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Abstract

We present the implementation and analysis of a market-
based resource allocation system for computational Grids.
Although Grids provide a way to share resources and take
advantage of statistical multiplexing, a variety of challenges
remain. One is the economically efficient allocation of re-
sources to users from disparate organizations who have
their own and sometimes conflicting requirements for both
the quantity and quality of services. Another is secure
and scalable authorization despite rapidly changing allo-
cations.

Our solution to both of these challenges is to use a
market-based resource allocation system. This system al-
lows users to express diverse quantity- and quality-of-
service requirements, yet prevents them from denying ser-
vice to other users. It does this by providing tools to the
user to predict and tradeoff risk and expected return in
the computational market. In addition, the system enables
secure and scalable authorization by using signed money-
transfer tokens instead of identity-based authorization. This
removes the overhead of maintaining and updating access
control lists, while restricting usage based on the amount
of money transferred. We examine the performance of the
system by running a bioinformatics application on a fully
operational implementation of an integrated Grid market.

∗also affiliated with Karolinska Hospital, Gustav V Research Institute,
Dept. of Medicine, Atherosclerosis Research Unit, Stockholm, Sweden

1. Introduction

The combination of decreasing cost for network band-
width and CPU performance and the availability of open-
source distributed computing middleware has led the high-
performance computing community away from monolithic
supercomputers to low-cost distributed cluster solutions.
This model of computing allows users with bursty and com-
putationally demanding tasks to share and use compute re-
sources on demand. This usage model, aka utility comput-
ing [24], Grid computing [22], peer-to-peer compute farm-
ing [28], or Global Computing [23], has been applied to
solve diverse technical computing problems in fields such
as, bioinformatics [9], high-energy physics [10], graphics
rendering [3], and economic simulation [2].

One common question remains: how to manage the
allocation of resources to users? One challenge is that
users are from disparate organizations and have their own
and sometimes conflicting requirements for both the quan-
tity and quality of services. For example, academic Grid
projects [37, 4, 38, 8, 7, 6, 5, 10] typically require resources
for throughput sensitive, long-running batch applications,
while industrial utility computing offerings [14, 24, 26] typ-
ically require response-time sensitive, interactive, and con-
tinuous application server provisioning. One common so-
lution is to have separate resource allocation mechanisms
for different applications. However, this merely shifts the
problem from reconciling the resource requirements of dif-
ferent applications to reconciling the resource requirements
of different mechanisms.

Another challenge is that users have a web of relation-
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ships with regard to how they wish to share resources with
each other. For example, one site may wish to share re-
sources with a remote site, but only when demand from lo-
cal users is low. Another example is that a site may wish to
be reciprocative, where it only shares resources with sites
that share resources with it. One common solution is to
use access control lists (ACLs) to authorize access to re-
sources. The problem is that managing ACLs is difficult
because many users could potentially access a site, a site
has many different types of resources, each of which may
need a separate ACL, and the degree of access that each
user has could change with each access. For example, as a
user from site A uses host X at site B, site B would want to
decrease the ability of other site A users from being able to
consume resources at host X and possibly other hosts at the
site. The dynamic updating of this amount of data not only
increases overhead and development time, but could lead to
inconsistencies that allow exploitation of the system.

Instead, we examine a market-based approach to re-
source allocation in Grids. A number of models and mecha-
nisms for electronic markets, and computational economies
have been proposed [40, 30, 36, 35, 33, 12, 27]. In pre-
vious work we have presented and analyzed Tycoon [31],
a market-based resource allocation system for shared clus-
ters. Here we focus on how market-based techniques ad-
dress issues in a Grid environment. More specifically, our
contributions are as follows:

• A Tycoon controlled cluster scheduler for Grid
execution managers. The NorduGrid/ARC meta-
scheduler [38] used by many academic Grid projects in Eu-
rope, such as SweGrid [37], to schedule large-scale scien-
tific jobs across a collection of heterogeneous HPC sites us-
ing a uniform job submission and monitoring interface, was
integrated with Tycoon. The integration allows the large
existing user base of academic Grids to bid for and use re-
sources controlled by economic markets seamlessly. We
are also working on integrating our scheduler with Globus
Toolkit 4 [21].

• Pilot application experiments. We use a bioinformat-
ics pilot application currently deployed in an academic Grid
to verify our model and implementation. A bioinformat-
ics application scanning and analyzing the complete human
proteome using a blast-based similarity search was run on a
Tycoon cluster and evaluated.

• Price prediction models and mechanisms. We dis-
cuss, implement and analyze models and mechanisms to
predict cost of resources and give guarantees of QoS (Qual-
ity of Service) levels based on job funding. In a spot market
as implemented by Tycoon it can be hard to predict the fu-
ture price of a resource and know how much money should
be spent on funding a job with a specific set of requirements.
To that end we provide a suite of lightweight prediction ca-
pabilities that can give users guidance regarding what per-

formance levels to expect for different levels of funding of
a job.

• A security model combining identity and capability-
based access control. In academic Grid networks it is im-
portant to identify all users securely because a user’s iden-
tity, and membership in virtual organizations, can automati-
cally give access to shared resources. In electronic markets,
however, the key question is whether you can present proof
of payment for a resource. Our model allows Grid users
to make use of electronic money transfer tokens, or checks,
that can be used to pay for and gain access to resources to
be used by a compute job, as well as to specify its priority
and thereby ’buy’ a certain level of QoS.

As a result, we believe that the combination of Grid and
market mechanisms is a promising and viable approach to
sharing resources in an economically sustainable way while
ensuring fairness and overall system efficiency.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide an overview of the design and discuss
how it meets our goal. In Section 3, we delve more deeply
into implementation specifics. Our price prediction analysis
is presented in Section 4. Section 5 contains experimental
results from running the bioinformatics application on our
integration testbed. We describe related work in Section 6.
We conclude by discussing some limits of our model and
future work in Section 7.

2. Architecture Overview

2.1. A Case for Grid Markets

High-end compute resources, such as Grid-enabled High
Performance Computing (HPC) clusters, are necessary for
many scientific computing applications. These applications
can use more resources to scan larger input data sets, pro-
vide a higher resolution for simulations, or simply complete
the same amount of work faster. In other words, they exhibit
a continuous utility curve where a larger resource share re-
sults in a higher utility.

Traditional queueing and batch scheduling algorithms
assume that job priorities can simply be set by administra-
tive means. In large-scale, cross-organizational, and poten-
tially untrusted Grids, this can be expensive and slow, and
allocations may not reflect the true relative priorities of jobs.
Determining the relative priorities of applications requires
a truth revelation mechanism like a market [12, 27, 41, 39].
This provides an incentive for uses to accurately prioritize
their applications.

2.2. Tycoon

In this paper, we apply a previously described market-
based resource allocation system (Tycoon) [29] in the Grid
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context. In this section, we briefly review this system before
describing the security and prediction extensions that are
the focus of this paper. Please see the previous publication
for additional details.

The main characteristics of Tycoon are its decentral-
ized and continuous markets. Each host that contributes
resources to a Tycoon network runs its own market. This
reduces the dependency on centralized components, mak-
ing the system more scalable, fault-tolerant, and agile in the
allocation of resources. The continuous market allows users
to bid and receive resources at a high frequency (10 seconds
by default), which allows applications to start quickly and
react to quickly changing load. This is more important for
service-oriented applications like web servers and databases
than the typical Grid applications that runs for days. Shar-
ing the same infrastructure across these different types of
applications allows better statistical multiplexing.

Another characteristic of Tycoon is the use of virtual-
ized resources. This allows multiple applications to share
the same host, which is useful both for applications that do
not require a whole host and applications that have highly
variable demand. Tycoon currently uses the Xen para-
virtualization system [19], which imposes an overhead of
1%-5% for typical workloads.

The architecture of Tycoon is composed of the Bank,
which maintains information on users like their credit bal-
ance and public keys, the Service Location Service, which
maintains information on available resources, and Auction-
eers, which run on each host and manage the market used
to allocate resources on that host.

One of the main issues in this kind of distributed mar-
ket is the efficiency relative to an ideal centralized mar-
ket. Feldman, et al. [20] show that this market achieves
both fairness and economic efficiency in the equilibrium
when users use the Best Response optimization algorithm.
Briefly, this algorithm solves the following optimization
problem for a user:

maximize Ui =
∑n

j=1
wi,j

xij

xij+yj
subject to (1)

∑n

j=1
xij = Xi, and xij ≥ 0. (2)

where Ui is the utility of user i across a set of resources,
wi,j is the preference of machine j as perceived by user i,
for example the CPU capacity of the machine, xi,j is the bid
user i puts on host j, yj the total of all bids or the price of
host j, and finally Xi is the total budget of user i.

One contribution in this work is to expose this Best Re-
sponse algorithm to Grid HPC users, to allow them to eas-
ily use compute resources in a competitive market. Next we
describe the architecture of this integration.

2.3. Grid Market Architecture

Our solution is novel in the sense that we maintain the
overall Public Key Infrastructure (PKI) security model of
the Grid, but introduce supply and demand driven dynamic
pricing and resource share negotiation on a spot market
within a virtual Grid cluster. Differentiated services are of-
fered in an incentive compatible manner where the Grid
user can attach a check-like token to jobs to pay for the
resources to be consumed. The user needs to be fully au-
thenticated using a Grid PKI handshake, but the authoriza-
tion step is based on a capability composed of the funds
transferred to the scheduling agent. The scheduling agent
uses the Best Response algorithm described in the previ-
ous section to distribute and place bids on compute nodes.
Virtual machines are created dynamically, with the appro-
priate QoS levels automatically configured in proportion to
the bids placed. Job stage-in, execution, monitoring, perfor-
mance boosting (by adding funds) and stage-out are all han-
dled by the agent. Figure 1 depicts the overall architecture
of the system. The Tycoon infrastructure is integrated with
the Grid Job manager as a local scheduling system, fully
transparent to the end-users. The next section describes the
design and implementation in more detail.

Figure 1. Tycoon Grid Market Architecture.

3. Grid Market Implementation

This section describes our integration of Tycoon with the
Grid. Our approach is to integrate Tycoon with the infras-
tructure currently deployed in the SweGrid project, a na-
tional Grid in Sweden spanning six sites and a total of 600
compute nodes interconnected by the 10GB/s GigaSunet
network. SweGrid has been in operation for a year and a
half. The sites run the Nordugrid ARC middleware, which
is based on the Globus toolkit, and currently connects about
50 HPC sites in 12 countries. Both ARC and Globus focus
on providing an abstracted local cluster scheduler and exe-
cution manager so that the job submission mechanism and
interface is the same regardless of whether PBS, LSF, Sun
Grid Engine, etc., is used locally at the site.
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As a result, to enable Tycoon for Grid users seamlessly,
our approach was to write a Tycoon scheduler plugin for
ARC to simplify the transition of SweGrid users to this new
infrastructure. Integration directly as a Globus (GT4) plugin
is work in progress. The Tycoon cluster is exposed as any
other ARC cluster both for monitoring and job submission
purposes, with the only difference being that the cluster is
virtualized and thus reports number of virtual CPUs as op-
posed to physical compute node CPUs.

In ARC, the compute job requirements are describe in an
XRSL (extended Globus Resource Specification Language)
file. The CPU or WallTime XRSL attribute is mapped to
the Tycoon resource bid deadline. The transfer token, de-
scribed in more detail in the next section, is mapped to the
total budget to be used within this deadline. Finally, the
count attribute describes how many concurrent virtual ma-
chines or (virtual CPUs) the job requires. Mechanisms are
provided to allow a job running in a virtual machine to ac-
cess its ordinal number within such a batch of sub-jobs to,
for example, process a different input data set. The bid dis-
tribution is determined by the Best Response algorithm of
Tycoon. It calculates the optimal bids to maximize the over-
all utility gained from running a job on a set of host.

The ARC runtime environment allows users to specify
what software needs to be installed in order to run the job.
This software is installed automatically in the virtual ma-
chine using Yellow dog Updater, Modified (yum)[1]. The
Tycoon ARC plugin also handles job stage-in, stage-out and
output checkpoint monitoring. Jobs that have been submit-
ted may be boosted with additional funding to complete
sooner, and if the money deposited into host accounts has
not been used (Tycoon only charges for resources actually
used not bid for) the outstanding balance will be refunded to
the user. Dynamic pricing, accounting and billing thus all
happen automatically by means of the Tycoon infrastruc-
ture. Furthermore, the QoS specified in the XRSL descrip-
tion is automatically enforced by configuring custom virtual
machines on demand when jobs require them. To limit the
overhead of virtual machine creation, a user may reuse the
same virtual machine between jobs submitted on the same
physical host. However, no application data or scratch space
is shared by different jobs.

Figure 2 shows a screenshot of the ARC Grid Monitor
monitoring the Tycoon cluster. Note that since the num-
ber of CPUs are the number of virtual machines currently
created, it can increase dynamically up to a maximum of
about 15 times the number of physical nodes. Thus, for the
current deployment of 40 hosts, a maximum of 600 virtual
single CPU compute nodes can be offered concurrently to
users by the Tycoon Grid. We could easily implement a
virtual machine purging or hibernation model that could in-
crease this number further if not all 600 machines need to
be used at the same time, with the penalty of more overhead

to setup a job on a virtual machine.

Figure 2. Screenshot of Nordugrid/ARC Tycoon monitor.

In addition to the virtualization of compute nodes, the
cluster is also virtualized, in the sense that the Tycoon ar-
chitecture is flat without hierarchies. This allows the sub-
mission agent to pick up compute nodes from any available
physical cluster. Most of the current machines are at HP
Labs in Palo Alto, California, but others are owned by In-
tel Research in Oregon, by Singapore, and by the Swedish
Institute of Computer Science in Stockholm. The current
limitation of 40 physical machines is only an artifact of the
current state of the virtual cluster, and can grow dynami-
cally as more clusters and nodes are added to the Tycoon
network. Regardless of whether the compute node is local
to the submission agent the host funding, job stage-in, job
execution, job monitoring and job-stage out will all be done
the same way. Finally, the agent itself can be replicated
and partitioned to pick up a different set of compute nodes.
The ARC meta-scheduler could then be used to load bal-
ance and do job to cluster matchmaking between the repli-
cas. We therefore believe that this model will scale well as
the number of compute nodes and virtual machines on these
compute nodes increase.

3.1. Security Design

Our goal is to make the security integration as seamless
as possible to the end-users, which means allowing Grid
users to reuse their credentials when accessing a Tycoon
cluster. To access a Tycoon cluster one needs a Tycoon bank
account. So our task became equivalent to mapping a Grid
certificate to a Tycoon bank account. Our approach is to
transfer money from the user to the resource broker and map
the proof of the transfer to a Grid identity, the Distinguished
Name (DN) of the user.
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This approach requires no manual access control list
setup and it allows the user to keep both the Grid identity
private key and Tycoon bank account private key on the
local machine only. Furthermore, it does not require any
changes to the existing Tycoon services. The user trans-
fers money to the resource broker’s bank account and then
signs the receipt together with a Grid DN. The mapping can
thus be decided independent of the transfer and can there-
fore also be used by arbitrary Grid users who do not have
any Tycoon infrastructure deployed. On the resource side it
is verified that the money transfer was indeed made into the
broker account and that the transfer token has not been used
before. The signature of the DN mapping is also verified
to make sure that no middleman has added a fake mapping.
Once the transfer token has been verified a new sub-account
to the broker account is created and the money verified is
transferred into this account by the broker. The new ac-
count is then used to fund and create host accounts used to
run the job on behalf of the Grid user.

4. Price and Performance Prediction

4.1. Motivation

A challenge in any market-based resource allocation sys-
tem is providing predictable performance. A variety of so-
lutions exist, including reservations, future markets [11],
options, and SLA contracts [42, 18]. However, all of these
mechanisms require the ability to predict future demand
and supply. Prediction is particularly important in spot-
market systems like Tycoon that lack other mechanisms to
ensure predictability. The failure to predict accurately either
causes users to overspend on resources or prevents them
from achieving their required quality of service.

Demand prediction requires a history of resource usage
and a set of analysis algorithms. Our goal is to provide both
a concise representation of historical prices on the Auction-
eer and efficient client-side algorithms to analyze this data.

We represent the demand using the spot-market price on
each host. In Tycoon, this reflects both the usage of and
demand for a resource. This information is updated every
10 seconds, which is also the reallocation interval. In addi-
tion to the instantaneous demand, we also track the average,
variation, distribution symmetry, and peak behavior of the
price.

To make this information useful to a wide array of ap-
plications, periodization of the data is necessary. We imple-
ment this by presenting and scoping the statistics in moving,
customizable time windows. By looking at smaller time
windows we may be able to make simplifying assumptions
such as the assumption of a symmetric normal distribution
even though such a distribution may not be a good represen-
tation of a larger window, and vice versa. To track the price

distribution dynamically we implement a self-adjusting slot
table recording the proportion of prices that fall into certain
ranges.

We now present three high-level prediction techniques
to model our price data, (1) normal distribution prediction,
chosen because it is simple to implement and rest only on
fundamental statistical theory; (2) autoregression predic-
tion of time series, a very common system identification
approach; and (3) portfolio selection, a well-studied tech-
nique in economic theory to reduce risk. Finally, we present
the theory behind our moving window approximation and
smoothing implementation.

4.2. Lightweight Single-Host Stateless Price
Prediction

In this model we assume a normal probability distri-
bution of the spot market price and calculate the budgets
needed to get a certain performance level or higher with
a probability guarantee, which could be translated into the
probability of a job completing within a certain deadline.
Based on this information we would like to recommend a
user to spend a certain amount of money given a capacity
requirement and a deadline.

More formally, we first assume that the price y is an out-
come of the normal random variable Y

Y ∈ N(µ, σ2), y ∈ Y (3)

p is the probability given by the standard cumulative distri-
bution function Φ, with µ as the measured mean of y and
σ2 as the measured variance. In other words, p is the prob-
ability that a resource offers a price less than or equal to y
given its variance and mean.

p = P (Y ≤
y − µ

σ
) = Φ(

y − µ

σ
) (4)

The inverse cumulative distribution function, aka the
probit quantile function of the normal distribution gives us
the price y to expect with a given probability p.

y − µ

σ
≤ Φ−1(p) ⇔ y ≤ µ + σΦ−1(p) (5)

Combining (1) and (5) gives us the probability p to get
the utility U given the budget X .

Ui(Xi, p) ≥
∑n

j=1
wi,j

xi,j

xi,j + µj + σjΦ−1(p)
(6)

where xi,j is the bid picked by the best response algorithm
in (1) with budget Xi on host j for user i.

If a user knows that the deadline d can be met if a utility
greater than U is obtained, we can use (6) to recommend
what budget to spend to meet that deadline, and conversely
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what completion time to expect given a budget. For exam-
ple, the budget X required to meet the deadline d with a
certainty of p can be used as a recommendation for the ex-
tra cushion of funding needed to meet the deadline with a
greater probability.

We call this model stateless, since we only need to keep
track of running sums to report the mean and standard devi-
ation of the price, and no data points need to be stored.

4.3. Single-Host Price Prediction Analyzing
Time Series History Data

An autoregressive, AR(k), [32] model based on a time
series of CPU price snapshots was implemented using the
following steps:

First, the unbiased autocorrelation with N sample snap-
shots of x and lag k is calculated as:

R(k) =
1

N − |k|

N−|k|−1∑

n=0

xn+|k|xn

Then the following Yule-Walker linear equation system is
solved using the Levinson reformulation:

Lα = r

where
Li,j = R(i − j)

is the Toeplitz matrix with k rows and k columns, α is the
column vector of k AR coefficients to be solved, and r is a
column vector of size k where

ri = R(i + 1)

Now, future values of the time series xi can be predicted
using the coefficients in α as:

xN+1 = µ +
k∑

j=0

αj(xi−j − µ)

where

µ =
1

N

N∑

n=0

xn

Note that we omit the zero mean normal random white
noise parameter here for simplicity.

4.4. Risk Management based Performance
Prediction across Multiple Hosts

We now look at another prediction model for obtaining
guidance in funding resources, portfolio theory. We need
to obtain the return and plot that against the risk to cal-
culate the efficient frontier where portfolios yield the most

efficient trade-off between the two parameters. The funda-
mental rule of the frontier is that at a given risk value the
return should be maximized and conversely at a given re-
turn value the risk should be minimized. We can then ap-
ply Morkowitz’s mean-variance optimization [34]. As re-
turn we select the performance of the resource calculated
as number of CPU cycles per second that are delivered per
amount of money paid per second (inverse of spot market
price).

Given the vectors of return and risk values for the re-
sources, we used the matrix equations from [25] to calculate
the risk free portfolio as well as the efficient frontier.

By looking at the efficient frontier we can, based on our
degree of risk aversion, select a portfolio with an appro-
priate return. The advantage of the portfolio model is that
we do not have to assume a normal probability distribution
of the resource price. However, a symmetric distribution
around the mean is assumed and it is also assumed that there
is a variance in risk between resources that can be traded off
with varying mean returns.

A similar approach focusing on Value-at-Risk analysis is
presented in [16]. Their approach inherits the same strength
and weaknesses as the general portfolio theory presented
here, but extends it to give guarantees like, within a given
time horizon, the minimal performance will be a value V
with a probability P . In contrast, the approach presented
here gives guidelines of the form, given a certain level of
risk aversion and expected performance, how should you
distribute your budget across a set of hosts?

4.5. Moving Window Smoothing Theory

We first look at the technique used to calculate moving
windows for the price average (mean), variation (standard
deviation), asymmetry of distribution (skewness), and peak
behavior (kurtosis). A high value of skewness reflects a
heavy-tailed (right-skewed) distribution, and a high value
of kurtosis indicates that a large portion of the standard de-
viation is due to a few very high price peaks.

In terms of state information we only need to keep track
of the previously calculated sample moments about the
mean for the first (mean), second (standard deviation), third
(skewness) and forth (kurtosis) moment about the mean.
The linear smoothing function is determined by the window
size, where a large window size results in the previously
calculated moment having a very low impact on the next
moment compared to the current snapshot, and vice versa.
For window size 1, the previously calculated moments are
ignored as expected.

µi,p is the pth sample moment about the mean at snap-
shot i, xi is the price at snapshot i, n is the number of price
samples in a window, σi is the standard deviation of price
at snapshot i (for window n), γ1,i is the price skewness at
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snapshot i (for window n), and γ2,i is the price kurtosis at
snapshot i (for window n)

µ0,p = xp
0

µi,p = αµi−1,p + (1 − α)xp
i

α = 1 −
1

n
n∑

j=1

xp
j = µi,pn ⇒ σi =

√
µi,2 − µ2

i,1

equivalently,

γ1,i =
(µi,3 − 3µi,1µi,2 + 2µ3

i,1)

σ3
i

and,

γ2,i =
(µi,4 − 4µi,3µi,1 + 6µi,2µ

2
i,1 − 3µ4

i,1)

σ4
i

− 3

We now look at the price distribution smoothing for mov-
ing time windows. The approach taken is to keep track of
two price distributions for each window at all times. The
distributions will contain twice as many snapshots as is re-
quired by the windows and have a time lag of the same size
as the window. The merged window distribution to be re-
trieved at an arbitrary monitoring time is then calculated
by using a share of both distributions proportional to how
closely they are to the desired window size in terms of num-
ber of snapshots collected.

n is the total number of prices in a window, i is the snap-
shot time, nk,i is the number of prices in distribution array
k at time i, (0..2n), sk,j is the proportion of prices in slot
j in distribution array k, ri,j is the proportion of prices to
report in slot j at snapshot time i, and wi,k is the proportion
of distribution array k to use in r at snapshot time i

wi,k = 1 −
|n1,i − n|

n

|n1,i − n2,i| = n

nk∑

j=1

sk,j = 1 ⇒ ri,j = w1,ks1,j + (1 − w1,k)s
2,j

5. Grid Application Results

In this section we present some experimental results us-
ing a Bioinformatics application targeted for Grid environ-
ments, which was developed at the Bioinformatics labora-
tory at the Royal Institute of Technology in Stockholm [9].
It is a trivially parallelizable bag-of-task application, which

is very typical for large-scale Grids. The experiments we
present here, do not consider applications with more com-
plicated workflow-like interactions among subtasks. How-
ever, none of the experiments depend in any way on the
application-specific node processing performed by this ap-
plication, more than the fact that it is CPU intensive.

5.1. Bioinformatics Application

The goal of the application is to identify protein regions
with high or low similarity to the rest of the human pro-
teome. A database of the complete human proteome is ana-
lyzed with a blast sequence alignment search tool perform-
ing stepwise similarity searches using a sliding window al-
gorithm running in parallel on a distributed compute cluster.
The reason for running this application in a compute farm
is twofold, the proteome database is continuously evolving
and the search is computationally hard. A search on a single
machine takes about 8 weeks on a single node, and a run in
the SweGrid compute farm utilizing 300 nodes out of 600
takes about 22 hours.

5.2. Experiment Setup

The proteome database is partitioned into chunks that
can be analyzed in parallel. One of these chunks takes ap-
proximately 212 minutes to analyze on a single node in our
cluster with a 100% share of a CPU. With 30 physical ma-
chines we can thus achieve a maximum performance of 35
hours/application run to be compared with 22 hours/run in
SweGrid with 600 machines. In our experiment we are let-
ting five competing users run the same application with dif-
ferent funding. The application makes use of a maximum
of 15 nodes out of a total of 30 physical nodes. To have the
users compete against each other but not between their own
sub-jobs we restrict the setup to one virtual machine per
user per physical machine. Hence, a maximum of 75 vir-
tual machines may be used at any point in time. It should be
noted that the physical machines have dual processors and
there may thus not be competition for a CPU on a machine
even though there are multiple users running there concur-
rently. The user jobs are launched in sequence with a slight
delay to allow the best response selection to take the pre-
vious job funding into account. This is why users 1 and 2
tend to get to run on more nodes than the other users, as the
price has not gone up as much at that point. Their shares
will, however, be recomputed automatically and continu-
ously within every 10s allocation interval.

5.3. Best Response Experiments

In this set of experiments we are interested in finding out
whether an economically driven resource allocation mech-
anism would allow us to offer differentiated QoS levels to
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Table 1. Equal Distribution of Funds

Users Time(h) Cost($/h) Latency(min/job) Nodes
1 − 2 7.16 4.19 28.66 15
3 − 5 6.36 4.28 45.49 8.7

Table 2. Two-Point Distribution of Funds

Users Time(h) Cost($/h) Latency(min/job) Nodes
1 − 2 7.07 5.10 29.31 14.5
3 − 5 4.16 10.9 23.46 11

Grid application users. We measure the Time defined as
the wall-clock time as perceived by the user to complete
the task of sub-jobs, the Cost as the money spent during
this time, the Latency as the number of minutes it takes for
each sub-job to complete (again in wall-clock time), and
the number of Nodes or parallel sub-jobs used by the task.
We start by gauging the environment and running the test
with all users having the same funding for their jobs. They
should hence expect an equal share of the CPUs. We, how-
ever, note from the results summarized in Table 1 that users
3-5 received a much lower quality of service, here defined
as number of jobs that can be processed within a time unit,
because the best response algorithm found it too expensive
to fund more than a very low number of hosts. One possible
solution to this issue would be to let the user hold back on
submitting if not a threshold of minimum hosts to bid on is
met.

The results from a two-point distribution with users
funding their jobs with 100, 100, 500, 500, 500 dollars with
a deadline of 5.5 hours is summarized in Table 2.

Here we can see that the jobs with a budget of 500 dollars
caused the earlier jobs to decrease their shares to allow the
more highly funded jobs to complete within their deadline.
We again see that fewer hosts were given to user 3-5 but this
time the performance level (latency) is better. We also see
that these users pay a higher price for their resource usage,
as expected.

5.4. Price Prediction Experiments and Sim-
ulations

In this set of experiments we run the same Grid applica-
tion job load as in the previous experiments with the differ-
ence that we let the total budget of the users be random with
a normal distribution.

Using the normal distribution analysis presented in Sec-
tion 4.2, we provide a graph visualization of the price and
performance guarantees a user may expect from a host. De-

pending on what guarantee of average performance the user
wants, different curves may be followed to decide on how
much to spend. For example, looking at the graph in Fig-
ure 3 a user who wants 90% guarantee that the CPU perfor-
mance will be greater than 1.6GHz should spend $22/day
when funding the host. There is a certain point where the
curves flatten out, and that point would be the recommended
budget to spend on that host to get the best performance
per funding unit. For the given example it would not make
sense for the user to spend more than roughly $60/day. We
can also see that to get any kind of feasible performance out
of the machine with at least a 80% guarantee the user needs
to spend at least $10/day. In this example, we based our
prediction on a time window of one day.
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Figure 3. Normal distribution prediction with different
guarantee levels

The basic AR model presented in Section 4.3 had prob-
lems predicting future prices due to sharp price drops when
batch jobs completed. To overcome this issue we applied a
smoothing function (cubic smoothing spline) before calcu-
lating the AR model. To verify the quality of the prediction
we took a data sample of 40 hours of price history from our
experimental run of Grid jobs described above. The first
20 hours were used to calculate the model and the last 20
hours were used to verify the model. The prediction error
was then calculated as follows:

ε =
1

µdn

n∑

i=1

σi

where µd is the mean of the measured prices in the vali-
dation interval, n the number of data points in the valida-
tion interval, and σi the standard deviation of the predic-
tion, measurement pair i. An AR(6) model with one hour
forecasting (See Figure 4) yielded an ε of 8.96%, whereas
a simple benchmark model always predicting the current
price to remain for the next hour resulted in an ε of 9.44%.

Now, turning to portfolio theory (Section 4.4). There
are some issues with this model concerning the definition
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of risk and asymmetry of distributions as mentioned in
Section 4.4, but we also noted in our experiments that a
portfolio-based scheduler would not do as well in load bal-
ancing batches of user jobs coming in as the best response
algorithm which bases its selection on the spot market price,
and which could immediately move users away from high-
bid machines. Portfolio theory may, however, prove useful
for long term investments in hosts, e.g. when hosts should
be bought to run a continuous application such as a web
server. Another observation is that idle hosts tend to get
100% of the share in the portfolio, to avoid this behavior
a larger time window needs to be used when collecting the
mean and variance statistics from the hosts.

To test the risk hedging properties of the portfolios re-
turned by our implementation we ran simulations where 10
hosts are picked either using the calculated risk free portfo-
lio or equal shares. The aggregate performance over time
is then measured. Individual mean host performance, per-
formance variance, and variance of performance variances
were all randomly generated with a normal distribution.
The results, depicted in Figure 5 shows that downside risk
could be improved by using the risk free portfolio.

Finally, we look at the distribution of prices over three
time windows, a week, a day, and an hour. This data can
be used to select an appropriate prediction model. For ex-
ample, if the distribution resembles a normal distribution
one could make use of the models described in Section 4.2,
if the distribution is symmetric a portfolio analysis may be
appropriate. A sample distribution graph is shown in Fig-
ure 6. It can be inferred from the graph that the prices ex-
hibit signs of a heavy-tailed distribution (left-skewed) the
last hour, mostly fall within the lowest price bracket, but are
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Figure 5. Risk free portfolio performance vs. equal share
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right-skewed, mostly in the most expensive bracket when
considering a week or day-long window.
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To measure how accurate our window approximation is
we ran a simulation of different distributions. Normal, Ex-
ponential and Beta Distributions were given a time lag of
half the window size. At this point there is a maximum in-
fluence, or noise, from non-window data. The noise was
generated using a uniform random distribution. We noted
that normal distributions with a small standard deviation
(< 20% of mean) could result in the approximation having
its mean shifted slightly compared to the actual distribution.
However, in general the approximations followed the actual
distributions closely as seen in Figure 7 .

6. Related Work

Faucets [27] is a framework for providing market-driven
selection of compute servers. Compute servers compete
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for jobs by bidding out their resources. The bids are then
matched with the requirements of the users by the Faucets
schedulers. Adaptive jobs can shrink and grow depending
on utilization and prioritization. QoS contracts decide how
much a user is willing to pay for a job. The main difference
to our work is that Faucet does not provide any mechanism
for price setting. Further, it has no banking service, use
central server based user-name password mechanisms, and
does not virtualize resources.

Xiao et al. [43] suggest a model where users prioritize
their jobs with different budgets and providers schedule
jobs based on minimizing penalties from missing promised
deadlines. It is argued that a user-initiated auction is more
appropriate for lightly loaded system. From our experience
with HPC projects like SweGrid, resources are scarce and
their is competition for time slots, hence a seller-initiated
auction is more appropriate for our work.

Chunlin and Layuan [17] propose a two-layered cen-
tral market. In the first layer the users negotiate with ser-
vices to meet deadline and budget constraints, in the second
layer services purchase resources to meet the user demand.
Service and resource prices are set by iteratively adjusting
them up and down based on the measured demand and sup-
ply, until a market equilibrium is reached. In simulations
they show that this model is more efficient in large Grids
than a round-robin approach. Our work is less centralized,
and thus more scalable and fail-safe, because all resource
providers host their own markets.

G-commerce [41] is a Grid resource allocation system
based on the commodity market model where providers de-
cide the selling price after considering long-term profit and
past performance. It is argued and shown in simulations

that this model achieves better price predictability than auc-
tions. However, the auctions used in the simulations are
quite different from the ones we use. The simulated auc-
tions are winner-takes-it-all auctions and not proportional
share, leading to reduced fairness. Furthermore, the auc-
tions are only performed locally and separately on all hosts
leading to poor efficiency across a set of host. In Tycoon
the Best Response algorithm ensures fair and efficient al-
locations across resources [20]. An interesting concept in
G-commerce is that users get periodic budget allocations
that may expire, which could be useful for controlling pe-
riodic resource allocations (as exemplified by NRAC and
SNAC [37]) and to avoid price inflation. The price-setting
and allocation model differs from our work in that resources
are divided into static slots that are sold with a price based
on expected revenue. The preemption and agile realloca-
tion properties inherit in the bid-based proportional share
allocation mechanism employed in our system to ensure
work conservation and prevent starvation is, however, miss-
ing from the G-commerce model.

Buyya et al. [13] implement a completion time minimiz-
ing resource allocation algorithm for bag-of-task applica-
tions, utilizing an auctioneer infrastructure akin to the one
deployed in Tycoon. The difference to the work presented
here is that we use fixed budgets and the best response al-
gorithm to place bids, as opposed to allowing bids to vary
between a minimum and maximum value to meet deadlines.
This allows us to make more precise statements about the
fairness and efficiency of our solution in the equilibrium
states.

Spawn [40], was one of the first implementations of a
computational market, and Tycoon is an incarnation and
evolution of many ideas presented in that work. Tycoon, in
essence, extends Spawn by providing a Best Response agent
for optimal and incentive-compatible bid distribution and
host selection, and by virtualizing resources to give more
fine-grained control over QoS enforcement. Tycoon also
offers a more extensive price prediction infrastructure as
presented in this paper. However, the general, continuous-
bid and proportional share auction architecture is largely the
same.

Other market based resource allocation systems, not fo-
cussing on Grid applications, have been presented in [39,
35, 15, 33]

7. Conclusions

We have presented an integrated Grid market of com-
putational resources based on combining a market-based
resource allocation system, Tycoon, and a Grid meta-
scheduler and job submission framework, Nordugrid ARC.

One of the most challenging integration points was to
map the Grid identity to an asserted capability. This prob-
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lem was solved by introducing the concept of transfer to-
kens. This allowed both the private Grid credentials, and the
bank account keys to remain local. It also makes it easy for
resource users to give out ’gift certificates’, to allow users
without a Tycoon client installation to submit (and fund)
jobs to the Tycoon cluster.

One of the first experiences gained from user feedback of
the system was that it was hard to know how much money
to use to fund a job. To aid the users in deciding how much
funding their jobs would need to complete within a certain
deadline, or conversely when a job would be expected to
complete given a budget, we developed a suite of predic-
tion models and tools. The accuracy of these predictions
depends on the regularity of previous price snapshots and it
is therefore crucial, for the results to be good, to pick a time
window to study that exhibits these patterns. We therefore
also implement a model that allows statistical data within a
certain time window to be retrieved, using approximations
based on linear smoothing functions.

Finally, our experimental results using a Bioinformat-
ics application developed for the Grid, show that the level
of performance delivered when submitting a large batch of
jobs, can be customized by the incentive compatible use of
transfer tokens. Thus the fairness and economically effi-
ciency properties of Tycoon can be carried over to the Grid
Market users.

Future work includes extending the lightweight predic-
tion model presented here to handle arbitrary distributions
and studying how higher-level reservation mechanisms,
such as Service Level Agreements, Future Markets, Insur-
ance Systems, and Swing Options can be built on top of
the prediction infrastructure presented here to provide more
user-oriented QoS guarantees.
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