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We evaluate different prediction techniques to estimate future demand of resource

usage in a computational market. Usage traces from the PlanetLab network are

used to compare the prediction accuracy of models based on histograms, normal

distribution approximation, maximum entropy, and autoregression theory. We

particularly study the ability to predict the tail of the probability distribution in

order to give guarantees of upper bounds of demand. We found that the maximum

entropy model was particularly well suited to predict these upper bounds.

1. Introduction

Large scale shared computational Grids allow more efficient usage of re-

sources through statistical multiplexing. Economic allocation of resources

in such systems provide a variety of benefits including allocating resources

to users who benefit from them the most, encouraging organizations to

share resources, and providing accountability 12,6,1,14.

One critical issue for economic allocation systems is predictability. Users

require the ability to predict future prices for resources so that they can

plan their budgets. Without predictability, users will either over-spend, sac-

rificing future performance, or over-save, sacrificing current performance.

Both lead to dissatisfaction and instability. Moreover, the lack of accurate

information precludes rational behavior, which would disrupt the operation

of the many allocation mechanisms that depend on rational behavior.

There are three parts to predictability: the predictability provided by
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the allocation mechanism, the predictability of the users’ behavior, and the

predictability provided by statistical algorithms used to model the behavior.

We examine the latter two. Consequently, these results are not dependent

on a specific allocation mechanism and instead apply to many systems.

The goal of this paper is to examine the degree to which future demand

can be predicted from previous demand in a shared computing platform.

Ideally, we would use the pricing data from a heavily used economic grid

system, but such systems have not yet been widely deployed. Instead, we

examine PlanetLab9, a widely-distributed, shared computing platform with

a highly flexible and fluid allocation mechanism. The PlanetLab data set

has the advantage of encompassing many users and hosts and having very

little friction for allocation. However, PlanetLab does not use economic al-

location, so we substitute usage as a proxy for pricing. Since many economic

allocation mechanisms (e.g., Spawn11, Popcorn10, ICE4, and Tycoon7) ad-

just prices in response to the demand, we believe that this approximation

is appropriate.

We examine this data set using four different statistical prediction al-

gorithms: histogram (Hist) approximation, maximum entropy (MaxEnt)

density estimation, an autoregression (AR) time series model, and a nor-

mal (Norm) distribution model. We evaluated these algorithms by feeding

them samples of usage data over a particular period of time and then mea-

suring the error of the generated model. We then measured the error of

using these models to predict future demand.

Our findings are as follows:

• MaxEnt and Norm were able to accurately model the data set over

larger time periods. Maximum entropy estimation is approximately twice

as accurate as a normal model because of its ability to capture skewness.

Both methods are an order of magnitude more accurate than histogram

approximation. The MaxEnt model is based on fitting integrals of the

distribution function to statistical moments. This fit may not yield satis-

factory approximations if the number of data samples in the time window

investigated are too few, and we then fall back to the normal distribution

approximation.

• All of the techniques produce inaccurate predictions, when trying to

predict the cumulative distribution function for future demand. Autoregres-

sion has the additional disadvantage of requiring so much compute overhead

that it was not able to complete some predictions. Furthermore, the AR

model requires more history data to be maintained in order to retrain the

prediction model to fit the current load.
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• Despite inaccurate predictions of the full cumulative distribution func-

tion, MaxEnt and Norm were able to produce accurate bounds for demand.

This is important because bounds are sufficient for users to budget. For

example, if a user knows that the probability of hosts being less than $1

per host within the next week is 99%, and he needs 10 hosts, then he knows

he should budget $10.

2. Prediction Algorithms

The goal of the prediction algorithms is to predict the demand for a resource

based on historical data. In an economic system, the demand determines

the price, which allows users to budget accurately. The general prediction

model we use is summarized here.

P (Y ≤
y − µ

σ
) = Φ(

y − µ

σ
) (1)

y ≤ µ + σΦ−1(p) (2)

where y is the demand with mean µ and standard deviation σ, and Φ is

the cumulative probability density function (CDF) of a normal distribution.

Eq. 1 gives us a way to get a probability of a demand given its mean and

standard deviation, and Eq. 2 allows us to find the demand corresponding

to level of guarantee or probability.

In this work we want to remove the assumption of a normal distribution,

and instead only assume an iid (independent identically distributed) distri-

bution, and then compare the results to those obtained using the normal

distribution assumption. More specifically, this means that we want to take

the skewness of the distribution into consideration in our predictions. This

extension is motivated by previous work on computational markets and us-

age behavior on the web 3 have shown that heavy-tailed distributions are

common.

We evaluate three different approaches to tackle this generalization here,

histogram (Hist) approximation, maximum entropy (MaxEnt) density es-

timation, and an autoregression (AR) time series model. The results are

benchmarked against approximations used with the normal (Norm) distri-

bution assumption, and compared to the real outcome.

The Hist approximation is based on placing sample data points in a

fixed number of bins with predetermined data ranges. It therefore assumes

some a-priori knowledge of the variance of the data. In our benchmarks we
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used 10 and 100 bins to approximate the distribution of values in a range

of about 5000 distinct data values.

The MaxEnt model is based on the concept of choosing a distribution

function which maximizes the entropy or randomness (or simply the un-

known parameters) of a function given some characteristics such as statis-

tical moments. This idea was first articulated by E.T. Jaynes in 5. Cover

and Thomas 2 then proved that all functions maximizing the entropy of a

distribution are of a general form. For example, given the following con-

straints of the three moments about the origin µ1, µ2, µ3

∞∫

−∞

f(x)dx = 1,

∞∫

−∞

xf(x)dx = µ1,

∞∫

−∞

x2f(x)dx = µ2,

∞∫

−∞

x3f(x)dx = µ3

then the distribution function that maximizes the entropy has the form

f(x) = eλ0+λ1x+λ2x2
+λ3x3

Now the problem of finding the distribution function f reduces to finding

the λ parameters. Cover and Thomas suggests starting with the parame-

ters known for a normal distribution and then ”wiggle” them to find the

best fit. In our implementation we performed this ”wiggling” by applying

the steepest descent iterative optimization algorithm described in 13. In

summary, we iteratively try to get closer to

θ = λ0, λ1, λ2, λ3

by initializing it to the values know for a normal distribution and then

assigning it subsequent values according to

θt+1 = θt − H−1B

where H is the Hessian matrix defined as

Hk,j =

∫
xkxjf(x, θt)dx, 0 ≤ k, j ≤ 3

and B is the difference vector

Bk =

∫
xkf(x, θt)dx − µk, 0 ≤ k ≤ 3

Note that we use the first three moments to capture the skewness of the

distribution. Using more than three moments introduces irregular fluctua-

tions which could prevent the algorithm from converging, and it also more

easily runs into numerical limitations such us number overflows and round

off errors.
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The AR model 8 is a standard time-series model of the following form

Xt = µ +

k∑
i=1

αi(Xt−1 − µ)

where µ is the measured mean in the training data, and k is the order (we

used k = 2 in our benchmarks). The model parameters αi are estimated by

first calculating the autocorrelation vector for the training data and then

solving the Yule-Walker equations. Note that the white-noise parameter

has been omitted for simplicity.

Four different evaluations are performed on time series data using these

techniques. First, we look at how well the summary data, such as bin den-

sity with Hist, the first three moments about the origin with MaxEnt, and

the first two moments with Norm approximate the distribution described

in the current period. If we have an iid distribution this should also give

an indication of the possible accuracy of future predictions. Second, we

look at how well predictions based on approximations of the cumulative

density function in previous intervals can predict future distributions, and

compare that to AR prediction results. Third, we look at how the actual

distribution changes over time in the different intervals studied. Finally we

look at how well the 99th percentile of the cumulative distribution function

can be estimated in order to see how well guarantees can be given that the

price will not exceed a certain value.

We also look at the convergence rate of the MaxEnt estimation. If

it does not converge we, as previously mentioned, fall back to the Norm

approach.

3. Results

We study usage time-series data, based on 5-minute snapshots of the ag-

gregated number of PlanetLab slices allocated across the whole network.

Data from two months (November-December 2005) were used. Training

and future prediction horizons corresponding to predictions roughly from 2

hours to 3 days into the future were evaluated.

3.1. Modelling

In Figure 1 we can see that the MaxEnt approximation improves the ac-

curacy of the CDF fit substantially compared to the normal distribution

technique. SSE is the sum of the squares of the errors when plotting the
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Figure 1. PlanetLab Density Approximation

CDF with a granularity of 100 data points. The windows correspond to

number of 5-minute snapshots used to predict the same number of 5-minute

snapshots into the future.

We can see that the MaxEnt approximation does not converge in the

case of the window size 50 in more than 35% of the cases. We wanted to

investigate why, and performed a correlation test on the range of the data

values in the window, the standard deviation of the data, and the likelihood

of convergence. We obtained correlation coefficients 0.56, and 0.55 for data

range and standard deviation respectively which are significant at the 1%-

level according to a t-Student test. Intuitively this may be caused by the

integral calculations used in the MaxEnt fit being too short to find the

underlying entropy maximizing distribution. As a clarification, convergence

of the MaxEnt approximation is defined by the error when fitting to the

moments expected is less then a certain value ε. With the PlanetLab data

we saw that an ε of 100 worked best, but there is always a tradeoff between

accuracy and convergence rate.

3.2. Predicting the Cumumlative Distribution

Figure 2 shows an example of an interval estimation and how the different

CDF functions compare. The window size in this case was two hours. We

can see that the entropy model gives a much better fit to the non-normal

behavior of the curve. The histogram estimation (with 100 bins) is quite
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Figure 2. PlanetLab Density Approximation CDF

a coarse grained estimation, and requires more state to be maintained as

opposed to just three running moments as in the entropy case.

3.3. Predicting Bounds
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Figure 3. PlanetLab Density Prediction
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A bit surprisingly we see in Figure 3 that the MaxEnt model does not

produce better prediction results over time than the normal approximation.

The AR curve is provided for reference. It does not make sense to use

the AR model unless it predicts better than predicting the outcome of

the previous period since it also requires all the data points to be kept

in history. Since this is not the case for these long-interval predictions it

provides no added value in this situation. Another severe limitation of AR

is that it numerically due to large Matrix computations is not feasible to

predict more than roughly 300 data points into the future. Note that in the

graph this is shown by the AR SSE being set to 0 for window sizes greater

than 300.
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Figure 4. PlanetLab Density Variance

An explanation to why the MaxEnt model cannot benefit from its more

accurate density approximations when predicting future densities can be

seen in Figure 4. Each CDF in the Figure is taken in a subsequent interval

so the t1 curve contains the distribution of all the data points from the start

of the measurement to time t1, the t2 curve has all the data points between

t1 and t2, etc. The mean point of the density moves back and forth in

an unpredictable manner. Another indicator of this is the high SSE value

of the benchmark prediction (predicting last periods CDF for the next) in

Figure 3 (around 11) compare to the values in 1 (around 0.2).

It is then more encouraging to see that the 99th percentile MaxEnt
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Figure 5. PlanetLab Tail Prediction

estimates in Figure 5 are more accurate than with Norm. We should also

note here that the training was done on the maximum amount of history

data available and not just the previous period to do more of a worst case

estimation of the tail as opposed to an overall accurate one. The error

presented in Figure 5 is calculated as the difference between the measured

value and the approximation divided by the measured value.

4. Conclusions

Although the statistical prediction algorithms that we examine here were

not able to accurately predict future demand in the PlanetLab data set, we

found that the MaxEnt algorithm was able to accurately predict bounds on

future demand.

Some areas for future work are to examine the performance of MaxEnt in

a live system and for systems with different applications and user behaviors

than PlanetLab. Ultimately we hope to examine the performance of the

algorithms in a live economic Grid system.

Given the fluidity of PlanetLab usage and the lack of a pricing mech-

anism to moderate usage, the accuracy of the MaxEnt algorithm gives

us optimism that prediction algorithms will be accurate in real economic

systems. We believe that this will ultimately lead to more stable, more

economically efficient systems.
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