSLA (SLA for Web services) solution [16] and
SLAng [46].

2.2. MARKET THEORY 11

Complimentary to protocol standardization, heterogeneity can also be addressed
by resource virtualization. For example, virtualization of a host operating sys-
tem [18] gives fine-grained control over the service levels offered. CPU, disk, mem-
ory, and other resource shares can be allocated to user specific virtual machines.
This technique has been explored in the context of Grid job execution management
in [40].

As the Grid deployments extend beyond academic projects, such as EDG 2 [7],
EGEE 3 , TeraGrid 4, NEESit 5, ESG 6, and OSG 7 to self-sufficient commercial
Grid environments, the need to charge for compute resource usage like any other
commodity arises. This business model is in-line with many IT companies’ utility
computing strategy [31, 12, 35]. Economic models from the field of utility computing
could also solve the growing problem in academic Grid projects of a small number
of strategic users hogging the system. We will elaborate on how this could be
approached in the next section.

2.2 Market Theory

When managing service levels, we would like to make sure that the system cannot
be abused by strategic users, who could starve out competing resource consumers.
We therefore turn to economic theory to study how mechanisms can be developed
to ensure an overall healthy system even with strategic users.

Tragedy of the Commons

Consider the problem often referred to as the Tragedy of the Commons [33]. Farmers
let their sheep eat grass on a common. A farmer can sell one of his sheep when it has
been well fed and earn a profit compared to the original purchase price of the sheep.
Let’s further assume that the profit that an individual farmer gains from selling
a sheep is higher than the relative cost of having one more sheep share the grass
of the common, and thus leaving less grass available for other sheep. A strategic
farmer who is trying to optimize his own profits would under such circumstances
always choose to purchase another sheep. The main issue with this situation is
that the overall health of the community of farmers declines as individuals optimize
their profits, and eventually it will collapse when there are too many sheep on the
common for any single one of them to get fed well enough to be sold. It is not
hard to see that such situations could easily arise if compute power is offered as a
common good without providing some incentive for users to constrain their usage.

2European Data Grid, http://www.edg.org
3Enabling Grids for ESciencE, http://egee-intranet.web.cern.ch/egee-intranet/gateway.html
4http://www.teragrid.org
5http://it.nees.org
6Earth System Grid, http://www.earthsystemgrid.org
7Open Science Grid, http://www.opensciencegrid.org

12 CHAPTER 2. FOUNDATION

Game Theory

In Game Theory [52, 51] a number of players and their possible actions with as-
sociated individual preferences model a game. Other players’ actions affect the
utility or payoff a player receives from a game. However, the other players’ actions
may not be known before a player chooses an action. In order to choose an action
each player hence needs to make a guess of other players’ likely actions given past
experience, which is referred to as forming a belief.

Let

a∗ = {a1...ak}

be the set of actions taken by the k players in a game, where ai is the action taken
by player i. This set is called the action profile of the game.

We can now make statements about the steady states of a game, when no player
has an incentive to change her action.

Nash Equilibrium

A Nash equilibrium is defined as an action profile a∗ where no player i can get a
higher utility by changing her action a∗

i , given that every other player j performs
the action a∗

j . More concisely expressed

ui(a
∗) ≥ ui(ai, a

∗
−i)

for every action ai of player i, where ui is the utility function that represents player
i’s preferences and (ai, a

∗
−i) is the action profile where player i performs action ai

and all other players j perform action a∗
j .

It is important to note that a Nash equilibrium does not make any statements
about uniqueness of the solution, and many games can indeed have multiple Nash
equilibria.

To simplify the decision making process for a player given prior beliefs a best
response function is typically defined. It yields the set of best actions to take for a
player given an action profile of the other players, or more precisely

Bi(a−i) = {ai ∈ Ai : ui(ai, a−i) ≥ ui(a
′
i, a−i)|∀a′

i
∈Ai

}

where Ai is the set of all possible actions player i can take, a−i the action profile
including all players except player i, and Bi is the set of best response actions.

Resource Allocation Game

In our case a game can be defined as the process of allocating available Grid re-
sources, or shares of a resource, to the applications that users are requesting to run
on those resources. The users can form their prior beliefs of other users’ demand
of the resources by studying the current resource prices on the market. In order to

2.2. MARKET THEORY 13

analyze the efficiency and fairness of a resource allocation algorithm we need some
additional definitions.

The efficiency or price of anarchy [53] is calculated as the sum of all users’
utilities of a certain allocation outcome compared to the optimal utility in the
system. The sum of all users’ utilities is typically referred to as the social welfare,
and it is an indication of the global health of the system.

The social welfare for an allocation scheme ω is defined as

U(ω) =
∑k

i=1
ui(ri)

where ri is the resource share allocated to user i, and ui is the utility function of
user i.

The fairness of a resource allocation scheme can be defined in terms of envy-
freeness [67] which can be calculated as

ρ(ω) = min(min
i,j

ui(ri)

ui(rj)
, 1)

where ui(ri) is the utility that user i received from being allocated share ri, whereas
ui(rj) is the utility user i would have received had she been allocated the resource
share rj of user j instead. In an envy-free system (optimally fair) ρ(ω) equals
1. The closer the value is to 0 the more envy there is, and the more unfair the
allocation scheme is.

The task of an economically healthy resource allocation scheme is to enforce
both high efficiency and high fairness in the Nash equilibrium states of the game.

When constructing a mechanism to allocate resources in a computational mar-
ket, it is therefore important to force users towards taking actions that yield one
of these equilibrium state. In a system where a Tragedy of Commons behavior is
possible no equilibrium states will ever be reached. In other words, it should not be
possible to game (trick) the allocator for individual benefit at the cost of the overall
health of the system in terms of fairness and efficiency. A mechanism that yields
an equilibrium state in the presence of strategic users is said to be strategy proof.
Likewise a software system architecture implementing an computational economy
is truth-telling if users have an incentive to restrict their signaled and actual usage
of a resource to their true needs. Further, it is incentive-compatible if users who
have an incentive to perform a task either perform it themselves or transfer the in-
centive to a broker to perform the task on behalf of them. Incentive-compatibility
is key to any system to avoid the Tragedy of Commons problem occurring, and
it necessitates the deployment of transposable and commensurable entities, e.g. a
currency.

Best Response Agent

A game theoretical analysis tries to model the behavior of players and make state-
ments about optimal strategies and mechanisms enforcing certain global behavior

14 CHAPTER 2. FOUNDATION

based on local rules. Strategies can be implemented on behalf of a player by an
agent. One example of an agent that implements an optimal strategy to solve
the resource allocation game just described is the best response agent presented
in [20, 72]. Given a fixed budget and a pool of divisable resources allocated ac-
cording to the proportional share mechanism described above, the best response
agent finds the distribution of bids across resources that yields the highest utility
for an individual player. The prior beliefs of the demand used by the agent to
make its decision is the sum of all bids in the previous bidding cycle for all the
available resources. Zhang [72] shows that there always exists a Nash equilibrium
when the players’ utility functions are strongly competitive, i.e. when there are at
least two users competing for each resource. Furthermore, a tight efficiency bound
of Θ(1√

(m)
) and an envy-freeness of 2

√

(2) − 2 or approximately 0.828 in Nash

equilibria with m players are theoretically deduced.

Chapter 3

Software

The research results of this thesis were obtained by implementing service-level man-
agement support for two Grid and cluster middleware toolkits. Three types of
experiments were then performed. First, local simulations were run to test the al-
gorithms against theoretical models, where both resource users and providers were
simulated. Second, simulated users were run against providers deployed in the real
Grid. Finally, real users and applications were run against the real Grid.

The SweGrid Accounting System (SGAS) was implemented as a Grid accounting
system on top of the Globus Toolkit, and the Tycoon Grid Resource Allocator was
implemented as a Grid market broker on top of the Tycoon market-based resource
allocator. The general design of the two systems will be discussed below.

3.1 SweGrid Accounting System

We developed the SweGrid accounting system1 to meet the quota enforcement needs
of SweGrid, a national compute resource integrating 600 nodes at six HPC Centers
across Sweden [57, 19, 58]. Resource quota is granted to research projects after
peer review by the Swedish National Allocation Committee (SNAC). The quota
can then be consumed by running jobs on any of the six participating sites. The
main challenge was to consolidate the heterogeneous local accounting and security
policies into one uniform accounting system capable of charging and enforcing al-
locations globally and in real-time. Our solution was to develop a Web services
architecture based on a generic authorization policy framework capable of admin-
istering, storing, enforcing, and validating stakeholder policies at runtime. The
stakeholders in SweGrid are the Grid application users, the resource providers, and
the allocation authorities. Service-level management is carried out jointly by three
services: the Bank, the Logging and Usage Tracking Service (LUTS), and the Job
Account Reservation Manager (JARM). An overview of these services is shown in
Figure 3.1.

1http://www.sgas.se

15

16 CHAPTER 3. SOFTWARE

Broker Scheduler

Workload

Manager

plugin

 JARM

Bank LUTS

User

Site Policy

Manager

SGAS

Cluster

(resource)

External

Authorization

Services

P

A

P

P

I

P

P

E

P

P

D

P

Admin

inferface

Membership/

Community

Service

P

I

P

P

I

P

P

D

P

P

D

P

SGAS

component

External

component

Generic

interface

Figure 3.1: SGAS Components Overview.

Bank

The Bank service manages resource quota on a project and user basis. An account
in the bank is created for each research project and then the principal investigator
of the project can add all the users who should be allowed to submit jobs that
are allowed to consume the project quota. The Bank service can be queried for
available funds in an account, and holds of parts of the funds can be issued and
then charged. The Bank thus represents the allocation authority stakeholder.

LUTS

The Logging and Usage Tracking Service allows off-line accounting after the jobs
have run, and off-loads the bank from storing detailed logging and auditing records.
The LUTS can be queried by all stakeholders as a means to making allocation and
authorization decisions based on previous history.

JARM

The Job Account Reservation Manager component integrates the local accounting
system and job manager infrastructure with the SGAS services. JARM implements
the resource provider policies to enforce service levels. Currently only a binary

3.2. TYCOON GRID RESOURCE ALLOCATOR 17

service-level model is implemented where the job either runs as a full-priority task
if enough quota is available in the Bank, and as a low-priority task if the quota has
been exceeded.

3.2 Tycoon Grid Resource Allocator

Tycoon

Tycoon is a market-based resource allocation system allowing resource shares to be
auctioned out proportionally to users’ bids [43, 44, 42]. In short it implements the
resource allocation game and the best response agent as described in Section 2.2.
Furthermore, Tycoon implements resource virtualization as described in Section 2.1.
A user i bids on a resource by specifying a total bid size bi and a bidding interval
ti. The bid is then calculated as bi

ti
. If the total size of a resource is R, then ri, the

total amount of resource allocated to user i over a period P , is

ri =
ti

∑n−1
j=0

bj

tj

R

If qi is the amount of the resource consumed by user i in period P , then i pays
at a rate of:

si = min(
qi

ri

, 1)
bi

ti

Note, that payments are made, as common for a utility, per time unit on a contin-
uous basis. A resource exposes its price y as an indication of the price as the sum
of all the current bids.

To determine the best response function yielding a distribution of bids across a
set of resources given a total budget and the resource prices, Tycoon implements
the best response algorithm [20] that solves the following optimization problem for
a user: from a set of n resources pick the set {xi,j ...xi,n} that

maximizes Ui =
∑n

j=1 wi,j
xij

xij+yj
subject to

∑n
j=1 xij = Xi, and xij ≥ 0. (3.1)

where Ui is the utility of user i across a set of resources, wi,j is the preference of
machine j as perceived by user i (for example the CPU capacity of the machine),
xi,j is the bid user i should put on host j, yj the total of all current bids or the
price of host j, and finally Xi is the total budget of user i.

The prior beliefs of the demand used as input to the algorithm are represented
by the yj values, which are reported by all resource auctioneers after each completed
bidding and accounting cycle, typically once a minute. However, users are allocated
their appropriate shares instantaneously after bidding, which they can do at any
time.

18 CHAPTER 3. SOFTWARE

Grid Market

As part of our investigation of service-level management in Grid systems we de-
veloped a Grid broker on top of Tycoon (see Figure 3.2), which allows Grid HPC
users to prioritize their jobs in an incentive-compatible way by transferring Tycoon
credits to the broker. The broker receives credits from the user and automatically
creates local virtual host accounts to execute the job on the resources picked by
the best response algorithm described in Equation 3.1. The jobs run on each host
at a service level determined by the Tycoon allocator proportional to the bid de-
termined by the best response algorithm. The actual enforcement of the service
level is done by the virtualization engine in Tycoon, which is Xen. An important
addition to Tycoon that we also developed was to provide a tool for Grid users to
predict future prices of resources in order to make better decisions on how much
money should be spent on a resource to get a certain performance level.

The user interface of the broker uses the Nordugrid ARC meta-scheduler [62]
which in turn is based on the Globus Toolkit [24], both extensively deployed in
production Grid systems worldwide.

Figure 3.2: Tycoon Grid Market Architecture.

Our Grid market broker also performs a number of job related tasks on behalf
of the user, and it is important to note that these tasks are all performed as a result
of the user transferring additional money to the broker to maintain the incentive-
compatible properties of Tycoon in the Grid market. Some of the tasks we added
to the broker are enumerated here:

• Job Payments. A Grid user can pay for her jobs by attaching a transfer
token to the job submission. The transfer token is receipt of a credit transfer
from the user account to the Grid broker account. The token maps the Grid
identity to a Tycoon bank account user identity. The token can also be issued
by a 3rd party to clients who don’t have any Tycoon components installed, and
thereby use the token as a gift certificate. More commonly though the token

3.2. TYCOON GRID RESOURCE ALLOCATOR 19

will be created as part of the job submission process on the client side. This
design allows the broker to also utilize the full VO-authorization management
support provided by the Grid job manager, a.k.a. the gatekeeper. It could
be seen as a combination of identity based authentication, policy-based VO
authorization and then finally capability based authorization in the Tycoon
layer.

• Price Prediction. Future prices, performance estimates, at certain guaran-
tee levels are communicated to the user in order to give guidance as to how
much a job may cost.

• Job Boosting. A job that is running slower than first anticipated and that
is not likely to meet its deadline can be boosted with initial funds without
resubmitting the job.

• Job Snapshots. It is hard to tell from a generic infrastructure perspective,
how close the job is to completing and whether it is therefore likely to meet
its deadline. We therefore added an interface allowing users to get snapshots
of their output files while the job is still running.

• Job Stage-In, Stage-Out. Input files are seamlessly transferred from the
user to the compute node that was selected to run the job, and output files
are gathered and transferred back to the user when a job has completed.

• Multĳob Support. If multiple jobs are to be run at the same time it is
preferrable to submit them all at once and let the best response algorithm
take care of the optimal distribution and funding of them on each host. We
therefore provide support for submitting one Grid job with different inputs
for each individual compute node subjob.

• Runtime Setup. We use the YUM2 installer to automatically provide a wide
range of installation packages that may optionally be installed on demand
before the job is run, and thus customizing the compute node configuration
easily for the specific application needs and dependencies.

• Bank Account Isolation and Refunds. Each Grid user using our broker
gets a separate local bank account used to fund end refund jobs. This improves
accounting and isolation of individual user jobs, and allows the Grid broker
to maintain the Tycoon property that users only pay for what they use.

• Virtual Machine Recycling. A user can create at most one virtual machine
per compute node at any point in time to avoid the user competing with
itself, and creating a higher price of the resource than necessary. It further
helps in terms of avoiding starvation problems on a machine, since there are
physical memory limitations in the virtualization engine of maximum number

2Yellow dog Updater, Modified. http://linux.duke.edu/projects/yum/

20 CHAPTER 3. SOFTWARE

of virtual machines that can be served. In general the more slices a machine
can handle the better effect does the market approach have. However, there
is also substantial overhead incurred when creating and starting up a new
virtual machine and installing the runtimes, so we allow the user to reuse
virtual machine runtimes between job submissions (but not scratch space),
but only if the idle virtual machine was not outcompeted by other users in
the meantime. The reason why we don’t support scratch space reuse is that
the VM reuse should be transparent and only be detectable by means of a
perceived performance improvement.

• Seamless Backend Integration. In order to allow seamless backend de-
ployment of the Tycoon Grid scheduler into any Grid middleware job submis-
sion infrastructure we provides the same command line interface as OpenPBS 3,
one of the most common cluster job submission toolkits.

3Open Portable Batch System.http://www.openpbs.org

Chapter 4

Results

In this chapter, the paper contributions attached to the end of this thesis are
summarized. The papers represent the evolution of approaches used to solve the
service-level provisioning and enforcement problem discussed in Section 1.1. In
Paper 3, the contribution from the work conducted as part of this thesis is limited
to the results section and to performing the experiments. All other papers were
authored as full parts of this thesis.

We also summarize our contribution to other publications, which were only
co-authored or only indirectly related to the service-level problem addressed here.
Finally we summarize related work and conclusions.

Various research projects funded parts of this work, including the Swegrid ac-
counting project (Swedish Research Council), Enabling Grids for ESciencE (Euro-
pean Union), NextGrid (European Union), Globus (Globus Alliance), and Tycoon
(Hewlett-Packard and Intel JIP).

The thesis author’s contribution level is given within parenthesis in each paper
headline.

4.1 Thesis Papers

Paper 1: A Service-Oriented Approach to Enforce Grid Resource
Allocations (90%)

In this journal article1 [58] we discuss the initial approach of enforcing global re-
source quotas on a project basis across the SweGrid machines. SweGrid is the
Swedish national Grid resource comprising 600 compute nodes distributed across six
High Performance Computing (HPC) Centers and interconnected with a 10Gbit/s
WAN. Various research projects are allocated CPU quota by the Swedish National

1First edition published in the proceedings of the 2nd ACM International Conference on
Service-Oriented Computing, New York City, USA, November 2004. Second edition published in
the World Scientific International Journal on Cooperative Information Systems, September 2006.

21

22 CHAPTER 4. RESULTS

Allocation Committe (SNAC), after a peer review of the scientific value of the
project and its computational needs. Allocations are administered and renewed on
a six-month basis. The problem we are addressing in this work is how the allo-
cations can be enforced in real-time on all of the SweGrid machines in a coherent
manner.

The problem is to a large extent a systems integration problem, in that all HPC
centers already use their own resource management system and their own account-
ing and access control policies and tools. We therefore introduced an integration
platform based on a service-oriented XML Web services architecture entirely writ-
ten in Java. The architecture comprises a Bank service, responsible for enforcing
the global resource quota and managing project accounts; a Logging and Usage
Tracking service, for off-line usage analysis and post-accounting; and finally a Job
Account Reservation Manager, which integrates the local site resource manager into
the global accounting system.

The most important research contribution from this work is the policy-based
access control system, which, at real-time, lets user, resource, and allocation au-
thority policies determine whether a Grid job should be allowed to run on a resource
and at what level of service. We call this solution soft real-time allocation enforce-
ment, because resources may not want to strictly refuse access if the quota has
been exceeded, but instead downgrade the priority of the job. This model extends
the state-of-the art in that a binary service-level is provisioned based on usage his-
tory and centrally allocated grants. A higher level of fairness is thus achieved, and
problems like denial-of-service attacks and job starvation can be resolved.

Paper 2: Service Level Agreement Requirements of an
Accounting-Driven Grid (100%)

In this technical report2 [56] we discuss the requirements obtained after studying the
first production deployment of the accounting system presented in [58]. We more
specifically focus on how electronic contracts, a.k.a. Service Level Agreements, can
be used to address some of the shortcomings of the existing system.

An enhanced, agent and policy-driven architecture is proposed, where the service
levels are determined and enforced in a continuous and automatic way based on
mutually signed contracts. The contracts represent a user capability as well as a
resource provider obligation, and can thus be used as the basis for access control
and service-level configuration.

The main contribution of this paper to the research presented in this thesis is
the mapping of typical Grid user requirements to an agent-based, contract-driven
architecture. The first insight gained from the SweGrid accounting system [58], was
that it was very flexible to customize policies of all components, but determining
what those policies should be quickly became a non-trivial task for a human actor.

2Published in the NADA TRITA technical report series at the Royal Institute of Technology,
Stockholm, Sweden, September 2005.

4.1. THESIS PAPERS 23

Agents could thus use contracts embodying user and provider preferences to opti-
mize user utility, or provider profit and utilization by automatically setting these
policies.

Paper 3: The Design, Implementation, and Evaluation of a
Market-Based Resource Allocation System (50%)

In this manuscript3 [45] we introduce Tycoon, a market-based resource allocation
system for large-scale networks like PlanetLab and the Grid. Tycoon allocates vir-
tualized slices on hosts proportional to user bids. The main focus of this paper is to
evaluate and benchmark the economic properties of the Tycoon resource allocation
algorithms in a real cluster environment through a set of experiments. We study
efficiency, based on the sum of the utilities across all users, a.k.a. as social welfare;
and fairness, defined as the level of envy-freeness. Envy in turn is defined as the
ratio between the maximum utility a user would get from another user’s allocation
and the utility of the allocation obtained. An optimally fair system would thus
have an envy-freeness value of 1.

It is shown in our experiments that the Tycoon proportional share allocation is
more efficient than an equal-share allocation algorithm like the one used in Planet-
Lab when slicing individual resources in shares. It is further shown that the Best
Response algorithm implemented in Tycoon to distribute bids optimally across
hosts yields a higher efficiency than other load balancing algorithms. In terms of
fairness our experiments were not able to show as clear trends due to noise in the
live cluster contributing to increased envy.

The results in this paper confirms previous simulation results and also shows
how Tycoon can be used to dynamically trade off winner-takes-it-all and equal-
share allocation algorithm properties. In essence, the higher the statistical variance
on the bids is, the closer the Tycoon algorithm is to the winner-takes-it-all scheme.
If the variance is 0 it is equivalent to an equal-share algorithm.

Paper 4: Market-Based Resource Allocation using Price
Prediction in a High Performance Computing Grid for Scientific
Applications (90%)

In this conference paper4 [59] we combine the results from the previous three pa-
pers by providing a Grid resource market for HPC users. This market is further
supported by a suite of prediction models and tools to allow users to spend their
money more efficiently in the market to meet their requirements.

Our solution is to integrate a Grid meta-scheduler and resource manager with
Tycoon. We thus maintain the cross organizational VO-supported PKI security

3Manuscript prepared for publication at Hewlett-Packard Laboratories, Palo Alto, USA, May
2006.

4Published in the proceedings of the 15th IEEE International Symposium on High Performance
Distributed Computing, Paris, France, June 2006

24 CHAPTER 4. RESULTS

model and the support for high-volume data transfers to stage in and out jobs to
compute nodes seamlessly. At the same time we leverage the economically efficient
and fair Tycoon model including the Best Response scheduler and the proportional
share allocator. The integration is achieved by two means, a) a transfer token used
as a lightweight contract simulating a ’gift certificate’ to purchase resource shares,
b) a broker receiving the transfer token attached to the jobs to be submitted, which
funds and executes the jobs according to the Best Response bidding algorithm.

The experimental results were obtained by running a Bioinformatics application,
from SweGrid, in a cluster managed by the Tycoon Grid Market. It was shown
that a continuous service level (as opposed to the binary one in SweGrid) could
be offered proportional to the funding of the job. The account management is
also simplified in our Grid Market, as the local accounts are created on demand
and dynamically configured to match the service level purchased. Finally, rights
delegation is seamless as it only involves transferring Tycoon credits between user
accounts, and resources get credits when users run jobs that in turn can be used to
submit jobs. Therefore, our Grid Market has the desirable property of offering a
closed-loop sharing of resources among peers, true to the foundational idea of the
Grid.

4.2 Additional Publication Contributions

Contribution 1 to 5 are co-authored papers and 6 is a lead-authored technical report.

Contribution 1 (10%)

The Global Grid Forum Open Grid Services Infrastructure (OGSI) specification [66]
introduces many of the fundamental integration concepts that the SGAS work is
based on. We contributed the XML rendering of that specification.

Contribution 2 (90%)

A conference version of Paper 1 was presented in [57]. It contains some additional
Fuzzy Logic experiments and it is based on an earlier Web service integration
platform. Paper 1 also contains some lessons learned from deploying the solution
presented in [57] in SweGrid.

Contribution 3 (50%)

The Bank service of SGAS is presented in some more detail in the conference
paper [19]. The Bank was implemented by a collaborator, but the core Web services
infrastructure, and the access control and policy framework was contributed as part
of this thesis. The overall design of the Bank was also a collaborative effort.

4.3. RELATED WORK 25

Contribution 4 (10%)

The SGAS authorization framework was contributed to the Globus Toolkit, and
it is the foundation for extended work presented in the workshop publication [61].
Our authorization framework, in turn, borrows many concepts from the XACML
architecture [1] and the GGF Authorization Working Group model [47].

Contribution 5 (10%)

SGAS provides a testbed for authorization management rights delegation, in the
conference paper [60]. This work is also based on the authorization policy frame-
work developed as part of SGAS, and extends it by integrating a 3rd-party autho-
rization engine as a policy administration and decision point.

Contribution 6 (100%)

In the technical report [55] a philosophical view of the Grid is presented. The main
contribution is to relate the concept of Ontologies in the Philosophy of Science
community to the use of Ontologies in Computer Science in general and in Service
Level Agreement protocols in particular. Ontologies play an important role in
policy definition and embodies the universe of discourse used by agents to optimize
the users’ utility based on their preferences. The discussion in this report shows
that work as early as Aristotle had striking similarities to the use of Ontologies
today.

4.3 Related Work

Related work fall into three categories; first, systems that focus on the accounting
aspect of the problem; second, general purpose computational economies; and fi-
nally Grid market systems. These categories can be related to our work with SGAS,
Tycoon and the Tycoon Grid market respectively.

The DataGrid Accounting System (DGAS) [32] was an early approach to create
a closed-loop accounting system for the LHC Grid at CERN, capable of exchanging
virtual Grid credits for computational resource time. The project focussed mostly
on providing an economic infrastructure for exchanging credits, but did not provide
any price setting mechanism, like the one implemented in Tycoon. Furthermore,
it did not take the integration approach used by SGAS, which made it difficult to
deploy in Swegrid, without completely replacing the existing accounting and job
submission infrastructure used by the different HPC sites. The GridBank project [4]
took a similar approach to SGAS in that only a single call-out to a bank is necessary
to verify the availability of funds to execute the job on the requested resource.
They also took a similar approach to our Grid market by attaching a cheque-like
token to the job-submission request to pay for the job. It, however, lacks the
policy customization infrastructure of SGAS, allowing different resources to easily

26 CHAPTER 4. RESULTS

implement different policies for running and charging for external jobs. SGAS
also implements account holds which can be seen as soft reservations of a portion
of the account balance, where jobs are only charged for the amount of resources
actually consumed. A similar hold approach is implemented in the Gold accounting
system [38], which also has expiring account quotas similar to SGAS. Gold did,
however, not take the standards-based Web services architecture approach central
to the design of SGAS, which also made it harder to integrate with an arbitrary
local HPC site accounting system. Neither GridBank nor Gold have any price-
setting mechanisms nor the same flexible authorization framework implemented in
our work. Additional related accounting approaches can be found in [64, 37, 34].

Spawn [68], was one of the first implementations of a computational market,
and Tycoon is an incarnation and evolution of many ideas presented in that work.
Tycoon, in essence, extends Spawn by providing a best response agent for optimal
and incentive-compatible bid distribution and host selection, and by virtualizing re-
sources to give more fine-grained control over QoS enforcement. Tycoon also offers
a more extensive price prediction infrastructure. However, the general, continuous
bid and proportional share auction architecture is largely the same. Bellagio [50]
uses a centralized allocator called SHARE. SHARE uses a centralized combinato-
rial auction allowing users to express preferences with complementarities. Solving
the NP-complete combinatorial auction problem results in an optimally efficient
allocation. The price-anticipating scheme in Tycoon is decentralized, i.e. runs an
auction at every single host, and does not explicitly operate on complementarities.
The efficiency in Tycoon may thus not be as high but all the overhead and compu-
tational complexities of combinatorial auctions, as well as the issues with strategic
users gaiming the mechanism is avoided [45]. Related computational economy ap-
proaches are described in [54, 48, 29, 9, 63, 13].

Faucets [39] is a framework for providing market-driven selection of compute
servers. Compute servers compete for jobs by bidding out their resources. The bids
are then matched with the requirements of the users by the Faucets schedulers.
Adaptive jobs can shrink and grow depending on utilization and prioritization.
QoS contracts decide how much a user is willing to pay for a job. The main
difference to our work is that Faucet does not provide any mechanism for price
setting. Further, it has no banking service, use central server based username-
password mechanisms, and does not virtualize resources. G-commerce [70] is a Grid
resource allocation system based on the commodity market model where providers
decide the selling price after considering long-term profit and past performance. It is
argued and shown in simulations that this model achieves better price predictability
than auctions. However, the auctions used in the simulations are quite different
from the ones we use in our work. The simulated auctions are winner-takes-it-all
auctions and not proportional share, leading to reduced fairness. Furthermore, the
auctions are only performed locally and separately on all hosts leading to poor
efficiency across a set of host. In Tycoon the best response algorithm ensures fair
and efficient allocations across resources. An interesting concept in G-commerce is
that users get periodic budget allocations that may expire, which could be useful

4.4. CONCLUSIONS 27

for controlling periodic resource allocations (as exemplified by our SGAS work)
and to avoid price inflation. The price-setting and allocation model differs from
our work in that resources are divided into static slots that are sold with a price
based on expected revenue. The preemption and agile reallocation properties inherit
in the bid-based proportional share allocation mechanism employed in our system
to ensure work conservation and prevent starvation is, however, missing from the
G-commerce model. Additional Grid Market models are described in [14, 71, 11].

4.4 Conclusions

Our work with the SweGrid Accounting System advances the state-of-the art of
academic production Grid systems for High Performance Computing tasks by pro-
viding real-time quota enforcement across the Grid governed by a flexible policy
framework. It thereby improves the overall fairness in the system. However, it only
enforces two levels of service, and it does not provide any price-setting mechanisms.
Furhtermore, it is very complex to manage all the policies manually without some
broker or agent layer between users or providers, and the accounting system. The
quota allocation model fits the SweGrid SNAC, and US NRAC periodic central
allocation schemes, but it does not promote fast low-burden entry for new users.

Tycoon, addresses all of these problems by implementing a market for virtualized
computational resources, allowing any service levels to be configured proportional
to a user’s bid and inversely proportional to the demand of the resources. Our
main contribution in this thesis is hence the merge of the Tycoon market mecha-
nisms with the Grid, thus creating a market appropriate for hosting both academic
and commercial Grid applications. Dynamic host account creation and configu-
ration according to purchased service levels, transfer of incentive compatible job
tokens, and a combined identity and capability-based authorization model were all
important parts of our solution.

4.5 Future Work

Tycoon implements a spot market, in order to quickly adapt the prices to the
demand, and to allow important tasks to preempt currently running lower-priority
tasks. However, these features come at the cost of less predictability and reduced
guarantees of service levels. To address this issue we are working on enhanced
prediction techniques to estimate future demand and give users tools to budget
their future resource requirements more efficiently.

We would also like to investigate the combination of spot and reservation mar-
kets (such as derivative markets, e.g. options) for Tycoon, as well as contract
brokers guaranteeing service levels, and offering discounts (paying penalties) if the
promised level of service was not delivered.

28 CHAPTER 4. RESULTS

4.6 Acknowledgments

First and foremost I would like to thank Bernardo Huberman and Kevin Lai, at
Hewlett-Packard Laboratories in Palo Alto, both for their invaluable technical in-
sights and feedback on my work, and for their continuous support to allow me to
extend my stay at HP Labs to complete my work. I am also very grateful to all
the technical support and contributions from Olle Mulmo at the Royal Institute
of Technology in Stockholm related to the Grid security work in this thesis. Peter
Gardfjell from Umeå University co-designed and co-authored the SGAS system with
me and made great contributions to the Bank service. I would also like to thank
his advisor Erik Elmroth for his help on finalizing the SGAS publications. Finally,
I would like to thank my own advisor Lennart Johnsson, and Lars Rasmusson for
their feedback.

Bibliography

[1] A. Anderson, A. Nadalin, B. Parducci, D. Engavatow, H. Lockhart, M. Kudo,
P. Humenn, S. Godik, S. Abderson, S. Crocker, and T. Moses. eXtensible
Access Control Markup Language (XACML) Version 1.0. Technical report,
OASIS, 2003.

[2] Jorge Andrade and Jacob Odeberg. HapGrid: a resource for haplotype re-
construction and analysis using the computational Grid power in Nordugrid.
HGM2004: New Technologies in Haplotyping and Genotyping, April 2004.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web services agreement specification (ws-
agreement). Technical report, Global Grid Forum, 2005.

[4] A. Barmouta and R. Buyya. Gridbank: A grid accounting services architecture
(gasa) for distributed systems sharing and integration. In Int. Parallel and
Distributed Processing Symposium (IPDPS’03), Nice, France, 2003. IEEE.

[5] F. Berman, G Fox, and A.J.G. Hey, editors. Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons, 2003.

[6] S. Blake, D. Black, M. Carlson, E. Davis, W. Zheng, and W. Weiss. Rfc 2475:
An architecture for differentiated services. Technical report, IETF, 1998.

[7] Diana Bosio, James Casey, Akos Frohner, Leanne Guy, Peter Kunszt, Er-
win Laure, Sophie Lemaitre, Levi Lucio, Heinz Stockinger, Kurt Stockinger,
William Bell, David Cameron, Gavin McCance, Paul Millar, Joni Hahkala,
Niklas Karlsson, Ville Nenonen, Mika Silander, Olle Mulmo, Gian-Luca Vol-
pato, Giuseppe Andronico, Federico DiCarlo, Livio Salconi, Andrea Domenici,
Ruben Carvajal-Schiaffino, and Floriano Zini. Next-generation eu datagrid
data management services. In Proceedings of Computing in High Energy and
Nuclear Physics, La Jolla, CA, USA, March 2003.

[8] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Rfc 2205: Reserva-
tion protocol (rsvp) version 1 functional specification. Technical report, IETF,
1997.

29

30 BIBLIOGRAPHY

[9] Brent N. Chun and Philip Buonadonna and Alvin AuYoung and Chaki Ng
and David C. Parkes and Jeffrey Shneidman and Alex C. Snoeren and Amin
Vahdat. Mirage: A Microeconomic Resource Allocation System for SensorNet
Testbeds. In Proceedings of the 2nd IEEE Workshop on Embedded Networked
Sensors, 2005.

[10] Vaughn Bullard, Bryan Murray, and Kirk Wilson. An introduction to wsdm.
Technical report, OASIS, 2006.

[11] Rajkumar Buyya, Manzur Murshed, David Abramson, and Srikumar Venu-
gopal. Scheduling Parameter Sweep Applications on Global Grids: A Deadline
and Budget Constrained Cost-Time Optimisation Algorithm. Software: Prac-
tice and Experience (SPE) Journal, 35(5):491–512, April 2005.

[12] Germano Caronni, Tim Curry, Pete St. Pierre, and Glenn Scott.
Supernets and snHubs: A Foundation for Public Utility Comput-
ing. Technical Report TR-2004-129, Sun Microsystems, 2004. URL
http://research.sun.com/techrep/.

[13] Anthony Chavez, Alexandros Moukas, and Pattie Maes. Challenger: a multi-
agent system for distributed resource allocation. In AGENTS ’97: Proceedings
of the first international conference on Autonomous agents, pages 323–331,
New York, NY, USA, 1997. ACM Press. ISBN 0-89791-877-0.

[14] Li ChunLin and Li Layuan. A two level market model for resource allocation
optimization in computational grid. In CF ’05: Proceedings of the 2nd confer-
ence on Computing frontiers, pages 66–71, New York, NY, USA, 2005. ACM
Press. ISBN 1-59593-019-1.

[15] Karl Czajkowski, Ian Foster, Carl Kesselman, Volker Sander, and Steven
Tuecke. Snap: A protocol for negotiating service level agreements and coor-
dinating resource management in distributed systems. Lecture Notes in Com-
puter Science, 2537:153–183, 2002.

[16] A. Dan, E. Davis, R. Kearney, A. Keller, R.P. King, D. Kuebler, H. Ludwig,
M. Polan, M. Spreitzer, and Y.A. Web services on demand: Wsla-driven
automated management. IBM Systems Journal, 43, 2004.

[17] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the
I-WAY: Wide Area Visual Supercomputing. International Journal of Super-
computer Applications, 10:123–130, 1996.

[18] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris, Alex Ho, Ian Pratt,
Andrew Warfield, Paul Barham, and Rolf Neugebauer. Xen and the Art of
Virtualization. In Proceedings of the ACM Symposium on Operating Systems
Principles, 2003. URL citeseer.ist.psu.edu/dragovic03xen.html.

31

[19] Erik Elmroth, Peter Gardfjell, Olle Mulmo, and Thomas Sandholm. An ogsa-
based bank service for grid accounting systems. In Jerzy Wasniewski, editor,
Lecture Notes in Computer Science: Applied Parallel Computing. State-of-the-
art in Scientific Computing. Springer Verlag, 2004.

[20] Michal Feldman, Kevin Lai, and Li Zhang. A Price-Anticipating Resource
Allocation Mechanism for Distributed Shared Clusters. In Proceedings of the
ACM Conference on Electronic Commerce, 2005.

[21] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC
National Computer Security Conference, pages 554–563, 1992.

[22] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. NAhrstedt, and A. Roy. A
Distributed Resource Management Architecture that Supports Advance Reser-
vations and Co-Allocation. In Proceedings of the International Workshop on
Quality of Service, 1999.

[23] I. Foster, A. Roy, V. Sander, and L. Winkler. End-to-end quality of service for
high-end applications. Technical report, Argonne National Laboratory, 1999.

[24] Ian Foster. Globus toolkit version 4: Software for service-oriented systems.
In IFIP’05: Proceedings of International Conference on Network and Parallel
Computing, volume 3799, pages 2–13. LNCS, Springer-Verlag GmbH, 2005.

[25] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steven Tuecke. Grid services for
distributed system integration. Computer, 7:37–46, March 2002.

[26] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organization. International Journal of Supercomputing
Applications, 15(3), 2001.

[27] Ian Foster and Carl Kessleman, editors. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, 1999.

[28] Ian Foster and Carl Kessleman, editors. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

[29] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat.
SHARP: An Architecture for Secure Resource Peering. In ACM Symposium
on Operating Systems Principles (SOSP), October 2003.

[30] S. Graham, A. Karmarkar, J. Mischkinksy, I. Robinson, and I. Sedukhin. Web
services resource 1.2. Technical report, OASIS, 2005.

[31] Sven Graupner, Jim Pruyne, and Singhal Sherad. Making the Util-
ity Data Center a Power Station for the Enterprise Grid. Techni-
cal Report HPL-2003-53, Hewlett-Packard Laboratories, 2003. URL
http://www.hpl.com/techreports/2003.

32 BIBLIOGRAPHY

[32] A. Guarise, R. Piro, and A. Werbrouck. Datagrid accounting system - archi-
tecture - v1.0. Technical report, EU DataGrid, 2003.

[33] Garrett Hardin. The Tragedy of the Commons. Science, 162:1243–1248, 1968.

[34] V. Hazelwood, R. Bean, and K. Yoshimoto. Snupi: A grid accounting and
performance system employing portal services and rdbms back-end. 2001.

[35] Joseph Hellerstein, Kaan Katricioglu, and Maheswaran Surendra. An Online,
Business-Oriented Optimization of Performance and Availability for Utility
Computing . Technical Report RC23325, IBM, December 2003.

[36] R. Housley, W. Ford, W. Polk, and D. Solo. Rfc 2459: Internet x.509 public
key infrastructure and crl profile. Technical report, IETF, 1999.

[37] S. Jackson. Qbank: A resource management package for parallel computers.
Technical report, Pacific Northwest National Laboratory, Washington, USA,
2000.

[38] S. Jackson. The gold accounting and allocation manager, 2004.
http://sss.scl.ameslab.gov/gold.shtml.

[39] Laxmikant V. Kale, Sameer Kumar, Mani Potnuru, Jayant DeSouza, and Sind-
hura Bandhakavi. Faucets: Efficient resource allocation on the computational
grid. In ICPP ’04: Proceedings of the 2004 International Conference on Paral-
lel Processing (ICPP’04), pages 396–405, Washington, DC, USA, 2004. IEEE
Computer Society. ISBN 0-7695-2197-5.

[40] Katarzyna Keahey, Karl Doering, and Ian Foster. From Sandbox to Play-
ground: Dynamic Virtual Environments in the Grid. In Grid 2004: Proceed-
ings of the 5th International Workshop in Grid Computing, Pittsburgh, PA,
USA, November 2004.

[41] J. Kephart and D.M. Chess. The Vision of Autonomic Computing.

[42] Kevin Lai. Markets are Dead, Long Live Markets. SIGecom Exchanges, 5(4):
1–10, July 2005.

[43] Kevin Lai, Bernardo A. Huberman, and Leslie Fine. Tycoon: A Distributed
Market-based Resource Allocation System. Technical report, arXiv, 2004.
http://arxiv.org/abs/cs.DC/0404013.

[44] Kevin Lai, Lars Rasmusson, Eytan Adar, Stephen Sorkin, Li Zhang, and
Bernardo A. Huberman. Tycoon: an Implemention of a Distributed Market-
Based Resource Allocation System. Technical Report arXiv:cs.DC/0412038,
HP Labs, Palo Alto, CA, USA, December 2004.

33

[45] Kevin Lai and Thomas Sandholm. The design, implementation, and evaluation
of a market-based resource allocation system. Technical Report Manuscript for
Publication, Royal Institute of Technology and Hewlett-Packard Labs, Stock-
holm, Sweden, May 2006.

[46] D. Lamanna, J. Skene, and W. Emmerich. SLAng: A Language for Defining
Service Level Agreements. In Proceedings of the Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS03), 2003.

[47] M. Lorch and D. Skow. Authorization Glossary. Technical report, Global Grid
Forum, 2004.

[48] Thomas W. Malone, Richard E. Fikes, Kenneth R. Grant, and Michael T.
Howard. Enterprise: A Market-like Task Scheduler for Distributed Computing
Environments. In Bernardo A. Huberman, editor, The Ecology of Computation,
number 2 in Studies in Computer Science and Artificial Intelligence, pages 177–
205. Elsevier Science Publishers B.V., 1988.

[49] K. Nahrstedt, H. Chu, and S. Narayan. QoS-aware resource management for
distributed multimedia applications. Journal on High-Speed Networking ,
December 1998.

[50] Chaki Ng, Philip Buonadonna, Brent N. Chun, Alex C. Snoeren, and Amin
Vahdat. Addressing Strategic Behavior in a Deployed Microeconomic Resource
Allocator. In Proceedings of the 3rd Workshop on Economics of Peer-to-Peer
Systems, 2005.

[51] Martin J. Osborne. An Introduction to Game Theory. Oxford University Press,
July 2002.

[52] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT
Press, 1994.

[53] Christos H. Papadimitriou. Algorithms, Games, and the In-
ternet. In Symposium on Theory of Computing, 2001. URL
citeseer.ist.psu.edu/papadimitriou01algorithms.html.

[54] Ori Regev and Noam Nisan. The Popcorn Market: Online Markets for Com-
putational Resources. In Proceedings of 1st International Conference on In-
formation and Computation Economies, pages 148–157, 1998.

[55] Thomas Sandholm. The philosophy of the grid: Ontology theory -
from aristotle to self-managed it resources. Technical Report TRITA-NA-
0532, Royal Institute of Technology, Stockholm, Sweden, September 2005.
http://www.pdc.kth.se/ sandholm/trita/SandholmOntologyV2.pdf.

34 BIBLIOGRAPHY

[56] Thomas Sandholm. Service level agreement requirements of an
accounting-driven computational grid. Technical Report TRITA-NA-
0533, Royal Institute of Technology, Stockholm, Sweden, September 2005.
http://www.pdc.kth.se/ sandholm/trita/TRITA-SLA.pdf.

[57] Thomas Sandholm, Peter Gardfjell, Erik Elmroth, Lennart Johnsson, and Olle
Mulmo. An ogsa-based accounting system for allocation enforcement across
hpc centers. In ICSOC ’04: Proceedings of the 2nd international conference on
Service oriented computing, pages 279–288, New York, NY, USA, 2004. ACM
Press. ISBN 1-58113-871-7.

[58] Thomas Sandholm, Peter Gardfjell, Erik Elmroth, Lennart Johnsson, and
Olle Mulmo. A Service-Oriented Approach to Enforce Grid Resource Allo-
cations. International Journal of Cooperative Information Systems, 2006. (to
appear).http://www.worldscinet.com/ĳcis/ĳcis.shtml.

[59] Thomas Sandholm, Kevin Lai, Jorge Andrade, and Jacob Odeberg. Market-
based resource allocation using price prediction in a high performance com-
puting grid for scientific applications. In HPDC ’06: Proceedings of the 15th
IEEE International Symposium on High Performance Distributed Computing,
June 2006.

[60] Ludwig Seitz, Erik Rissanen, Thomas Sandholm, Babak Sadighi
Firozabadi, and Olle Mulmo. Policy administration control and
delegation using xacml and delegent. In Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, November 2005.
http://pat.jpl.nasa.gov/public/grid2005/index.html.

[61] Frank Siebenlist, Takuya Mori, Rachana Ananthakrishnan, Liang Fang,
Tim Freeman, Kate Keahey, Sam Meder, Olle Mulmo, and Thomas
Sandholm. The globus authorization processing framework, April 2005.
http://lotos.site.uottawa.ca/ncac05/index.html.

[62] O. Smirnova, P. Erola, T. Ekelöf, M. Ellert, J.R. Hansen, A. Konsantinov,
B. Konya, J.L. Nielsen, F. Ould-Saada, and A. Wäänänen. The NorduGrid Ar-
chitecture and Middleware for Scientific Applications. Lecture Notes in Com-
puter Science, 267:264–273, 2003.

[63] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah,
Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa: a wide-area distributed
database system. The VLDB Journal, 5(1):048–063, 1996. ISSN 1066-8888.

[64] W. Thigpen, J. Hacker, L. McGinnis, and B. Athey. Distributed accounting
on the grid. Technical report, Global Grid Forum, 2001.

[65] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. IETF RFC
3820. Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile,
2004. http://www.ietf.org/rfc/rfc3820.txt.

35

[66] Steven Tuecke, Karl Czajkowski, Ian Foster, Jeff Frey, Steven Graham, Carl
Kesselman, Tom Maquire, Thomas Sandholm, David Sneling, and Peter Van-
derbilt. Open Grid Services Infrastructure (OGSI) Version 1.0. Technical
report, Global Grid Forum, 2003.

[67] Hal R. Varian. Equity, Envy, and Efficiency. Journal of Economic Theory, 9:
63–91, 1974.

[68] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O.
Kephart, and W. Scott Stornetta. Spawn: A Distributed Compu-
tational Economy. Software Engineering, 18(2):103–117, 1992. URL
citeseer.nj.nec.com/waldspurger91spawn.html.

[69] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura Pearlman, Steven
Tuecke, Jarek Gawor, Samuel Meder, and Frank Siebenlist. X.509 Proxy Cer-
tificates for Dynamic Delegation. In Proceedings of the 3rd Annual PKI R&D
Workshop, 2004.

[70] Rich Wolski, James S. Plank, Todd Bryan, and John Brevik. G-commerce:
Market formulations controlling resource allocation on the computational grid.
In IPDPS ’01: Proceedings of the 15th International Parallel and Distributed
Processing Symposium (IPDPS’01), page 10046.2, Washington, DC, USA,
2001. IEEE Computer Society. ISBN 0-7695-0990-8.

[71] Lĳuan Xiao, Yanmin Zhu, Lionel M. Ni, and Zhiwei Xu. Gridis: An incentive-
based grid scheduling. In IPDPS ’05: Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’05) - Papers,
page 65.2, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-
7695-2312-9.

[72] Li Zhang. The efficiency and fairness of a fixed budget resource allocation
game. Lecture Notes in Computer Science, 3580:485–496, 2005. ISSN 0302-
9743.

Part II

Papers

37

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

International Journal of Cooperative Information Systems
c© World Scientific Publishing Company

A SERVICE-ORIENTED APPROACH

TO ENFORCE GRID RESOURCE ALLOCATIONS

THOMAS SANDHOLM

Department of Numerical Analysis and Computer Science and PDC, Royal Institute of

Technology, SE-100 44 Stockholm, Sweden

PETER GARDFJÄLL, ERIK ELMROTH

Department of Computing Science and HPC2N, Ume̊a University, SE-901 87 Ume̊a, Sweden

OLLE MULMO, LENNART JOHNSSON

Department of Numerical Analysis and Computer Science and PDC, Royal Institute of

Technology, SE-100 44 Stockholm, Sweden

Received (Day Month Year)
Revised (Day Month Year)

We present the SweGrid Accounting System (SGAS) – a decentralized and standards-
based system for Grid resource allocation enforcement that has been developed with an
emphasis on a uniform data model and easy integration into existing scheduling and
workload management software.

The system has been tested at the six high-performance computing centers compris-
ing the SweGrid computational resource, and addresses the need for soft, real-time quota
enforcement across the SweGrid clusters.

The SGAS framework is based on state-of-the-art Web and Grid services technolo-
gies. The openness and ubiquity of Web services combined with the fine-grained resource
control and cross-organizational security models of Grid services proved to be a perfect

match for the SweGrid needs. Extensibility and customizability of policy implementa-
tions for the three different parties that the system serves (the user, the resource manager,
and the allocation authority) are key design goals. Another goal is end-to-end security
and single sign-on, to allow resources to reserve allocations and charge for resource usage
on behalf of the user.

We conclude this paper by illustrating the policy customization capabilities of SGAS
in a simulated setting, where job streams are shaped using different modes of allocation
policy enforcement. Finally, we discuss some of the early experiences from the production
system.

Keywords: OGSA;Grid;Accounting;HPC.

1

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

2 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

1. Introduction

Advances in network technology, in addition to the more distributed and collabora-

tive nature of todays research projects, have prompted high-performance computing

(HPC) centers to improve the ease of use of their resources to a larger and more

dispersed user base, as well as responding to the need for unified access procedures

to collections of resources from multiple administrative domains. As a result, mono-

lithic and esoteric systems, albeit more performance tuned, have had to make way

for ubiquitous and open, standards-based solutions. It has become feasible to inte-

grate the centers into Grids that enable flexible resource sharing and load balancing

across organizational boundaries.1

Virtualization across management and security policy domains not only leads

to a complex resource negotiation situation, but also makes it harder to track usage

and enforce allocations. It is the latter issue that we address in this paper. We have

developed an accounting system to enforce nationally allocated resource quotas

across six HPC centers in Sweden.

Key requirements on the accounting system include: soft real-time allocation

enforcement based on resource usage collected from existing site schedulers; coor-

dinated quota management across all clusters; uniform usage retrieval; policy ne-

gotiation and customization between user, resource, and allocation authority; and

finally a flexible, policy-driven, and standards-based authorization framework.

Our contribution and differentiator against existing accounting systems is four-

fold: (1) we provide a decentralized accounting solution based on standard, open pro-

tocols in compliance with the proposed Open Grid Services Architecture (OGSA),2,3

(2) we facilitate 3-party (user, resource, allocator) policy customization, (3) our sys-

tem is non-intrusive to existing local site accounting systems and end-user tools, and

thus offers light-weight deployment, and (4) all accounting components are governed

by a scalable cross-organizational authorization framework based on state-of-the-art

Web services protocols.

The paper is organized as follows: Section 2 contains an overview of recent stan-

dardization efforts in the field of wide area distributed computing relevant to Grid

computing. The SweGrid network and its accounting requirements are outlined in

Section 3. In Section 4, we present some existing accounting systems and architec-

tures, and we discuss why they do not meet the SweGrid needs. Section 5 describes

the SweGrid accounting system design and Section 6 the implementation. Section 7

presents some results from simulations of reservations against our system, and dis-

cusses some feedback obtained from the production system. Finally, in Section 9,

we summarize our contribution and our future research and development plans.

This paper is an extended and revised version of Ref. 4.

2. OGSA and Web Services

OGSA was developed in order to solve the complex task of sharing and integrating

fine-grained heterogeneous resources distributed across security domains in a wide

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 3

area network. The architecture combines the elaborate control mechanisms of main-

frame systems with ubiquitous Web and Internet technologies. Key concepts include

virtualization and discovery of resources based on service-oriented interactions. It

can be seen as the Web Services Architecture (WSA) applied to Grid computing.5

Another key aspect of OGSA is the management of distributed state, such as discov-

ery, introspection, notification, and lifetime management. Although Web services,

by design, are considered stateless for scalability and decoupling reasons, state needs

to be managed to control shared resources in an application and client agnostic way

and thus enabling interoperable state-aware interactions. In highly dynamic sys-

tems, there is often a trade-off between fine-grained control of state, and strict

enforcement of decoupling. The core Web services specifications such as SOAP and

WSDL do not fully address the problem of managing application state, but they

provide extensibility features that may be leveraged by other specifications.6,7 The

often quoted REST architecture for interacting with resources only solves the prob-

lem partially by putting the burden of maintaining state on clients or client agents,

and is further targeted towards large-grain hypermedia transfers, and thus very lim-

ited in its scope.8 REST is a very similar approach to the one taken by Web services

workflow languages, such as BPEL4WS.9 Request-broker-influenced specifications,

however, address client agnostic fine-grained resource state sharing.10

Our work is based on the broker model, because it also fits better with existing

programming language technology. Web services protocols all use XML as a foun-

dational building block, and therefore are convenient for self-describing, document-

centric interactions (as opposed to the less flexible API-centric model) often used in

large-scale integration environments with little or no control over the participating

parties implementation policies.

In OGSA-based Web-services environments, the complexity of setting and ap-

plying policies to optimize the user quality of service, as well as resource utilization

leads to the need for Service Level Agreement (SLA) management. Agreement, and

negotiation protocols such as Global Grid Forum’s emerging WS-Agreement, and

FIPA’s Contract Net protocols are example technologies addressing that need.11,12

Providing complete SLA lifecycle management support in a computational Grid is

outside the scope of the work presented here, but we discuss how such a solution

may be designed in Ref 13.

3. SweGrid

SweGrid is a national computational resource, initially joining together one cluster

at each of six high-performance computing centers across Sweden, and currently

comprising 600 computing nodes. The clusters located at the individual sites are

interconnected with the 10 Gb/s GigaSunet network. The sites also operate sev-

eral other resources for computation and storage, and they have developed their

own security and accounting systems over time to serve local needs and the re-

quirements following from different sources of funding. SweGrid job submissions

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

4 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

are currently performed using the Globus Toolkit or the NorduGrid job submission

tools, interfacing cluster-level schedulers at the local sites.14,15 Compute time on

the SweGrid resources are allocated to research projects by the Swedish National

Allocations Committee (SNAC), akin to the NRAC (National Resource Allocations

Committee) in the US. Projects within the Swedish science community and with

the appropriate needs and promising research may apply for SNAC allocations. The

allocations are currently made in node hours, and the decisions are made after a

scientific peer-review process evaluating the research proposals. Prior to intercon-

necting the HPC centers in a Grid, allocations were targeted at individual clusters,

and the prospective research participants would have to acquire valid user accounts

at each of the centers at which quotas were awarded to be able to run their jobs.

This manual and static allocation thus not only caused sub-optimal job-to-resource

mappings, but further led to large administrative overhead. Hence, SNAC is now

allocating quotas to the SweGrid as a whole. However, this has a large impact on

how accounting is done, because it is thereby not sufficient to just do local site ac-

counting, and quota enforcement. The allocation enforcement must be coordinated

across all sites, and the sites must be able to produce uniform usage records that

comply with each other.

Thus a real-time enforcement solution is required that allocates resources to

projects in a fair manner while taking current user policies, resource policies, and

allocation-authority policies into account. A resource may, for instance, allow jobs

lacking sufficient quota to be run and put in a low priority queue if the current

utilization is low. A user, on the other hand, may only want to execute a job if

there are sufficient funds, and finally some allocation authorities (e.g., SNAC or

project leaders) may not allow jobs to go through from certain users who have used

up a large chunk of a common project quota. This three-way negotiation needs to

be flexible enough to allow various parties to configure their systems according to

local policies.

Even though SweGrid currently consists of a fairly homogenous compute farm

with similar middleware installations, it is expected that both the hardware and

software solutions will evolve and become distinctly heterogeneous in the future,

as more resources are added. The SweGrid accounting system must hence be non-

intrusive to the existing systems, i.e., easy to deploy or plug into existing infrastruc-

ture, without replacing the local accounting and scheduling systems.

4. Grid Accounting

Cluster-targeted scheduling systems as well as operating systems commonly have

built-in accounting systems to track resource usage. However, they often assume a

homogenous run-time environment, and they lack standard and uniform ways to

obtain and represent information from several heterogeneous clusters. Thus there

has been a strong need for Grid accounting systems that integrate local account-

ing solutions similarly to the way Grid meta-schedulers and co-allocation managers

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 5

coordinate, and administer job submissions across several schedulers. Some gen-

eral issues that need to be solved by distributed accounting systems on the Grid,

including the need for a standard usage record format, are outlined in Ref. 16.

In the European Data Grid Accounting System (DGAS), users need to pay for

resources that they use in a virtual currency called Grid Credits.17 Resources earn

Grid Credits by offering their services to users, thus stimulating market-economy

driven resource sharing. All currency transactions are mediated by decentralized

bank services. The implementation is tightly coupled to the DataGrid workload

manager software, and thus hard to deploy without affecting the local cluster soft-

ware environment.

GridBank is provided as an extension to the Globus job manager, and it calcu-

lates job cost based on standard XML usage records.18 It is thus not as intrusive

as DGAS, but it still requires modifications of a particular workload manager. An

interesting feature of GridBank is that it makes use of decentralized Trade Servers

to negotiate resource prices. GridBank is also modeled around an economy-driven

workload management system utilizing resource price matrices.19

Neither GridBank nor DGAS are based on open, standard Grid protocols such

as Web services or OGSA, thus limiting their prospective scope of interoperability

with other Grid systems.

The Grid Economic Services Architecture (GESA) specified by the Global Grid

Forum (GGF), presents an OGSA-based architecture using the concept of charge-

able services.20 When developing a service one may associate it with a cost that

can be charged in a bank based on standard usage records. GESA is, hence, quite

intrusive to the service since it requires the service interface to be changed in or-

der to charge for its usage. Furthermore, GESA was designed to be orthogonal

to the security model chosen, and does not address the security issues related to

accounting.

SNUPI provides extensions to the Linux operating system, and it allows cluster

usage data to be collected and stored in RDBMS databases, and then queried from

user-friendly portal Web interfaces.21 SNUPI is, however, not service-oriented and

assumes a homogenous cluster environment.

QBank is a resource allocation management system developed for parallel

computers.22 Its successor, Gold, adds more advanced accounting features such

as price quotes, funds transfers, and timestamped allocations.23 Gold also allows

role-based authorization and transaction journaling. Although it would fulfill most

of the core accounting needs discussed in this paper, it is not developed using open,

Grid, or Web services protocols, and is thus limited in its interoperability as well

as cross-platform support. Its security model is also limited compared to our work.

5. SGAS Design

We have developed the SweGrid Accounting System (SGAS), with the aim of meet-

ing the accounting needs of SweGrid presented in Section 3, and with a particu-

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

6 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

lar focus on shared quota enforcement across organizational boundaries, simplicity

of deployment, and security.24 The accounting system is fully transparent, or im-

poses only marginal additional requirements, to the end-users, allowing for a smooth

transition into an accounting-enabled Grid. In this section, we present the design

rationale of the various system components.

We start by describing the flexible authorization framework (Section 5.1). In

addition to a bank service (Section 5.2), which provides most of the accounting

functionality, there is a workload manager integration component (Section 5.4),

and a usage tracking service (Section 5.3). Figure 1 shows an overview of SGAS.

The operational flow is as follows: a user submits a job (potentially via a bro-

kering service) to a workload manager service running on the resource. (We make

use of a generic term here to stress that SGAS is a generic system that can be

integrated with more than a single software stack.) The resource integration com-

ponent intercepts the request by way of a workload manager plugin, and it interacts

with the bank to reserve sufficient quota. This interaction is further explained in

Section 5.2 through 5.4.

Broker Scheduler

Workload

Manager

plugin

 JARM

Bank LUTS

User

Site Policy

Manager

SGAS

Cluster

(resource)

External

Authorization

Services

P

A

P

P

I

P

P

E

P

P

D

P

Admin

inferface

Membership/

Community

Service

P

I

P

P

I

P

P

D

P

P

D

P

SGAS

component

External

component

Generic

interface

Fig. 1. SGAS Components Overview.

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 7

5.1. Authorization Framework

Three parties are involved in our accounting scenario: the user, the resource, and

the allocation authority (front-ended by the bank). The system has multiple deci-

sion points at various levels, allowing for both policy overlay (combining policies

from multiple sources when making a decision) and retention of local control. This

allows us to honor the requirements of all three stakeholders, as well as facilitating

decentralized control and system management.

We make use of the terminology and overall architecture as proposed by the

Global Grid Forum working groups on Authorization Frameworks and Mechanisms,

and OGSA Authorization.25,26 We allow access permission policies to be specified

in XACML (eXtensible Access Control Markup Language).27 Figure 2 shows an

example policy in XACML, governing what set of users may use a certain allocation

in the bank. While the implementation makes use of XACML, we emphasize that the

framework allows for any policy language understood by the pluggable authorization

engines. To illustrate this we have successfully experimented with Delegent, an

authorization service capable of rights management delegation (not supported in

XACML) as an alternative back-end authorization service, or Policy Decision Point

(PDP), for the bank.28

Multiple information providers are used in the system. The bank, for instance,

may be configured to associate any user in a particular Virtual Organization (VO)

with a particular account. To achieve this, external services such as VOMS and CAS

may be used to gather membership evidence (Policy Information Point, PIP).29,30

The allocation authority adopts a delegated security model, controlled by poli-

cies that can be associated within each research project. The highest level of au-

thorization authority is the national allocations committee, which allocates quotas

to projects/VOs. On a project level, the principal investigator (PI) can specify ad-

ditional policies through the Policy Administration Point (PAP), to allow various

project members to use the quota. To enable flexible self provisioning, the PI may

additionally give away a possibly restricted subset of its own management privileges

to other members.

Allocation requests and decisions are authenticated and integrity protected by

the use of XML digital signatures, and/or WS-SecureConversation.30,31 In addition,

when the resource contacts the bank, both the users delegated credentials associated

with the requested job (made available by the workload manager plugin), as well

as the resources own credentials, are used to authenticate the allocation request.

The resource checks the quota on a soft real-time enforcement basis. The check is

soft (as opposed to strict) in that policies on the client, as well as on the resource, can

allow the job to be run even if the allocation authority decides that sufficient quota

is not available. This is a critical requirement from the HPC centers, because the

allocations are done periodically (for 6 or 12 months) whereas user resource usage

tends to be bursty (e.g., just before the scientists are to publish a paper, usage goes

up). Additionally, the users may specify that they only want to execute long-running

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

8 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

jobs on resources that allow the jobs to complete within the available quota limit,

and the resource may disallow jobs without enough available quota during peak

utilization periods. Such usage-based allocation decisions can be made by querying

the usage service, and by allowing the resource Policy Enforcement Point (PEP)

to shortcut the bank authorization (modulo local site manager configuration), and

overrule the final decision.

<Policy PolicyId="SweGridTestProjectPolicy"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">
 <Target>
 <Subjects><AnySubject/></Subjects>
 <Resources><AnyResource/></Resources>
 <Actions><AnyAction/></Actions>
 </Target>
 <Rule RuleId="RequestHoldRule" Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

/O=Grid/O=NorduGrid/OU=pdc.kth.se/CN=ThomasSandholm
 </AttributeValue>
 <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/>
 </SubjectMatch>
 </Subject>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

/O=Grid/O=NorduGrid/OU=cs.umu.se/CN=PeterGardfjell
 </AttributeValue>
 <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources><AnyResource/></Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> requestHold
 </AttributeValue>
 <ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
 <Rule RuleId="FinalRule" Effect="Deny"/>
</Policy>

Fig. 2. Example of an XACML-encoded bank account policy granting withdrawals for two project
members.

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 9

5.2. Bank

The bank component is central to the design of SGAS. It implements coordinated

quota enforcement across all the SweGrid sites. The component consists of three

Web services, the Bank-, the Account-, and the Hold- services. The bank design is

presented in some more detail in Ref. 33.

The Bank service is responsible for creating and locating Accounts, correspond-

ing to a research-project allocation. The Account service hands out soft-state,

lease-based fund reservations called Holds to authorized Account members. Ac-

count members may be added or removed, or their rights may be modified through

XML-defined policies. When a Hold is created, a specified amount of the total

quota or funds is locked, meaning it may not count towards other reservations or

withdrawals (c.f. making reservations on a credit card). The Hold is further only

accessable by the party creating the Hold, typically the resource. The Hold can

be renewed (its lifetime extended) and it can be committed (released). A commit

operation triggers an accounting transaction record and debits the Account that

the Hold was held against. The amount reserved in a Hold does not have to match

the committed amount, because they correspond to estimated vs. actual cost to

run a job. It is up to the resource to decide whether a conservative overbooking

reservation strategy should be applied to be sure that the job completes within

the reservation time, or to be more optimistic and reserve a smaller amount that

potentially can be renegotiated if the job did not manage to complete in time.

The cost and the allocations are expressed in a virtual currency, Grid Credits,

and may thus be mapped into any physical resource-specific cost. Typically, the

cost is mapped directly to wall-clock time, because it makes it easy for the existing

HPC centers scheduling infrastructure to enforce as well as to measure the quota.

How physical costs should be mapped into Grid Credits is, however, decided by

resource policy. A resource may, for instance, use a standard usage record and give

the various containing attributes weights used to calculate the total cost. The typical

wall-clock approach can thus be seen as giving the wall-clock attribute the weight

of 1 and all other attributes the weight of 0. Another advantage of the wall-clock

mapping is that it becomes intuitive for users to set a maximum wall-clock time

attribute, which corresponds to the granted SNAC time, in their job specifications

using, e.g., the Globus 14 Resource Specification Language (RSL). They thereby

initiate an implicit in-blanco signing process with the resources.

Figures 3 and 4 shows the bank design, and a resource and bank interaction

scenario. The interfaces shown should be seen as conceptual entities or roles of res-

ponsibility rather than programming language constructs. The interface technology

used, typically WSDL or Java, depends on the distribution of the components. The

bank is designed with a minimal set of data-centric operations to make it as easy as

possible to interact with and to allow for future extensions. Security interfaces are

clearly separated from application interfaces, allowing the security implementation

to be customized or replaced without affecting the core bank implementation.

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

10 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

+createAccount()

+getAccounts()

«interface»

Bank
+requestHold()

+query*()

+commitHolds()

«interface»

Account

+requestTermination()

+query*()

+commit()

«interface»

Hold

+setPolicy()

+query*()

«interface»

ServiceAuthzManagement

*

XPath queries.

Examples:

"/transaction" get all transactions

"/accountData" get all account properties

"/accountHoldData" get all accountHold properties

"/policy" get service policy e.g. XACML

create create

«interface»

ServicePDP
setPolicy

Fig. 3. Bank Interfaces.

AccountResource ServicePDP AuthzServiceAuthzHandler

requestHold()
authorize()

authorize()

requestHold()

Hold
create()

commit()

requestTermination()

addTrans()

Fig. 4. Bank and resource interactions.

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 11

5.3. LUTS

The Logging and Usage Tracking Service (LUTS) is used to store usage records

compliant with the GGF Usage Record (UR) XML format.34 Depending on who

should have access to the service, resources may share the same LUTS in order to

allow users to query for detailed information regarding the resources consumed by

their jobs across multiple sites. The query language is XPath-based and therefore

very flexible and extensible.35 LUTS is schema agnostic, which means that the

UR may be extended with information, such as job tracking information, that a

particular subset of resources and users understands without having to change or

reconfigure LUTS. A batch of Usage Records may be logged at the same time

to improve performance and scalability. The service builds on the same security

infrastructure as the other SGAS services allowing, for instance, dynamic access

control permissions to be set up specifying who is allowed to query or publish data

in the service, and allowing message payloads to be encrypted and/or signed.

5.4. JARM

The Job Account Reservation Manager (JARM) component is responsible for in-

tegrating local cluster systems into SGAS. JARM intercepts a job submission and

calculates the estimated cost of the job based on, for example, the users job spec-

ification (using RSL in our case), and current system load. It then contacts the

appropriate Account, which is either specified in the RSL by the client or alterna-

tively searched for in the Bank. A Hold (account reservation) is created with the

estimated cost, and the timeout of the Hold is set to the estimated duration of the

job plus a margin. The resource also lets the Bank know whether overdrafts are

accepted, a policy that may be requested by the client. If the Hold was created suc-

cessfully, JARM lets the local workload manager continue with the job submission;

otherwise, an error is generated and logged.

After the job has completed, JARM collects the usage information, converts it

into the standard GGF UR format, logs it into LUTS, calculates the actual cost of

the job, and commits the Hold (which is then destroyed). All this typically happens

in batch mode, asynchronously in regard to the job submission, to induce as little

overhead as possible to the user-perceived response time. In addition, it allows for

higher throughput at moments of peak load. A Site Policy Manager implementation

can easily be customized for particular workload managers and site policies. Note

that JARM shields the Site Policy Manager from knowledge about the bank system

(see Figure 1). A generic NorduGrid/ARC15 Site Policy Manager has currently been

implemented.

SGAS is mainly concerned with allocation enforcement, and because it is

workload-manager agnostic, scheduling and brokering functionality is outside of

its scope. However, we recognize that economic brokering algorithms based on a

thorough analysis of economic models and business needs belongs to the future

of both scientific and industrial Grids, and that the use of cyber money as well

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

12 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

as virtual money is going to be a future requirement. We therefore provide plug

points for calculating, setting, and publishing the price in the Site Policy Manager

component. Note that this does not mean that the resources need to decide on ap-

propriate prices in isolation to the rest of the system. Trading and pricing services

as described in Ref. 36, and Ref. 17 may, for instance, be used. The use of cyber

money or real money in conjunction with Grid Credits, is in SGAS best done at the

allocation authority level, where Bank services may charge real money for filling up

accounts with quotas.

6. SGAS Implementation

In this section we present experience gained from implementing the accounting

solution described in the previous section.

6.1. Implementation Approach

For interoperability reasons, the SGAS design is based on the latest Grid and Web

services protocols. In our implementation, we go one step further by reusing toolk-

its implementing these standards. The general approach taken was to compose the

solution from standards-based toolkit primitives, as opposed to re-implementing

low-level middleware or communication libraries. Apart from the obvious advan-

tages of developing complete applications more rapidly and following the latest

specifications closer, we also safeguard our solution against protocol changes in

the standards, and we can leverage the interoperability testing done by the proto-

col implementers. For example, the initial implementation implemented all services

compliant to the OGSI specification whereas the newest version uses WSRF.

Reuse is done on three levels: development environment (e.g., build system),

compile-time environment (APIs), and run-time environment (application server

containers and system-level services). The first two are commonly applied by most

projects, whereas the third is more common in the software industry than in acad-

emia. We focus our discussion here on run-time environment reuse in a Grid envi-

ronment.

6.2. Container Framework

The Globus Toolkit (GT) provides a Java-based container implementation of the

OASIS Web Services Resource Framework (WSRF) protocols, a realization of the

OGSA model.14,37 Both WSRF and GT are designed as a set of primitives that

can be freely mixed, composed, extended, and embedded. WSRF facilitates cross-

language interoperability, whereas the GT Java container provides a consistent,

portable programming model. Below, we first summarize how the various WSRF

concepts are leveraged in SGAS, and we then continue with describing how the GT

container features are used to achieve this.

Soft-state management (server-side managed, client-lease controlled state) is

commonly applied in both the Internet and Grid networks, and it is a fundamental

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 13

component of WSRF (WS-ResourceLifetime). We control expiration and extension

of Holds using the WS-ResourceLifetime soft-state protocol. Service property in-

trospection (with its associated query and notification framework), as a means to

minimize brittle APIs for flexible information retrieval, is another key component of

WSRF (WS-ResourceProperties). We use this concept to query transaction records

in the Bank and Usage Records in LUTS, and to get notifications when Holds are

about to expire. WSRF recommends a factory pattern to create stateful resources

in a uniform manner, which we apply. The factory pattern is used to create both

Account, and Hold resources.

GT allows code to be plugged into the container on three different levels: mes-

sage, operation, and back-end storage. Message interceptors are mainly used for

service-orthogonal functionality, such as transaction management and security. In

SGAS, a GT-provided authorization-interceptor plugin is used to implement the

interaction between the PEP in JARM and the PDP in the bank. Furthermore,

mutual authentication, message encryption, and message signing, are all carried out

by GT transparently to the application code in message handlers using generic im-

plementations of WS-SecureConversation, XML-Encryption, and XML-Signature,

respectively.32,38,31

Operation providers allow decoupled implementations of parts of service inter-

faces. A service implementation is typically made up of a set of toolkit-supplied

operation providers, and one or many application-specific providers. The providers

are specified at deployment time, and thus promote a development model based

on composition of primitives. All SGAS services (the bank services and LUTS)

are made up of operation providers. LUTS is composed of GT supplied operation

providers exclusively, and thus does not have any application-specific code or APIs.

The unique behavior of LUTS is achieved by a back-end storage and query plugin

that leverages an XML database implementation (eXist 39) and XPath (Xalan 35)

as a query engine. GT operation providers implement soft-state management, ser-

vice creation, notification and inspection of service state transparently to the SGAS

code.

6.3. Systems Integration and Scalability

Although the general design is to introduce as few new APIs as possible, there

are a number of high-level APIs that may be used as a means to integrate SGAS

with other systems. We expect other Grid services to be built on similar core OGSA

fabric, and infrastructure components in the future, such as WSDL and WSRF. This

in itself offers a baseline for low-level API interoperability that could be used, e.g.,

by generic management tools. As an example, Globus resource property browsers

and monitors were used to manage the Bank and LUTS services. Further, the

high-level Bank and Policy management APIs provided by SGAS and expressed in

WSDL, serve as a public integration point to other accounting and authorization

components. The Bank APIs are discussed more thoroughly in Ref. 33.

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

14 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

Simplicity and scalability are central to the SGAS design. SGAS should be

able to scale down to very small, as well as to large-scale nation- and Grid-wide

deployments. As a means to scale up, the load can be balanced across many Bank

and LUTS services. Additionally, charging and logging are done in batches with

intervals customized to the overall system load.

6.4. Toolkits and Standards

We summarize the toolkits and standard protocols used to implement central fea-

tures of SGAS in Table 1. SunXACML is used in the bank as a standard, self-

contained PDP engine, which checkpoints policies to the eXist database.40 Some

schedulers already have support for the GGF UR format, but for others we provide

an XSLT style sheet transformer based framework to simplify SGAS integration at

local sites.35

Table 1. Toolkits and Standards.

Toolkit SGAS Feature Standards Implemented

Globus Service state management WSRF
Globus Mutual authentication, credential delegation GSI profile of WS-SecureConversation
Globus Payload integrity, and privacy XML-Signature, XML-Encryption
eXist XML database (for policy and service state) XML:DB
Xalan Query engine, stylesheet transformation XPath, XSLT

SunXACML XACML PDP XACML
Axis Web services engine SOAP, WSDL

SGAS SGAS Usage Records GGF XML Usage Record

7. Illustration of Policy Customization Capabilities

In order to illustrate the policy customization capabilities of SGAS and their ef-

fects, we built a simulation framework aimed at measuring job turnaround times.

The usage pattern that was simulated consisted of an allocation authority that pe-

riodically adds new resource allocations to a bank account, and account members

that continuously consume their allocations by submitting jobs (thereby creating

and committing account reservations).

The behavior was studied for different policy configurations and two separate

job flows. First, a fair flow is a stream of job submissions that is produced by a user,

who does not try to make more reservations than is allocated to him/her within

a given time period. Second, an unfair flow is a stream of job submissions that

is produced by a user, who tries to make reservations of twice the allotment. The

unfair flow can be shaped using various policies and overdraft protection algorithms

to optimize fairness and resource utilization. In case fairness is the sole objective,

allocation enforcement can be carried out strictly which would disallow any quota-

exceeding jobs in the unfair flow. In the simulations, we employed soft allocation

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 15

enforcement, which allows jobs to run even though the user account is overdrawn,

thus representing a trade-off where resource utilization is increased at the expense

of fairness. If the reservation fails due to an overdraft violation, then there is a

penalty in job execution time, simulating the job being put in a low priority queue

by the scheduler. The degree of enforcement “softness” may be controlled through

an overdraft limit policy, which we base on access control policy (XACML) rule

conditions that may be set by account administrators.

It should be noted that the XACML policies used are mere examples of viable

algorithms that may easily be applied using the SGAS customizability, and exten-

sibility features. That is, the aim here is not to show an optimal algorithm, but

rather to illustrate how a certain policy (overdraft protection in this case) can be

implemented in SGAS. However, the simulated policy of tracking overdrafts and

causing jobs exceeding their quota to run slower using the algorithm described be-

low is indeed employed in the SweGrid production system today, and the results

are hence relevant to the current use of SGAS.

Table 2 lists the configuration used in the simulation runs. Fair and unfair submit

intervals denote the duration between successive job submissions for a well- and ill-

behaved user, respectively. For each job, an account reservation for 60 credits is

placed (corresponding to the 60 second job duration). Allocation interval refers to

the time between two successive allocations, which in the SNAC case typically is one

month (see Section 3 and 5.1). Allocation amount is the size of each such allocation.

Overdraft penalty is the extra execution time added due to an overdraft (that is

not allowed by policy). This simulates a scenario where jobs within the allocation

limit are started immediately, whereas quota-exceeding jobs are penalized with an

extra 60 seconds of queue time.

All the simulations can be reproduced, and the source code can be obtained by

downloading the SGAS Open Source distribution.24

Table 2. Simulation Setup.

Simulation Property Time (s)

Fair Submit Interval 10
Unfair Submit Interval 5

Reservation Amount (Job Duration) 60
Allocation Amount 300
Allocation Interval 50
Overdraft Penalty 60

Figure 5 compares the job turnaround times of a fair and an unfair flow disal-

lowing all overdrafts. The area below the flow curves represents the accumulated

execution time of all jobs in the flow. Thus, the larger the area is, the worse is the

turnaround, and the higher is the aggregated penalty time. The peaks of the flows

resulted from overdraft violations. Thus, the thinner the peaks are, the closer is the

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

16 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Fair

Unfair
0

20000

40000

60000

80000

100000

120000

140000

Execution Time (ms)

Jobs

Submission

 Flow

Fig. 5. Submission flow simulation using fair and unfair flows (zero overdraft limit).

user to the actual allocation. Note that the fair flow was shaped to get minimum job

turnaround time by avoiding overdrafts. The occasional peak at the beginning of

the fair flow simulation was caused by the fact that the reservations and the periodic

allocations were not started simultaneously, and thus the first allocation happened

too late to avoid an overdraft. Over time, however, the allocations and reservations

were synchronized. The periodicity of the peaks in the unfair flow corresponds to

the available quota running low shortly before the new allocations are granted.

The authorization framework used by SGAS (Section 5.1) allows account owners

to set policies regulating access to their accounts with XACML policies. An example

policy condition is given in Figure 6. The actual value of the XACML attribute

sgas:overdraw:percent:requested is calculated as:

as + ar + rr

at

,

where as is the allocation spent, ar is the allocation reserved, rr is the requested

reservation, and at is the total allocation. The value may hence be less then 100%.

In that case reservations must not completely exhaust the total allocation available

in order to be successful. The condition can be associated with any rule like the

ones exemplified in Figure 2.

In our simulations we tested three different policies allowing 25, 50, and 75 per-

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 17

<Condition FunctionId=
 "urn:oasis:names:tc:xacml:1.0:function:integer-less-than-or-equal">
 <Apply FunctionId=
 "urn:oasis:names:tc:xacml:1.0:function:integer-one-and-only">

 <EnvironmentAttributeDesignator AttributeId= "sgas:overdraw:percent:requested"

 DataType="http://www.w3.org/2001/XMLSchema#integer"/>
 </Apply>
 <AttributeValue DataType= "http://www.w3.org/2001/XMLSchema#integer">
 175
 </AttributeValue>
</Condition>

Fig. 6. Example of an overdraft policy allowing 75% overdraft.

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

175%

150%

125%

0

20000

40000

60000

80000

100000

120000

140000

Execution Time (ms)

Jobs

Overdraft Limit

Fig. 7. An unfair submission flow simulation using policy-based overdraft protection (25%, 50%,
and 75% overdraft limits).

cent overdraft against the unfair job reservation flow. The results can be seen in

Figure 7. We note that turnaround in the 25% policy case is close to the unregu-

lated unfair flow, whereas, the more permissive, 75% policy is getting closer to the

turnaround of the fair flow.

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

18 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

8. Early Experiences

SGAS has been tested in the SweGrid production system since September 2004.

After the original submission of this paper, SGAS was ported from OGSI to WSRF

and Globus 4. One of the initial experiences gained from the production system

was that some large-scale jobs requesting 100s of CPUs could cause the bank com-

munication to become a bottleneck for the sites. We therefore allowed the sites to

use transport-level security (SOAP over SSL) as an alternative to WS-Secure Con-

versation. The WSRF port made the Web container consume less memory (as a

result of a cleaner separation between a Web service and the stateful resource being

managed) and as a result solved some scalability problems we were experiencing in

the persistency layer. We also implemented automatic phase outs of old accounts

and LUTS records to cope with the production level load of SweGrid.

From a policy management point of view it is still a too manual of a task to

distribute allocations to projects and too complicated for PIs to redistribute their

quotas to project members. Further, the service-level differentiation offered at the

resource sites is often too coarse grained (regular operation, or free pool low priority

operation). The price setting is not dynamic enough and does not give users an

incentive to use less powerful resource at less loaded times. SGAS has improved the

fairness of resource sharing in SweGrid but more could be done to allow users who

need to submit jobs urgently to pay more and get a higher priority.

To address some of these issues we have studied related economic theory applica-

ble to computational markets. Tycoon, a proportional share market-based resource

allocation system, provides a low-level infrastructure that can ensure both a high

degree of economic efficiency in terms of social welfare, or aggregated total user

utility as defined in Ref. 41, and a high degree of fairness in terms of envy-freeness,

as defined in Ref. 42.43 Current research focuses on integrating the Tycoon system

with Grid environments typified by SweGrid.

As an alternative to a market-driven solution, we have also investigated a com-

plementary resource allocation mechanism in Ref. 44, where we demonstrated the

potential of a decentralized architecture for a Grid-wide fairshare scheduling system

in SweGrid-like environments and usage scenarios. Here, job priorities are individ-

ually assigned to each job based on the deviation between allocated and consumed

share of resources. The system, which preserves local site autonomy, enforces both

locally and globally scoped share policies, allowing local resource capacity as well as

aggregate VO capacity to be logically divided across different groups of users. The

policy model is hierarchical and subpolicy definition can be delegated so that, e.g.,

a VO can distribute shares of its aggregate resource capacity across its projects,

which in turn can divide their shares between project members. Notably, there is

no need for a central coordinator as policies are enforced collectively by the resource

schedulers. Each local scheduler adopts a Grid-wide view on utilization in order to

steer local resource utilization to not only maintain local resource shares but also

to contribute to maintaining global shares across the entire set of Grid resources.

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 19

We acknowledge that SGAS needs to be tested and validated in more diverse

applications and Grid networks, and we hope that the recent inclusion of SGAS in

the Globus toolkit distribution and an ongoing integration with the CERN LCG

Grid in the EGEE project will give us data for future analysis of this kind.

9. Conclusions and Future Work

We have presented an architecture, and an implementation of an accounting sys-

tem based on open, standard Grid and Web services protocols to solve the resource

quota-enforcement needs of a national-scale Grid network. Easy non-intrusive de-

ployment, and integration with pre-existing, local accounting solutions prompted

the use of XML document-centric communication and transformations and the use

of a minimal set of APIs. This design is apparent in the policy administration API

allowing arbitrary XML-specified policies to be defined for allocation decision points

with a single operation. Another example is the non-existing API between the work-

load manager and the JARM component. It is designed as a message interceptor,

obtaining its required input via runtime context and environment settings.

A customizable security model based on multiple PDPs, and PIPs, but with a

single PAP and PEP, makes it possible to easily add new authorization services

without affecting the service usage.

The three-party policy negotiation design allows the resources to implement site-

specific policies to optimize utilization and prioritize between users with different

usage patterns and job-specification requirements. Furthermore, it enables alloca-

tion authorities such as SNAC, PIs, or individual project members to regulate the

quota distribution according to dynamic policies.

The novel set of accounting features presented in this paper to solve the par-

ticular needs of SweGrid, and implemented in the SGAS system, do not exist in

any other existing Grid accounting system to date. Although SGAS is primarily

developed for SweGrid, it is based on open protocols, and has generic-enough func-

tionality to be used in any Grid accounting setting.

The design is made general with respect to the type of mechanisms that are

used for balancing load between resources or for achieving fairness between users.

For example, the bank can be used in an environment driven by market-economy

strategies where resources and resource brokers negotiate price and QoS agreements

solving the supply and demand problem. It fits equally well into a more planned-

economy model where the main aim is to achieve fairness between users, based on

given allocations to users or projects.

Besides improving baseline functionality, scalability and robustness, we mainly

intend to continue to improve this system in two directions: (1) more sophisti-

cated pre-allocation mechanism to allow, for instance, SAML assertions to be used

as quota cheques for a collection of jobs, and thus limiting the bank interaction

overhead of individual jobs, (2) use of more elaborate negotiation protocols such

as Contract Net and WS-Agreement to handle Service Level Agreement (SLA)

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

20 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

contract policing and obligation enforcement. With a more advanced negotiation

protocol in place, we also intend to investigate soft computing, and game theory

based decision-making procedures to automate SLA refinement.

10. Acknowledgements

We would like to thank our colleagues, Åke Sandgren, Lars Malinowsky, Michael

Hammill, and Bo Kågström for their feedback on this work; and Leif Nixon, and

Aleksandr Konstantinov for their help with the NorduGrid integration. We would

also like to thank Babak Sadighi, Tomas Olsson, Ludwig Seitz, and Erik Rissanen

for their work on integrating Delegent into our authorization framework. Finally,

we would like to thank Martin Folkman for his work on developing SGAS adminis-

tration tools.

This work has been supported by The Swedish Research Council (VR) under

contracts 343-2003-953, 343-2003-954, and 621-2005-3667.

References

1. I. Foster, C. Kesselman (eds.). The Grid: Blueprint for a New Computing Infrastruc-
ture (Morgan Kaufmann, 1999).

2. I. Foster, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, H. Kishimoto, F. Maciel, A.
Savva, F. Siebenlist, R. Subramaniam, J. Treadwell and J.V. Reich, The Open Grid
Services Architecture, Version 1.0, (Global Grid Forum, 2004).

3. I. Foster, C. Kesselman, J.M. Nick and S. Tuecke, Grid Services for Distributed System
Integration, in Computer. 35(6)(2002), pp. 37–46.

4. T. Sandholm, P. Gardfjäll, E. Elmroth, L. Johnsson, and O. Mulmo. An OGSA-
based accounting system for allocation enforcement across HPC centers, in ICSOC’04,
(ACM, 2004), pp. 279–288.

5. D. Booth, H. Haas, F. McCabe, E. Newcomber, M. Champion, C. Ferris and D.
Orchard, Web Services Architecture, (W3C, 2003).

6. N. Mitra, SOAP Version 1.2 Part 0: Primer - Section 1.1, (W3C, 2003).
7. R. Chinnici, M. Gudgin, J. Moreau, J. Schlimmer and S. Weerawarana, Web Service

Description Language (WSDL) Version 2.0 Part 1: Core Language - Section 2.8, (W3C,
2003).

8. R.T. Fielding, Architectural Styles and the Design of Network-based Software Archi-
tectures, Ph.D. Dissertation at the Information and Computer Science Department,
University of California (Irvine, 2000).

9. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic and S. Weerawarana, Business Process
Execution Language for Web Services Version 1.1., ed. S. Thatte, (Microsoft, IBM,
Siebel Systems, BEA, SAP, 2003).

10. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maquire, T.
Sandholm, D. Snelling and P. Vanderbilt, Open Grid Services Infrastructure (OGSI)
Version 1.0, (Global Grid Forum, 2003).

11. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke and M. Xu, Web Services Agreement Specification (WS-Agreement), Draft,
(Global Grid Forum, 2004).

12. Contract Net Interaction Protocol Specification (FIPA, 2003).

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

A Service-Oriented Approach to Enforce Grid Resource Allocations 21

13. T. Sandholm, Service level agreement requirements of an accounting-driven computa-
tional grid. Technical Report TRITA-NA-0533, (Royal Institute of Technology, Stock-
holm, September, 2005).

14. I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems, in IFIP
International Conference on Network and Parallel Computing. 3799 (Springer-Verlag
LNCS, 2005), pp. 2–13.

15. O. Smirnova, P. Eerola, T. Ekelöf, M. Ellert, J.R. Hansen, A. Konstantinov, B. Kónya,
J.L. Nielsen, F. Ould-Saad and A. Wäänänen, The NorduGrid Architecture and Mid-
dleware for Scientific Applications. in Lecture Notes in Computer Science, Vol. 2657
(Springer Verlag, 2003), pp. 264–273.

16. W. Thigpen, J. Hacker, L. McGinnis and B. Athey, Distributed Accounting on the
Grid, (Global Grid Forum, 2001).

17. A. Guarise, R. Piro and A. Werbrouck, DataGrid Accounting System - Architecture
- v1.0, (EU DataGrid, 2003).

18. A. Barmouta and R. Buyya, GridBank: A Grid Accounting Services Architecture
(GASA) for Distributed Systems Sharing and Integration, in Int. Parallel and Dis-
tributed Processing Symposium (IPDPS’03), (IEEE, Nice, France, 2003).

19. D. Abramson, J. Giddy and L. Kotler, High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid?, in Proc. Int. Parallel and Dis-
tributed Processing Symposium (IPDPS), (Cancun, Mexico, 2000), pp. 520–528.

20. S. Newhouse, Grid Economic Services Architecture, (Global Grid Forum, 2003).
21. V. Hazelwood, R. Bean and K. Yoshimoto, SNUPI: A Grid Accounting and Perfor-

mance System Employing Portal Services and RDBMS Back-end. in Linux Clusters:
The HPC Revolution, (Urbana/Champaign, USA, 2001).

22. S. Jackson, QBank: A Resource Management Package for Parallel Computers, Pacific
Northwest National Laboratory, (Washington, USA, 2000).

23. S. Jackson, The Gold Accounting and Allocation Manager, (2004),
http://sss.scl.ameslab.gov/gold.shtml.

24. SGAS, (2005), http://www.sgas.se.
25. M. Lorch and D. Skow, Authorization Glossary, (Global Grid Forum, 2004).
26. V. Welch, F. Siebenlist, D. Chadwick, S. Meder and L. Pearlman, Use of SAML for

OGSA Authorization, (Global Grid Forum, 2004).
27. A. Anderson, A. Nadalin, B. Parducci, D. Engovatov, H. Lockhart, M. Kudo, P.

Humenn, S. Godik, S. Abderson, S. Crocker and T. Moses, eXtensible Access Control
Markup Language (XACML) Version 1.0., eds. S. Godik and T. Moses, (OASIS, 2003).

28. L. Seitz, E. Rissanen, T. Sandholm, B. Sadighi Firozabadi, O. Mulmo, Policy Adminis-
tration Control and Delegation using XACML and Delegent. in Proc. 6th IEEE/ACM
Int. Workshop on Grid Computing (Seattle, November, 2005).

29. R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, A. Gianoli, K.
Lorentey and F. Spataro, VOMS, an Authorization System for Virtual Organizations.
in 1st European Across Grids Conference (Santiago de Compostela, February 13-14,
2003).

30. L. Pearlman, V. Welch, I. Foster, C. Kesselman and S. Tuecke, A Community Au-
thorization Service for Group Collaboration. in IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks (2002).

31. M. Bartel, J. Boyer, B. Fox, B. LaMacchia and E. Simon, XML-Signature Syntax and
Processing, eds. D. Eastlake, J. Reagle and D. Solo, (W3C, 2002).

32. G. Della-Libera, B. Dixon, P. Garg and S. Hada, Web Services Secure Conversation
(WS-SecureConversation), eds. C. Kaler and A. Nadalin, (Microsoft, IBM, VeriSign,
RSA Security, 2002).

February 20, 2006 16:58 WSPC/INSTRUCTION FILE SGASIJCIS

22 Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Olle Mulmo, Lennart Johnsson

33. E. Elmroth, P. Gardfjäll, O. Mulmo and T. Sandholm, An OGSA-based Bank Service
for Grid Accounting Systems, in Applied Parallel Computing. State-of-the-art in Sci-
entific Computing. Lecture Notes in Computer Science, Vol. 3732 (Springer Verlag,
2005), pp. 1051–1060.

34. S. Jackson and R. Lepro Metz, Usage Record – XML Format, (Global Grid Forum,
2003).

35. Xalan Java, (Apache Software Foundation, 2004), http://xml.apache.org/xalan-j.
36. R. Buyya, D. Abramson and J. Giddy, A Case for Economy Grid Architecture for

Service Oriented Grid Computing, (Global Grid Forum, 2001).
37. S. Graham, A. Karmarkar, J. Mischkinksy, I. Robinson and I. Sedukhin, Web Services

Resource 1.2, (OASIS, 2005).
38. T. Imamura, B. Dillaway and E. Simon, XML Encryption Syntax and Processing,

(W3C, 2002).
39. eXist, (2005), http://exist.sourceforge.net.
40. Sun’s XACML Implementation, (Sun Microsystems, 2004),

http://sunxacml.sourceforge.net.
41. C. H. Papadimitriou. Algorithms, Games and the Internet, in Symposium on Theory

of Computing (2001).
42. H.R. Varian. Equity, Envy, and Efficiency, Journal of Economic Theory. 9(1974), pp.

63–91.
43. M. Feldman, K. Lai and L. Zhang, A Price-Anticipating Resource Allocation Mech-

anism for Distributed Shared Clusters, in ACM Conference on Electronic Commerce
(June, 2005).

44. E. Elmroth and P. Gardfjäll. Design and Evaluation of a Decentralized System for
Grid-wide Fairshare Scheduling, in e-Science 2005. First IEEE Conference on e-
Science and Grid Computing, IEEE Computer Society Press, USA, pp. 221–229, 2005.

Service Level Agreement Requirements
of an Accounting-Driven

Computational Grid
Thomas Sandholm

Dept. of Numerical Analysis and Computer Science and PDC
Royal Institute of Technology
SE-100 44 Stockholm, Sweden

+46-8-7907811

Abstract
In this paper1 we present the requirements of a national computing Grid. In particular we discuss the
issues involved in managing complex policies of multiple stakeholders in such a large-scale, dynamic,
and heterogeneous Grid. We also propose a Service Level Agreement (SLA) and agent-based
architecture to address these issues. This work is a continuation of the work performed and
experiences gained when we developed a Grid accounting system for the Swedish national Grid
network, called SweGrid, which provides the foundation for the investigation presented here. We
conclude that many SLA concepts fit very well within the SweGrid network to address some of the
issues of the current system. Future work includes prototyping parts of the SLA framework and
running simulations before eventually deploying it in the SweGrid production environment.

1 Introduction
In recent years, the Internet has had a virtually explosive growth in number of users, largely due to the
fact that there has also been matching technological progress. Moore’s law is often quoted when
comparing CPU speed, but the advances in network performance have improved even more rapidly.
As a result, we are now at a point where communication between computers distributed over large
geographic areas almost matches the internal bus communication of PCs.

This trend, in conjunction with the ubiquity of the Internet and the price drop of high performance
computing devices, prompted some researchers in the mid 90’s to try to build virtual supercomputers
operating across WANs like the Internet [1]. The initial results were very promising and this new
architecture became known as the Grid to emphasize that computing power could be viewed as a
utility akin to the electric power grid [2-4].

Today, the Grid has moved beyond the pure academic research projects, and the industrial
involvement has gained momentum [5, 6]. For industrial innovators, the Grid offers a means to fulfill
some long-sought dreams, such as charging for service usage, and outsourcing and automating
management of high-end resources [7].

The main issue with the current Grid infrastructure is that, like the Internet, it operates on a best-effort
basis. That is, there are no guarantees of delivered service quality. This mode of operation is sufficient
when it comes to free information provisioning via, the World Wide Web, for example, but when it
comes to delivering services or making computations to solve complex problems, for which a
customer may have paid a large amount of money, new solutions are needed. Some low-level
solutions already exist to provide differentiated services over Quality of Service (QoS)-enabled
networks capable of guaranteeing offered bandwidth [8, 9] or CPU [10]. The biggest problem with
these solutions is that the low-level infrastructure of the Grid is intrinsically very heterogeneous, and it

1 This work was partly funded by The Swedish Research Council (VR) under contract 343-2003-953

 1

thus requires designs of much higher abstraction and coarser granularity. The key to such designs is
interoperability through standardization, which also serves one of the cornerstones of the Grid:
ubiquity.

As a first step towards guaranteeing QoS, service usage needs to be tracked. This is typically done by
Grid accounting systems [11-14] and it is elaborated on in our previous work [11]. The next step
involves the ability to request and claim agreed upon QoS parameters, such as response time and price.
This capability can be provided by setting up electronic contracts between the stakeholders embodying
the agreed-upon service level. This kind of contract is referred to as a Service Level Agreement
(SLA). It is a non-trivial task to make sure that SLA contracts in a Grid environment are adhered to,
because they often span many software and hardware abstraction layers. Coordinated monitoring and
management software is thus vital for such a system. Furthermore, policing contracts is not simply a
matter of making sure that users will not exceed their QoS grants, and that resources fulfill their
promises. Such a static view may in fact lead to worse resource utilization and less service offered to
the user. This is where policies are introduced to allow the stakeholders to state their preferences. The
inherent large scale of the Grid and the disparity of its users make policy management a complex task
subject to automation.

Automation and reasoning about complex and even contradictory and partly unknown policies is an
issue that has occupied the mobile agent and soft computing communities. Some preliminary efforts
are now underway to merge their resulting technology with the Internet [15] and the Grid [16].

In this paper, we discuss the requirements of an accounting enabled national Grid: SweGrid, set up to
serve the Swedish research community. We then propose an architecture based on SLA management
and agent-driven reasoning to use as a starting point for addressing these requirements.

Section 2 discusses Service Level Agreement technology in more detail. In Section 3, the SweGrid
system and its requirements are presented. Section 4 then describes how SLAs could be used in
SweGrid. An SLA Management system is thereafter proposed in Section 5. Finally, we draw some
conclusions and discuss future work in Section 6.

2 Service Level Agreements
A Service Level Agreement (SLA) is a contract between a user and a provider of a service specifying
the conditions under which a service may be used. An SLA specifies the agreed-upon level of
availability, serviceability, performance, and operation both in high-level business-value terms
understood by end-users, and low-level technical terms that can be enforced to reserve resource
capabilities. Typically, an SLA contains Quality-of-Service commitments (including penalties and
rewards), pricing policies, authorization policies, and negotiation policies. To ensure the authenticity
of an SLA it is digitally signed by all parties using a trusted-third-party (TTP)-based model such as
X.509 certificate authorities, a.k.a. the Public Key Infrastructure (PKI) [17]. An SLA can be
constructed either by the user or the provider of the service. In the former case it embodies a request
for resources or capabilities, and in the latter case it represents an offer of available services and
guarantees. Once an SLA has been mutually agreed upon and signed it has to be actively managed to
ensure that all the commitments are attained.

The SLA is a mutual agreement among all stakeholders in a service interaction, and everyone must
therefore also be able to subscribe to possible modifications triggered either by other stakeholders
directly or by an automatic upgrade or downgrade by the agents representing them. Not all
stakeholders may, however, have the same flexibility in changing various parts of the agreement.
Typically, the service provider only allows a very limited set of parameters to be renegotiated and
there might also be temporal restrictions, e.g. when and how frequently updates can be made.
Monitoring systems must, hence, be tied directly to the agreement both for the users and the providers.
The monitoring system must also report when violations arise due to either overuse or failure to
provide the qualities committed to. From a provider’s point of view it might also be interesting to

 2

detect underutilization, in order to reallocate idle resources. In a fully automated management solution
it is, furthermore, desirable to predict when violations are about to happen by analyzing usage history
and patterns in order to take corrective actions, such as adjusting the number of resources in an active
pool, before the agreement is broken. The management system is only aware of the conditions under
which the agreement can be considered violated, and what possible penalties it may cause various
parties, but it must be possible to specify and configure application specific actions to take when
certain violation events occur. To determine whether the SLA is in fact violated it must be possible for
the management infrastructure to validate it automatically and deterministically whenever the
agreement is in effect.

Agreement offers that may be negotiated are referred to as SLA templates, and play an important role
in the discovery of appropriate services. Hence, the templates give providers a way to communicate
possibly dynamic properties such as load constraints to consumers. The templates can also be viewed
as the typical contract that the provider is most likely to be able to fulfill based on assessment of
previous contracts.

SLA Languages have been proposed in [18-20] and are now converging within the Grid community in
the WS-Agreement specification in the Global Grid Forum. Some initial experiments on WS-
Agreement templates have been performed in [21]. As yet, negotiation and self-adapting capabilities
have not been explored in this context.

3 National Grid Requirements
SweGrid is a national Grid providing compute resources to scientific projects in Sweden. It comprises
600 commodity PCs interconnected with a 10Gb/s high performance network evenly distributed
among six High Performance Computing (HPC) centers. A Grid meta- scheduler [22] is responsible
for publishing resource information as well as selecting the appropriate cluster where a compute job
could run. The matchmaking process must, for instance, make sure that the user has the required
authorization rights to run the job, and that the correct OS and run time environments are installed on
the target machine. Most of the jobs are long running and trivially parallel (with minimal inter-subjob
communication). A typical job could, for example, perform some brute-force, number-crunching task
on a series of machines in an iterative manner, improving the precision of the calculation the longer
the job runs. It is therefore important that the allocated and requested execution (wall) time of the job
is actively enforced, as many of these jobs never stop running by themselves. The local cluster
scheduling system has the low-level control of jobs. What makes this environment a typical Grid
network is that the various HPC centers involved are very heterogeneous in terms of local polices
used, such as security, and job reservation and prioritization strategies employed.
To enable efficient and fair resource sharing in this Grid an accounting system built on top of standard
Web and Grid services protocols and middleware was developed [11] to track resource usage, and to
enforce Grid-wide resource quotas in real time. Figure 1 shows a high-level overview of the
accounting-enabled Grid.

1. In order to submit jobs that are charged against a quota granted to a research project, an
account for the project needs to be created. The account embodies the resource entitlement of
a group of researchers and is decorated with project specific policies that are enforced before
the job is submitted at a cluster. Deployment and activation of the account is typically done by
an accounting service administrator.

2. All the resources shared on the Grid need to run a resource information service collecting
resource capability and QoS parameters. The parameters may be both static and highly
dynamic.

3. The information service, in turn, registers itself and its cluster in one or more global index
services with a subset of the collected QoS in order to allow for more efficient resource
discovery.

 3

4. The user composes a resource request using a job specification language. The specification
defines what capabilities are required to run the job, such as the required wall or CPU time,
the number of cluster nodes needed, and the OS that the job executable can run on. It also
contains job specific information including the name of the executable to run, and the required
input parameters that need to be staged in to the target resource.

Figure 1: SweGrid Architecture

5. The job and resource specification is then passed into a client broker for submission. The first
task of the client broker is to select a cluster that matches the user request using some
matchmaking algorithm to distribute the load efficiently.

6. The second task of the broker is to submit the job to the cluster selected in the previous step
and to perform all the required file transfers to stage in the input parameters to the local
resource manager and scheduling system.

7. Before the job is actually put in a queue to run on one or more cluster nodes, the accounting
system intercepts the call via a reservation manager component in the resource manager. The
reservation manager looks at the resource specification that was initially composed by the
client to determine what resources need to be reserved, for how long, and at what price. This
decision is taken after evaluating local resource policies, which may differ between the
clusters in the Grid depending upon, for instance, current load and cluster scheduling features
available. A time-limited reservation is then created in the appropriate account, which was
created in Step 1.

8. The job specification is now translated into the local scheduling system syntax and then
submitted. The priority of the job is determined by the results of the reservation attempt in the
previous step. If the quota of the account was exceeded, the resource, again depending on
policy, may decide to downgrade the priority of the job or refuse to submit it altogether.

9. After the job has finished, the accounting system intercepts the job execution process once
again in order to calculate the actual price of the job, log an accounting record, and charge the
account. If the job finishes prematurely, a discount may, for example, be given on the price
reserved in Step 7. The cost must, however, not be greater than was reserved by the user. How
to treat and charge jobs that failed to execute is also subject to local resource policy.
Regardless of what happened during the job submission, an accounting log is always recorded
both locally at the resource as well as globally in a logging and usage tracking service.

10. To monitor how the accounting policies were enforced and to get a general idea of the
performance of the system, the account administrator may query transaction information in the
accounting service and more detailed usage information in the usage tracking service.

 4

There are a number of limitations to and issues with the scenario just described. These issues are
discussed next to give some background to the SLA re-factoring proposed in the next section.

• Account administrators currently have to add all account members (researchers who may
consume quota granted to the account) manually and set up scripts to distribute a biannual
allocation according to some policy, such as monthly staggered allocation chunks using a
command line administration tool. This is error prone and exposes too much internal service
detail to administrators. Further, there is no convenient way to see what allocation approach is
in effect.

• The index service only exposes very limited QoS parameters for a cluster, typically only
execution permissions. More detailed information may be queried by federating the query to
resource information services, but the information gathered there is not usage based. Hence, it
is, very hard to determine the ability of service providers (in this case the clusters) to meet
their promised QoS parameters, and to support quality of compliance or reputation (trust)
based service selection.

• The client broker algorithm is static and provides no flexible way of applying a policy to a
group of job submissions to be performed as part of the same task. Handling of failed jobs,
possible migrations, cancellation and monitoring of jobs must be done manually by the end-
user. The result is that users either write their own scripts on top of the broker to their best
ability without any form of algorithm or best practices reuse, or that they do the coordination
by hand. In other words, the user-task goal fulfillment is completely manual and without any
form of guarantees.

• The local resource policy is not directly linked to the user request or the service promised by
the provider. Thus, negotiating policies is difficult, and as a result only very basic demand for
service [7] negotiation is supported (the resource must accept all requests as is, or the job will
fail). No automatic QoS monitoring or enforcement is carried out in relation to the job request.
Therefore, violations cannot be detected and the parties involved cannot be notified to take
countermeasures, such as migrating to another cluster if the job gets stuck in a queue due to
some temporary node overload or downtime. Furthermore, there is no well-defined endpoint
where these violation notifications can be sent. Because there is no infrastructure to detect
violations, there is no support for predicting violations either.

• The resource-administrator policy for distributing resources fairly among clients while
maintaining high utilization may be customized, but there is no middleware support for
simplifying this task. There is no means to adapt the system automatically to changed
circumstances or user requirements, or to automatically learn from past experience. The
policies are all managed on a trial and error basis and by using off-line a posteriori analysis. It
is not possible to correlate policy settings and resource infrastructure configuration with the
ability to meet the QoS parameters promised to users.

• In general, the accounting-enabled Grid system described above is very flexible in terms of the
ability to configure local stakeholder policies. However, this flexibility comes at the price of
complexity, and it is very hard to map policies to higher-level goals. Examples include
minimizing the overall completion time of a series of end-user job submissions while keeping
the cost within a given budget; and maximizing utilization, throughput and resource sharing
profits while meeting the offered QoS guarantees.

• The current use of implicit QoS contracts between the stakeholders makes it hard to offer
discounts and enforce penalties to reflect the actual level of service delivered. The
implementation of various economic market-simulation and pricing models is also
complicated for the same reason. Further, there is no formal contract signing procedure
making it hard for users or resource providers to enforce non-repudiation.

The issues listed above are summarized and mapped to the stakeholders, who are most negatively
affected by the issue, in Table 1.

 5

Figure 2: SLA-aware SweGrid Architecture

Table 1: Issues with current Grid Accounting System
Issue Stakeholder(s)
Manual, error prone account management Account Administrator
No usage based service selection End-User
Manual, error prone multi-job coordination End-User
No service level negotiation and enforcement
leading to problems detecting service level
violations

Resource Administrator, End-User

Complex policy configuration to optimize higher
level goals

Resource Administrator, Account Administrator,
End-User

Lack of adaptation and automatic reconfiguration
support

Resource Administrator

No explicit, non-repudiation agreement support
between stakeholders

Resource Administrator, Account Administrator,
End-User

4 An SLA-Aware National Grid
We now propose an architecture aimed at eliminating the limitations and issues discussed in the
previous section. The approach taken is to introduce an SLA-aware, middleware-driven architecture.
Akin to the Grid accounting system presented in [11, 12] we want the new infrastructure to be as non-
intrusive as possible and based on standard Web and Grid services protocols, because experience has
shown that this is the best way to achieve both interoperability and early and smooth adoption. The
internals of the SLA-aware components are presented more elaborately in the next section. Here we
just show how these components can be applied to the Grid system presented in the previous section.
Figure 2 shows the SLA-enabled Grid architecture corresponding to the accounting-enabled Grid
depicted in Figure 1.

 6

1. We introduce an account administrator agent responsible for executing tasks on behalf of the
account administrator and negotiating SLAs with the end-user representatives holding
accounts in the accounting services administered. The contract negotiated by this agent can be
seen as a fairly static overarching VO policy [23]. Contracts negotiated between end-users and
resources in order to consume account quota must all comply with the terms in this contract.
The agent can also set up new accounts and distribute allocations periodically according to a
policy in the contract determined by the administrator. A sample SLA is shown in Figure 3.
The contract must be signed by the account administrator credentials and may optionally be
signed by the end-user representative. One-party signing is acceptable since the contract will
only describe the obligations of the accounting service.

2. As in the SLA-unaware architecture the Resource Information service collects resource
information from the local scheduling service. This information may for instance be in the
form of the standard GLUE schema or JSIM resource models.

3. The SLA Manager component introduced within the Job Execution Service (JES) is now
responsible for collecting the information pertaining to the QoS parameters in the contracts
offered by the JES, and constructing SLA templates that are published in a discovery service
together with contract compliance history and other reputation and trust building information.

4. Mirroring the administrator agent design, we introduce a user task agent responsible for
executing job-submission-related tasks on behalf of end-users. The user describes a set of jobs
and their resource requirements in a language such as JSDL and passes it into the agent
together with some higher-level goals expressed in terms of policies applying to the task. For
example, all the jobs must finish before a certain time and must not cost more than a budget
limit. If a job fails to meet its SLA, then the agent will receive a notification and resubmit or
migrate the job to another provider automatically. If the agent receives warnings in the form of
violation predictions, it may try to renegotiate contracts to still meet the higher-level goals of
the end-user.

5. The agent is also responsible for selecting an appropriate set of resource providers (clusters)
by querying the discovery service, SLA Selection Service. A subset of the clusters may be
selected with which individual call-for-proposal based bid and contract-negotiation
interactions are started. For instance, the price may not be available in the SLA Selection
Service, but may need to be dynamically negotiated just before submission time so the current
load on the respective resource can be taken into account.

6. The end-user agent drives the negotiation interaction with the clusters selected in the previous
step and signs agreements on behalf of its user. The resource administrator agent signs the
same contract on behalf of the resource administrator. The resource administrator agent is
responsible for simplifying and automating resource configuration and learning-capable
adaptation based on higher-level resource administrator goals. The resource administrator
agent controls the SLA manager component of JES and indirectly sets policies that determine
the price of resources and the job prioritization policies. A sample account (VO) SLA is
shown in Figure 4.

7. The price information is then used by the reservation manager as well as by the negotiation
component to drive the appropriate quota reservation and enforcement interaction with the
accounting service; and to give end-users service-level, price-quote offers in the SLA
templates respectively.

8. The job is submitted to the local cluster scheduler with the negotiated priority and other job
specific properties.

9. When the job has completed, the JES SLA manager must calculate the final charge of the job
based on the service level delivered and possible SLA violations, obligations, and penalties.
The outcome is then stored locally in the resource administrator agent’s knowledge repository
to adapt the existing configuration and policies to better meet the resource administrator goals.
The accounting information is logged in the usage tracking service and the appropriate
account is charged; the reservation committed and removed; the consumed quota withdrawn
from the account; and finally a transaction record is logged in the accounting service.

 7

10. The accounting service SLA manager can now access the usage information and the
transaction record to update its policy and configuration to better meet the higher-level goals
of the account administrator.

account_sla = { parties,
 monitoring,
 qos_parameters,
 guarantees,
 constraints }
parties = { account_administrator,
 project_leader,
 project_members }
project_members = Σ project_member
monitoring = { monitoring_services, report_specification }
monitoring_services = { account_service, logging_service }
report_specification = { report_interval, report_parameters }
report_parameters = { overdraft,
 allocation,
 distribution,
 job_usage_record }
qos_parameters = {account_service.account_data,
 logging_service.usage_record }
guarantees = {overdraft < 10,
 allocation = 360000,
 distribution_type = staggered,
 distribution_interval = monthly }
constraints = { start_time = 2005-01-01:10:00,
 end_time = 2005-07-01:10:00 }

Figure 3: Sample Account SLA

resource_sla = { parties,
 monitoring,
 qos_parameters,
 guarantees,
 constraints }
parties = { resource_administrator,
 project_member }
monitoring = resource_information_service
qos_parameters = resource_information_service.jobs
guarantees = { priority = high,
 cpu_time = 36000,
 completion_time = 2005-02-01:10:00,
 cost = 36000,
 charge_account = snic-01-01 }
constraints = { start_time = 2005-01-01:10:00,
 end_time = 2005-02-02:10:00 }

Figure 4: Sample Resource SLA

 8

5 SLA Manager Architecture
The SLA Manager component that we propose for making Web and Grid services SLA-aware in a
non-intrusive way is described in some more detail in this section. The manager can be divided into
six subcomponents 1) SLA Negotiator (SLAN), 2) SLA Monitor (SLAM), 3) SLA Event Sink
(SLAS), 4) SLA Policy Manager (SLAP), 5) SLA Rating Engine (SLAR) and 6) SLA Task Manager
(SLAT).
The subcomponents are governed by a couple of general-purpose services, the Decision Making
System (DMS) for pluggable decision making engines such as AI goal-driven, rule-based engines, and
the Component Bus (CB) for efficient asynchronous inter and intra component communication. Figure
5 depicts this architecture and the most important interactions. All of these components are designed
with clearly defined interfaces and interactions to make it easy to replace a subcomponent with a
custom implementation.

5.1 Decision Making System (DMS)
The DMS service exposes an abstract set of interfaces that can be used to communicate with arbitrary
decision making software plugged into the SLA framework. Figure 6 gives some examples of various
DMS implementations that might be integrated.

Figure 5: SLA Manager Architecture

 9

Figure 7: Negotiation Support Systems

Figure 6: Decision Making Systems

 10

5.2 Component Bus (CB)
The different SLA manager sub-components need a consistent and efficient way of communicating
with each other asynchronously. Similarly, distributed SLA Managers need to be able to communicate
with each other, for example, to negotiate contracts or share provider reputation knowledge or usage
reports. The Component Bus hides the protocol specifics from the rest of the SLA Manager to make it
easier to switch between different transport bindings and implement reliable messaging on behalf of
the component. Protocol details such as WSDL, SOAP, WSRF, and WSDM specifics are also
encapsulated in this service. The set of WSDL interfaces supported are, however, published to make it
easy to write custom, remote components that communicate with this service.

5.3 SLA Negotiator (SLAN)
The negotiator subcomponent is responsible for constructing SLA templates that can be offered in bid
publications. It must therefore collect enough information from other subcomponents in order to offer
SLAs that are possible for the provider to attain. During a point-to-point negotiation phase more
information can be collected about the other endpoint in the negotiation, and usage history may be
taken into consideration. The interaction consists of 6 message primitives with payloads defined by the
ontology in effect, which in turn is determined by the Negotiation Support System (NSS). The
interaction is carried out between two SLAN components and the primitives are:

• RequestSLA. The service user issues a call for proposal to service providers
• OfferSLA. The service provider sends an offer to one or more service requesters
• AcceptSLA. Either the provider or the requester may confirm acceptance of the SLA. As a

result the contract is signed by the party sending the message
• RejectSLA. Either the provider or the requester may reject the SLA offered or requested
• RequestSLAChange. The requester can try to change a previously negotiated SLA, for

example, to request fewer resources to get discounts. Provider and NSS policies may
determine whether the requester is allowed to renegotiate after the SLA has been signed and
other temporal restriction. One policy might be that SLAs cannot be renegotiated but must be
cancelled, and then a new SLA has to be negotiated from scratch. Our model does not
support provider-initiated renegotiation since this is modeled through penalties in the SLAs.

• CancelSLA. This message could be used both by the requester and the provider to cancel a
request or an offer. This is typically done before the contract has been signed but some
policies and negotiation algorithms may allow SLAs to be canceled at any time to avoid
wasting time on enforcing SLAs that one or more parties have lost interest in.

NSS is designed akin to the DMS described in Section 5.1. Figure 7 shows anticipated Negotiation
Support System implementations.

5.4 SLA Monitor (SLAM)
The SLA Monitor subcomponent is responsible for automatically measuring, monitoring, validating,
and triggering reports and violation notifications according to the SLA specification. The only input to
this component is the signed SLA, which thus must be self-contained and possible to validate
automatically to detect violations. The SLA Monitor may also provide some prediction functionality.
Forecasts on possible future violation risks may be compiled based on usage history and sent out to the
SLA parties to take countermeasures. The predictions may also be used internally in the SLA Manager
to modify configuration and policies to avoid violations. Although this component in reality may
interact with legacy information-provisioning, back-end services, it must be transparent to the
implementation in order to make the component easy to deploy in any infrastructure. Wrappers may
for instance be written, whose endpoints are made available in the SLA.

5.5 SLA Event Sink (SLAS)
Outbound messages are put on the CB. Incoming messages on the bus are, however, forwarded to the
SLA Event Sink where the filtering occurs to find the correct sub component configuration specifying
how the event should be treated. Automated actions may, for example, be specified to trigger a chain

 11

of events or to take counter measures automatically in case of violations. The SLAS may internally be
implemented as a JMS or MQSeries enabled event channel offering component specific QoS.

5.6 SLA Policy Manager (SLAP)
At the heart of autonomous computing is the MAPE control loop (Measurement, Analysis, Planning,
Execution) and the Policy-based management architecture with policy decision and enforcement
points. The SLA Policy Manager subcomponent marries these two architectures and maintains a
policy repository with the most recent policies, which are continuously updated as a result of further
usage and SLA compliance history analysis.

5.7 SLA Rating Engine (SLAR)
The rating engine is responsible for setting the price on resources and services provided, and for
calculating discounts and rates applicable. It should be able to give both price quotes as well as to
calculate the actual price of a delivered service to be charged in a billing or accounting system. The
inputs to the engine are the price plan, the usage record, and the SLA.

5.8 SLA Task Manager (SLAT)
The final subcomponent is the SLA Task Manager, which embodies the high level goal that is to be
achieved, as well as a schedule for how to achieve it, defined in some workflow engine interpretable
language. Clients may group a set of jobs to be executed in a task, with well-defined criteria and
actions to handle faults and perform automatic migration. The account manager discussed in Section 3
may set up a reoccurring, cron-job like, task to distribute granted allocations to research projects on a
monthly staggered basis. The SLAP, discussed in Section 5.6, may use the task manager to execute its
plans to maintain and attain service levels committed in the SLA being managed.

6 Conclusions and Future Work
We now refer back to the requirements summarized in Table 1 to highlight how they were addressed
in our SLA solution.

An account administrator agent was introduced to simplify and automate management of accounts.
This involves monitoring usage to adjusted policies automatically as well as setting up repeating tasks
such as account allocations. Services can be selected based on usage by means of the SLA selection
service exposing SLA templates that may be negotiated. Both the construction of the templates as well
as the point-to-point negotiation may involve consulting the usage records. If users misconduct and
submit more jobs than they were granted on the resources all the stakeholder agents, the user, the
resource, and the account administrator, automatically detect the violation and can react upon it. The
resource may stop jobs from being submitted or submit them into a low priority queue, alternatively
change the price of the resource for that user in future negotiations. The account administrator may
stop the particular user from using up shared account quota for a limited time. Finally, the user will
also get a notification and can then choose to either pay more for the same service to maintain the job
flow, or decrease the submission flow. By the introduction of decision making engines capable of
inference reasoning over rule-bases, high-level policy rules may be entered into the agent knowledge
bases to optimize certain QoS criteria in response to system events and to set more fine-grained
policies and configurations automatically. The most important benefit from the SLA framework is,
however, the formal signing of agreements, which may be used as a more controlled way of using
resources at certain guaranteed service levels at a certain price. The agreements allow all stakeholders
to merge their preferences to achieve the best overall system performance, utilization, and usability.

Future work includes implementing the contracts using WS-Agreement and the management
infrastructure on top of WSRF and WSDM. For automatic metrics measurements we also intend to
utilize WSLA. Fuzzy Logic rule engines and OWL-based inference engines and usage-based analyzers
will provide the first candidates for the initial prototype of the Decision Making System and
Negotiation Support System incarnations. Simulation test-beds will be developed allowing statistical

 12

measurements to be performed in a controlled environment to fine-tune the framework and the policies
before deploying it in the SweGrid production Grid.

Acknowledgments
I would like to thank my colleagues Lars Malinowsky, Peter Gardfjäll, and Olle Mulmo for
many discussions related to the topics discussed in this paper. I would also like to thank
Sandra Brunsberg, and my supervisor Lennart Johnsson for reviewing the paper.

References
[1] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss, "Overview of the I-

WAY: Wide Area Visual Supercomputing," International Journal of Supercomputer
Applications, vol. 10, pp. 123-130, 1996.

[2] I. Foster and C. Kesselman, "The Grid: Blueprint for a New Computing
Infrastructure," Morgan Kaufmann, 1999.

[3] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing
Infrastructure, 2 ed: Morgan Kaufmann, 2003.

[4] F. Berman, G. Fox, and A. J. G. Hey, Grid Computing: Making The Global
Infrastructure a Reality: John Wiley & Sons, 2003.

[5] J. Joseph, M. Ernest, and C. Fellenstein, "Evolution of grid computing architecture and
grid adoption models," IBM Systems Journal, vol. 43, pp. 624-645, 2004.

[6] J. Carolan, S. Radezsky, P. Strong, and E. Turner, Building N1 Grid Solutions
Preparing, Architecting, and Implementing Service-Centric Data Centers: Sun
BluePrints, 2004.

[7] J. Kephart and D. M. Chess, "The Vision of Autonomic Computing," Computer, vol.
36, pp. 41-50, 2003.

[8] S. Blake, D. Black, M. Carlson, E. Davis, W. Zheng, and W. Weiss, RFC 2475: An
Architecture for Differentiated Services: IETF, 1998.

[9] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, RFC 2205: ReSerVation
Protocol (RSVP) version 1 functional specification: IETF, 1997.

[10] K. Nahrstedt, H. Chu, and S. Narayan, QoS-aware resource management for
distributed multimedia applications: IOS Press, 1998.

[11] T. Sandholm, P. Gardfjäll, E. Elmroth, L. Johnsson, and O. Mulmo, "An OGSA-Based
Accounting System for Allocation Enforcement across HPC Centers," presented at
2nd International Conference on Service Oriented Computing, New York, NY, 2004.

[12] E. Elmroth, P. Gardfjäll, O. Mulmo, and T. Sandholm, "An OGSA-based Bank
Service for Grid Accounting Systems," Applied Parallel Computing. State-of-the-art
in Scientific Computing. Lecture Notes in Computer Science. (to appear) Springer
Verlag., 2004.

[13] A. Barmouta and R. Buyya, "GridBank: A Grid Accounting Services Architecture
(GASA) for Distributed Systems Sharing and Integration," presented at International
Parallel and Distributed Processing Symposium (IPDPS'03), Nice, France, 2003.

[14] S. Jackson, "QBank: A Resource Management Package for Parallel Computers,"
Pacific Northwest National Laboratory, Washington, USA 2000.

[15] J. Hendler, T. Berners-Lee, and E. Miller, "Integrating Applications on the Semantic
Web," Journal of the Institute of Electrical Engineers of Japan, vol. 122, pp. 676-680,
2002.

[16] D. De Roure, N. R. Jennings, and N. R. Shadbolt, "The Semantic Grid: A future e-
Science Infrastructure," in Grid Computing - Making the Global Infrastructure a
Reality: John Wiley and Sons Ltd., 2003, pp. 437-470.

 13

[17] R. Housley, W. Ford, W. Polk, and D. Solo, RFC 2459: Internet X.509 Public Key
Infrastructure Certificate and CRL Profile: IETF, 1999.

[18] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke, "SNAP: A
Protocol for Negotiating Service Level Agreements and Cordinating Resource
Management in Distributed Systems," Lecture Notes in Computer Science, vol. 2537,
pp. 153-183, 2002.

[19] D. D. Lamanna, J. Skene, and W. Emmerich, "SLAng: A Language for Defining
Service Level Agreements," presented at The Ninth IEEE Workshop on Future Trends
of Distributed Computing Systems (FTDCS'03), 2003.

[20] A. Dan, E. Davis, R. Kearney, A. Keller, R. P. King, D. Kuebler, H. Ludwig, M.
Polan, M. Spreitzer, and Y. A., "Web services on demand: WSLA-driven automated
management," IBM Systems Journal, vol. 43, 2004.

[21] H. Ludwig, A. Dan, and B. Kearney, "Cremona: An architecture and Library for
Creation and Monitoring of WS-Agreements," presented at 2nd International
Conference on Service Oriented Computing (ICSOC 2004), New York, 2004.

[22] O. Smirnova, P. Eerola, T. Ekelöf, M. Ellert, J. R. Hansen, A. Konstantinov, B.
Kónya, J. L. Nielsen, F. Ould-Saad, and A. Wäänänen, "The NorduGrid Architecture
and Middleware for Scientific Applications," Lecture Notes in Computer Science, vol.
2657, pp. 264-273, 2003.

[23] G. Wasson and M. Humphrey, "Toward Explicit Policy Management for Virtual
Orginizations," presented at 4th International Workshop on Policies for Distributed
Systems and Networks, Lake Como, Italy, 2003.

 14

The Design, Implementation, and Evaluation of a
Market-Based Resource Allocation System

Kevin Lai∗

kevin.lai@hp.com

Thomas Sandholm†

sandholm@pdc.kth.se

ABSTRACT
This paper examines the use of market-based techniques to
allocate the virtualized resources of distributed hosts. We
present Tycoon, a system in which users bid for virtual-
ized resources and receive in proportion to their bid. Ty-
coon differs from other work in economic resource alloca-
tion by using a distributed price-anticipating model for bid-
ding and allocation. This allows the system to be scalable,
fault-tolerant, and agile, while making economically efficient
allocations.

We present the design of a complete system using market-
based techniques, including characterization of resources, se-
cure banking protocols, and distributed bidding algorithms.
Using an implementation of this design, we measure the
economic efficiency and fairness of various allocation algo-
rithms. We find that traditional proportional share allo-
cation achieves high fairness, but poor efficiency, while the
social optimum achieves optimal efficiency, but poor fair-
ness. The Tycoon system, despite being highly decentral-
ized, achieves both high efficiency and high fairness.

1. INTRODUCTION
The primary advantage of distributed shared computing plat-
forms like the Grid [17] and PlanetLab [31] is their ability to
pool together shared computational resources. This allows
increased throughput because of statistical multiplexing and
the bursty utilization pattern of typical users. Sharing nodes
that are dispersed in the network allows lower delay because
applications can store data close to users. Finally, sharing
allows greater reliability because of redundancy in hosts and
network connections.

However, resource allocation in these systems remains a
challenge. More specifically, the problem is to allocate re-
sources to strategic users: those who act purely in their own
interest and compete with other users for resources. Al-
though not all users are completely strategic, most are, and
will compete for computational resources just as they com-
pete for money, recognition, and every other desirable thing.
One system with only eleven participant organizations ex-
hibited strategic behavior after fewer than four months [8].

Several non-economic allocation algorithms have been pro-
posed [40, 4, 45], but these typically assume that task values
(i.e., their importance) are the same, or are inversely propor-
tional to the resources required, or are set by an omniscient
administrator. However, in many cases, task values vary
significantly [8], are not correlated to resource requirements,
∗Information Dynamics Laboratory, HP Labs, Palo Alto, CA
94304
†KTH – Royal Institute of Technology, SE-100 44 Stockholm,
Sweden

and are difficult and time-consuming for an administrator to
set, especially in large systems. Instead, economic resource
allocation systems [3, 12, 10, 16, 33, 43, 44] rely on users to
set the values of their own jobs and provide a mechanism to
encourage users to truthfully reveal those values. This al-
lows the allocation mechanism to make allocations that are
economically efficient, where resources go to the users who
value them the most.

In practice, previous economic resource allocation systems
have had disadvantages: high overhead, high latency, and/or
centralization. The overhead of previous systems has con-
sisted of frequent interactive bidding, or, conversely, infre-
quent bidding that increases the latency to acquire resources.
Most users would prefer to run their program as they would
without a market-based system and forget about it until
it is done. The latency to acquire resources is important
for applications like a web server that need to allocate re-
sources quickly in reaction to unexpected events (e.g., break-
ing news stories from CNN). Another disadvantage is that
many market-based systems rely on a centralized market
that limits reliability and scalability.

To overcome these disadvantages, we examine the Tycoon
decentralized price-anticipating [20] allocation model in which
a user bids for a resource and receives the ratio of his bid to
the sum of bids for that resource. This proportional scheme
is simpler, more scalable, and more responsive [23] than
auction-based schemes [16, 33, 43, 3, 12]. Previous work has
analyzed price-anticipating schemes in the context of allo-
cating network capacity for flows for users with unlimited
budgets [20, 19] or strictly in simulation [15]. In this work,
we describe the design, implementation, and evaluation of
an operational Tycoon system of 40 hosts.

More specifically, our contributions are as follows:

• We describe a secure banking protocol. A secure
banking protocol is necessary for any economic system. We
describe a simple banking protocol based on receipts. The
basic operation is for one user to transfer credits from his ac-
count to another user’s account and receiving a receipt from
the bank as proof of the operation. The user then presents
this receipt to the credit recipient. This system avoids the
double-spending problems of micro-payment schemes and
the race conditions of credit-checking systems.

• We describe a scalable distributed bidding proto-
col. Distributed markets allow increased reliability and scal-
ability without requiring centralized trust. However, they
introduce the question of how users should bid in multi-
ple markets simultaneously. Previous work [15] described
the fixed budget best-response algorithm for distributed bid-

ding. Here we describe a protocol for this algorithm.

• By extending the price-anticipating model to al-
locate a continuous flow of resources, we show that
this model can be low overhead and handle multiple
types of resources. Previous work on price-anticipating
mechanisms [20, 10, 19, 15] only considered one-shot, in-
stantaneous allocation of resources. The allows tractable
models, but real applications require a continuous stream
of resources over time. Here we model resources as a flow
instead of a volume. A continuous bid consists of a rate of
spending for a rate of resources (e.g., $1 for 1 GHz). This
provides the added benefit of reducing the need to do fine
grained bidding because bids can remain in effect for as long
as a user desires. In addition, by only charging for usage
instead of for allocation, we reduce the overhead for users
of adjusting their bids in response to changing usage of re-
sources by their applications. This significantly reduces the
bidding overhead for applications that have unpredictable
and quickly changing loads (e.g., any kind of server). Fi-
nally, we show that continuous bids can handle spatial re-
source like memory and disk space by characterizing their
capacity and usage through time as well as space.

• We show that this mechanism can be efficiently
implemented as a thin layer on top of an existing
virtualization platform. The recent proliferation of vir-
tualization platforms (e.g., VMWare [1], Xen [13], Microsoft
Virtual Server, and VServer [2]) has shown that there are
many different useful operating points in the tradeoff of de-
gree of virtualization and overhead. In addition, compati-
bility and licensing issues may dictate one platform over an-
other. Given this, it is important for a resource allocation
system to be portable across different virtualization plat-
forms while minimizing overhead. Previous work [24] has
shown that a simpler price-anticipating mechanism can be
implemented with low overhead on VServers. Here we show
that the more sophisticated multi-resource Tycoon alloca-
tor can be implemented on top of Xen with less than 1%
overhead.

• We present experimental results showing that the
price-anticipating resource allocation mechanism
achieves both high efficiency and fairness. A pro-
portional share algorithm is shown to consistently have a
low social welfare in our experiments when varying task im-
portance, number of user, number of hosts and user host
preferences. Further, a socially optimal algorithm is found
to have a low level of fairness in tests where users compete
for the same CPU cycles on a host. The efficiency of the
Tycoon allocation algorithm is shown to scale from the pro-
portional share values, when there is no difference in task
importance between users over time, to the social optimum,
when there is a very high variation of task importance. Fi-
nally, in the fairness experiments, the Tycoon allocations
are showing better results than the social optimum.

As a result, we believe that shared distributed systems based
on the fixed budget game can be highly decentralized, yet
achieve a high degree of efficiency and fairness.

The rest of the paper is organized as follows. In Section 2, we
provide an overview of the system architecture. We describe

the banking protocol in Section 3. In Section 4, we describe
the design and implementation of the auctioneer, allocation
algorithm, and bidding protocol. Section 4.5 contains details
of how client agents manage distributed bids using the fixed
budget best response algorithm. In Section 5, we describe
our experiment setup and benchmark results. We describe
related work in Section 6. We conclude by discussing some
limit of our model and future work in Section 7.

2. ARCHITECTURE OVERVIEW
Tycoon is split into the following components: bank, auc-
tioneer, client agent, and service location service (SLS) (each
shown in Figure 1). The bank maintains records on each
user’s accounts. Each auctioneer manages the resources of
a single host on behalf of the host’s owner. A client agent
manages its owner’s bids at one or more auctioneers.

Auctioneers use the service location service to advertise re-
sources, and agents use it to locate resources (as shown in
steps 1 and 2 in Figure 1). The prototype uses a simple cen-
tralized soft-state server, but the other components would
work just as well with more sophisticated and scalable ser-
vice location systems (e.g., Ganglia [25] and SWORD [28]).
Auctioneers register their status with the SLS every 30 sec-
onds and the SLS de-registers any auctioneer that has not
contacted it within the past 120 seconds. This status con-
sists of the total amount spent on the host for each resource
and the total amount of each resource type available (e.g.,
CPU speed, memory size, disk space), etc. The status is
cryptographically signed by the auctioneer and includes the
auctioneer’s public key. Clients store this key and use it to
authenticate the results of later queries and also to authen-
ticate direct communications with the auctioneer.

The soft-state design allows the SLS to be robust against
many forms of hardware and software failures. The querying
agents may receive stale information from the SLS, but they
will receive updated information if they choose to contact an
auctioneer directly.

3. BANK AND BANKING PROTOCOL
The bank maintains account balances for all users and providers.
Its main task is to transfer funds from a client’s account to a
provider’s account (shown in step 3 in Figure 1). The source
of the transfer receives a receipt that the transfer recipient
can use to verify that the transfer occurred.

We assume that the bank has the public keys of all the
users, and they all have the bank’s public key. A further
assumption is of roughly synchronized clocks. Alice and Bob
are a fictional example sender and receiver. Alice begins by
sending a message to the bank as follows:

Alice, Bob, amount, time,

SignAlice(Alice, Bob, amount, time)

SignAlice is the DSA signature function using Alice’s private
key. The bank verifies that the signature is correct, which
implies that the message is from Alice, that the funds are
for Bob, and that the amount and time are as specified.
The bank keeps a list of recent messages and verifies that
this message is new, thus guarding against replay attacks.
Assuming this is all correct and the funds are available, the

Figure 1: This figure gives an overview of how the Tycoon components interact.

bank transfers amount from Alice to Bob and responds with
the following message (the receipt):

Alice, Bob, amount, time,

SignBank(Alice, Bob, amount, time)

The bank sends the same time as in the first message. Alice
verifies that the amount, time, and recipient are the same
as the original message and that the signature is correct.
Assuming the verification is successful, Alice forwards this
message to Bob as described in § 4. Bob keeps a list of recent
receipts and verifies that this receipt is new, thus guarding
against replay attacks.

The advantages of this scheme are simplicity, efficiency, and
elimination of double spending. Micro-currency systems are
generally complex, have high overhead, and only discourage
counterfeiting. The disadvantages of this approach are scal-
ability and vulnerability to compromise of the bank. How-
ever, bank operations are relatively infrequent (see § 4.2 for
how bids can be changed without involving the bank), so
scalability is not a critical issue for moderate numbers of
users and hosts. The vulnerability to compromise of the
bank could be a problem. Possible solutions are discussed
in § 7.

3.1 Monetary Policy
Monetary policy consists of deciding how to manage the
flow of monies in the system. Part of this is determining
how users obtain funds. Two possibilities are open loop and
closed loop funding policies. In an open loop funding policy,
users are funded at some regular rate e.g., from a national
allocations committe as exemplified in [36]. The system ad-
ministrators set their income rate based on exogenously de-
termined priorities. Providers accumulate funds and return
them to the system administrators. In a closed loop (or peer-
to-peer) funding policy, users themselves bring resources to
the system when they join. They receive an initial allotment
of funds, but they do not receive funding grants after join-
ing. Instead, they must earn funds by enticing other users
to pay for their resources. A closed loop funding policy is
preferable because it encourages service providers to provide
desirable resources and therefore should result in higher eco-
nomic efficiency.

In our initial deployment, we have used an open loop policy

to bootstrap the system, but are gradually transitioning to
a closed loop system as we add resource providers.

Another part of monetary policy is taxation. This is nec-
essary to prevent users from hoarding currency. Hoarding
can allow infrequent users to cause unpredictable (and in
small systems, large) spikes in demand. Also, in closed loop
systems, hoarders can cause an economic depression as they
take currency out of circulation. Regardless of the conse-
quences, the solution to hoarders is taxation. Other systems
[8] have taken a similar approach.

4. AUCTIONEER
Auctioneers serve four main purposes: management of lo-
cal resources, collection of bids from users, allocation of re-
sources to users according to their bids, and advertisment
of the availability of local resources.

4.1 Virtualization
To manage resources, an auctioneer relies on a virtualization
system and a local allocation system. The implementation
uses Xen 2.0 for virtualization. Xen provides each user with
a separate file system and gives the appearance that he is
the sole user of a machine, even if the physical hardware
is being shared. The user accesses this virtual machine by
using ssh.

For local allocation, Tycoon uses the Xen Borrowed Virtual
Time [14] scheduler, which implements the standard propor-
tional share scheduling abstraction [39].

4.2 Setting Bids
The second purpose of auctioneers is to collect bids from
users. Auctioneers store bids as two parts for each user: the
local account balance, and the bidding interval. The local
balance is the amount of money the user has remaining lo-
cally. The bidding interval specifies the number of seconds
over which to spend the local balance. Users have two meth-
ods of changing this information: fund and set interval.
fund transfers money from the user’s bank account to the
auctioneer’s bank account, and conveys that fact to the auc-
tioneer. It has the disadvantage that it requires significant
latency (100 ms) and it requires communication with the
bank, which may be offline or overloaded. set interval

sets the bidding interval at the auctioneer without chang-
ing the local balance. It only requires direct communication
between the client and the auctioneer, so it provides a low
latency method of adjusting the bid until the local balance
is exhausted.

Alice and Bob already have each other’s public keys and
Alice has the value nonceAlice. A nonce is a unique token
which Bob has never seen from Alice before. In the cur-
rent implementation it is an increasing counter. First, Alice
gets a bank receipt as described above. She then sends the
following message to Bob:

Alice, Bob, nonceAlice, interval, receipt,

SignAlice(Alice, Bob, nonceAlice, interval, receipt)

The nonce allows Bob to detect replay attacks. Bob verifies
that he is the recipient of this message, that the nonce has
not been used before, that the receipt specifies that Alice has
transferred money into his account, that the bank has cor-
rectly signed the receipt, and that Alice has correctly signed
this message. Assuming this is all correct, Bob increases Al-
ice’s local balance by the amount specified in the receipt
and sets Alice’s bidding interval to interval. set interval

is identical, except that it does not include the bank receipt.

The key advantage of separating fund and set interval is
that it reduces the frequency of bank operations. Users only
have to fund their hosts when they wish to change the set
of hosts they are running on or when they receive income.
For most users and applications, this is on the order of days,
not seconds. Between fundings, users can modify their bids
by changing the bidding interval, as described in the next
section.

4.3 Allocating Resources
The third and most important purpose of auctioneers is to
use virtualization and the users’ bids to allocate resources
among the users and account for usage. Although the cur-
rent implementation only allocates CPU cycles because of
virtualization limitations, the following applies to both rate-
based (e.g., CPU cycles and network bandwidth) and space-
based (e.g., physical memory and disk space) resources. A
proportional share-based function is described here, but there
are other allocation functions with desirable properties (e.g.,
Generalized Vickrey Auctions, described below).

For each user i, the auctioneer knows the local balance bi

and the bidding interval ti. The auctioneer calculates the
bid as bi/ti. Consider a resource with total size R (e.g., the
number of cycles per second of the CPU or the total disk
space) over some period P . The allocation function for ri,
the amount of resource allocated to user i over P , is

ri =

bi

ti
Pn−1

j=0

bj

tj

R. (1)

Let qi be the amount of the resource that i actually con-
sumes during P , then the amount that i pays per second
is

si = min

„

qi

ri

, 1

«

bi

ti

. (2)

This allows users who do not use their full allocation to pay
less than their bid, but in no case will a user pay more than
his bid.

There are a variety of implementation details. First, the
auctioneer gets the number of cycles used by each user from
the kernel to determine if qi < ri. Second, the implemen-
tation sets P = 10s, so the auctioneer charges users and
recomputes their bids every 10 seconds. This value is a
compromise between the overhead of running the auction-
eer and the latency in changing the auctioneer’s allocation.
With tighter integration with the kernel and the virtualiza-
tion system, P could be as small as the scheduling inter-
val (10ms on most systems). Third, users whose bids are
too small relative to the other users are logged off the sys-
tem. Users who bid for less than .1% of the resource would
run infrequently while still consuming overhead for context-
switching, accounting, etc., so the auctioneer logs them off,
starting with the smallest bidder.

The advantages of this allocation function (1) are that it is
simple, it can be computed in O(n) time, where n is the
number of bidders, it is fair, and it can be optimized across
multiple auctioneers by an agent (described in § 4.5). It is
fair in the sense that all users who use their entire allocation
pay the same per unit of the resource.

The disadvantage is that it is not strategyproof. In the sim-
ple case of one user running on a host, that user’s best (or
dominant) strategy is to make the smallest possible bid,
which would still provide the entire host’s resources. If there
are multiple users, then the user’s dominant strategy is to
bid his valuation. Since, the user’s dominant strategy de-
pends on the actions of others, this mechanism is not strate-
gyproof. One possible strategyproof mechanism is a Gener-
alized Vickrey Auction (GVA) [42]. However, this requires
O(n2) time, it is not fair in the sense described above, and
it is not clear how to optimize bidding across multiple GVA
auctioneers.

4.4 Advertising Availability
The auctioneer must advertise the availability of local re-
sources so that user agents can decide whether to place bids.
For each resource available on the local host, the auctioneer
advertises the total amount available, and the total amount
spent at the last allocation. In other words, the auctioneer
reports

n−1
X

j=0

si. (3)

This may be less than the sum of the bids because some
tasks did not use their entire allocation. This is reported
instead of the sum of the bids because it allows the agent
to more accurately predict the cost of resources (as required
the algorithm described in § 4.6). Note that this information
allows agents to make appropriate bids without revealing the
exact amounts of other users’ individual bids. Revealing
that information would allow users to know each other’s
valuations, which would allow gaming the auctions.

4.5 Agent

The role of a tycoon agent is to interpret a user’s preferences,
examine the state of the system, make bids appropriately,
and verify that the resources were provided. The agent is
involved in steps 2, 3, 4, and 6 of Figure 1. Given the diver-
sity of possible preferences, Tycoon separates agents from
the infrastructure to allow agents to evolve independently.
This is a similar approach to the end-to-end principle used
in the design of the Internet [7, 11, 35], where application-
specific functionality is contained in the end-points instead
of in the infrastructure. This allows the infrastructure to be
efficient, while supporting a wide variety of applications.

There are a wide variety of preferences that a user can spec-
ify to his agent. Tycoon provides for both high-level prefer-
ences that an agent interprets and low-level preferences that
users must specify in detail. Examples of high level pref-
erences are wanting to maximize the expected number of
CPU cycles or to seek machines with a minimum amount of
memory, or some combination of those preferences. Tycoon
allows uncertainty in the exact amount of resource received
because other applications on the same host may not use
their allocation and/or other users may change their bids.

4.6 Best Response Algorithm
In a system with many machines, it is very difficult for users
to bid on individual machines to maximize their utilization
of the system. Tycoon allows the user to only specify the
total bids, or the budget, he is willing to spend and let the
agent compute the bids on the machines to maximize the
user’s utility. In order to compute the optimum bids, the
agent must first know the user’s utility as a function of the
fraction of the machines assigned to the user. Since it is
difficult, if not impossible, to figure out the exact formu-
lation of the utility function, this model assumes a linear
utility function for each user. That is, each user specifies a
non-negative weight for each machine to express his prefer-
ence of the machine. Such a weight is chosen by the user
and determined mainly by two factors: the system config-
uration and the user’s need. They may vary from user to
user. For example, one user may have higher weight on ma-
chine A because it has more memory, and another user may
have higher weight on B because it has a faster CPU. The
weights are kept private to the users.

Now, suppose that there are n machines, and a user has
weight wi on machine i for 1 ≤ i ≤ n. If the user gets
fraction ri from machine i, then his utility is

U =
n

X

i=1

wiri . (4)

The agent’s goal is to maximize the user’s utility under a
given budget, say X, and the others’ aggregated bids on the
machines. Suppose that yi is the total bid by other users
on machine i. The user’s share on i is then xi

xi+yi
if he bids

xi on machine i. Therefore, the agent needs to solve the
following optimization problem:

maximize

n
X

i=1

wi
xi

xi + yi

, s.t. (5)

xi ≥ 0 , for 1 ≤ i ≤ n, and (6)

n
X

i=1

xi = X . (7)

This optimization problem can be solved by using the fol-
lowing algorithm.

1. sort wi

yi
in decreasing order, and suppose that

w1

y1
≥ w2

y2
≥ · · · ≥ wn

yn

. (8)

2. compute the largest k such that

√
wkyk

Pk

j=1

√
wjyj

(X +
k

X

j=1

yj) − yk ≥ 0 . (9)

3. set xi = 0 for i > k, and for 1 ≤ i ≤ k, set

xi =

√
wiyi

Pk

j=1

√
wjyj

(X +

k
X

j=1

yj) − yi . (10)

The above algorithm takes O(n log n) time as sorting is the
most expensive step. It is derived by using Lagrangian mul-
tiplier method. Intuitively, the optimum is achieved by the
bids where the bid on each machine has the same marginal
value. The challenge is to select the machines to bid on.
Roughly speaking, one should prefer to bid on a machine
if it has high weight on the machine and if other’s bids on
that machine is low. That is the intuition behind the first
sorting step.

One problem with the above algorithm is that it spends the
entire budget. In the situation when there are already heavy
bids on the machines, it might be wise to save the money
for later use. To deal with the problem, a variation is to
also prescribe a threshold λ to the agent and require that
the margin on each machine is not lower than λ, in addition
to the budget constraint. Such problem can be solved by an
easy adaptation of the algorithm.

4.7 Predictability
Instead of maximizing its expected value, some applications
may prefer to maintain a minimum amount of a resource. An
example of this is memory, where an application will swap
pages to disk if it has less physical memory than some mini-
mum, but few applications benefit significantly from having
more than that. Tycoon allows agents to express this pref-
erence by putting larger bids on fewer machines. Let R be
the total resource size on a host and B be the sum of the
users’ bids for the resource, excluding user i. From (1), the
user i’s agent can compute that to get ri of a resource, it
should bid

bi =
riB

R − ri

. (11)

However, this only provides an expected amount of ri. To
provide higher assurances of having this amount, the agent
bids more than bi. To determine how much more, the agent
maintains a history of the bids at that host to determine the
likelihood that a particular bid will result in obtaining the
required amount of a resource. Assuming that the applica-
tion only uses ri of the resource, the user will pay more per

unit of the resource than if his agent had just bid bi (see
§ 4.3), but that is the price of having more predictability.

4.8 Scalability
Since the computational overhead of the agent is low, the
main scalability concern is communications overhead. When
making bids, a user agent may have to contact a large num-
ber of auctioneers, possibly resulting in a large queueing
delay. For example, to use 100 hosts, the agent must send
100 messages. Although the delay to do this is proportional
to the amount of resources the user is using, for very large
numbers of hosts and a slow and/or poorly connected agent
host, the delay may be excessive. In this case, the agent can
use an application-layer multicast service (e.g., Bullet [22])
to reduce the delay. Since changing a bid consists of simply
setting an interval, the user agent can use a multicast ser-
vice to send out the same interval to multiple auctioneers.
This would essentially make the communication delays log-
arithmic with respect to number of hosts.

4.9 Verification
One potential problem with all auction-based systems is that
auctioneers may cheat by charging more for resources than
the rules of the auction dictate. However, one advantage
of Tycoon is that it is market-based so users will eventu-
ally find more cost-effective auctioneers. Cost-effectiveness
is an application-specific metric. For example, an applica-
tion may prefer a slow host because it has a favorable net-
work location. Users who are interested in CPU cycles would
view that as a host with poor cost-effectiveness. However, in
many applications, the agent can measure cost-effectiveness
fairly accurately.

The measured cost-effectiveness is then used as the host
weight for the best-response algorithm. This algorithm will
automatically drop a host from bidding when it sees that it is
significantly less cost-effective than the others. Effectively,
Tycoon treats a cheating host as a host with poor cost-
effectiveness. Therefore, sophisticated techniques to detect
or prevent cheating are not necessary. If no agent wants to
spend credits at a cheating auctioneer, the monetary incen-
tive to cheat is greatly reduced.

5. EXPERIMENTAL RESULTS
In this section we present the results of a series of experi-
ments aimed at highlighting the different characteristics of
a number of resource allocation algorithms. We investigate
how the algorithms adapt to changes in utility over time,
number of users, number of hosts, and host preferences.

5.1 Overview
The experiments are divided into two sets of tests; single-
host resource allocation, and resource allocation across mul-
tiple hosts. In the former set we study the allocation of
CPU cycles on a host between competing users. In the latter
we look at algorithms for distributing the workload across
a number of hosts with potentially different load and user
preferences. The algorithms are analyzed based on latency,
economic efficiency in terms of social welfare, and fairness
in terms of envy-freeness, defined as follows:

Efficiency (Price of Anarchy). For an allocation scheme

ω ∈ Ω, denote by U(ω) =
P

i Ui(ri) the social welfare under
ω. Let U∗ = maxω∈Ω U(ω) denote the optimal social welfare
— the maximum possible aggregated user utilities. The effi-

ciency at an allocation scheme ω is defined as π(ω) = U(ω)
U∗ .

Let Ω0 denote the set of the allocation at the Nash equilib-
rium. When there exists Nash equilibrium, i.e. Ω0 6= ∅, de-
fine the efficiency of a game Q to be π(Q) = minω∈Ω0

π(ω).

It is usually the case that π < 1, i.e. there is an efficiency
loss at a Nash equilibrium. This is the price of anarchy [29]
paid for not having central enforcement of the user’s good
behavior. This price is interesting because central control
results in the best possible outcome, but is not possible in
most cases.

Fairness. While the definition of efficiency is standard,
there are multiple ways to define fairness. We consider envy-
freeness [41], used extensively in Economics. Enviness con-
cerns how the user perceives the value of the share assigned
to him, compared to the shares other users receive. Within
such a framework, define the envy-freeness of an allocation

scheme ω by ρ(ω) = mini,j
Ui(ri)
Ui(rj)

. When ρ(ω) ≥ 1, the

scheme is known as an envy-free allocation scheme. Like-
wise, the envy-freeness ρ(Q) of a game Q is defined to be
ρ(Q) = minω∈Ω0

ρ(ω).

5.2 Setup
5.2.1 Configuration
There are two actors involved in the experiments, the providers
hosting resources, and end-users consuming resources. To
simplify the discussion we will hereafter refer to a commu-
nicating pair of these actors as a user and assume that both
actors have the same utility function based on the latency
of the requests being served.

To investigate how the algorithms adapt to changes over
time we introduce distinct time intervals. Within each time
interval we keep the conditions and settings constant, but
we change certain parameters such as load, utility and host
preferences between the intervals. The intervals are used as
a means to allow algorithms to adjust to changes in settings.
Values depicted in the experiment graphs are calculated as
averages over all data collected in an interval. Four intervals
are used where the first two have the same configuration as
the last two in order to compensate for non-deterministic
overhead. The interval time used is two minutes, so, T , the
total test time is approximated as

T = 8nvna

where nv is the number of variations investigated and na is
the number of algorithms compared. A typical benchmark
experiment has nv = 5 and na = 3, and would hence run for
about 2 hours, which is a time frame within which a stable
external noise impact can be assumed.

A virtual machine is created for each user on all benchmark
hosts. These virtual machines are then given shares of the
CPU according to the auctioneer model described in [24] and
implemented in Tycoon. The actual application that is run
in the experiments by all users on their associated virtual
machines is a CPU intensive script that can be customized

to run with different intensities. Virtual machines created
on a physical host compete for the same CPU cycles.

The physical host machines have around 50GB of disk, 2GB
of RAM, and two 2.8Ghz CPUs, whereas the virtual ma-
chines, controlled by Xen 2, have 2GB of disk, and varying
CPU and RAM shares according to the Tycoon auctioneer
allocation granted (in 10 second intervals). The machines
are all running Fedora Core 3.

All clients are launched from separate virtual machines with
equal resource shares to minimize client side overhead in the
results.

The following table summarizes the experiment configura-
tions. The values in the Importance column is the ratio
between the standard deviation and mean task importance
in percent. The Pref. column shows the ratio between
the standard deviation and mean host preference in per-
cent. Both of these values are calculated across all users
and hosts. The specifics of the algorithms compared will be
explained in more detail below.

Exp. Algorithms Hosts Users Importance Pref.
I TY, OP, PS 1 2 0..90 N/A
II TY, OP, PS 1 2..8 50 N/A
III BR, TU, PS 2..26 8 50 50
IV BR, TU, PS 26 8 50 0..31

The number of hosts chosen in the experiments were lim-
ited by the number of physical machines we could isolate in
our benchmark cluster. The number of users were limited
by the number of active virtual machines that can be cre-
ated with Xen on a physical machine without causing too
much external overhead dominating the results. However,
it should be noted that we exercise peak concurrent load
for all users across all machines, so in a more realistic sce-
nario, where not all users are active at the same time on
all their hosts, virtual machine hibernation could be used to
serve a larger number of users. In our experiments we sim-
ply maximized the load that our physical machines could
handle to get a better understanding of its scalability prop-
erties. The user task importance was chosen to vary from 0
to 90%, as a higher importance variance simply would yield
the same results for the optimal and the Tycoon propor-
tional share mechanism, due to low-bid users not getting a
high enough CPU share to run their jobs, as Experiment
I below shows. The host preference variance configuration
was chosen to allow a differentiation in the experiment re-
sults. So to summarize, the rational behind choosing these
configurations was rather to optimize the number of prop-
erties we could investigate in our limited test environment
as opposed to trying to mimic some imagined application
load. This also stresses the point that the Tycoon infras-
tructure is application independent, and can serve any kind
of jobs ranging from continuous service provisioning appli-
cations to large-scale task farming applications. Currently
ongoing work includes analyzing the feasibility of Tycoon
with real application and user loads from different domains,
such as for Scientific HPC Grid applications.

5.2.2 Efficiency Evaluation

We define the average throughput of all requests for user i
in interval t as:

h̄i,t =

ni,t
X

j=1

(li,j)
−1

where ni,t is the number of requests submitted in interval t
by user i and li,j the latency of request j of user i.

Now, the utility of a user i in time interval t can be calcu-
lated as:

Ui,t(mi,t) = mi,th̄i,t

where mi,t is the importance of the requests of user i in
time interval t. Chun [10] and others have argued for a
utility function that allows some deviation in latency before
decaying. The above simplified utility function was chosen
for the experiments in order to react to minor changes in
the test configuration more quickly. There is nothing in
the Tycoon system prohibiting use of more advanced utility
functions.

The social welfare of interval t is calculated as:

St =
k

X

i=1

Ui,t

where k is the number of users.

5.2.3 Fairness Evaluation
The overall envy does not increase when there are more
users to envy for the same allocation. However, the overall
envy does increase if there are more allocations where a user
envies other users. To reflect this fact we first calculate the
minimum envy-freeness value in an interval for each user,
and then take the average of those values.

Envy-freeness in an inteval t for allocation scheme ω is thus
given by:

ρ(ω) =
1

k

k
X

i=1

(min
j

hi,t

hj,t

, 1)

If all users are given equal CPU shares in all intervals, ρ
should be 1 and the system is then envy-free by definition.

5.3 Single Host Results
This set of experiments study the resource allocation to
tasks submitted by competing users on a single host. Three
different algorithms are compared focussing on CPU alloca-
tion. Proportional Share (PS) allocates the same share to
all users within all time intervals. Tycoon (TY) places a bid
proportional to the importance of tasks in a certain inter-
val. Optimal (OP) allocates the resource to the user with
the most important task in a certain interval. The impor-
tance of the tasks of the users in the different intervals are
designed to vary with increasing deviation or fluctuations,
where the aggregate task importance of all users across all
intervals is kept constant.

5.3.1 Experiment I: Varying Task Importance
The goal of this experiment is to determine how efficiently
the different algorithms handle high-priority tasks.

Two clients are launched against two virtual machines allo-
cated on the same physical host. The clients run a remote
CPU intensive task repeatedly for the full duration of each
interval and the latencies and importance of the tasks for
that interval and user are recorded.

The variance of the task importance between users and across
intervals is increased. Figure 2 shows the average latency in
the different intervals. Here we can see that the algorithms
perform equally well. But the comparison cannot detect if
some important tasks could not run at a desired performance
level because of lower priority tasks occupying the resources.
The point here, is that response time graphs typically used
to evaluate the performance of a system may be insufficient
in determining the overall efficiency of the infrastructure.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

T
as

k
La

te
nc

y
(s

)

Interval Importance Variance

Tycoon (TY)
Proportional Share (PS)

Optimal (OP)

Figure 2: Experiment I - Latency with varying task

importance

Figure 3 shows the social welfare of the system (as defined
in §5.2.2) for different variances of task importance over
time. TY increases steadily and is always within OP whereas
PS remains constant with a linear increase in task impor-
tance variance.

The results of this benchmark can be verified intuitively by
comparing the behavior of the social welfare functions when
the importance variance increases. For PS we have (across
all intervals):

SPS = k
2n

X

j=1

(m̄ + (−1)jσ)
1

kl̄
= 2n

m̄

l̄

where σ is the standard deviation of m, m̄ the mean of m
across all intervals in the experiment, l̄ is the latency of
a task in case of no competition. It should also be noted
that we use a two-point distribution of importance (m + σ,
m − σ) between competing users to make the results more
easily tractable across the intervals. If a continuous distri-

 0

 10

 20

 30

 40

 50

 60

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

S
oc

ia
l W

el
fa

re

Interval Importance Variance

Tycoon (TY)
Proportional Share (PS)

Optimal (OP)

Figure 3: Experiment I - Social welfare with varying

task importance

bution had been chosen a much larger number of intervals
would have had to be investigated, so it was simply a time
saving simplification. We also wanted to focus on how Ty-
coon handles different deltas in user task importance within
individual intervals, as opposed to some average across all
intervals, so a more complicated distribution across intervals
would not have added much value to the results.

For example, n = 2, m̄ = 50, l̄ = 9 yields a constant social
welfare of PS of approximately 22.2, which could be com-
pared to the results in Figure 3.

For OP we have:

SOP =
2n

X

j=1

(m̄ + σ)

l̄
= 2n

(m̄ + σ)

l̄

Finally, for TY we have:

STY = k

2n
X

j=1

(m̄ + (−1)jσ)
1

l̄

m̄ + (−1)jσ
k

P

s=1

m̄ + (−1)sσ

=

k

2n
X

j=1

(m̄ + (−1)jσ)2

l̄km̄
=

2n(
(m̄ + σ)2 + (m̄ − σ)2

l̄m̄
) =

2n(m̄2 + σ2)

l̄m̄

σ = 0 ⇒ STY =
2nm̄

l̄
= SPS,

σ = m̄ ⇒ STY =
2n2m̄2

l̄m̄
=

2n2m̄

l̄
=

2n(m̄ + σ)

l̄
= SOP ,

0 ≤ σ < m̄ ⇒ SPS ≤ STY < SOP

The last implication results because STY is a monotonically
increasing function.

From these equations we see that the social welfare for PS
should be constant across number of users and importance
variance. TY increases quadratically with a linear increase
in importance variance. OP increases linearly with a linear
increase in importance variance. Furter TY is equivalent to
PS if there is no variance in task importance and it is al-
ways less than or equal to the optimal OP allocation. These
intuitive results correspond well with the outcome of the
experiment depicted in Figure 3. The PS and TY algo-
rithms are identical with 0 interval importance variance, so
the fact that these two are slightly different in the graph is
an artefact of running the experiments in a real live cluster
at different time instances. The three algorithm benchmarks
were run sequentially, one at a time.

We can also see from the equations that all algorithms should
yield a constant social welfare across number of users. We
will discuss this more in the next experiment.

To summarize, the experiment shows that the TY, and OP
algorithms yield superior efficiency compared to PS in a sys-
tem with high importance variance, whereas OP is slightly
more efficient than TY and PS when the importance of user
tasks does not vary much.

5.3.2 Experiment II: Varying Number of Users
We now look at how the algorithms behave, in terms of
overall system efficiency and fairness, when we scale up the
number of competing users on a machine.

This experiment is similar to the first, but we keep the im-
portance variance the same across all intervals (50%) and
instead let the number of users vary. The first data point
(2 Users) of Figure 4 should be compared to the 50% data
point in Figure 3.

We can see that the social welfare is increasing slightly for
all algorithms with the number of users. This differs from
the constant welfare expected from the equations in the
previous section. We attribute this to the test setup and
the fact that overheads like bandwidth and client side pro-
cessing time compared to server side CPU processing time
decreases with more users. However, we see that OP still
has the highest welfare score closely followed by TY. PS re-
mains the lowest across all user configurations. The fact
that the welfare for four users appears to be slightly higher
with TY than with OP is likely caused by external noise
(experiement idependent host load) since the experiments
ran on a live cluster albeit very lightly loaded. The main
result of this experiment, though, is that the differences in
system efficiency between PS, TY, and OP are, to a large

degree, maintained as the number of competing users on a
host is scaled up.

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8

S
oc

ia
l W

el
fa

re

Users

Tycoon (TY)
Proportional Share (PS)

Optimal (OP)

Figure 4: Experiment II - Social welfare with varying

number of users

Next, we look at the fairness of the different algorithms us-
ing the same experiment result data. Our experience from
analyzing envy-freeness is that it is very hard to make any
kind of certain statements about the results due to noise
in the data as the number of users increases. For example,
contention for other resources than CPU becomes a factor.
These external factors also contribute to a higher level of
envy. In particular with 8 concurrent users, this noise tends
to dominate the results. In lieu of this, the social welfare
properties can still be maintained as seen in Figure 4, which
seems to indicate white noise (zero mean). However, look-
ing at the experimental results for 2-6 concurrently active
users per physical machine in Figure 5, we can observe the
behavior predicted from simulations and theoretical models.
PS has the least amount of envy, since the resource shares
are equally distributed, and thus should yield a theoretical
envy-freeness value of 1. The decline of the PS curve can,
thus, be seen as a measurement of the amount of noise in the
experiment. The main reason not to use a winner-takes-it-
all optimal allocation scheme is that high-bidding users can
starve out others resulting in high envy. As Tycoon only
lets users pay for the CPU cycles actually consumed and
new auctions are hosted every 10 seconds, the difference in
fairness between the OP algorithm and the TY algorithm is
not as high as might be anticipated theoretically. For 2-6
concurrent VM users the fairness of TY is constantly higher,
though. The limitation of number active of users on a host
shown in this experiment is, as discussed in Section 5.2,
more an artefact of the scalability of the local virtualization
engine, Xen, than overall Tycoon scalability.

In summary, the TY algorithm exhibited higher system ef-
ficiency than PS and a higher degree of fairness than OP in
multi-user experiments.

5.4 Multiple Hosts Results
In this set of experiments we compare a slightly different
set of algorithms to determine what allocations to request
in a cluster of hosts. Best Response (BR), see Section 4.6,

 0

 0.2

 0.4

 0.6

 0.8

 1
 2 3 4 5 6 7 8

E
nv

y-
F

re
en

es
s

Users

Tycoon (TY)
Proportional Share (PS)

Optimal (OP)

Figure 5: Experiment II - Envy-freeness with varying

number of users

optimizes the overall utility by first calculating the marginal
values of the hosts for each user and then determining how to
divide a fixed budget into individual bids on the hosts with
the highest marginal values. Tycoon Uniform bids (TU), dis-
tributes a fixed budget, based on task importance in a time
interval, evenly across all hosts. PS gives the same alloca-
tion to all users on all hosts across all time intervals. The
first experiment studes how an increasing number of hosts
in the system affects the efficiency of the allocations. In the
second experiment, we look at how the algorithms cope with
hosts that deliver different performance levels by setting dif-
ferent user preferences on hosts that are considered to give
a higher quality result.

When placing bids on hosts in the Best Response experi-
ments, no margin threshold λ (as discussed in § 4.6) is set.
The reason for this is that we use a continuous funding policy
where more funds are given to the user in each time interval,
which is a common model in large-scale Grid networks [36].

5.4.1 Experiment III: Varying Number of Hosts
The basic experiment involving multiple hosts investigates
how the algorithms scale with a higher number of hosts run-
ning virtual machines on behalf of the same user. Eight user
machines across 26 hosts were deployed to run the same ap-
plication as in the single host tests. Clients belonging to
a user send as many sequential requests as possible to all
hosts in the pool concurrently. The share and performance
obtained at each host is determined by the allocation algo-
rithm, but the overall budget used to fund the processing
on all hosts for a particular user remains constant across
all intervals and users, as in the single host case. The BR
algorithm takes advantage of both the interval task impor-
tance variance and the variance in host preferences. The TU
algorithm only takes advantage of the interval importance
variance whereas the PS algorithm distributes bids to hosts
evenly independent of interval importance and host prefer-
ences. As a result of these properties, the social welfare of
the system is highest for BR and lowest for PS, which can
be seen in Figure 6.

We note that the average throughput for a host within an
interval was used to evaluate the efficiency of the algorithms.
So the fact that more hosts in the pool will result in a higher
overall throughput for all algorithms was normalized away,
to get a better indication of algorithm scalability.

The experiment shows that the system efficiency level ob-
tained with PS as well as with TY declines slightly whereas
BR maintains the same efficiency when the number of hosts
is scaled up. A possible explanation is that BR can make
better use of the heterogeneity of the quality of service of-
fered on the different hosts when making allocation deci-
sions, when the number of hosts increases.

 0

 200

 400

 600

 800

 1000

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

S
oc

ia
l W

el
fa

re

Hosts

Tycoon Uniform bids (TU)
Proportional Share (PS)

Best Response (BR)

Figure 6: Experiment III - Social welfare with varying

number of hosts

5.4.2 Experiment IV: Varying Host Preferences
In this final experiment, we study how the algorithms being
analyzed handle different degrees of variance in host prefer-
ences. In Experiment III we used a constant host preference
variance of 50% where the hosts are ordered from 1 to 26
in terms of value to the users. Here we vary this prefer-
ence distribution from 0 (all hosts have the same value to
the user) to about 30% (standard deviation per mean value
ratio). There is then a trend in the social welfare graph in
Figure 7 that BR increases with the variance whereas TR
and PS remain constant. The effects are similar to those
seen in Experiment III, and again support the theory that
BR can make better use of QoS level differences among hosts
when making allocation decisions.

To summarize the multi-host results, the BR algorithm effi-
ciency scaled slightly better than the other algorithms, and
was also able to take better advantage of differences in the
level of performance that could be offered by the different
hosts.

6. RELATED WORK
There are two main groups of related work in resource allo-
cation: those that incorporate an economic mechanism, and
those that do not.

One non-economic approach is scheduling (surveyed by Pinedo
[32]). Examples of this approach are queuing in first-come,

 0

 200

 400

 600

 800

 1000
 0

 0
.5 1

 1
.5 2

 2
.5 3

 3
.5 4

S
oc

ia
l W

el
fa

re

Host Preference Variance

Tycoon Uniform bids (TU)
Proportional Share (PS)

Best Response (BR)

Figure 7: Experiment IV - Social welfare with varying

host preference variances

first-served (FCFS) order, queueing using the resource con-
sumption of tasks (e.g., [45]), and scheduling using combi-
natorial optimization [30]. These all assume that the val-
ues and resource consumption of tasks are reported accu-
rately, which does not apply in the presence of strategic
users. We view scheduling and resource allocation as two
separate functions. Resource allocation divides a resource
among different users while scheduling takes a given alloca-
tion and orders a user’s jobs.

Examples of the economic approach are Spawn [43]), work
by Stoica, et al. [38]., the Millennium resource allocator [10],
work by Wellman, et al. [44], Bellagio [3]), GridBus [5], and
Tycoon [24]). Spawn and the work by Wellman, et al. uses
a reservation abstraction similar to the way airline seats are
allocated. Unfortunately, reservations have a high latency
to acquire resources, unlike the price-anticipating scheme we
consider. The tradeoff of the price-anticipating schemes is
that users have uncertainty about exactly how much of the
resources they will receive.

Bellagio[9] uses the SHARE centralized allocator. SHARE
allocates resources using a centralized combinatorial auc-
tion that allows users to express preferences with comple-
mentarities. Solving the NP-complete combinatorial auc-
tion problem provides an optimally efficient allocation. The
price-anticipating scheme that we consider does not explic-
itly operate on complementarities, thereby possibly losing
some efficiency, but it also avoids the complexity and over-
head of combinatorial auctions.

In the GridBus [6] project economic schedulers and brokers
have been investigated to allocate resources for task-farming
applications in global Grid networks. Budget and deadline
optimization algorithms have been implemented and vali-
dated through simulations and empirical studies. However,
there is no mechanism support for dynamic price-setting nor
personal user resource valuation.

There have been several analyses [18, 19, 20, 21, 37] of varia-
tions of price-anticipating allocation schemes in the context

of allocation of network capacity for flows. Their methodol-
ogy follows the study of congestion (potential) games [27, 34]
by relating the Nash equilibrium to the solution of a (usually
convex) global optimization problem. But those techniques
no longer apply to our game because we model users as hav-
ing fixed budgets and private preferences for machines. For
example, unlike those games, there may exist multiple Nash
equilibria in our game. Milchtaich [26] studied congestion
games with private preferences but the technique in [26] is
specific to the congestion game.

7. CONCLUSIONS
In this paper, we have analyzed the economic efficiency and
fairness of different resource allocation algorithms, includ-
ing proportional share, winner takes-it-all (socially optimal),
and a set of market-based proportional share algorithms im-
plemented in the Tycoon middleware. Benchmark experi-
ments were set up using the Tycoon implementation to test
the behavior and adaptability of the algorithms with vary-
ing number of hosts and users and with varying utilities and
preferences over time. We found that the Tycoon algorithms
for distributing CPU shares on a single host achieved an
economic efficiency level that scaled quadratically from the
proportional share level to the social optimum level with a
linear increase in utility variance. When adding more users
to the experiment we saw empirically that the ratios be-
tween the social welfare levels of the algorithms remained
the same. The fairness of the optimal algorithm was also
shown to be lower than both for proportional share and the
Tycoon algorithm.

Running the same experiments across a set of hosts, we
found that a best response algorithm implemented in Ty-
coon managed to preserve overall system efficiency better
than a simple uniform bid allocation scheme, which in turn
achieved a better result than the basic proportional share
algorithm. This behavior was consistent across tests with
varying number of hosts, users and preference degrees.

There are a variety of directions for future work. One is
studying how the best response algoritm handles scientific
task-farming applications in a Grid network. Another is
extending the algorithm to handle both global host bid dis-
tribution and local host funding among many different re-
sources such as CPU, disk, and bandwidth in a more optimal
and consistent way. We are also interested in developing a
scalable banking infrastructure. One possibility is to physi-
cally distribute the bank without administratively distribut-
ing it. The bank would consist of several servers with inde-
pendent account databases. A user has accounts on some
subset of the servers. A user’s balance is split into separate
balances on each server. To make a transfer, users find a
server where both the payer and payee have an account and
that contains enough funds. The transfer proceeds as with
a centralized bank. Users should periodically redistribute
their funds among the servers to ensure that one server fail-
ure will not prevent all payment.

8. REFERENCES
[1] http://www.vmware.com/.

[2] http://www.linux-vserver.org/.

[3] A. AuYoung, B. N. Chun, A. C. Snoeren, and
A. Vahdat. Resource Allocation in Federated
Distributed Computing Infrastructures. In Proceedings
of the 1st Workshop on Operating System and
Architectural Support for the On-demand IT
InfraStructure, 2004.

[4] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and
M. Wawrzoniak. Operating System Support for
Planetary-Scale Network Services. In Symposium on
Networked Systems Design and Implementation, 2004.

[5] R. Buyya, D. Abramson, and S. Venugopal. The Grid
Economy. Proceedings of the IEEE, Special Issue on
Grid Computing, 93(3):479–484, March 2005.

[6] R. Buyya, M. Murshed, D. Abramson, and
S. Venugopal. Scheduling Parameter Sweep
Applications on Global Grids: A Deadline and Budget
Constrained Cost-Time Optimisation Algorithm.
Software: Practice and Experience (SPE) Journal,
35(5):491–512, April 2005.

[7] V. Cerf and R. Kahn. A Protocol for Packet Network
Intercommunication. IEEE Transactions on
Computers, 22(5):637–648, May 1974.

[8] Chaki Ng and Philip Buonadonna and Brent N. Chun
and Alex C. Snoeren and Amin Vahdat. Addressing
Strategic Behavior in a Deployed Microeconomic
Resource Allocator. In Proceedings of the 3rd
Workshop on Economics of Peer-to-Peer Systems,
2005.

[9] B. Chun, C. Ng, J. Albrecht, D. C. Parkes, and
A. Vahdat. Computational Resource Exchanges for
Distributed Resource Allocation. In Unpublished, 2004.

[10] B. N. Chun and D. E. Culler. Market-based
Proportional Resource Sharing for Clusters. Technical
Report CSD-1092, University of California at
Berkeley, Computer Science Division, January 2000.

[11] D. D. Clark. The Design Philosophy of the DARPA
Internet Protocols. In ACM SIGCOMM, pages
106–114, 1988.

[12] David C. Parkes and Ruggiero Cavallo and Nick
Elprin and Adam Juda and Sebastien Lahaie and
Benjamin Lubin and Loizos Michael and Jeffrey
Shneidman and Hassan Sultan. ICE: An Iterative
Combinatorial Exchange. In Proceedings of the ACM
Conference on Electronic Commerce, 2005.

[13] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
I. Pratt, A. Warfield, P. Barham, and R. Neugebauer.
Xen and the Art of Virtualization. In Proceedings of
the ACM Symposium on Operating Systems
Principles, 2003.

[14] K. J. Duda and D. R. Cheriton.
Borrowed-Virtual-Time (BVT) scheduling: supporting
latency-sensitive threads in a general-purpose
schedular. In Symposium on Operating Systems
Principles, pages 261–276, 1999.

[15] M. Feldman, K. Lai, and L. Zhang. A
Price-Anticipating Resource Allocation Mechanism for
Distributed Shared Clusters. In Proceedings of the
ACM Conference on Electronic Commerce, 2005.

[16] D. Ferguson, Y. Yemimi, and C. Nikolaou.
Microeconomic Algorithms for Load Balancing in
Distributed Computer Systems. In International
Conference on Distributed Computer Systems, pages
491–499, 1988.

[17] I. Foster and C. Kessleman, editors. The Grid 2:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 2003.

[18] B. Hajek and S. Yang. Strategic Buyers in a Sum Bid
Game for Flat Networks. Manuscript, http://tesla.
csl.uiuc.edu/~hajek/Papers/HajekYang.pdf, 2004.

[19] R. Johari and J. N. Tsitsiklis. Efficiency Loss in a
Network Resource Allocation Game. Mathematics of
Operations Research, 2004.

[20] F. P. Kelly. Charging and Rate Control for Elastic
Traffic. European Transactions on
Telecommunications, 8:33–37, 1997.

[21] F. P. Kelly and A. K. Maulloo. Rate Control in
Communication Networks: Shadow Prices,
Proportional Fairness and Stability. Operational
Research Society, 49:237–252, 1998.

[22] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat.
Bullet: High Bandwidth Data Dissemination Using an
Overlay Mesh. In Proceedings of the 19th ACM
Symposium on Operating System Principles, 2003.

[23] K. Lai, B. A. Huberman, and L. Fine. Tycoon: A
Distributed Market-based Resource Allocation
System. Technical report, arXiv, 2004.
http://arxiv.org/abs/cs.DC/0404013.

[24] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang,
and B. A. Huberman. Tycoon: an Implemention of a
Distributed Market-Based Resource Allocation
System. Technical Report arXiv:cs.DC/0412038, HP
Labs, Palo Alto, CA, USA, Dec. 2004.

[25] M. L. Massie, B. N. Chun, and D. E. Culler. The
Ganglia Distributed Monitoring System: Design,
Implementation, and Experience. Parallel Computing,
30(7), July 2004.

[26] I. Milchtaich. Congestion Games with Player-Specific
Payoff Functions. Games and Economic Behavior,
13:111–124, 1996.

[27] D. Monderer and L. S. Sharpley. Potential Games.
Games and Economic Behavior, 14:124–143, 1996.

[28] D. Oppenheimer, J. Albrecht, D. Patterson, and
A. Vahdat. Scalable Wide-Area Resource Discovery.
Technical report, U.C. Berkeley, July 2004.

[29] C. H. Papadimitriou. Algorithms, Games, and the
Internet. In Symposium on Theory of Computing,
2001.

[30] C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization. Dover Publications, Inc., 1982.

[31] L. Peterson, T. Anderson, D. Culler, , and T. Roscoe.
Blueprint for Introducing Disruptive Technology into
the Internet. In First Workshop on Hot Topics in
Networking, 2002.

[32] M. Pinedo. Scheduling. Prentice Hall, 2002.

[33] O. Regev and N. Nisan. The Popcorn Market: Online
Markets for Computational Resources. In Proceedings
of 1st International Conference on Information and
Computation Economies, pages 148–157, 1998.

[34] R. W. Rosenthal. A Class of Games Possessing
Pure-Strategy Nash Equilibria. Internation Journal of
Game Theory, 2:65–67, 1973.

[35] J. H. Saltzer, D. P. Reed, and D. D. Clark.
End-To-End Arguments in System Design. ACM
Transactions on Computer Systems, 2(4):277–288,
1984.

[36] T. Sandholm, P. Gardfjell, E. Elmroth, L. Johnsson,
and O. Mulmo. An ogsa-based accounting system for
allocation enforcement across hpc centers. In ICSOC
’04: Proceedings of the 2nd international conference
on Service oriented computing, pages 279–288, New
York, NY, USA, 2004. ACM Press.

[37] S. Sanghavi and B. Hajek. Optimal Allocation of a
Divisible Good to Strategic Buyers. Manuscript,
http://tesla.csl.uiuc.edu/~hajek/Papers/

OptDivisible.pdf, 2004.

[38] I. Stoica, H. Abdel-Wahab, and A. Pothen. A
Microeconomic Scheduler for Parallel Computers. In
Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, pages 122–135,
April 1995.

[39] R. Tijdeman. The Chairman Assignment Problem.
Discrete Mathematica, 32, 1980.

[40] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource
Overbooking and Application Profiling in Shared
Hosting Platforms. In Proceedings of Operating
Systems Design and Implementation, December 2002.

[41] H. R. Varian. Equity, Envy, and Efficiency. Journal of
Economic Theory, 9:63–91, 1974.

[42] H. R. Varian. Economic Mechanism Design for
Computerized Agents. In Proc. of Usenix Workshop
on Electronic Commerce, July 1995.

[43] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O.
Kephart, and W. S. Stornetta. Spawn: A Distributed
Computational Economy. Software Engineering,
18(2):103–117, 1992.

[44] M. P. Wellman, W. E. Walsh, P. R. Wurman, and
J. K. MacKie-Mason. Auction Protocols for
Decentralized Scheduling. Games and Economic
Behavior, 35:271–303, 2001.

[45] A. Wierman and M. Harchol-Balter. Classifying
Scheduling Policies with respect to Unfairness in an
M/GI/1. In Proceedings of the ACM SIGMETRICS
2003 Conference on Measurement and Modeling of
Computer Systems, 2003.

Market-Based Resource Allocation using Price Prediction in a High Performance
Computing Grid for Scientific Applications

Thomas Sandholm
KTH – Royal Institute of Technology

Center for Parallel Computers
SE-100 44 Stockholm, Sweden

sandholm@pdc.kth.se

Kevin Lai
Hewlett-Packard Laboratories

Information Dynamics Laboratory
Palo Alto, CA 94304, USA

kevin.lai@hp.com
Jorge Andrade Ortı́z and Jacob Odeberg∗

KTH – Royal Institute of Technology
Dept. of Biotechnology

SE-100 44 Stockholm, Sweden
{jacob,andrade}@biotech.kth.se

Abstract

We present the implementation and analysis of a market-
based resource allocation system for computational Grids.
Although Grids provide a way to share resources and take
advantage of statistical multiplexing, a variety of challenges
remain. One is the economically efficient allocation of re-
sources to users from disparate organizations who have
their own and sometimes conflicting requirements for both
the quantity and quality of services. Another is secure
and scalable authorization despite rapidly changing allo-
cations.

Our solution to both of these challenges is to use a
market-based resource allocation system. This system al-
lows users to express diverse quantity- and quality-of-
service requirements, yet prevents them from denying ser-
vice to other users. It does this by providing tools to the
user to predict and tradeoff risk and expected return in
the computational market. In addition, the system enables
secure and scalable authorization by using signed money-
transfer tokens instead of identity-based authorization. This
removes the overhead of maintaining and updating access
control lists, while restricting usage based on the amount
of money transferred. We examine the performance of the
system by running a bioinformatics application on a fully
operational implementation of an integrated Grid market.

∗also affiliated with Karolinska Hospital, Gustav V Research Institute,
Dept. of Medicine, Atherosclerosis Research Unit, Stockholm, Sweden

1. Introduction

The combination of decreasing cost for network band-
width and CPU performance and the availability of open-
source distributed computing middleware has led the high-
performance computing community away from monolithic
supercomputers to low-cost distributed cluster solutions.
This model of computing allows users with bursty and com-
putationally demanding tasks to share and use compute re-
sources on demand. This usage model, aka utility comput-
ing [24], Grid computing [22], peer-to-peer compute farm-
ing [28], or Global Computing [23], has been applied to
solve diverse technical computing problems in fields such
as, bioinformatics [9], high-energy physics [10], graphics
rendering [3], and economic simulation [2].

One common question remains: how to manage the
allocation of resources to users? One challenge is that
users are from disparate organizations and have their own
and sometimes conflicting requirements for both the quan-
tity and quality of services. For example, academic Grid
projects [37, 4, 38, 8, 7, 6, 5, 10] typically require resources
for throughput sensitive, long-running batch applications,
while industrial utility computing offerings [14, 24, 26] typ-
ically require response-time sensitive, interactive, and con-
tinuous application server provisioning. One common so-
lution is to have separate resource allocation mechanisms
for different applications. However, this merely shifts the
problem from reconciling the resource requirements of dif-
ferent applications to reconciling the resource requirements
of different mechanisms.

Another challenge is that users have a web of relation-

ships with regard to how they wish to share resources with
each other. For example, one site may wish to share re-
sources with a remote site, but only when demand from lo-
cal users is low. Another example is that a site may wish to
be reciprocative, where it only shares resources with sites
that share resources with it. One common solution is to
use access control lists (ACLs) to authorize access to re-
sources. The problem is that managing ACLs is difficult
because many users could potentially access a site, a site
has many different types of resources, each of which may
need a separate ACL, and the degree of access that each
user has could change with each access. For example, as a
user from site A uses host X at site B, site B would want to
decrease the ability of other site A users from being able to
consume resources at host X and possibly other hosts at the
site. The dynamic updating of this amount of data not only
increases overhead and development time, but could lead to
inconsistencies that allow exploitation of the system.

Instead, we examine a market-based approach to re-
source allocation in Grids. A number of models and mecha-
nisms for electronic markets, and computational economies
have been proposed [40, 30, 36, 35, 33, 12, 27]. In pre-
vious work we have presented and analyzed Tycoon [31],
a market-based resource allocation system for shared clus-
ters. Here we focus on how market-based techniques ad-
dress issues in a Grid environment. More specifically, our
contributions are as follows:

• A Tycoon controlled cluster scheduler for Grid
execution managers. The NorduGrid/ARC meta-
scheduler [38] used by many academic Grid projects in Eu-
rope, such as SweGrid [37], to schedule large-scale scien-
tific jobs across a collection of heterogeneous HPC sites us-
ing a uniform job submission and monitoring interface, was
integrated with Tycoon. The integration allows the large
existing user base of academic Grids to bid for and use re-
sources controlled by economic markets seamlessly. We
are also working on integrating our scheduler with Globus
Toolkit 4 [21].

• Pilot application experiments. We use a bioinformat-
ics pilot application currently deployed in an academic Grid
to verify our model and implementation. A bioinformat-
ics application scanning and analyzing the complete human
proteome using a blast-based similarity search was run on a
Tycoon cluster and evaluated.

• Price prediction models and mechanisms. We dis-
cuss, implement and analyze models and mechanisms to
predict cost of resources and give guarantees of QoS (Qual-
ity of Service) levels based on job funding. In a spot market
as implemented by Tycoon it can be hard to predict the fu-
ture price of a resource and know how much money should
be spent on funding a job with a specific set of requirements.
To that end we provide a suite of lightweight prediction ca-
pabilities that can give users guidance regarding what per-

formance levels to expect for different levels of funding of
a job.

• A security model combining identity and capability-
based access control. In academic Grid networks it is im-
portant to identify all users securely because a user’s iden-
tity, and membership in virtual organizations, can automati-
cally give access to shared resources. In electronic markets,
however, the key question is whether you can present proof
of payment for a resource. Our model allows Grid users
to make use of electronic money transfer tokens, or checks,
that can be used to pay for and gain access to resources to
be used by a compute job, as well as to specify its priority
and thereby ’buy’ a certain level of QoS.

As a result, we believe that the combination of Grid and
market mechanisms is a promising and viable approach to
sharing resources in an economically sustainable way while
ensuring fairness and overall system efficiency.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide an overview of the design and discuss
how it meets our goal. In Section 3, we delve more deeply
into implementation specifics. Our price prediction analysis
is presented in Section 4. Section 5 contains experimental
results from running the bioinformatics application on our
integration testbed. We describe related work in Section 6.
We conclude by discussing some limits of our model and
future work in Section 7.

2. Architecture Overview

2.1. A Case for Grid Markets

High-end compute resources, such as Grid-enabled High
Performance Computing (HPC) clusters, are necessary for
many scientific computing applications. These applications
can use more resources to scan larger input data sets, pro-
vide a higher resolution for simulations, or simply complete
the same amount of work faster. In other words, they exhibit
a continuous utility curve where a larger resource share re-
sults in a higher utility.

Traditional queueing and batch scheduling algorithms
assume that job priorities can simply be set by administra-
tive means. In large-scale, cross-organizational, and poten-
tially untrusted Grids, this can be expensive and slow, and
allocations may not reflect the true relative priorities of jobs.
Determining the relative priorities of applications requires
a truth revelation mechanism like a market [12, 27, 41, 39].
This provides an incentive for uses to accurately prioritize
their applications.

2.2. Tycoon

In this paper, we apply a previously described market-
based resource allocation system (Tycoon) [29] in the Grid

context. In this section, we briefly review this system before
describing the security and prediction extensions that are
the focus of this paper. Please see the previous publication
for additional details.

The main characteristics of Tycoon are its decentral-
ized and continuous markets. Each host that contributes
resources to a Tycoon network runs its own market. This
reduces the dependency on centralized components, mak-
ing the system more scalable, fault-tolerant, and agile in the
allocation of resources. The continuous market allows users
to bid and receive resources at a high frequency (10 seconds
by default), which allows applications to start quickly and
react to quickly changing load. This is more important for
service-oriented applications like web servers and databases
than the typical Grid applications that runs for days. Shar-
ing the same infrastructure across these different types of
applications allows better statistical multiplexing.

Another characteristic of Tycoon is the use of virtual-
ized resources. This allows multiple applications to share
the same host, which is useful both for applications that do
not require a whole host and applications that have highly
variable demand. Tycoon currently uses the Xen para-
virtualization system [19], which imposes an overhead of
1%-5% for typical workloads.

The architecture of Tycoon is composed of the Bank,
which maintains information on users like their credit bal-
ance and public keys, the Service Location Service, which
maintains information on available resources, and Auction-
eers, which run on each host and manage the market used
to allocate resources on that host.

One of the main issues in this kind of distributed mar-
ket is the efficiency relative to an ideal centralized mar-
ket. Feldman, et al. [20] show that this market achieves
both fairness and economic efficiency in the equilibrium
when users use the Best Response optimization algorithm.
Briefly, this algorithm solves the following optimization
problem for a user:

maximize Ui =
∑n

j=1 wi,j
xij

xij+yj
subject to (1)

∑n

j=1 xij = Xi, and xij ≥ 0. (2)

where Ui is the utility of user i across a set of resources,
wi,j is the preference of machine j as perceived by user i,
for example the CPU capacity of the machine, xi,j is the bid
user i puts on host j, yj the total of all bids or the price of
host j, and finally Xi is the total budget of user i.

One contribution in this work is to expose this Best Re-
sponse algorithm to Grid HPC users, to allow them to eas-
ily use compute resources in a competitive market. Next we
describe the architecture of this integration.

2.3. Grid Market Architecture

Our solution is novel in the sense that we maintain the
overall Public Key Infrastructure (PKI) security model of
the Grid, but introduce supply and demand driven dynamic
pricing and resource share negotiation on a spot market
within a virtual Grid cluster. Differentiated services are of-
fered in an incentive compatible manner where the Grid
user can attach a check-like token to jobs to pay for the
resources to be consumed. The user needs to be fully au-
thenticated using a Grid PKI handshake, but the authoriza-
tion step is based on a capability composed of the funds
transferred to the scheduling agent. The scheduling agent
uses the Best Response algorithm described in the previ-
ous section to distribute and place bids on compute nodes.
Virtual machines are created dynamically, with the appro-
priate QoS levels automatically configured in proportion to
the bids placed. Job stage-in, execution, monitoring, perfor-
mance boosting (by adding funds) and stage-out are all han-
dled by the agent. Figure 1 depicts the overall architecture
of the system. The Tycoon infrastructure is integrated with
the Grid Job manager as a local scheduling system, fully
transparent to the end-users. The next section describes the
design and implementation in more detail.

Figure 1. Tycoon Grid Market Architecture.

3. Grid Market Implementation

This section describes our integration of Tycoon with the
Grid. Our approach is to integrate Tycoon with the infras-
tructure currently deployed in the SweGrid project, a na-
tional Grid in Sweden spanning six sites and a total of 600
compute nodes interconnected by the 10GB/s GigaSunet
network. SweGrid has been in operation for a year and a
half. The sites run the Nordugrid ARC middleware, which
is based on the Globus toolkit, and currently connects about
50 HPC sites in 12 countries. Both ARC and Globus focus
on providing an abstracted local cluster scheduler and exe-
cution manager so that the job submission mechanism and
interface is the same regardless of whether PBS, LSF, Sun
Grid Engine, etc., is used locally at the site.

As a result, to enable Tycoon for Grid users seamlessly,
our approach was to write a Tycoon scheduler plugin for
ARC to simplify the transition of SweGrid users to this new
infrastructure. Integration directly as a Globus (GT4) plugin
is work in progress. The Tycoon cluster is exposed as any
other ARC cluster both for monitoring and job submission
purposes, with the only difference being that the cluster is
virtualized and thus reports number of virtual CPUs as op-
posed to physical compute node CPUs.

In ARC, the compute job requirements are describe in an
XRSL (extended Globus Resource Specification Language)
file. The CPU or WallTime XRSL attribute is mapped to
the Tycoon resource bid deadline. The transfer token, de-
scribed in more detail in the next section, is mapped to the
total budget to be used within this deadline. Finally, the
count attribute describes how many concurrent virtual ma-
chines or (virtual CPUs) the job requires. Mechanisms are
provided to allow a job running in a virtual machine to ac-
cess its ordinal number within such a batch of sub-jobs to,
for example, process a different input data set. The bid dis-
tribution is determined by the Best Response algorithm of
Tycoon. It calculates the optimal bids to maximize the over-
all utility gained from running a job on a set of host.

The ARC runtime environment allows users to specify
what software needs to be installed in order to run the job.
This software is installed automatically in the virtual ma-
chine using Yellow dog Updater, Modified (yum)[1]. The
Tycoon ARC plugin also handles job stage-in, stage-out and
output checkpoint monitoring. Jobs that have been submit-
ted may be boosted with additional funding to complete
sooner, and if the money deposited into host accounts has
not been used (Tycoon only charges for resources actually
used not bid for) the outstanding balance will be refunded to
the user. Dynamic pricing, accounting and billing thus all
happen automatically by means of the Tycoon infrastruc-
ture. Furthermore, the QoS specified in the XRSL descrip-
tion is automatically enforced by configuring custom virtual
machines on demand when jobs require them. To limit the
overhead of virtual machine creation, a user may reuse the
same virtual machine between jobs submitted on the same
physical host. However, no application data or scratch space
is shared by different jobs.

Figure 2 shows a screenshot of the ARC Grid Monitor
monitoring the Tycoon cluster. Note that since the num-
ber of CPUs are the number of virtual machines currently
created, it can increase dynamically up to a maximum of
about 15 times the number of physical nodes. Thus, for the
current deployment of 40 hosts, a maximum of 600 virtual
single CPU compute nodes can be offered concurrently to
users by the Tycoon Grid. We could easily implement a
virtual machine purging or hibernation model that could in-
crease this number further if not all 600 machines need to
be used at the same time, with the penalty of more overhead

to setup a job on a virtual machine.

Figure 2. Screenshot of Nordugrid/ARC Tycoon monitor.

In addition to the virtualization of compute nodes, the
cluster is also virtualized, in the sense that the Tycoon ar-
chitecture is flat without hierarchies. This allows the sub-
mission agent to pick up compute nodes from any available
physical cluster. Most of the current machines are at HP
Labs in Palo Alto, California, but others are owned by In-
tel Research in Oregon, by Singapore, and by the Swedish
Institute of Computer Science in Stockholm. The current
limitation of 40 physical machines is only an artifact of the
current state of the virtual cluster, and can grow dynami-
cally as more clusters and nodes are added to the Tycoon
network. Regardless of whether the compute node is local
to the submission agent the host funding, job stage-in, job
execution, job monitoring and job-stage out will all be done
the same way. Finally, the agent itself can be replicated
and partitioned to pick up a different set of compute nodes.
The ARC meta-scheduler could then be used to load bal-
ance and do job to cluster matchmaking between the repli-
cas. We therefore believe that this model will scale well as
the number of compute nodes and virtual machines on these
compute nodes increase.

3.1. Security Design

Our goal is to make the security integration as seamless
as possible to the end-users, which means allowing Grid
users to reuse their credentials when accessing a Tycoon
cluster. To access a Tycoon cluster one needs a Tycoon bank
account. So our task became equivalent to mapping a Grid
certificate to a Tycoon bank account. Our approach is to
transfer money from the user to the resource broker and map
the proof of the transfer to a Grid identity, the Distinguished
Name (DN) of the user.

This approach requires no manual access control list
setup and it allows the user to keep both the Grid identity
private key and Tycoon bank account private key on the
local machine only. Furthermore, it does not require any
changes to the existing Tycoon services. The user trans-
fers money to the resource broker’s bank account and then
signs the receipt together with a Grid DN. The mapping can
thus be decided independent of the transfer and can there-
fore also be used by arbitrary Grid users who do not have
any Tycoon infrastructure deployed. On the resource side it
is verified that the money transfer was indeed made into the
broker account and that the transfer token has not been used
before. The signature of the DN mapping is also verified
to make sure that no middleman has added a fake mapping.
Once the transfer token has been verified a new sub-account
to the broker account is created and the money verified is
transferred into this account by the broker. The new ac-
count is then used to fund and create host accounts used to
run the job on behalf of the Grid user.

4. Price and Performance Prediction

4.1. Motivation

A challenge in any market-based resource allocation sys-
tem is providing predictable performance. A variety of so-
lutions exist, including reservations, future markets [11],
options, and SLA contracts [42, 18]. However, all of these
mechanisms require the ability to predict future demand
and supply. Prediction is particularly important in spot-
market systems like Tycoon that lack other mechanisms to
ensure predictability. The failure to predict accurately either
causes users to overspend on resources or prevents them
from achieving their required quality of service.

Demand prediction requires a history of resource usage
and a set of analysis algorithms. Our goal is to provide both
a concise representation of historical prices on the Auction-
eer and efficient client-side algorithms to analyze this data.

We represent the demand using the spot-market price on
each host. In Tycoon, this reflects both the usage of and
demand for a resource. This information is updated every
10 seconds, which is also the reallocation interval. In addi-
tion to the instantaneous demand, we also track the average,
variation, distribution symmetry, and peak behavior of the
price.

To make this information useful to a wide array of ap-
plications, periodization of the data is necessary. We imple-
ment this by presenting and scoping the statistics in moving,
customizable time windows. By looking at smaller time
windows we may be able to make simplifying assumptions
such as the assumption of a symmetric normal distribution
even though such a distribution may not be a good represen-
tation of a larger window, and vice versa. To track the price

distribution dynamically we implement a self-adjusting slot
table recording the proportion of prices that fall into certain
ranges.

We now present three high-level prediction techniques
to model our price data, (1) normal distribution prediction,
chosen because it is simple to implement and rest only on
fundamental statistical theory; (2) autoregression predic-
tion of time series, a very common system identification
approach; and (3) portfolio selection, a well-studied tech-
nique in economic theory to reduce risk. Finally, we present
the theory behind our moving window approximation and
smoothing implementation.

4.2. Lightweight Single-Host Stateless Price
Prediction

In this model we assume a normal probability distri-
bution of the spot market price and calculate the budgets
needed to get a certain performance level or higher with
a probability guarantee, which could be translated into the
probability of a job completing within a certain deadline.
Based on this information we would like to recommend a
user to spend a certain amount of money given a capacity
requirement and a deadline.

More formally, we first assume that the price y is an out-
come of the normal random variable Y

Y ∈ N(µ, σ2), y ∈ Y (3)

p is the probability given by the standard cumulative distri-
bution function Φ, with µ as the measured mean of y and
σ2 as the measured variance. In other words, p is the prob-
ability that a resource offers a price less than or equal to y

given its variance and mean.

p = P (Y ≤
y − µ

σ
) = Φ(

y − µ

σ
) (4)

The inverse cumulative distribution function, aka the
probit quantile function of the normal distribution gives us
the price y to expect with a given probability p.

y − µ

σ
≤ Φ−1(p) ⇔ y ≤ µ + σΦ−1(p) (5)

Combining (1) and (5) gives us the probability p to get
the utility U given the budget X .

Ui(Xi, p) ≥
∑n

j=1
wi,j

xi,j

xi,j + µj + σjΦ−1(p)
(6)

where xi,j is the bid picked by the best response algorithm
in (1) with budget Xi on host j for user i.

If a user knows that the deadline d can be met if a utility
greater than U is obtained, we can use (6) to recommend
what budget to spend to meet that deadline, and conversely

what completion time to expect given a budget. For exam-
ple, the budget X required to meet the deadline d with a
certainty of p can be used as a recommendation for the ex-
tra cushion of funding needed to meet the deadline with a
greater probability.

We call this model stateless, since we only need to keep
track of running sums to report the mean and standard devi-
ation of the price, and no data points need to be stored.

4.3. Single-Host Price Prediction Analyzing
Time Series History Data

An autoregressive, AR(k), [32] model based on a time
series of CPU price snapshots was implemented using the
following steps:

First, the unbiased autocorrelation with N sample snap-
shots of x and lag k is calculated as:

R(k) =
1

N − |k|

N−|k|−1
∑

n=0

xn+|k|xn

Then the following Yule-Walker linear equation system is
solved using the Levinson reformulation:

Lα = r

where
Li,j = R(i − j)

is the Toeplitz matrix with k rows and k columns, α is the
column vector of k AR coefficients to be solved, and r is a
column vector of size k where

ri = R(i + 1)

Now, future values of the time series xi can be predicted
using the coefficients in α as:

xN+1 = µ +
k

∑

j=0

αj(xi−j − µ)

where

µ =
1

N

N
∑

n=0

xn

Note that we omit the zero mean normal random white
noise parameter here for simplicity.

4.4. Risk Management based Performance
Prediction across Multiple Hosts

We now look at another prediction model for obtaining
guidance in funding resources, portfolio theory. We need
to obtain the return and plot that against the risk to cal-
culate the efficient frontier where portfolios yield the most

efficient trade-off between the two parameters. The funda-
mental rule of the frontier is that at a given risk value the
return should be maximized and conversely at a given re-
turn value the risk should be minimized. We can then ap-
ply Morkowitz’s mean-variance optimization [34]. As re-
turn we select the performance of the resource calculated
as number of CPU cycles per second that are delivered per
amount of money paid per second (inverse of spot market
price).

Given the vectors of return and risk values for the re-
sources, we used the matrix equations from [25] to calculate
the risk free portfolio as well as the efficient frontier.

By looking at the efficient frontier we can, based on our
degree of risk aversion, select a portfolio with an appro-
priate return. The advantage of the portfolio model is that
we do not have to assume a normal probability distribution
of the resource price. However, a symmetric distribution
around the mean is assumed and it is also assumed that there
is a variance in risk between resources that can be traded off
with varying mean returns.

A similar approach focusing on Value-at-Risk analysis is
presented in [16]. Their approach inherits the same strength
and weaknesses as the general portfolio theory presented
here, but extends it to give guarantees like, within a given
time horizon, the minimal performance will be a value V

with a probability P . In contrast, the approach presented
here gives guidelines of the form, given a certain level of
risk aversion and expected performance, how should you
distribute your budget across a set of hosts?

4.5. Moving Window Smoothing Theory

We first look at the technique used to calculate moving
windows for the price average (mean), variation (standard
deviation), asymmetry of distribution (skewness), and peak
behavior (kurtosis). A high value of skewness reflects a
heavy-tailed (right-skewed) distribution, and a high value
of kurtosis indicates that a large portion of the standard de-
viation is due to a few very high price peaks.

In terms of state information we only need to keep track
of the previously calculated sample moments about the
mean for the first (mean), second (standard deviation), third
(skewness) and forth (kurtosis) moment about the mean.
The linear smoothing function is determined by the window
size, where a large window size results in the previously
calculated moment having a very low impact on the next
moment compared to the current snapshot, and vice versa.
For window size 1, the previously calculated moments are
ignored as expected.

µi,p is the pth sample moment about the mean at snap-
shot i, xi is the price at snapshot i, n is the number of price
samples in a window, σi is the standard deviation of price
at snapshot i (for window n), γ1,i is the price skewness at

snapshot i (for window n), and γ2,i is the price kurtosis at
snapshot i (for window n)

µ0,p = x
p
0

µi,p = αµi−1,p + (1 − α)xp
i

α = 1 −
1

n
n

∑

j=1

x
p
j = µi,pn ⇒ σi =

√

µi,2 − µ2
i,1

equivalently,

γ1,i =
(µi,3 − 3µi,1µi,2 + 2µ3

i,1)

σ3
i

and,

γ2,i =
(µi,4 − 4µi,3µi,1 + 6µi,2µ

2
i,1 − 3µ4

i,1)

σ4
i

− 3

We now look at the price distribution smoothing for mov-
ing time windows. The approach taken is to keep track of
two price distributions for each window at all times. The
distributions will contain twice as many snapshots as is re-
quired by the windows and have a time lag of the same size
as the window. The merged window distribution to be re-
trieved at an arbitrary monitoring time is then calculated
by using a share of both distributions proportional to how
closely they are to the desired window size in terms of num-
ber of snapshots collected.

n is the total number of prices in a window, i is the snap-
shot time, nk,i is the number of prices in distribution array
k at time i, (0..2n), sk,j is the proportion of prices in slot
j in distribution array k, ri,j is the proportion of prices to
report in slot j at snapshot time i, and wi,k is the proportion
of distribution array k to use in r at snapshot time i

wi,k = 1 −
|n1,i − n|

n

|n1,i − n2,i| = n

nk
∑

j=1

sk,j = 1 ⇒ ri,j = w1,ks1,j + (1 − w1,k)s2,j

5. Grid Application Results

In this section we present some experimental results us-
ing a Bioinformatics application targeted for Grid environ-
ments, which was developed at the Bioinformatics labora-
tory at the Royal Institute of Technology in Stockholm [9].
It is a trivially parallelizable bag-of-task application, which

is very typical for large-scale Grids. The experiments we
present here, do not consider applications with more com-
plicated workflow-like interactions among subtasks. How-
ever, none of the experiments depend in any way on the
application-specific node processing performed by this ap-
plication, more than the fact that it is CPU intensive.

5.1. Bioinformatics Application

The goal of the application is to identify protein regions
with high or low similarity to the rest of the human pro-
teome. A database of the complete human proteome is ana-
lyzed with a blast sequence alignment search tool perform-
ing stepwise similarity searches using a sliding window al-
gorithm running in parallel on a distributed compute cluster.
The reason for running this application in a compute farm
is twofold, the proteome database is continuously evolving
and the search is computationally hard. A search on a single
machine takes about 8 weeks on a single node, and a run in
the SweGrid compute farm utilizing 300 nodes out of 600
takes about 22 hours.

5.2. Experiment Setup

The proteome database is partitioned into chunks that
can be analyzed in parallel. One of these chunks takes ap-
proximately 212 minutes to analyze on a single node in our
cluster with a 100% share of a CPU. With 30 physical ma-
chines we can thus achieve a maximum performance of 35
hours/application run to be compared with 22 hours/run in
SweGrid with 600 machines. In our experiment we are let-
ting five competing users run the same application with dif-
ferent funding. The application makes use of a maximum
of 15 nodes out of a total of 30 physical nodes. To have the
users compete against each other but not between their own
sub-jobs we restrict the setup to one virtual machine per
user per physical machine. Hence, a maximum of 75 vir-
tual machines may be used at any point in time. It should be
noted that the physical machines have dual processors and
there may thus not be competition for a CPU on a machine
even though there are multiple users running there concur-
rently. The user jobs are launched in sequence with a slight
delay to allow the best response selection to take the pre-
vious job funding into account. This is why users 1 and 2
tend to get to run on more nodes than the other users, as the
price has not gone up as much at that point. Their shares
will, however, be recomputed automatically and continu-
ously within every 10s allocation interval.

5.3. Best Response Experiments

In this set of experiments we are interested in finding out
whether an economically driven resource allocation mech-
anism would allow us to offer differentiated QoS levels to

Table 1. Equal Distribution of Funds

Users Time(h) Cost($/h) Latency(min/job) Nodes
1 − 2 7.16 4.19 28.66 15
3 − 5 6.36 4.28 45.49 8.7

Table 2. Two-Point Distribution of Funds

Users Time(h) Cost($/h) Latency(min/job) Nodes
1 − 2 7.07 5.10 29.31 14.5
3 − 5 4.16 10.9 23.46 11

Grid application users. We measure the Time defined as
the wall-clock time as perceived by the user to complete
the task of sub-jobs, the Cost as the money spent during
this time, the Latency as the number of minutes it takes for
each sub-job to complete (again in wall-clock time), and
the number of Nodes or parallel sub-jobs used by the task.
We start by gauging the environment and running the test
with all users having the same funding for their jobs. They
should hence expect an equal share of the CPUs. We, how-
ever, note from the results summarized in Table 1 that users
3-5 received a much lower quality of service, here defined
as number of jobs that can be processed within a time unit,
because the best response algorithm found it too expensive
to fund more than a very low number of hosts. One possible
solution to this issue would be to let the user hold back on
submitting if not a threshold of minimum hosts to bid on is
met.

The results from a two-point distribution with users
funding their jobs with 100, 100, 500, 500, 500 dollars with
a deadline of 5.5 hours is summarized in Table 2.

Here we can see that the jobs with a budget of 500 dollars
caused the earlier jobs to decrease their shares to allow the
more highly funded jobs to complete within their deadline.
We again see that fewer hosts were given to user 3-5 but this
time the performance level (latency) is better. We also see
that these users pay a higher price for their resource usage,
as expected.

5.4. Price Prediction Experiments and Sim-
ulations

In this set of experiments we run the same Grid applica-
tion job load as in the previous experiments with the differ-
ence that we let the total budget of the users be random with
a normal distribution.

Using the normal distribution analysis presented in Sec-
tion 4.2, we provide a graph visualization of the price and
performance guarantees a user may expect from a host. De-

pending on what guarantee of average performance the user
wants, different curves may be followed to decide on how
much to spend. For example, looking at the graph in Fig-
ure 3 a user who wants 90% guarantee that the CPU perfor-
mance will be greater than 1.6GHz should spend $22/day
when funding the host. There is a certain point where the
curves flatten out, and that point would be the recommended
budget to spend on that host to get the best performance
per funding unit. For the given example it would not make
sense for the user to spend more than roughly $60/day. We
can also see that to get any kind of feasible performance out
of the machine with at least a 80% guarantee the user needs
to spend at least $10/day. In this example, we based our
prediction on a time window of one day.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

C
P

U
 C

ap
ac

ity
 (

M
H

z)

Budget ($/day)

Guarantee 80%
Guarantee 90%
Guarantee 99%

Figure 3. Normal distribution prediction with different
guarantee levels

The basic AR model presented in Section 4.3 had prob-
lems predicting future prices due to sharp price drops when
batch jobs completed. To overcome this issue we applied a
smoothing function (cubic smoothing spline) before calcu-
lating the AR model. To verify the quality of the prediction
we took a data sample of 40 hours of price history from our
experimental run of Grid jobs described above. The first
20 hours were used to calculate the model and the last 20
hours were used to verify the model. The prediction error
was then calculated as follows:

ε =
1

µdn

n
∑

i=1

σi

where µd is the mean of the measured prices in the vali-
dation interval, n the number of data points in the valida-
tion interval, and σi the standard deviation of the predic-
tion, measurement pair i. An AR(6) model with one hour
forecasting (See Figure 4) yielded an ε of 8.96%, whereas
a simple benchmark model always predicting the current
price to remain for the next hour resulted in an ε of 9.44%.

Now, turning to portfolio theory (Section 4.4). There
are some issues with this model concerning the definition

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003
 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

P
ric

e
($

/s
 p

er
 C

P
U

 c
yc

le
s/

s)

Time (hours)

Predicted
Smoothing
Measured

Figure 4. AR(6) prediction with a one hour forecast and
smoothing function.

of risk and asymmetry of distributions as mentioned in
Section 4.4, but we also noted in our experiments that a
portfolio-based scheduler would not do as well in load bal-
ancing batches of user jobs coming in as the best response
algorithm which bases its selection on the spot market price,
and which could immediately move users away from high-
bid machines. Portfolio theory may, however, prove useful
for long term investments in hosts, e.g. when hosts should
be bought to run a continuous application such as a web
server. Another observation is that idle hosts tend to get
100% of the share in the portfolio, to avoid this behavior
a larger time window needs to be used when collecting the
mean and variance statistics from the hosts.

To test the risk hedging properties of the portfolios re-
turned by our implementation we ran simulations where 10
hosts are picked either using the calculated risk free portfo-
lio or equal shares. The aggregate performance over time
is then measured. Individual mean host performance, per-
formance variance, and variance of performance variances
were all randomly generated with a normal distribution.
The results, depicted in Figure 5 shows that downside risk
could be improved by using the risk free portfolio.

Finally, we look at the distribution of prices over three
time windows, a week, a day, and an hour. This data can
be used to select an appropriate prediction model. For ex-
ample, if the distribution resembles a normal distribution
one could make use of the models described in Section 4.2,
if the distribution is symmetric a portfolio analysis may be
appropriate. A sample distribution graph is shown in Fig-
ure 6. It can be inferred from the graph that the prices ex-
hibit signs of a heavy-tailed distribution (left-skewed) the
last hour, mostly fall within the lowest price bracket, but are

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

P
or

tfo
lio

 P
er

fo
rm

an
ce

Time

Risk Free Portfolio
Equal Share Portfolio

Figure 5. Risk free portfolio performance vs. equal share
portfolio.

right-skewed, mostly in the most expensive bracket when
considering a week or day-long window.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 2
e-

00
6

 4
e-

00
6

 6
e-

00
6

 8
e-

00
6

 1
e-

00
5

 1
.2

e-
00

5

 1
.4

e-
00

5

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

P
ro

ba
bi

lit
y

D
en

si
ty

Price Bracket ($/s per CPU cycles/s)

Last Hour Last Day Last Week

Figure 6. Price distribution within three different time
windows.

To measure how accurate our window approximation is
we ran a simulation of different distributions. Normal, Ex-
ponential and Beta Distributions were given a time lag of
half the window size. At this point there is a maximum in-
fluence, or noise, from non-window data. The noise was
generated using a uniform random distribution. We noted
that normal distributions with a small standard deviation
(< 20% of mean) could result in the approximation having
its mean shifted slightly compared to the actual distribution.
However, in general the approximations followed the actual
distributions closely as seen in Figure 7 .

6. Related Work

Faucets [27] is a framework for providing market-driven
selection of compute servers. Compute servers compete

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

P
ro

ba
bi

lit
y

D
en

si
ty

Simulated Price

Norm(0.5,0.15) Window Approx.
Norm(0.5,0.15) Measured
Exp(2) Window Approx.
Exp(2) Measured
Beta(5,1) Window Approx.
Beta(5,1) Measured

Figure 7. Window approximation of Normal, Exponen-
tial and Beta distributions.

for jobs by bidding out their resources. The bids are then
matched with the requirements of the users by the Faucets
schedulers. Adaptive jobs can shrink and grow depending
on utilization and prioritization. QoS contracts decide how
much a user is willing to pay for a job. The main difference
to our work is that Faucet does not provide any mechanism
for price setting. Further, it has no banking service, use
central server based user-name password mechanisms, and
does not virtualize resources.

Xiao et al. [43] suggest a model where users prioritize
their jobs with different budgets and providers schedule
jobs based on minimizing penalties from missing promised
deadlines. It is argued that a user-initiated auction is more
appropriate for lightly loaded system. From our experience
with HPC projects like SweGrid, resources are scarce and
their is competition for time slots, hence a seller-initiated
auction is more appropriate for our work.

Chunlin and Layuan [17] propose a two-layered cen-
tral market. In the first layer the users negotiate with ser-
vices to meet deadline and budget constraints, in the second
layer services purchase resources to meet the user demand.
Service and resource prices are set by iteratively adjusting
them up and down based on the measured demand and sup-
ply, until a market equilibrium is reached. In simulations
they show that this model is more efficient in large Grids
than a round-robin approach. Our work is less centralized,
and thus more scalable and fail-safe, because all resource
providers host their own markets.

G-commerce [41] is a Grid resource allocation system
based on the commodity market model where providers de-
cide the selling price after considering long-term profit and
past performance. It is argued and shown in simulations

that this model achieves better price predictability than auc-
tions. However, the auctions used in the simulations are
quite different from the ones we use. The simulated auc-
tions are winner-takes-it-all auctions and not proportional
share, leading to reduced fairness. Furthermore, the auc-
tions are only performed locally and separately on all hosts
leading to poor efficiency across a set of host. In Tycoon
the Best Response algorithm ensures fair and efficient al-
locations across resources [20]. An interesting concept in
G-commerce is that users get periodic budget allocations
that may expire, which could be useful for controlling pe-
riodic resource allocations (as exemplified by NRAC and
SNAC [37]) and to avoid price inflation. The price-setting
and allocation model differs from our work in that resources
are divided into static slots that are sold with a price based
on expected revenue. The preemption and agile realloca-
tion properties inherit in the bid-based proportional share
allocation mechanism employed in our system to ensure
work conservation and prevent starvation is, however, miss-
ing from the G-commerce model.

Buyya et al. [13] implement a completion time minimiz-
ing resource allocation algorithm for bag-of-task applica-
tions, utilizing an auctioneer infrastructure akin to the one
deployed in Tycoon. The difference to the work presented
here is that we use fixed budgets and the best response al-
gorithm to place bids, as opposed to allowing bids to vary
between a minimum and maximum value to meet deadlines.
This allows us to make more precise statements about the
fairness and efficiency of our solution in the equilibrium
states.

Spawn [40], was one of the first implementations of a
computational market, and Tycoon is an incarnation and
evolution of many ideas presented in that work. Tycoon, in
essence, extends Spawn by providing a Best Response agent
for optimal and incentive-compatible bid distribution and
host selection, and by virtualizing resources to give more
fine-grained control over QoS enforcement. Tycoon also
offers a more extensive price prediction infrastructure as
presented in this paper. However, the general, continuous-
bid and proportional share auction architecture is largely the
same.

Other market based resource allocation systems, not fo-
cussing on Grid applications, have been presented in [39,
35, 15, 33]

7. Conclusions

We have presented an integrated Grid market of com-
putational resources based on combining a market-based
resource allocation system, Tycoon, and a Grid meta-
scheduler and job submission framework, Nordugrid ARC.

One of the most challenging integration points was to
map the Grid identity to an asserted capability. This prob-

lem was solved by introducing the concept of transfer to-
kens. This allowed both the private Grid credentials, and the
bank account keys to remain local. It also makes it easy for
resource users to give out ’gift certificates’, to allow users
without a Tycoon client installation to submit (and fund)
jobs to the Tycoon cluster.

One of the first experiences gained from user feedback of
the system was that it was hard to know how much money
to use to fund a job. To aid the users in deciding how much
funding their jobs would need to complete within a certain
deadline, or conversely when a job would be expected to
complete given a budget, we developed a suite of predic-
tion models and tools. The accuracy of these predictions
depends on the regularity of previous price snapshots and it
is therefore crucial, for the results to be good, to pick a time
window to study that exhibits these patterns. We therefore
also implement a model that allows statistical data within a
certain time window to be retrieved, using approximations
based on linear smoothing functions.

Finally, our experimental results using a Bioinformat-
ics application developed for the Grid, show that the level
of performance delivered when submitting a large batch of
jobs, can be customized by the incentive compatible use of
transfer tokens. Thus the fairness and economically effi-
ciency properties of Tycoon can be carried over to the Grid
Market users.

Future work includes extending the lightweight predic-
tion model presented here to handle arbitrary distributions
and studying how higher-level reservation mechanisms,
such as Service Level Agreements, Future Markets, Insur-
ance Systems, and Swing Options can be built on top of
the prediction infrastructure presented here to provide more
user-oriented QoS guarantees.

8. Acknowledgments

We thank Bernardo Huberman, Lars Rasmusson, Fang
Wu, Li Zhang, and Kate Keahey for fruitful discussions.
The Tycoon Grid Market work would not have been possi-
ble without the funding from the HP/Intel Joint Innovation
Program (JIP), our JIP liason, Rick McGeer, and our col-
laborators at Intel, Rob Knauerhase and Jeff Sedayao.

The work on the Bioinformatics application was funded
by Wallenberg Consortium North Foundation and Vinnova.

References

[1] Yellow dog Updater, Modified. http://linux.duke.edu/projects/yum/.
[2] SUN, Queen’s Univ, First Derivatives to Speed Bank Risk

Analysis. GRID today, 3(30), July 2004.
[3] The Grid for the Video Industry. GRIDSTART Business

Newsletter, (2):4, April 2004.

[4] EGEE. Enabling Grids for ESciencE. http://egee-
intranet.web.cern.ch/egee-intranet/gateway.html, 2005.

[5] ESG. Earth System Grid. http://www.earthsystemgrid.org,
2005.

[6] NEESit. http://it.nees.org/, 2005.
[7] OSG. Open Science Grid. http://www.opensciencegrid.org,

2005.
[8] TeraGrid. http://www.teragrid.org, 2005.
[9] J. Andrade and J. Odeberg. HapGrid: a resource for haplo-

type reconstruction and analysis using the computational Grid
power in Nordugrid. HGM2004: New Technologies in Haplo-
typing and Genotyping, April 2004.

[10] D. Bosio, J. Casey, A. Frohner, L. Guy, P. Kunszt, E. Laure,
S. Lemaitre, L. Lucio, H. Stockinger, K. Stockinger, W. Bell,
D. Cameron, G. McCance, P. Millar, J. Hahkala, N. Karlsson,
V. Nenonen, M. Silander, O. Mulmo, G.-L. Volpato, G. An-
dronico, F. DiCarlo, L. Salconi, A. Domenici, R. Carvajal-
Schiaffino, and F. Zini. Next-generation eu datagrid data man-
agement services. In Proceedings of Computing in High En-
ergy and Nuclear Physics, La Jolla, CA, USA, March 2003.

[11] Brent N. Chun and Philip Buonadonna and Chaki Ng. Com-
putational Risk Management for Building Highly Reliable
Network Services. In Proceedings of the 1st Workshop on Hot
Topics in System Dependability, 2005.

[12] R. Buyya, D. Abramson, and S. Venugopal. The Grid Econ-
omy. Proceedings of the IEEE, Special Issue on Grid Comput-
ing, 93(3):479–484, March 2005.

[13] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal.
Scheduling Parameter Sweep Applications on Global Grids:
A Deadline and Budget Constrained Cost-Time Optimisation
Algorithm. Software: Practice and Experience (SPE) Journal,
35(5):491–512, April 2005.

[14] G. Caronni, T. Curry, P. S. Pierre, and G. Scott. Super-
nets and snHubs: A Foundation for Public Utility Computing.
Technical Report TR-2004-129, Sun Microsystems, 2004.

[15] A. Chavez, A. Moukas, and P. Maes. Challenger: a multi-
agent system for distributed resource allocation. In AGENTS
’97: Proceedings of the first international conference on Au-
tonomous agents, pages 323–331, New York, NY, USA, 1997.
ACM Press.

[16] B. N. Chun, P. Buonadonna, and C. Ng. Computational Risk
Management for Building Highly Reliable Network Services.
In Proceedings of the IEEE First Workshop on Hot Topics in
System Dependability, 2005.

[17] L. ChunLin and L. Layuan. A two level market model for
resource allocation optimization in computational grid. In CF
’05: Proceedings of the 2nd conference on Computing fron-
tiers, pages 66–71, New York, NY, USA, 2005. ACM Press.

[18] S. Clearwater and B. A. Huberman. Swing Options. In Pro-
ceedings of 11th International Conference on Computing in
Economics, June 2005.

[19] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the Art
of Virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, 2003.

[20] M. Feldman, K. Lai, and L. Zhang. A Price-Anticipating Re-
source Allocation Mechanism for Distributed Shared Clusters.
In Proceedings of the ACM Conference on Electronic Com-
merce, 2005.

[21] I. Foster. Globus toolkit version 4: Software for service-
oriented systems. In IFIP’05: Proceedings of International
Conference on Network and Parallel Computing, volume
3799, pages 2–13. LNCS, Springer-Verlag GmbH, 2005.

[22] I. Foster and C. Kessleman, editors. The Grid 2: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
2003.

[23] The Future and Emerging Technologies Global Computing
Initiative. Technical report, European Commision, DG Infor-
mation Society, July 2005.

[24] S. Graupner, J. Pruyne, and S. Sherad. Making the Utility
Data Center a Power Station for the Enterprise Grid. Technical
Report HPL-2003-53, Hewlett-Packard Laboratories, 2003.

[25] L. J. Halliwell. Mean-Variance Analysis and the Diversifica-
tion of Risk. Casualty Actuarial Society, St. Louis, Missouri,
USA, May 1995.

[26] J. Hellerstein, K. Katricioglu, and M. Surendra. An Online,
Business-Oriented Optimization of Performance and Avail-
ability for Utility Computing . Technical Report RC23325,
IBM, December 2003.

[27] L. V. Kale, S. Kumar, M. Potnuru, J. DeSouza, and S. Band-
hakavi. Faucets: Efficient resource allocation on the compu-
tational grid. In ICPP ’04: Proceedings of the 2004 Inter-
national Conference on Parallel Processing (ICPP’04), pages
396–405, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[28] G. Kan. Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, chapter Gnutella, pages 94–122. O’Reilly & As-
sociates, Inc., 1st edition, March 2001.

[29] K. Lai. Markets are Dead, Long Live Markets. SIGecom
Exchanges, 5(4):1–10, July 2005.

[30] K. Lai, B. A. Huberman, and L. Fine. Tycoon: A Distributed
Market-based Resource Allocation System. Technical report,
arXiv, 2004. http://arxiv.org/abs/cs.DC/0404013.

[31] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and
B. A. Huberman. Tycoon: an Implemention of a Distributed
Market-Based Resource Allocation System. Technical Report
arXiv:cs.DC/0412038, HP Labs, Palo Alto, CA, USA, Dec.
2004.

[32] L. Ljung. System Identification: Theory for the User. Pren-
tice Hall, December 1998.

[33] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard.
Enterprise: A Market-like Task Scheduler for Distributed
Computing Environments. In B. A. Huberman, editor, The
Ecology of Computation, number 2 in Studies in Computer
Science and Artificial Intelligence, pages 177–205. Elsevier
Science Publishers B.V., 1988.

[34] H. M. Markowitz. Portfolio Selection. Journal of Finance,
7(1), March 1952.

[35] O. Regev and N. Nisan. The Popcorn Market: Online
Markets for Computational Resources. In Proceedings of
1st International Conference on Information and Computation
Economies, pages 148–157, 1998.

[36] T. Sandholm. emediator: a next generation electronic com-
merce server. In AGENTS ’00: Proceedings of the fourth in-
ternational conference on Autonomous agents, pages 341–348,
New York, NY, USA, 2000. ACM Press.

[37] T. Sandholm, P. Gardfjell, E. Elmroth, L. Johnsson, and
O. Mulmo. An ogsa-based accounting system for allocation
enforcement across hpc centers. In ICSOC ’04: Proceedings of
the 2nd international conference on Service oriented comput-
ing, pages 279–288, New York, NY, USA, 2004. ACM Press.

[38] O. Smirnova, P. Erola, T. Ekelöf, M. Ellert, J. Hansen,
A. Konsantinov, B. Konya, J. Nielsen, F. Ould-Saada, and
A. Wäänänen. The NorduGrid Architecture and Middleware
for Scientific Applications. Lecture Notes in Computer Sci-
ence, 267:264–273, 2003.

[39] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: a wide-area dis-
tributed database system. The VLDB Journal, 5(1):048–063,
1996.

[40] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A Distributed Computational
Economy. Software Engineering, 18(2):103–117, 1992.

[41] R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-commerce:
Market formulations controlling resource allocation on the
computational grid. In IPDPS ’01: Proceedings of the 15th
International Parallel and Distributed Processing Symposium
(IPDPS’01), page 10046.2, Washington, DC, USA, 2001.
IEEE Computer Society.

[42] F. Wu, L. Zhang, and B. A. Huberman. Truth-telling Reser-
vations. http://arxiv.org/abs/cs/0508028, 2005.

[43] L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu. Gridis: An incentive-
based grid scheduling. In IPDPS ’05: Proceedings of the
19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05) - Papers, page 65.2, Washington, DC,
USA, 2005. IEEE Computer Society.

	sandholmlic
	Paper1
	Paper2
	Abstract
	5.1 Decision Making System (DMS)
	5.2 Component Bus (CB)
	5.3 SLA Negotiator (SLAN)
	5.4 SLA Monitor (SLAM)
	5.5 SLA Event Sink (SLAS)
	5.6 SLA Policy Manager (SLAP)
	5.7 SLA Rating Engine (SLAR)
	5.8 SLA Task Manager (SLAT)

	Paper3
	Paper4

