A Statistical Approach to Risk Mitigation in Computational
Markets

Thomas Sandholm
KTH — Royal Institute of Technology
Center for Parallel Computers
SE-100 44 Stockholm, Sweden
sandholm @pdc.kth.se

ABSTRACT

We study stochastic models to mitigate the risk of poor
Quality-of-Service (QoS) in computational markets. Con-
sumers who purchase services expect both price and per-
formance guarantees. They need to predict future demand
to budget for sustained performance despite price fluctua-
tions. Conversely, providers need to estimate demand to
price future usage. The skewed and bursty nature of de-
mand in large-scale computer networks challenges the com-
mon statistical assumptions of symmetry, independence, and
stationarity. This discrepancy leads to underestimation of
investment risk. We confirm this non-normal distribution
behavior in our study of demand in computational markets.

The high agility of a dynamic resource market requires
flexible, efficient, and adaptable predictions. Computational
needs are typically expressed using performance levels, hence
we estimate worst-case bounds of price distributions to mit-
igate the risk of missing execution deadlines.

To meet these needs, we use moving time windows of
statistics to approximate price percentile functions. We use
snapshots of summary statistics to calculate prediction in-
tervals and estimate model uncertainty. Our approach is
model-agnostic, distribution-free both in prices and predic-
tion errors, and does not require extensive sampling nor
manual parameter tuning. Our simulations and experiments
show that a Chebyshev inequality model generates accurate
predictions with minimal sample data requirements.

We also show that this approach mitigates the risk of
dropped service level performance when selecting hosts to
run a bag-of-task Grid application simulation in a live com-
putational market cluster.

Categories and Subject Descriptors

D.4.8 [Operating Systems]: Performance—Modeling and
prediction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HPDC’07, June 25-29, 2007, Monterey, California, USA.

Copyright 2007 ACM 978-1-59593-673-8/07/0006 ...$5.00.

85

Kevin Lai
Hewlett-Packard Laboratories
Information Dynamics Laboratory
Palo Alto, California 94304
kevin.lai@hp.com

General Terms

Management, Performance

Keywords

QoS, Service Level Management, Resource Allocation

1. INTRODUCTION

Large scale shared computational Grids allow more ef-
ficient usage of resources through statistical multiplexing.
Economic allocation of resources in such systems provide
a variety of benefits including allocating resources to users
who benefit from them the most, encouraging organizations
to share resources, and providing accountability [29, 15, 5,
31].

One critical issue for economic allocation systems is pre-
dictability. Users require the ability to predict future prices
for resources so that they can plan their budgets. With-
out predictability, users will either over-spend, sacrificing fu-
ture performance by prematurely spending the risk-hedging
buffer, or over-save, sacrificing current performance. Both
lead to dissatisfaction and instability. Moreover, the lack
of accurate information precludes rational behavior, which
would disrupt the operation of the many allocation mecha-
nisms that depend on rational behavior.

There are three parts to predictability: the predictability
provided by the allocation mechanism, the predictability of
the users’ behavior, and the predictability provided by sta-
tistical algorithms used to model the behavior. In this work
we focus on the last part. The first part was investigated
in [11] and examples of mechanisms addressing the second
part include [7, 30].

The goal of this paper is to examine the degree to which
future QoS levels, guarantees, and resource prices can be
predicted from previous demand on a shared computing
platform. Ideally, we would use the pricing data from a
heavily used economic Grid system, but such systems have
not yet been widely deployed. Instead, we examine Plan-
etLab[20], a widely-distributed, shared computing platform
with a highly flexible and fluid allocation mechanism. The
PlanetLab data set has the advantage of encompassing many
users and hosts and having very little friction for allocation.
However, PlanetLab does not use economic allocation, so
we substitute usage as a proxy for pricing. Since many eco-
nomic allocation mechanisms (e.g., Spawn[25], Popcorn[21],
ICE[9], and Tycoon[16]) adjust prices in response to the de-
mand, we believe that this approximation is appropriate.

We also analyze job traces from the Royal Institute of Tech-
nology in Stockholm (KTH), Ohio Supercomputing Center
(OSC), and San Diego Supercomputer Center (SDSC) to
contrast the PlanetLab load with deployments exhibiting
more traditional high performance computing user behav-
ior.

In these traces, we examine three key statistical metrics
computed on the time-varying demand: distribution skew-
ness, correlation over time, and volatility over time (het-
eroskedacity). Skewness captures whether most of the distri-
bution’s values are closer to the lower bound (right-skewed),
upper bound (left-skewed), or neither (symmetric). Correla-
tion over time measures the relative importance of old and
recent samples in predicting future samples. Finally, het-
eroskedacity measures how variance changes over time. We
find that that the traced demand distributions have signifi-
cant skewness, long-term correlation, and changes in volatil-
ity over time.

Common modelling techniques fail under these conditions.
We show using simulation that a predictor based on a Nor-
mal (Norm) Gaussian distribution model and a benchmark
(Bench) predictor using the entire sample history both per-
form poorly with highly skewed data. In addition, high het-
eroskedacity reduces the accuracy of any predictions of the
expected value of demand.

We develop a new predictor based on the Chebyshev (Cheb)
model. It is distribution-free and provides worst-case sce-
nario bounds independent of distribution symmetry. To
handle time correlations, we sample statistics in running
moments with exponential smoothing in different time win-
dows (e.g., hour, day and week). This allows us to maintain
less data as well as to adapt quickly to changing demand
behavior.

To handle heteroskedacity, the Chebyshev-based predictor
uses the running moments to predict demand bounds. We
observe that users of a market-based system can substitute
predictions of demand bounds for predictions of expected
value. Market-based systems have mechanisms for insuring
against future changes in prices (e.g., bidding more for re-
sources). Demand bound predictions are sufficient for users
to decide how much money to spend to mitigate risk. For
example, a predicted price bound of [$9, $50] per GHz with
an expected price of $10 conveys that, despite low expected
demand, there is significant risk of a high price and the user
should spend more to mitigate risk.

We use a live computational market based on the Ty-
coon[16] resource allocator to compare a strategy using the
Chebyshev-based predictor to the default strategy of using
the spot market price when scheduling jobs. Using a varying
load over time, we show that the predictor outperforms the
spot market strategy while imposing a negligible (0.001%)
computational and storage overhead.

The remainder of this paper is structured as follows. In
Section 2 we outline the requirements of the prediction prob-
lem we are addressing. We analyze the demand traces by
comparing the dynamics of the the different systems under
investigation in Section 3. In Section 4, we describe in more
detail the design and rationale of our prediction approach
and models. In Section 5, we present and discuss the setup
and results of the simulations and experiments. We review
related work in Section 6 and conclude in Section 7.

86

2. REQUIREMENTS

2.1 User Requirements

Consumers in a computational market need guidance re-
garding how much to spend to meet their performance re-
quirements and task deadlines. The quality of this guidance
is critical to both individual and overall system performance.
The best prediction system would recommend users to invest
as little as possible while meeting their QoS requirements
with as high a probability as possible. Robust statistical
performance guarantees are an alternative to reservations
with absolute guarantees, which are vulnerable to specula-
tion and a variety of other gaming strategies [6].

In the discussion below, the bid is the amount the con-
sumer pays a provider for a resource share over a given pe-
riod of time. A higher bid obtains a greater share, or QoS
level. The guarantee is the likelihood that the delivered QoS
is greater than the consumer’s defined value. The guarantee
is not a contract, but rather the estimated probability that
a QoS level can be delivered.

The prediction system answers the following questions for
the user:

QUESTION 1. How much should I bid to obtain an ex-
pected QoS level with a given guarantee?

QUESTION 2. What QoS level can I expect with a given
guarantee if I spend a given amount?

QUESTION 3. What guarantee can I expect for a given
QoS level if I spend a given amount?

Exactly which question(s) a user asks varies from job to job
and from user to user. We assume that users can ask any
question at any time.
We further assume that providers allocate shares among
consumers using the proportional share model as follows:
bid
bid+Y

Definition 1. Q =

where Y denotes the demand of the resource modeled as
a random variable with an arbitrary unknown distribution,
and @ is the random variable representing the obtained per-
formance when requesting performance gos. We define guar-
antee as the probability that the obtained performance is
greater than the requested performance:

Definition 2. g = P(Q > qos)

PRrOPOSITION 1. To get performance guarantee g, we need

cpDF~!
d €PE "(9)gos

to spen 1_(12‘;)""05, where CDF ™1 is the percent point

function or the inverse of the cumulative distribution func-
tion for the demand.

PROOF. Substituting the share @ in Definition 2 with the
right side of the equation in Definition 1 gives

bid bid
g=P <bid+ v > qos) P <Y < s bzd)

CDF <% - bid)
qos
the inverse CDF of the demand distribution can then be
expressed as:
bid

CDF ™} (g) =
qos

— bid

which after rearranging gives:

-1

bid — CDF~"(g)qos
1 —qos

(|

This provides everything to answer Question 1, 2, 3. To
obtain an expected QoS level with a given guarantee, a user
should bid the following (Question 1):

_ CDF~'(g)q

bid
7 =4

: (1)
P(Q>q)=g
A user who bids a given amount and expects a given guar-
antee should expect the following QoS level (Question 2):
bid

= bid+ CDF1(g) @

q

P(Q>q)=g

A user who bids a given amount and expects a given QoS
level should expect the following guarantee (Question 3):

o CDF <(1—q)bz’d)

. ®3)

P(Q>q)=g

The main goal of our prediction method is to construct
estimates of the CDF and CDF~!' (ak.a. percent point
function (PPF)) accurately and efficiently.

2.2 System Requirements

Two different approaches for estimating probability den-
sities stand out: parameter-based and parameter-free esti-
mation. In the parameter-free approach, one takes a ran-
dom sample of data points, and smooths them to calculate
the most likely real underlying distribution, e.g. using a
least-squares algorithm. In the parameter-based approach,
one assumes certain structural and behavioral characteris-
tics about the real distribution and finds the parameters
that best fit the measured data, e.g. using some maximum
likelihood algorithm. In either case, sample measurements
or data points are needed to calculate the density functions.
Recording the history of demand in time-series streams for
a large number of resources across a large number of compu-
tational nodes in real-time does not scale, in terms of state
maintenance and distribution, and prediction model con-
struction and execution. The scalability limitations force
restrictions on the length of past and future prediction hori-
zons and the number of resources that can be tracked. As a
result, our goal is to use as few distribution summary data
points as possible to make as flexible predictions as possible.

Studies of large-scale networked systems [19, 8] show that
the underlying distribution of the demand is neither normal
nor symmetric. Assuming that it is would result in under-
estimated risks, so accommodating bursty, skewed behavior
is a necessity. Furthermore, we neither want to assume sta-
tionarity nor independence of the underlying distribution
since consumers are interested in getting the most accurate
estimate based on performing a task in the near future, and
evaluate that option against waiting for better conditions.

There is a trade-off between performance and accuracy
of the predictions, but there is also a similar trade-off be-
tween flexibility and evaluation capability. We would like
to empower users to do rich customized predictions based
on minimal summary statistics. They should be able to ex-
ecute what-if scenario probes based on all three questions

87

mentioned in Section 2.1. Different questions incur different
prediction errors, which complicates the generic evaluation
of model uncertainty and construction of prediction inter-
vals.

3. DEMAND ANALYSIS

In this section we describe the data traces used in the sim-
ulations in Section 5. The load traces come from four shared
compute clusters. The PlanetLab trace is available on-line
at http://comon.cs.princeton.edu/. The San Diego Su-
percomputer Center, Ohio Supercomputing Center, and Stock-
holm Royal Institute of Technology traces are all available
at http://www.cs.huji.ac.il/labs/parallel/workload/.

e PlanetLab. PlanetLab (PL) is a planetary-scale, dis-
tributed computing platform comprising approximately 726
machines at 354 sites in 25 countries, all running the same
Linux based operating system and PlanetLab software stack,
including a virtual machine monitor. The user community
is predominantly computer science researchers performing
large-scale networking algorithm and system experiments.
Resources are allocated in a proportional share fashion, in
virtual machine slices. The trace is from December 2005 to
December 2006, and was obtained from PlanetLab CoMon
node-level statistics. We calculate demand by aggregating
the load value across all hosts for each 5-min snapshot inter-
val available. This load measures the number of processes
that are ready to run across all virtual machines. The load
data was filtered to remove a periodic peak caused by syn-
chronized rpm database updates across all slices appearing
over a 30-min period every night, to get a more accurate
representation of demand.

e San Diego Supercomputer Center. The San Diego
Supercomputer (SDSC) trace was obtained from Dror Frei-
telson’s parallel workloads archive [2]. It is the SDSC Blue
Horizon workload from June 2000 to June 2001 (SDSC-
BLUE-2000-3.1-cIn.swf). The load is from the 144 node 8-
way SMP crossbar Blue Horizon cluster using the LoadLeveler
scheduler.

The demand is calculated in three steps. First, the CPU
usage or load for a job is obtained as: 7¢(t. — ts), where r¢
is the CPU time consumed by the job in percentage of the
total run time, and t. and ts are the end time and start
time in seconds since epoch respectively—all three values are
available directly from the trace. Second, each job CPU us-
age is correlated to the time when it was submitted, thus
effectively simulating that no queuing was done but all jobs
could run with their actual load instantly. Finally, we ag-
gregate the obtained CPU load value across all jobs running
in every 5-min time interval. We did not analyze the utiliza-
tion data directly because it could mask high demand under
heavy load. The transformation also makes it comparable to
proportional share systems such as PlanetLab and Tycoon,
which are the primary focus of our work. Although this
masks the needs of users who do not submit jobs when the
queue wait-times are too long, we assume that these users
would not spend money in an expensive computational mar-
ket either. Consequently, we assume that these users do not
contribute to demand.

e Ohio Supercomputing Center. The Ohio Super-
computing Center (OSC) trace was also obtained from the
parallel workloads archive. It is the OSC Linux cluster work-
load from January 2001 to December 2001 (OSC-Clust-2000-
2.swf). The site is a Linux cluster with 32 quad nodes and

Table 1: Central Moments of Traces (skewness > 2 is
marked in bold to indicate a heavy tail)

2 i IO e
PL | 3433|037 | 4.06 | 29.45
KTH | 382 | 0.71 | 1.11 | 0.90
OSC | 66 |0.72 | 1.53 | 4.35
SDSC | 3249 | 0.51 | 1.02 | 2.07

25 dual nodes with a total of 178 processors using the Maui
scheduler. We perform the identical transformation from
job workload to demand as with the SDSC data described
above.

e Royal Institute of Technology. The Center for Par-
allel Computers at the Swedish Royal Institute of Technol-
ogy (KTH) in Stockholm, provided us with the final work-
load trace. The trace is from a 100-node IBM SP2 clus-
ter from October 1996 to September 1997 (KTH-SP2-1996-
2.swf). Because CPU time was not recorded in the logs, the
CPU load is set to the run time of the jobs. Apart from this
the demand transformation is identical to the SDSC and
OSC traces described above.

Next, we characterize the dynamics of the computational
demand traces by examining the typical properties of time
series distributions: symmetry, independence, and station-
arity.

3.1 Distribution Symmetry

The first step towards characterizing the load and detect-
ing anomalies is to look at the raw demand traces. Figure 1
shows that PlanetLab exhibits much thinner peaks that both
appear and disappear more quickly than the peaks in the
other traces. We attribute this behavior to the fact that
PlanetLab jobs tend to be distributed systems or network-
ing experiments that have lower resource requirement than
scientific computing workloads.

Next, we measure the distribution symmetry of the de-
mand for the different clusters in Figure 2. A distribution
is right-skewed if its right tail is longer than its left and its
mass leans to the left. We see that the PlanetLab load stands
out as being more right-skewed than the others. All traces,
however, show asymmetric right-skewed behavior, indicating
that low demand is the most common state of the systems.
Distribution models such as the Gaussian or Normal distri-
bution assumes symmetry and will thus be inaccurate for all
of the traces studied. The central moments are summarized
in Table 1.

3.2 Dependence and Long Memory

One of the most common assumptions when studying time
series and when sampling data to approximate distributions
and densities is that the observations are IID. L.e. the sam-
pled data points are independent and identically distributed.
This allows the models to be trained once and then reused
indefinitely when they have converged. It also simplifies the
construction of confidence and prediction intervals. Because
there is no bias in the samples they can be taken to be a
good representation of the whole data set. The simplest way
of testing dependence, seasonality and randomness of sam-
ples is to draw an auto-correlation function (ACF) plot with
a series of increasing time lags. We study the correlations

25000

20000

15000

PL Demand

10000

5000

01/2006 -
02/2006 |-
03/2006 |-
04/2006 -
05/2006 -
06/2006 |-
07/2006 -
08/2006 -
09/2006 |-
10/2006
11/2006

12000

10000

8000

6000 -

SDSC Demand

4000
2000

o
06/2000 [
10/2000 —?

05/2000
07/2000
08/2000 |
09/2000 -
11/2000
12/2000 [
ot/2001 |
02/2001
0312001 |-
04/2001
0s/2001
06/2001

1600
1400
1200
1000

2
g
8

KTH Demand
IS m

& g

8 8
T T T

N
8
8

o

10/1996
111996 |-
12/1996 -
01/1997 =
02/1997
0311997 -
04/1997 |-
0511997 |- i
0611997 - g
07/1997

08/1997 {3
09/1997 =

450

s
&
8

)
588
883

0SC Demand
N
8
8

-888
e e
=

12/2000
01/2001
02/2001
03/2001
04/2001 -
05/2001 I-.
06/2001
07/2001
08/2001 -
09/2001
10/2001

11/2001 ?

12/2001

Figure 1: Demand History (Hourly)

0.14

0.12 1

0.08 - 1

Demand)

0.06

P(D

0.04

0.02 [f1

100

70

40 50 60
Demand (%)
PlanetLab ——

KTH ——=-—

Figure 2: Demand Density

88

for lags up to 7 days. The plots in Figure 3, clearly show
that the observations are not independent in time but rather
show a strong and slowly decaying correlation to measures
in the previous time interval. If the decay is slower than
exponential the data is said to exhibit long memory. This
is clearly the case for at least the KTH trace (within the
weekly time lag). Long memory is a feature that gives stan-
dard auto-regressive models such as GARCH problems [18].

1

0.8

0.6

0.4

PlanetLab ACF

0.2

© <
Lag (Days)
1 T T

SDSC ACF

© <
Lag (Days)

KTH-PDC ACF

© <
Lag (Days)
1 T T

0OSC ACF

© <
Lag (Days)

Figure 3: Auto-Correlation Functions

Another popular approach used to detect long-term corre-
lations is the rescaled-range (R/S) analysis [19], which was
influenced by Hurst’s study of the Nile floods [14]. In gen-
eral it provides a way to investigate how the values in a
time series scale with time. The scaling index, known as the
Hurst exponent is 0.5 if all the increments of the time series
are independent. A series where a trend in the past makes
the same trend in the future more likely is called presistent,
and has a Hurst exponent greater than 0.5. Conversely, sys-
tems where past trends are likely to be reversed are called
anti-persistent and scale with a Hurst exponent less than
0.5. If the R/S values (increment range, standard deviation
ratio) for different time intervals are plotted against time on
a log-log scale, the Hurst exponent appears as the slope of
the fitted line. Figure 4 shows the R/S plot for the demand
traces. A Hurst exponent around 0.92 fits all the traces
under investigation, which indicates a very high correlation
between past and future demand trends.

3.3 Heteroskedacity and Fat Tails

The last property that we investigate is the general volatil-
ity of the data which is crucial for making good risk assess-

89

100000

Planetlab +
KTH x «
0SC ¥ 5
10000 | SDSC O 2 i
Norm m R
H=0.92 - -
7)@,5@
e 1000 | g 1
7] A
o % |]
g F a
<o 2 u
P 100 | 2 " <
i 7 "
EA T
10 g " u 4
1 r
10 100 1000 10000 100000 1e+06
snapshots

Figure 4: Rescaled-Range Dynamics and Hurst Expo-
nent

ments. If the data is extremely skewed such as in power-law
distributed data, both the mean and the variance can be
infinite and thus some other measures of volatility need to
be used. One popular approach is to look at the (abso-
lute) log difference in the increments of the data. It turns
out that even for very risky and volatile time series with
power-law behavior like the stock-market, the absolute in-
crements are predictable since high volatility data points
tend to cluster [19]. A volatility graph showing the log-
transformed increment differences over time is also another
measurement of how Gaussian-like the data is. A Gaussian
distribution produced by a Brownian-motion process has a
near uniform distribution of increment sizes, whereas more
unpredictable and thereby riskier processes have clusters of
high volatility intermingled with lower volatility periods. In
Figure 5 all of the traces show signs of changing volatility
over time (heteroskedacity). High volatility instances also
seem to be clustered. An analysis of how they are clustered
is beyond the scope of this paper. The stock market has
been shown to exhibit power-law scaling in the distribution
of the volatility over time [19]. We therefore also look at the
distribution tail behavior for our traces. A heavy-tailed or
fat-tailed distribution will exhibit a longer tail of the comple-
ment of the cumulative distribution function (1-CDF) than
the exponential distribution. According to this definition
Figure 6 and Table 2 show that all traces are heavy-tailed
in hourly volatility. PL and SDSC are also heavy-tailed in
daily volatility.

This investigation of traces indicates that a multi-fractal
time-scaling (trading time deformation) [18, 19] model may
be appropriate. We, for example, note that the Hurst ex-
ponent obtained can be used to determine the fractal di-
mension [3], which is a typical measure of the roughness of
the system in multifractal time-series. Figure 6 also indi-
cates that a stretched exponential distribution [8] could be
a good fit. However, an analysis of these more complicated
distributional models are outside the scope of this paper.

4. PREDICTION APPROACH

In this section, we present our approach to providing ac-

curate distribution predictions with an upper prediction bound.

The method is agnostic to the model used to fit the time se-
ries data of demand, and the prediction error distribution.

0.5
> 04
£ 03
g o2
]
]
3 -o1f 3
I
T oo2f ,
T oo03f B
04 ,
o5
w < e g s o s o e © o s o«
8 8 8 8 g8 8 8 8 g 8 8 g 8
g <1 g 8 g 8 g 8 g 8 8 g 8
s § & §&§ § 8§ § g § 8§ g § g
S = S @ S i s = s 8 9 ERE
B 5 s 8 g 8 g 5 8 8 ¢ g
06 — . .
z o 1
£
&]
> 4
2>
z]
3]
I
Q -0 A
(%]
[a) -0.: 4
[4
0.4

05/2000

06/2000
07/2000 [
08/2000 [
09/2000 [

10/2000

12/2000

01/2001

02/2001

03/2001

04/2001

05/2001

06/2001

KTH Hourly Volatility
o
o

LI s s s

.
© © © S [S s s ~ S
8 8 8 5 5 5 5 5 5 5 5
3 3 3 3 3 3 3 3 3 3 3
S = B = S 8 3 5 3 s 2
e = g s s 8 3 8 8 5 3
2 T T T T T T T T
z 15f g
K]
o 1F
>
£ 05[1
s
3
2 ot]
2
o -05f —
4
S = - = - = = = = [- =
g8 5 s 35 s 5 s s 3 s 5 s 5
S 2 g 8 g 8 3 g 3 g 8 g8 8
8 g 8§ g IS s & g 8 g 8 g
8 = g = I B @ s] s o R
g 5 s 8 g 8 8 5 8 g 2 - g

Figure 5: Hourly Demand Volatility

0.1
0.01
0.001 ¢

P(V > Volatilty)

1e-04

0.1
0.01
0.001 ¢
1e-04

P(V > Volatilty)

0.01

Figure 6: Heavy Tails for Hourly Demand Volatility

Volatility

Table 2: Skewness of Volatility

hour | day | week

PL 7.45 | 4.55 | 1.45
KTH | 4.40 | 1.87 | 1.13
OSC | 6.41 | 1.82 | 0.53
SDSC | 4.44 | 2.05 | 1.63

0

There are two architectural components providing predic-
tion capabilities: the statistics collector (SC), and the pre-
diction generator (PG). The SC consumes a time series of
prices and produces a statistical summary, which in turn
is consumed by the PG. The statistical summary comprises
instantaneous running (non-central) moments over config-
urable time horizons. In our case we provide hourly, daily
and weekly summaries, as they correspond best to the length
of the computational jobs run as well as the length of the
horizon that is typically predictable. In addition to the mo-
ments, the summary also has the current price, a short his-
tory of moments for the most recent time periods, and the
minimum and maximum measured price values.

The running non-central moments are calculated as fol-
lows:

e = i1+ (1 - a)a?

where pi;,p is the pth moment at time ¢, z; the price at time
tand a=1— %, where n is the number of data points in the
time horizon covered by the moments, and po, = z. We
refer to [22] for further details on how the central moments
are calculated.

The PG component is instantiated with a predictor that
uses the moments and the extremes to construct approxima-
tions of the cumulative distribution function (CDF), percent
point function (PPF), and a function generating confidence
intervals. The history of moments is used to construct pre-
diction intervals.

Here we will describe a Gaussian (Norm), a Chebyshev
(Cheb), and a sample-based predictor (Bench) which we use
for benchmarking.

4.1 Gaussian Predictor

The Gaussian CDF (®) is readily available and can be
calculated directly from the first two central moments. Since
the inverse of the Gaussian CDF or PPF (®~!) does not
have a closed form, we use an approximation based on a
rational minimax algorithm developed by Acklam [1]. The
100p%-confidence interval is then calculated as [®~1(0.5 —
2),®7'(0.5+ Z)]. An identical interval calculation can be
done for all other predictors using their respective percent
point functions. The prediction interval is calculated by
applying ® and ® ! on the history of moments.

4.2 Chebyshev Predictor

When predicting performance guarantees we are typically
more interested in worst case scenario bounds as opposed
to perfect data density fitting across all percentiles. One of
the most prominent techniques to estimate bounds in prob-
ability theory is by means of the Chebyshev inequality [12],
which states that:

1
P(Y = p| = ko) < 72
where p is the first central moment (mean) and o the sec-
ond central moment (standard deviation) of the underlying
distribution. Rewriting the inequality as a CDF we get:

1

CDF(y) =1~ {3

where k is ¥>£. For unimodal distributions we can tighten
the bound further by applying the Vysochanskij-Petunin in-

equality [24], which for k& > \/g gives:

_ 4
Ok?

Taking the inverse of the CDF we get:

CDF(y) =1

pto /-1 Jk< /3,
PPF(p) = — ’
H:l:O' 9 p ,k‘z 3-

Since Chebyshev only gives us upper and lower bounds we
cannot calculate the percentiles around the mean accurately,
but this is not a great limitation in our case where we are
primarily interested in worst-case scenario (upper) bounds.

The confidence and prediction intervals are calculated in
the same way as in the Gaussian case.

4.3 Sample Bench Predictor

We use a benchmark predictor to compare our summary
statistics predictors with a sample-based predictor. This
predictor has access to the entire past history of data points
and calculates the percentile points, cumulative distribu-
tions, and prediction bounds from the raw data sampled.
The benchmark predictor could not be used in practice be-
cause of its prohibitive computational and storage require-
ments.

4.4 Multi-Host Predictions

We combine the results from Equation 1, Equation 2 and
Equation 3 with our predictors to assess risk when making
scheduling decisions across a set of hosts. For this purpose
we extend an economic scheduling algorithm previously pre-
sented in [11, 22]. The purpose of this Best Response algo-
rithm is to distribute a total budget across a set of hosts to
yield the maximum utility for the user. The optimization
problem, as seen by a user, is defined as:

o b .
maximize U = 377, Wit subject to

>0y b; = bid, and b; > 0.

where w; is the preference or weight for host j specified by
the user, b; is the bid that the user puts on host j, and
bid the total budget of the user. We replace y;, the spot
price of host j, with the stochastic variable Y as modeled
above. In Equation 1, which gives an expected performance
value given a percentile and a (prediction) confidence level,
we calculate Y with the PPF of the predictor. To calculate
the bid given a performance level, a guarantee and a confi-
dence level or to calculate the guarantee given a bid and a
performance level, we numerically invert the Best Response
algorithm. This allows us to probe different bid or guarantee
levels until we get an acceptable performance match or we
encounter budget constraints.

Users can use this model in a variety of ways. They can
use the spot prices to determine whether they can meet
their deadline, guarantee, and budget constraints, or if they
should submit their job at a later time. Instead of the spot
price, users can also use the statistical guarantees and pre-
diction bounds to pick the hosts with the best sustained
low-price behavior for long running tasks. We examine the
effectiveness of the model for these use cases in the next
section.

91

S. SIMULATION AND EXPERIMENT
RESULTS

This section contains four different validators of our ap-
proach presented in the previous section. First, we run a
simulation with generated random distributions against our
predictors. Second, we run a prediction simulation using
the compute cluster demand traces described in Section 3.
Third, we run an experiment in our own live computational
market cluster, Tycoon, comparing spot market scheduling
with our extended risk mitigating scheduler described in the
previous section. Finally, we run an efficiency experiment
to measure the overhead incurred by the predictions.

5.1 Asymmetry Modeling Simulation

To validate the ability to approximate arbitrary skewed
distributions we developed a generator capable of produc-
ing random data with distributions in a continuum from a
right-skewed Pareto through Gaussian to a mirrored left-
skewed Pareto with the first two moments kept stable and
only the skewness varying. An example of distributions gen-
erated can be seen in the lower graph in Figure 7. The upper
graph shows the result for the Cheb and Gauss predictors.
As expected, Cheb gives better approximations for left and
right-skewed distributions, whereas the Gauss predictor per-
forms best for the near-symmetrical distributions (skewness
near 0).

—_

Error

o000
[SISENOL TN

i SV (g —
-10 0 10 20 30 40 50
Skewness

-50 -40 -30 -20

Chebychev —+—
0.5
0.4
0.3
0.2
0.1

P(X=x)

AN NN S O —
T e

0 20 40

X

Figure 7: Fitting Skewed Distribution

5.2 Demand Prediction Simulation

We use the compute cluster demand traces from Planet-
Lab, KTH, SDSC, and OSC to study the ability of our pre-
diction approach to give accurate risk assessments with the
Cheb, Gauss, and Bench predictors. Recall that the Bench
predictor simply uses all previous historical data to make
PPF and prediction (confidence) interval estimates, whereas
the other predictors base their estimates on the summary
statistics generated by the statistics collector (SC) compo-
nent (including running moments, and moment history).

The setup of the experiment is as follows. For each trace,
we feed the time series data into the SC component config-
ured for hourly, daily and weekly prediction horizons, and
then try to make a prediction of the 95th percentile price

with a 90% confidence for the subsequent interval (for which
no data is revealed) using the prediction generator (PG)
instantiated with the Cheb, Gauss and Bench predictors.
We then measure the delivered guarantee as the likelihood
that at least 95% of the demand values are less than the
predicted upper prediction confidence bound, which we de-
note the success rate (S). We also track the width of the
prediction bound (B) as the difference between the actual
95th percentile demand and the predicted demand. The PG
component is configured to track three historical running
moment snapshots into the past of the first two non-central
moments. The results are shown in Table 3. S and B are
defined as:

S = P(£(0.95) > £(0.95))

and

. (1(0.95) — f(0.95)]
B_E< £(0.95) >

where f is the actual percentile function of the price, and f
is the predictor estimated percentile function of the price.

The Cheb predictor generates consistent and accurate suc-
cess rates (S) for all traces across all prediction horizons. For
daily and weekly horizons the prediction bound size (B) is
in most cases very wide, which is likely to cause risk-averse
users or users with a very limited budget to delay their job
submissions. Both the Norm and the Bench predictors un-
derestimate the risk grossly as seen by very low success rates,
although the bounds are tight.

The Norm predictor would yield better success rates if we
provided additional moment history snapshots. However,
one of our requirements is to maintain system scalability
and flexibility, so we must minimize the number of statistical
summary points to reduce the size of the snapshots.

We note that using a horizon size of one and an infinite
snapshot size in the SC component would make the sum-
mary statistics results converge to the results obtained by
the Bench predictor.

5.3 Risk Mitigation Experiment

To experimentally validate our approach, we run a schedul-
ing benchmark in a live Tycoon computational market. We

submit jobs using the NorduGrid/ARC Grid meta-scheduler [23]

and schedule locally using the extended Best Response algo-
rithm described in Section 4. Tycoon uses the Xen virtual
machine monitor [10] to host running jobs. Each job is run
in a separate, dedicated, isolated machine.

The design rationale behind this experiment is to create a
changing usage pattern that could potentially be predicted,
and to study how well our approach adapts to this pattern
under heavy load. We do not claim that the traffic pattern
is representative of a real system. See the analysis in Sec-
tion 5.2 to see how the Tycoon predictors handle real-world
usage patterns.

The experiment consists of two independent runs with
720 virtual machines created on 60 physical machines dur-
ing each 6 hour run. All jobs run on dedicated virtual ma-
chines that are configured based on the current demand, and
job resource requirements. All jobs request 800MB of disk,
512MB of memory and 1 — 100% CPU, depending on de-
mand. The users are configured as shown in Figure 8. More
specifically:

e User 1 (Continuous) continuously runs 60 parallel

92

Table 3: Prediction Result of 95th Percentile with 90%
Upper Prediction Bound. (S is the success rate and B
the prediction bound.)

PL Hour Day Week
S | B S | B S | B
Cheb || 0.93 | 0.16 || 0.95 | 0.57 || 0.93 | 1.20
Norm || 0.62 | 0.08 || 0.76 | 0.29 || 0.80 | 0.58
Bench |[0.79 | 0.28 || 0.72 | 0.24 || 0.55 | 0.17
KTH || Hour Day Week
S | B S | B S | B
Cheb || 0.96 | 0.38 || 0.95 | 0.92 {| 0.97 | 0.91
Norm ([0.87 | 0.22 || 0.87 | 0.47 || 0.76 | 0.44
Bench [0.98 | 3.25 || 0.98 | 1.97 || 0.97 | 1.40
OSC Hour Day Week
S | B S | B S | B
Cheb || 0.94 | 0.40 || 0.94 | 1.30 || 0.94 | 1.11
Norm || 0.88 | 0.22 || 0.81 | 0.70 || 0.74 | 0.51
Bench |[0.81 | 1.63 || 0.73 | 0.80 || 0.63 | 0.33
SDSC || Hour Day Week
S | B S | B S | B
Cheb || 0.95 | 0.26 || 0.96 | 0.88 || 0.95 | 0.92
Norm [0.85 | 0.15 || 0.78 | 0.47 || 0.72 | 0.43
Bench |[0.79 | 0.96 || 0.64 | 0.55 || 0.41 | 0.32

jobs with low funding on 30 physical hosts throughout the
experiment run (6 hours). The set of hosts is static and
separate from the bursty user’s hosts.

e User 2 (Bursty) sporadically runs 60 highly funded
30 minute jobs every hour on the 30 physical hosts not used
by User 1.

e User 3 (Spot Market) schedules and runs 30 jobs of
40 minutes each every hour based on spot market prices.
The spot market user selects from any of the 60 hosts in the
system.

e User 4 (Predicting) schedules and runs 30 jobs of
40 minutes each every hour based on the predicted 80th
percentile prices using the PG/Cheb predictor consuming
continuous statistical feeds from the SC component deployed
on each compute node. The predicting user selects from any
of the 60 hosts in the system.

All jobs run a CPU benchmark incrementing a counter
with a frequency based on the allocated resource share. The
value of the counter is our metrics for work completed. Both
the spot market and predicting users have the same budget
for purchasing resources.

The dynamic behavior of the system is as follows. The
continous user’s jobs run on the hosts in the left of Figure 8.
The bursty user’s jobs run on the right. The spot market
user selects the host with the lowest spot price, so that the
jobs will almost always run on one of the right hosts. On a
few rare occasions, all of the right hosts will have a higher
spot price than the left hosts. The predicting user selects
based on historical prices. These tend to be lower for the
left hosts since the bursty user avoids those hosts, so the
predicting user’s jobs will tend to use the left hosts.

The distribution of work completed by each job submit-
ted by the spot market and predicting users are graphed in
the top graph in Figure 9. The distribution for the predict-
ing user is shifted to the right compared to the spot market

Continuous User Predicting User

Select based on
historical statistics

Jobs

R B NI

Hosts | | | |

Spot Market User Bursty User

select based on
current price

B} I E
| |

30 Hosts

30 Hosts

Figure 8: Risk mitigation experimental setup

user, showing that the predicting user finishes more work.
The bottom graph shows the cumulative distribution func-
tion (CDF) of the work completed by the two users. The
area between the two plots shows that fewer predicting jobs
were impacted by the bursty user. On average, the jobs of
the predicting user performed 22.7% more work. The spot
market user’s jobs on the far right of the CDF were able (by
chance) to run on hosts at times when none of the bursty
user’s jobs were running. This is why they were able to com-
plete so much work. In contrast, the predicting user almost
never selects such hosts because it predicts (accurately in
most cases) that the bursty user will soon return. Thus, risk
mitigation both increases average performance and reduces
variability in performance, even under heavy and spiky load,
given that the spiky behavior is predictable over some time
horizon (1 hour in this case).

0.08
0.07
0.06
0.05
0.04
0.03

0.02
0.01

PDF

300000 350000 400000 450000 500000
Work Completed

o
550000

0 H
150000 200000 250000

Prediction ——
1 T T T T T T

X

CDF

o ¢ 00O
o

TT T T T T T T

JoexX.
200000

L L L L L L
250000 300000 350000 400000 450000 500000
Work Completed

0
150000 550000

Prediction —+—

Figure 9: Risk Mitigation using Percentile Predictions

5.4 Prediction Efficiency Experiment

As a final experiment, we evaluate the overhead imposed
by the prediction implementation presented in this paper
compared to the standard spot market budgeting algorithm
used in the previous experiment. The standard algorithm in-
volves the following two steps: (1) get live host spot-market
price information, (2) evaluate the bid distribution across
the hosts given a total budget to maximize the aggregate

93

performance. The prediction implementation extends step
1 by retrieving the summary statistics required to calculate
the prediction bounds, and then extends step 2 by calculat-
ing the optimal bid distribution given a desired guarantee
level and a given prediction confidence bound level. In the
experiment the algorithms were run against a cluster of 70
hosts, using a guarantee level of 95% and a confidence bound
of 90%. We interleave 400 runs using the two algorithms and
measure the round-trip time of each operation.

0.52 —T— - " — T —
v+
0.51 + f E
.
@ For et T e T S SR vt
w et s el b BT e R L e
W
8 ¥
[0}
o 049 b
L
g
£ 48 + 1
£ 048
2
= 047 | R
:
°
5 o046
3 046 F R
o
045 r . .]
Predicting Algorithm ~ +
Spot Market Algorithm
044 L L L L L L
o o o o o o o o o
0 o 0 o Ye] o 0 o
- -
& [® (] <
Job

Figure 10: Round-Trip Times of Spot-Market vs
Prediction-Based Host Selection and Budgeting

Figure 10 shows the results. The mean round-trip time
for spot-market budgeting is .46 seconds and the mean for
prediction is .5 seconds. The impact of this overhead on ac-
tual running time depends on how frequently the budgeting
process is run. In the experiment in Section 5.3, we budget
once an hour, so the overhead of the prediction algorithm
over the spot market one is (.5 — .46)/3600 = .001%. In
other words, the overhead for 70 hosts is negligible, indi-
cating that the algorithm will scale to tens of thousands of
hosts.

6. RELATED WORK

MacKie-Mason et. al. [17] investigate how price predictors
can improve users’ bidding strategies in a market-based re-

source scheduling scenario. They conclude that simple pre-
dictors, such as taking the average of the previous round of
auctions, improve expected bidder performance. Although
the goal of this work is similar to ours, they investigate a
different combinatorial allocation scenario where first price
winner-takes-it-all auctions are employed, as opposed to the
proportional share allocation in our work. Nevertheless,
their results are encouraging.

Another use of economic predictions is described by Well-
man et. al. [26], where bidding agents use the expected mar-
ket clearing price in a competitive or Walrasian equilibrium.
They employ tatonnement which involves determining users’
inclination to bid a certain value given a price-level. Well-
man et. al. compare their competitive analysis predictor
to simple historical averaging and machine learning models.
They conclude that strategies that consider both historical
data and instance-specific data provide a competitive advan-
tage. The conditional probability of price dynamics given
a price-level would be additional useful information in our
model. However, this is probably impractical in large-scale
systems with users entering and leaving the market at will,
and with large real-valued price ranges, so we assume this
behavior is incorporated in the price history itself.

Wolski et. al. [28] describe the Network Weather Service
(NWS) which has been used in large-scale Grid deployments
to monitor compute jobs. Our work differs from NWS in
both how statistics are collected and stored and how predic-
tions are computed. NWS uses a multi-service infrastructure
to track, store and distribute entire time-series feeds from
providers to consumers via sensors and memory components
(feed history databases). Our solution only maintains sum-
mary statistics and therefore is more light-weight. No per-
sistent storage or searching infrastructure is required. For
prediction, NWS uses simple moving average with static pa-
rameters. We use more general predictors that can handle
any dynamics and adapt their parameters automatically. In
addition, the focus in [28] is on predicting queue wait times,
whereas we focus on predicting actual demand.

Brevik et. al. [4] present a Binomial Method Batch Pre-
dictor (BMBP) complementing NWS [28]. The approach is
to assume that each observed value in the time-series can
be seen as an independent draw from a Bernoulli trial. The
problem is that this does not account for time correlations,
which we have found to be substantial in our analysis. Bre-
vik addresses the correlation by first detecting structural
changes in the feed when BMBP generates a sequence of
bad predictions and thereafter truncating the history which
the predictor model is fit against. Our approach is to lever-
age the correlation by using biased samples of the most re-
cent time intervals, which result in dynamic adaptation of
’structural’ changes in the feed. The problem of monitoring
and fixing prediction problems a posteriori as in BMBP is
that the detection mechanism is somewhat arbitrary and a
structural failure of the model could result in great losses,
which could defeat the purpose of providing risk mitigating
predictions [18].

Our prediction interval calculation was inspired by Haan
and Meeker [13] but they also assume that random indepen-
dent samples are drawn and that a large number of sample
data points are used to yield tight prediction bounds. Nei-
ther of these two assumptions are true in our scenario. Our
calculation of the prediction interval can be seen as more
in the spirit of the simple empirical intervals proposed by

94

Williams and Goodman [27]. Their empirical source is the
previous sample point, whereas, we use summary statistics
as input to the empirical predictions. This allows us to
cover larger prediction horizons with greater confidence us-
ing fewer data points.

The data analysis of the distribution characteristics in
Section 3 was inspired by the work by Mandelbrot on mod-
eling risk in volatile markets [19]. The fat-tail behavior
of the hourly volatility (not daily or weekly across all the
traces) fits well with the volatility Mandelbrot has seen in
the cotton-price, Deutschmark-Dollar exchange rate, and
the stock price market dynamics, which he calls 'wild’ ran-
domness or chance.

7. CONCLUSIONS

All of the demand traces studied show non-Gaussian prop-
erties, which called for more generic distribution-free predic-
tors. The clear correlation between subsequent hourly, daily
and weekly time intervals of the traces suggests that the typ-
ical ITD assumption is not valid and would lead to risk under-
estimation. This leads us to a model based on dynamically
tracking running moments and the most recent snapshots of
these moments instantiated by a worst-case bound, Cheby-
shev inequality influenced distribution estimator. Although
this predictor does not generate tight prediction bounds for
daily and weekly predictions, it is consistent in the confi-
dence levels promised across all traces investigated, which
makes it a good general indicator of the model uncertainty
and reliability of the predictions. In highly volatile envi-
ronments, making point predictions into the future is not
possible with any level of accuracy, but high volatility pe-
riods are typically clustered. Thus, accurately estimating
model uncertainty helps users to decide 1) whether to delay
running their jobs until after the 'stormy’ period has passed,
or if they do decide to run, 2) how much insurance funding
to spend.

The Bench predictor shows how poor predictions can be
if one only relies on the available past history and ignores
time correlations. Similarly, the Norm predictor exemplifies
how inaccurate predictions can be if symmetric Gaussian
distributions are wrongly assumed. The distribution agnos-
tic Cheb predictor, on the other hand, provides superior
predictions in cases where demand was heavily skewed and
the volatility spiky, e.g. in the PlanetLab trace.

We have seen that our prediction approach can easily be
deployed in scheduling scenarios where the most reliable
hosts, delivering a good sustained performance over time,
need to be picked for long-running jobs.

This work has focused primarily on helping consumers
spend the right amount of money when purchasing resource
shares, but the prediction approach with SC/PG/Cheb is
general enough to be used by brokers pricing options or
reservations as well, which is the focus of future work.

We would also like to study the effects different mixes of
prediction, spot-market and reservation usage patterns have
on the overall system efficiency and fairness.

8. ACKNOWLEDGMENTS

We thank our colleagues Scott Clearwater, Bernardo Hu-
berman, Li Zhang, Fang Wu, and Ali Ghodsi for enlight-
ening discussions. This work would not have been possi-
ble without the funding from the HP /Intel Joint Innovation

Program (JIP), our JIP liason, Rick McGeer, and our col-
laborators at Intel, Rob Knauerhase and Jeff Sedayao. We
are grateful to Vivek Pai at Princeton University for mak-
ing the PL trace available and helping us interpret it; Travis
Earheart and Nancy Wilkins-Diehr at SDSC for making the
SDSC trace available; and Lars Malinowsky at PDC for pro-
viding the KTH trace.

9.
(1]

2

(3]

(4]

5]

6

(7]

8]

[9

(10]

(11]

(12]

(13]

(14]

(15]

REFERENCES

An Algorithm for Computing the Inverse Normal Cumulative
Distribution Function.

http://home.online.no/~ pjacklam/notes/invnorm/, 2007.
Parallel Workloads Archive.
http://www.cs.huji.ac.il/labs/parallel /workload/, 2007.

M. Bodruzzaman, J. Cadzow, R. Shiavi, A. Kilroy, B. Dawant,
and M. Wilkes. Hurst’s rescaled-range (r/s) analysis and
fractal dimension of electromyographic (emg) signal. In
Proceedings of IEEE Souteastcon ’91, pages 1121-1123,
Williamsburg, VA, USA, 1991. IEEE.

J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds on
queuing delay for batch-scheduled parallel machines. In PPoPP
’06: Proceedings of the 2006 ACM Principles and Practices
of Parallel Programming, New York, NY, USA, 2006. ACM.
R. Buyya, D. Abramson, and S. Venugopal. The Grid
Economy. Proceedings of the IEEE, Special Issue on Grid
Computing, 93(3):479-484, March 2005.

Chaki Ng and Philip Buonadonna and Brent N. Chun and
Alex C. Snoeren and Amin Vahdat. Addressing Strategic
Behavior in a Deployed Microeconomic Resource Allocator. In
Proceedings of the 3rd Workshop on Economics of
Peer-to-Peer Systems, 2005.

S. Clearwater and B. A. Huberman. Swing Options. In
Proceedings of 11th International Conference on Computing
in Economics, June 2005.

S. Clearwater and S. D. Kleban. Heavy-tailed distributions in
supercomputer jobs. Technical Report SAND2002-2378C,
Sandia National Labs, 2002.

David C. Parkes and Ruggiero Cavallo and Nick Elprin and
Adam Juda and Sebastien Lahaie and Benjamin Lubin and
Loizos Michael and Jeffrey Shneidman and Hassan Sultan.
ICE: An Iterative Combinatorial Exchange. In Proceedings of
the ACM Conference on Electronic Commerce, 2005.

B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the Art
of Virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, 2003.

M. Feldman, K. Lai, and L. Zhang. A Price-Anticipating
Resource Allocation Mechanism for Distributed Shared
Clusters. In Proceedings of the ACM Conference on
Electronic Commerce, 2005.

W. Feller. An Introduction to Probability Theory and its
Applications, volume II. Wiley Eastern Limited, 1988.

G. J. Hahn and W. Q. Meeker. Statistical Intervals: A Guide
for Practitioners. John Wiley & Sons, Inc, New York, NY,
USA, 1991.

H. Hurst. Long term storage capacity of reservoirs. Proc.
American Society of Civil Engineers, 76(11), 1950.

L. V. Kale, S. Kumar, M. Potnuru, J. DeSouza, and

S. Bandhakavi. Faucets: Efficient resource allocation on the
computational grid.

95

16]

(17]

(18]

(19]

[21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

In ICPP ’04: Proceedings of the 2004 International
Conference on Parallel Processing (ICPP’04), pages 396—405,
Washington, DC, USA, 2004. IEEE Computer Society.

K. Lai. Markets are Dead, Long Live Markets. SIGecom
Exchanges, 5(4):1-10, July 2005.

J. K. MacKie-Mason, A. Osepayshvili, D. M. Reeves, and

M. P. Wellman. Price prediction strategies for market-based
scheduling. In ICAPS, pages 244-252, 2004.

B. Mandelbrot, A. Fisher, and L. Calvet. The multifractal
model of asset returns. In Cowles Foundation Discussion
Papers: 1164. Yale University, 1997.

B. Mandelbrot and R. L. Hudson. The (Mis)behavior of
Markets: A Fractal View of Risk, Ruin, and Reward. Basic
Books, New York, NY, USA, 2004.

L. Peterson, T. Anderson, D. Culler, , and T. Roscoe.
Blueprint for Introducing Disruptive Technology into the
Internet. In First Workshop on Hot Topics in Networking,
2002.

O. Regev and N. Nisan. The Popcorn Market: Online Markets
for Computational Resources. In Proceedings of 1st
International Conference on Information and Computation
Economies, pages 148-157, 1998.

T. Sandholm, K. Lai, J. Andrade, and J. Odeberg.
Market-based resource allocation using price prediction in a
high performance computing grid for scientific applications. In
HPDC ’06: Proceedings of the 15th IEEE International
Symposium on High Performance Distributed Computing,
pages 132-143, June 2006. http://hpdc.lri.fr/index.php.

O. Smirnova, P. Erola, T. Ekelof, M. Ellert, J. Hansen,

A. Konsantinov, B. Konya, J. Nielsen, F. Ould-Saada, and

A. Waanéanen. The NorduGrid Architecture and Middleware
for Scientific Applications. Lecture Notes in Computer
Science, 267:264-273, 2003.

D. F. Vysochanskij and Y. I. Petunin. Justification of the 3
sigma rule for unimodal distributions. Theory of Probability
and Mathematical Statistics, 21:25-36, 1980.

C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A Distributed Computational
Economy. Software Engineering, 18(2):103-117, 1992.

M. P. Wellman, D. M. Reeves, K. M. Lochner, and

Y. Vorobeychik. Price prediction in a trading agent
competition. J. Artif. Intell. Res. (JAIR), 21:19-36, 2004.
W. Williams and M. Goodman. A simple method for the
construction of empirical confidence limits for economic
forecasts. Journal of the American Statistical Association,
66(336):752-754, 1971.

R. Wolski, G. Obertelli, M. Allen, D. Nurmi, and J. Brevik.
Predicting Grid Resource Performance On-Line. In Handbook
of Innovative Computing: Models, Enabling Technologies,
and Applications. Springer Verlag, 2005.

R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-commerce:
Market formulations controlling resource allocation on the
computational grid. In IPDPS ’01: Proceedings of the 15th
International Parallel and Distributed Processing Symposium
(IPDPS’01), page 10046.2, Washington, DC, USA, 2001. IEEE
Computer Society.

F. Wu, L. Zhang, and B. A. Huberman. Truth-telling
Reservations. http://arxiv.org/abs/cs/0508028, 2005.

L. Xjao, Y. Zhu, L. M. Ni, and Z. Xu. Gridis: An
incentive-based grid scheduling. In IPDPS ’05: Proceedings of
the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Papers, page 65.2,
Washington, DC, USA, 2005. IEEE Computer Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

