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Abstract

The OMG's CORBA and CORBA services like the OTS are atedndogy standard that
enable the building of transadional systems running in dstributed and heterogeneous
environments. In large-scde CORBA systems that integrate relational databases, however,
careful attention must be paid to network traffic and the number of 1/O-operations (like
database acce9 performed, as these can degrade system performance significantly. Caching
is a well-known concept to improve performance in e.g. database systems. Cacdiing in a
transadional objed-relational CORBA environment has, however, na been studied in the
literature so far.

This thesis investigates concepts to improve performance and reliability in large-scde
CORBA systems. An oljed cadiing strategy for transadional, ohjed-relational CORBA
systems is developed. It employs distributed transadion management to replicate data, and
asynchronows multicast natifications to updite cades that are distributed to load balanced
servers. The cating strategy is implemented and tested using a cae study with red-world
assumptions, and described as a generic, software achitedural abstradion that can be reused
in dfferent CORBA system developments. Using the cating strategy proposed, the
performance of the system can be drasticdly increased, and system scaability and reliability
be well i mproved.

! This thesis corresponds to the effort of twenty full-time working weeks.
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1 Introduction

This thesis was developed within a moperation between IONA Tedndogies Dublin and
Berlin University of Techndogy (TU Berlin), as part of the projed CORBA Objed
Transadion Monitor Experimentation. In this projed, advanced software design and
implementation isaies of building CORBA OTM applicaions are studied. The thesis
describes the development of an oljed cading strategy using IONA's OrbixOTM
environment, and wsing software achitedural modeling and abstradion techniques devel oped
a TU Berlin.

This chapter discuss as introduction, hav the mncept of CORBA OTM, and the reseach
field of software achitedure, help to develop reliable and performant large-scade software
systems, and how they were combined in this work.

1.1 Background

Today's ftware is developed onvarious platforms using different operating systems, pro-
gramming languages, and development toadls to best mee the system requirements. Further,
systems are expensive to develop, and day an important role in the day-to-day businessin
many companies. Typicdly, new applications therefore have to be integrated with existing
legacy systems. In such heterogeneous environments, concepts are needed that suppat ex-
change of information, a concurrent accessto shared data, while asauring integrity of data
and performant computation.

Standards like the Objed Management Grougs (OMG) Comnon Objed Request Broker
Architedure (CORBA) address distributed computing in heterogeneous environments
[OMG 98h Vinoski 97]. In CORBA, middeware functionality and feaures are spedfied,
and mappings and common interfaces for interoperation ketween dverse software ae
defined.

Proteding data integrity and constructing reliable (distributed) applicaions is, on the other
hand, typicdly dore by use of the mncept of transadions. Transaction Processng Monitors
(TP Monitors) as common in traditional client/server systems e.g. guarantee ACID-properties
(Atomicity, Consistency, Isolation and Durability) to all programs that run undr its
protedion, thus provide medhanisms to begin, commit, and rollbadk transadiona requests
[Gray & Reuter 93 Bernstein & Newcomer 97].

Common TP Monitors are, hawever, na designed to manage transadions in large-scde
CORBA systems. In order to suppat transadions in heterogeneous CORBA environments,
CORBA and TP Monitor concepts can be combined, as exemplified by IONA’s Objed
Transadion Monitor (OTM) developments [IONA 98¢].

Because of the combination d many different techndogies, OTM systems are intrinsicdly
complex. The field of software architedure aims at suppating the design of such complex
systems by describing reusable software structures using architedural abstradions of
comporents and conredors (comporent interadions) [Garlan & Shaw 96, Bass et a 98].

1.2 Problem Statement

One cmmmon reason for using transadions is to manage persistence of data. Today, this is
typicdly dore by a relational database. When integrating relational databases into an OTM



system, isales regarding mapping of persistent entities, scadability, and management of
distributed data must be onsidered, while @aaring performance ad reliability
[Orfai & Harkey 98, Shus=l 96].

In large-scde distributed systems, network communicaion and database acces degrade per-
formance significantly. Performance has traditionaly been achieved by using cadies, eg. in
the development of operating systems. Further, object caching is a cmmmonly used technique
in oljeda-oriented databases [Versant 98]. Objed cading in atransadional, oljed-relationa
CORBA environment has, however, na been studied in the literature so far. The problem ad-
dres=d in this thesis is - how to design oljed cading in a CORBA system integrated with
relational databases, while considering reliability and scdability isaues.

1.3 Objective

The objedive of thiswork is to investigate, develop, and test an oljed cading strategy im-
proving reliability, scdability, and performance in a CORBA system, and to cgpture the
resultsin adesign pettern.

1.4 Approach and Thesis Outline

The work described consists of two main perts: transadion demonstrator development, and
software achitedural design. Both parts comprise theoreticd studies (part |, chapter 2-4), as
well as pradicd experiments (part I, chapter 5-7).

1.4.1 Transaction Demonstrator Development

This part, dore & IONA Techndogies in Dublin, focuses on designing and implementing a
distributed transadion demonstrator for CORBA environments. The system, originaly devel-
oped for the IONA World trade-show held in Boston in March 1998,is further extended with
an oljed cadiing feaure.

In order to chocse a cahing strategy, theoreticd studies are caried out before. Distributed
objeds and transadions (chapter 2 ) are investigated to ensure reliability of the cade.
Studies of Object-relational mapping (sedion 3.) help understand performance and
flexibility isaues related to impedance mismatch between oljeds and relational structures.
Scdability, availability and performance isues are @nsidered by investigating load
balancing (sedion 3.2, replication (sedion 3.3, and caching (sedion 3.9.

The pradicd experiments begin with evaluating and testing event manager, and database ac
cesstoads to be used with a distributed transadion tod (OrbixOTS) in the implementation
(chapter 5). Theredter an implementation with the seleded tod-chain is caried ou. The
final implementation is tested by simulating a “red-world” scenario. The tests focus on
measuring the influence of cadiing on performance and throughpu (chapter 6).

1.4.2 Softwar e Architectural Design

This part, caried ou a TU Berlin, concerns objed-oriented and software achitedural
modeling. Software achitedural concepts are investigated (chapter 4). These ncepts are
then applied using traditional objed-oriented modeling, as well as the software achitedural
modeling approadh developed at TU Berlin in the reseach group Computation and
Information Structures (CIS) [Tal 98h. Asafinal step, architedural abstradions are made to
form a generic design o the cading implementation (chapter 7).



1.5 Contributions

Thiswork contributes to the design and development of CORBA OTM systems in two ways:
(1) it shows how to extend an existing large-scde OTM system with a cading-strategy that
improves performance and throughpu, while asauring data consistency; (2) it provides areus-
able onredor abstradion [Tai 98a] for designing objed cading of transadionally
replicated datain an OTM environment. In pradice, the work is currently used at IONA for
OTM demonstrations, and it will contribute to a “design-handbod” of ORB-based systems
developed as part of the research at TU/CIS Berlin.



PART | - CONCEPTS

The first part of this thesis introduces concepts for designing and implementing large-scale
transactional systems. Chapter 2 presents the CORBA standard, and two CORBAservices for
managing transactions and events. Chapter 3 surveys techniques for developing scalable and
performant distributed systems using persistent data. In Chapter 4, the basic concepts of soft-
ware architecture are introduced.



2 Distributed Object Systems and Transactions

In this chapter the basics of the CORBA (Common Objed Request Broker) standard and two
CORBA services, the Object Transaction Service (OTS) and the Event Service are explained.
These two services can be deployed in any CORBA system and are commonly used to ensure
reliability in dstributed systems. Further, TP Monitors and Object Transaction Monitors,
which provide simil ar functionality, are discussd.

2.1 CORBA

The CORBA standard has been developed by the (OMG) Objed Management Group, which
was established in 1989.0MG is today a ansortium of aimost 700 software mmpanies and
abou 100 unversities [OMG 983]. Companies propase standards to the group and then the
propasal goes through a processwhere the OMG members vote for or against standard adop-
tion. A significant part of this processis that all standards finally adoped by the OMG must
have gone through a “proof of concept”. This means that the company or companies
propasing the standard must have an implementation with which they can prove that the
techniqueis versatile.

2.1.1 What isCORBA?

The CORBA standard is the are standard of all OMG standards. It consists of spedficdions
for an Objed Request Broker (ORB). An ORB is a software bus through which distributed
objeds communicae. The dients talk to the server objeds by first “plugging into” the bus.
Theredter, they can theoreticdly talk to any objeds residing in servers also plugged into the
bus. The main oljedive of the bus is to encapsulate how the coommunicaion between clients
and servers is redized. Clients and servers can thereby communicate withou having to ded
with mismatches caused by diff erent programming languages or operating systems.

This functionality is often referred to as middleware, since the ORB operates above the level
of implementation techniques, but below the level of applicaions in a tier between clients
and servers. Apart from this basic functionality the arrent CORBA spedficaion aso
addressesisaleslike inter-ORB operability [OMG 98H.

2.1.2Why CORBA?

CORBA was introduwced to standardize the development and deployment of applicdions
operating in dstributed heterogeneous environments [Vinoski 97]. The main idea is to
standardize how clients and servers interoperate in a generic and oljed-oriented way, i.e.
how distributed oljeds communicate. Using an ORB, new software can easily be alded to
the system (plugged into the bus). Further, old legacy software can be integrated into newer
systems in a flexible way because of the language independence The CORBA standard was
developed with the comporent based software development paradigm in mind. Software is
developed in components or padages with predefined external interfaces. Hiding the
implementation detail s, these componrents oud be eay to combine and “plug in” anywhere
to get the desired functionality. A distributed CORBA objed is a comporent in that sense
[Orfai et a 96]. By developing comporents with clealy defined interfaces the historicdly
expensive integration phese of software development can be diminated [Baker 97].
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Figure 2.1 The OMG Object Management Architecture

2.1.3 Object Management Architecture

The ORB fits in to a higher level architecture defined by OMG called the Object
Management Architecture (OMA) shown in figure 2.1.

Four different kinds of CORBA objects can be plugged into the ORB: application specific
objects, standardized domain objects (e.g. for the medical domain), standardized common
facility objects (e.g. system management), and finally the generic CORBA services that can
be deployed in any CORBA system (e.g. OTS, Events). All CORBA objects must be defined
with external interfacesin order to be connected to the ORB [OMG 97b].

2.1.4 CORBA IDL and ROI

The definition of interfaces is a key behind interoperability and language independence. This
is done with the interface definition language (IDL) specified by the OMG. IDL is a
declarative language with a syntax similar to the one of C++, however, IDL only specifies
behavior not implementation. Languages that can be used for implementing CORBA objects
must have corresponding IDL mappings. CORBA (revision 2.2 February 1998) currently
specifies mappings for C++, Smalltalk, COBOL, Ada, and Java[OMG 98b].

The IDL specifications are used to generate code that plugs client and server code into the
bus. On the client side, this code is called stub code, and on the server side, it is called
skeleton code [Vinoski 97]. The client stub marshals the request and sends it through the
ORB to the server. The server skeleton unmarshals the request, and sends it to the so called
target object (the implementation of the object that the client wants to access) within the
server process. When the target object has processed the request, the return value is sent to
the skeleton. The skeleton marshals the value, and sends it through the ORB back to the
client. On the client side, the stub now unmarshals the reply, and passes it on to the client.
The entire process is called a 'remote object invocation (ROI) and is performed transparently
to the client and server code.

! The process is sometimes called remote method invocation (RMI). Thisis, however, also the term for
the distributed object feature built-in in Java, and it was therefore avoided.



2.1.5 CORBA Implementations

A wide variety of organizations and companies have implemented the CORBA standard.
There are today two major commercial ORBs. Orbix from IONA, and VisiBroker from
Visigenic (owned by Inprise). Other vendors are ICL with DAIS (Distributed Application
Integration System), and Expersoft with CORBAplus. IONA currently has products
supporting the IDL to C++, Java, and COBOL mappings. Visigenic has products that support
the C++, and Java mappings. [OMG 98c, Inprise 98, IONA 983

2.2 CORBA Services

As described in the previous section, there are some generic services that can be used in any
CORBA environment. In this section, the CORBA Transaction and Event services are
presented. These services play an important role by supporting reliability in the implementa-
tions presented in chapter 6.

2.2.1 Transactions

The Object Transaction Service (OTS) was specified to enable transaction processing in
CORBA environments. This, for instance, involves management of distributed resources like
databases.

What isa Transaction?

A transaction is defined to be a series of operations that can be performed as one unit.
Transaction processing is the basis for reliable processing. By using transactions the client is
guaranteed:

» that all or none of the operations within the transaction will be performed, atomicity;

» that the transaction will bring the system into a consistent state;

» that all work inside of atransaction isisolated from other transactions as long as the
work is not committed;

« andfinaly, that when the transaction completes successfully (commits), its modifications
to the state are durable, that is survive failures.

These guarantees are called the ACID properties of atransaction [Gray & Reuter 93].

OTS Constituents

The OTS defines three magjor components, and the interactions between these. The
transaction originator who is responsible for beginning, committing, and rolling back
transactions; the recoverable server that is responsible for connecting resources to the
transaction; and the transaction service (TS) that is responsible for keeping the transactions
atomic and durable[OMG 97a]

Resour ce I ntegration

Resources, typicaly databases, can be integrated into OTS transactions in two ways. as
CORBA 'Resource objects, or by using the X/Open DTP standard XA interface
[OpenGroup 92]. When using the CORBA Resour ce approach, the atomicity and recovery
of a transaction typically has to be implemented explicitly on a CORBA level by the
programmer. When using the XA approach, this functionality is normally supplied by the
resource vendor. The recoverable servers register new resources with the transactions. When

! The courier font is used for denoting correspondences to interface or implementation entities.



it istime for atransadion to commit, the TS comporent cdl s these resourcesin order to cary
out the two phase commit protocol described below.

Two Phase Commit

How does OTS asaure aomicity and duability of a distributed transadion; i.e. a transadion
with resources residing on several nodes in a network? This is dore by driving the two phase
commit protocol (2PC). The 2PC involves the foll owing steps.

(1) Thetransadion aiginator cals commit after having completed its work within a transac
tion.

(2) The transaction coordinator (a part of the TS resporsible for coordinating severa re-
sources participating in a transadion) asks all resources registered with the transadion
whether they can commit. The resources then respond either with a “yes’ or “nag’ vote.
This phaseis cdl ed the prepare phase.

(3) When the TS has got al the votes, and al votes were votes to commit, it cdls all
resources again that they can commit. If one or more resources voted to roll bad, the TS
comporent sends a request to al resources to roll badk their work. When the resources
finaly have committed or rolled bad their work, they send bad a message that they are
doretotheTS.

(4) When the TS has got all dore messages from the resources, it can forget the transadion.

Distributed Transactions

In oder for distributed oljeds to perticipate in the same transadion, transadional
information hesto be exchanged. Thisis achieved by passng a so cdled transaction context
explicitly or implicitly with every request that is part of a transadion. The TS componrent in
the process that receves the request transparently associates the work performed in that
process with the transadion identified by the transadion context. This is cdled
interpositioning. A recoverable server that has been interpositioned will be
called by the TS when it is time to carry out the 2PC.

2.2.2 Events

The seaond CORBA serviceto be presented is the Event service Normally when invoking on
distributed ojedsin CORBA, the dients ndtheir requests to a spedfic server, and wait for
the reply before carying on. This message model is cdled synchronous. The CORBA Event
service messaging model differs in two ways from this senario. Firstly, the dients dorit
have to wait for aresporseg, i.e. the message is ent asynchronously. Secondy, the dients and
servers are only indiredly couded. Multiple dients can be conreded to multiple servers,
withou any of them knowing the identity of the others.

Why do we need events?

So, why is this messaging model so useful? Most applicdions, espedally GUI programs are
event driven, i.e. when a cetain event occurs, a predefined adion shoud be performed. For
flexibility, it shoud be possble to add any number of event supgiers, and any number of
event consumers to the gplicaion. Most of today’s applications are developed in a moduar
way. There might for instance be one modue for database logic, ore for businesslogic, and
one for GUI. The idea behind this dructure is to keg the modues independent of one
ancther. Thiswould na be possble withou a messaging model using loose muging between
event suppiers and consumers.

CORBA Event Service Constituents
The CORBA Event service spedfies threebasic comporents. The Suppl i er s that generate
events, the Consuners that can recdve events and the Channel that is the only



component that has knowledge about the different participants in a communication. The
Suppl i ers register themselves with a specific Channel (many suppliers can register
themselves with the same Channel ). The Consuner s can get a reference to the same
Channel object and register themselves as Consuner s of the Channel . When one
Suppl i er sends an event to the Channel all Consuners will receive a message.
[OMG 974

Models of Interaction

There are two different kinds of messaging models: the push model, and the pull model. In
the push model the events are pushed to their receivers, and in the pull model the receivers
wait for events to occur (or pull events periodically). Both the push and the pull models can
be applied independently of each other, both on the supplier side and on the consumer side of
the Channel . There could, for instance, be one Suppl i er sending events to a Channel
(pushing Suppl i er), another Supplier waiting for clients to pull events (pulled
Suppl i er), one Consuner that gets notified of events (a pushed Consuner), and one
Consuner that waits for events to occur, or makes explicit queries for events in a periodic
manner (a pulling Consurrer ), all connected to the same Channel and participating in the
same interactions.

2.3 Transaction Processing M onitors

In adistributed transactional system, some mechanism for processing multiple client requests
in an efficient way, while maintaining the transactional properties (ACID) isrequired in order
to achieve reliability. Transaction Processing Monitors (TP Monitors) are software
developed for this purpose. A TP Monitor works like a workflow manager or router between
the clients and the server where the transactional program resides. All access to data
resources goes through this server, but is coordinated by the TP Monitor. The software and
hardware built in this architecture (see figure 2.2) comprise a Transaction Processing System
(TP System) [Bernstein & Newcomer 97].

In a TP System, the resource manager (RM), e.g. a database manager, is kept separated from
the transaction manager (TM), the part of the system that, for instance, is responsible for
driving the two phase commit protocol. These two components have different responsibilities
for helping the application programmers develop reliable systems. The TM assures atomicity
and durability (logging of transaction information to enable recovery). Keeping the data con-
sistent lies on the responsibility of the application programmer, and to some extent on the
RM (e.g. database triggers). The RM further assures durability (before and after images of
data) and isolation (no uncommitted datais visible).

One of the most important tasks of a TP Monitor working in a distributed environment is to
carry out the two phase commit protocol. This, for instance, means that recovery has to be
supported by maintaining logs. A TP Monitor also has to keep track of al resource managers
that the application talks to in order to complete the 2PC protocol. Other common features
offered by TP Monitors are: load baancing, fault-tolerance, and security
[Gray & Reuter 93].

2.4 Object Transaction Monitors

An Object Transaction Monitor (OTM) combines the CORBA and TP Monitor concepts. The
main responsibility of an OTM is to manage the server side objects transparently to clients.
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Figure2.2: TP System Architecture

Automatic object management is crucial in large-scale systems with a large number of server
objects.

Typicaly an OTM would: activate and deactivate components (distributed objects),
coordinate distributed transactions, notify components of events, and automatically manage
the state of components [Orfali & Harkey 98]. The OTM should thereby introduce
scalability, load balancing, fault-tolerance, security, and persistence into a CORBA
environment. Both TP Monitor and ORB vendors currently move their products towards the
OTM framework. One example of this is the cooperation between Transarc (TP Monitor
vendor) and IONA resulting in the product OrbixOTM. OrbixOTM for currently offers:
object naming, event natification, distributed transactions, security, and system management
on top of the Orbix ORB [IONA 98¢].

2.5 Summary

In this chapter, the basics of the CORBA standard, and how the standard solves the problems
faced when integrating heterogeneous systems were presented. The basic idea is to define
interfaces between components or distributed objects in a standardized and language
independent way. An object bus or ORB takes care of the communication between these
objects. This architecture makes it possible to extend the system, and incorporate legacy
systems in a straightforward and flexible way. The ORB functionality is often not sufficient
in alarge-scale distributed systems. Two commonly used services are the Event service and
the Object Transaction Service (OTS). These services offer asynchronous messaging and
distributed transaction processing respectively.

TP Monitors, used for run time execution of programs (i.e. routing) to improve scalability
and reliability, were discussed. The OTM could be seen as a way to introduce this
functionality in the CORBA world. This chapter was mainly concerned with reliability of
OTM systems. In the next chapter, issues regarding persistence, scalability, and performance
in such environments are discussed in some more detail.
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3 Object Persistence and Caching

In this chapter, the theories behind object-relational mapping, load balancing, replication,
and caching are presented and discussed. How to map the object model of a system into a
relational database is often of vital importance to the performance. Performance and
scalability are main goals for all these techniques. Caching, replication, and load balancing
are closely related and often applied in large-scale systems in conjunction with each other.
These sections give a basic idea of general design issues and common approaches in order to
follow the discussions in chapter 5 and 6 (Technical Solutions and Case Study).

3.1 Object-Relational Mapping

Object-relational mapping has become increasingly important as object-oriented languages
and tools are becoming more frequently used in companies, whilst relational databases for a
long time have been dominating the database field. In this section, reasons for using a
consistent mapping policy, and aspects that have to be considered when designing and
implementing object-relational  mapping are discussed. Further, common mapping
approaches, different ways of accessing the database, CORBA to persistent objects mapping,
and an example of amapping tool called Persistence PowerTier are presented.

3.1.1 Why is Object-Relational mapping needed?

Object-oriented languages and relational databases have many advantages and are today de
facto standard in their respective fields. OO-languages offer encapsulation, polymorphism
and inheritance, which yields a natural mapping to the rea-world domain. Relational
databases build on a simple concept (the relational model), and also offer techniques like
concurrency and replication off the shelf. The main reason why object-relational mapping is
needed is hence that these two concepts are commonly used, and devel opers frequently face
the problem of integrating an existing relational database into an object-oriented application.

Performance is an important reasons for using a suitable object-relational mapping. The main
goal isto minimize database queries and maximize in-memory object queries. For this reason,
an object-relational mapping approach often goes hand in hand with a caching approach.

A loose coupling between the application logic and the data schema supports system
evolution. Additionally, general mapping solutions minimize error prone repetitive work.
Flexibility and ease of integration are thus further reasons for considering an object-relational
mapping policy. Thisis further discussed in section 3.1.4, accessing the database.

3.1.2 Design | ssues

How the database schema is represented in the object model, or vice versa, relies heavily on
how the persistent data is managed, e.g., whether there are only a fixed number of queries, or
whether queries are constructed ad hoc in aflexible manner. If many ad hoc queries are used,
a one-to-one mapping between classes and database tables would probably be unsuitable
[Leser et a 98]. Similarly, whether the queries are closely connected to objects of one class
only, or whether they involve traversing an object-graph must also be taken into
consideration when choosing a mapping approach.

In some cases denormalized tables and redundant data can be accepted to optimize access

time [ONTOS 98, Agarwa & Keller 98]. There is, however, always a trade-off between
flexibility and performance. Flexibility would be increased if the tables were kept
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normalized. For ease of maintenance, one single mapping approach could be applied for the
entire system, which may be areason for choosing a more generic and flexible approach.

3.1.3 Mapping Approaches

There are different ways to map object-oriented concepts into relational concepts. Below the
most common approaches for mapping classes to relational concepts, and how the problem
with object identities can be solved are discussed.

One-to-One

The mapping of classesinto relational tables can be very smple. If all attributes of a class are
of basic types like integer and string, a one-to-one mapping could be used". One class corre-
sponds to one table in the database and the attributes of the class correspond to columns in
the table. Further, tuples or rows of the table represent the objects.

One-to-Many and Many-to-Many

If aclass has attributes that are collections of basic types, or represent many-to-many object
associations, a one-to-one mapping is not sufficient. Normally a complex class, e.g. a compo-
sition of several classes, is represented by multiple database tables. For performance reasons
the opposite may also be the case, i.e. multiple classes could be represented in one denormal-
ized database table. The relations on an object level are normally represented by foreign keys
in the relational database.

Inheritance

Mapping inheritance is not as straightforward as the other mappings. A table in the database
may represent an entire class hierarchy. Further, al the classes in the hierarchy may be repre-
sented by atable each, possibly with foreign keys to other tables to represent the hierarchy. A
third approach isto only let the lowest level classes or the |eaves of the tree be represented by
database tables. This approach would lead to redundant data, but could still be an alternative
to gain performance advantages.

OID vs. Primary Keys

The notion of uniqueness is quite different in the two worlds. The relational databases use a
value-based approach by specifying some columns as primary keys to assure uniqueness
within a table. In the object-oriented world uniqueness is kept orthogonal to the dataitself by
using object ids. There are basically two solutions to this mismatch. First, an object id
generated at object creation time could be stored in one column for each database table
[Ambler 98]. Second, a mapping algorithm between primary keys and the object ids could be
used [Fahl & Risch 97]. The first approach is the easiest one to implement but requires
database changes, which may not be possible to do when integrating legacy databases. The
second approach is harder to implement. In this approach the mapping, for example, becomes
invalid if primary keys are reused.

3.1.4 Accessing the Database

There are basically three different approaches for accessing databases from an object-
oriented programming environment: direct access, wrapped access, and tool-based access.
They are discussed in turn below.

L1t the attributes are objects that represent one-to-one associations, then this could also be seen asa
one-to-one mapping.
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Direct Access

The eaiest approac to implement, and passbly the most commonly used, is to isaue dired
cdls to the database via enbedded SQL diredly from the dient code. Thisis not a very suit-
able gproach for a larger system, though, becaise no code-reuse can be dore, i.e. a new
mapping basicaly has to be implemented for ead cdl. If the mapping is smple, and there is
a limited amount of persistent objeds in the system, this approach may be accetable,
however.

Wrapped Access

Embedded SQL codeis nat objed-oriented, and the mapping of return values from SQL cdls
into oljeds can be repetitive and error prone. Therefore some tods off er the programmer the
posshility to isaue SQL cdls by using objeds that wrap in the database cdls. The objed-
relational mapping is dill li mited in this case, as the programmer is always aware of the
underlying database structure.

Tool-based Mapping Access

The most sophisticated way of accessng databases through an oljed-oriented language is to
use amapping tod that generates classes and access methods from relational database sche-
mata, or generate schemata from objed models. The mapping, in this case, is datic but essy
to maintain becaise of the mde generation. Simple queries and updaites of attributes can be
made from the dient code by using the methods of the generated classes. For greaer
flexibility, SQL commands can namally be isaied as well. In theory, though, the database
structure muld be unknown to the dients.

3.1.5 CORBA to Persistent Objects Mapping

So far, only the mapping between OO-language dases (representing persistent objeds) and
relational database anstructs has been dscussed. There is, however, a sscond mapping that
has to be considered in a distributed oljed system integrated with a database: mapping
distributed ohjeds gedfied by IDL to classes deding with persistence

Granularity Problem

Accesdng a distributed oljed is very costly with regards to network traffic and server
resources. For an oljed to be available for remote acces it has to be registered with the
ORB, and has to be linked with skeleton code to dspatch incoming requests. Because of the
high resource demand, and the extra work neealed to access CORBA objeds, these ae
normally coarse grained. Fine-grained implementation cetails are thereby hidden from the
clients by providing a high-level external interface Persistent objeds having their
courterparts in database tables and rows are normally much finer grained thouwgh. The basic
problem is how to access large wlledions of small database objeds in an efficient way
through the ORB transparently to the dients. This issue is currently addressed in the new
CORBA Portable Object Adapter (POA) spedficaion[Schmidt & Vinoski 97, OMG 98H],
the proposal for the new CORBA Persistent Sate Service (PSS [IONA et a 98], andin the
standard spedficaions from the objed database community’s counterpart to OMG; ODMG
(Objeda Data Management Group) [Cattel & Barry 97]. One solution to this problem is to
let the objed implementers dedde which subset of database objeds that shoud be accesd
diredly as CORBA objeds, and which oljeds that shoud be accesd through higher level
delegating CORBA objeds. Ancther solutionis to provide an oljed cading medanism to
improve the performance These two solutions idedly shoud be used together, bu in an
orthogonal way to ensure flexihility. They shoud further be transparent to the dients.
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Object References Problem

CORBA objeds are identified by an interoperable object reference (IOR), na necessrily an
objed id as expeded in a nondistributed environment. Being able to tell which oljeds are
the sameis crucial for a cading implementation, and for mapping the objeds to primary keys
in the database. Thisis not always the cae with CORBA I0Rs. This problem is addressed in
the new POA spedficaion [OMG 98 by stating that a part of the IOR must embed an
objed id urique to the POA. IONA’s Objed Database Adapter Framework [IONA 974
makes use of IONA proprietary markers, which are enbedded in a similar way, for mapping
unique objedsto urique database ids.

State Representation

A CORBA objea contains alot of information that is used at runtime and for distributed pu-
pases only. Further, in IDL, we spedfy the behavior of objeds. These drcumstances leal to
the fad that only certain parts of the distributed oljeds $oudd be made persistent, i.e.
represent the state. So, which comporents of a CORBA objed represent state? This is
currently dedt with in a standard proposa to the OMG for pasdng objeds by value
'[IONA et a 98]. It contains an extension d the IDL so that the state of an oljed can be
defined explicitly. Thisisfor instance useful for cating purposes; the locd objed cade can
first request the remote objed by value and then store its gate locdly. (In chapter 6, this
process is cdled locdize. The cae study implementation o locdize would have been
simplified if the objed-by-value semantics could have been used.)

Client or Server Controlled Persistence?

When integrating persistent objeds into a CORBA system, two general approadhes can be
taken: client transparent persistency or client exposed persistency. In the dient transparent
approad, the ORB is resporsible for fetching the persistent objeds into memory when
clients gart accesgng them, and flush them to the database when the dients are finished. In
some caes, a more sophisticated cading medchanism may have to be implemented on the
client side. The dients then need to be avare of the persistence detail s of a CORBA objed.
The IDL extension d state representation, for instance, provides the dients with such
information. For flexibility and maintainability clients shoud na diredly control server side
persistence, though.

3.1.6 Persistence Power Tier Implementation

With Persistence PowerTier, developers can describe their objed model in a graphicd tod.
Then a database schema, as well as classes that can be used to access the database ae
generated. Classes and their attributes are spedfied similar to howv database tables are
modeled. In addition to the dass modeling, a modeling tod for relations is also avail able.
Cardinaliti es, access operations for the relation, and foreign keys can be spedfied with this
tod. The modeling is data oriented, and orly the persistent objeds shoud be modeled. There
is, however, an extension to the product that can be used to transform UML diagrams
modeled in Rational Rose to the Persistence format.

One-to-one and ore-to-many relations between oljeds are suppated by generating or
spedfying foreign keys with the relations tod. A concrete dassmodeled in Persistence can
only be represented in ore single database table. This table can, hovever, be danged at
runtime and many concrete dasses can be mapped to it. Further, Persistence suppats
inheritance by only representing the leares as database tables. Only the leaves are represented
as concrete dasses.

! The reason for not referencing the spedfication itself isthat it is not yet publicly avail able for non
OMG members.
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The mapping is performed in atier between the database server and the dient to gain extra
performance alvantages. Thistier also provides an oljed cade discussd in greaer detail in
sedion 3.4.8.

An extension cdled DOCK (Distributed Objed Conredivity Kit) provides a CORBA to per-
sistent objeds mapping. This mapping is a one-to-one mapping, though, with the exception
that IDL does not have to be generated for some dases that are defined. The granularity
problem discussed ealier, howvever, is not addressed further than providing an oljed cade.
[Persistence 98]

3.2 Load Balancing

In this ®dion server seledion as a speda form of load balancing is discussed. Server
seledion refers to seleding the target server from a group d identicd servers in arder to
balancethe load.

An analysis of how performance problems of large scde distributed systems can be solved by
using a proper server load balancing strategy and scheme is done. Scheme is defined as the
implementation d a strategy. The main goals of the use of load balancing, and what implica
tions that must be dedt with when trying to achieve these goals are presented. Different
approadhes that can be chosen to resolve these difficulties are compared. Further, some
strategies are presented and related concerning implementation and wse in dff erent contexts.
Theredter, an example of aload balancing implementation is presented; the load balancing
feaure of the OrbixNames product from IONA Techndogies.

3.2.1 What IsLoad Balancing?

Load balancing deds with the distribution d requests among servers. The servers can all
reside on a single host or be distributed within a group d hosts. A simple server seledion
load balancing scenario is depicted in figure 3.1. We focus on this form of load balancing
because seleding serversis a are part of the CORBA architedure andis a fador that easily
can betailored by the CORBA developer.

Many load balancing algorithms for distributing the load between dfferent haosts on an
operating system level have been investigated in various reseach projeds. These dgorithms
are of minar interest in a CORBA context, as they are gplicable on ancther level of
granularity, and are not discussed here.

The seledion d servers can be dther static or dynamic. Static server seledion means that
clients are dways given the same server to invoke on, and the load balancing is achieved by
giving servers the resporsibility to serve a cetain group d clients at compile time. Thisform
of server seledionis sometimes referred to as partitioning [IONA 98c]. A more flexible type
of server seledionis dynamic seledion. By dynamic seledion, the dedsion d which server a
client invokes onistaken at runtime, andistotally decouped from the dient’s properties.

Load hbalancing is often dore by the software resporsible for workflow control like aTP
Monitor or an ORB. Load balancing schemes are used primarily to augment the throughpu,
i.e. the number of requests handed in a rred way before dealine. Studies
[Friedman & Moss 96] have, however, shown that there is a @rrelation ketween load
balancing pdlicies and fault-tolerance in a system. A load balancing scheme only describes
which of several avail able serversto use, ha any heuristics for what to doif the server cdled
happens to be down and ureble to complete its task. Therefore aload balancing strategy
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Figure 3.1: Load Balancing Scenario

(1) Theclient issues alookup command to a Server Selector.

(2) The Server Selector selects a server from a group of servers that are
ableto perform therequest, and returns a reference to the selected server
totheclient.

(3) Theclient invokes on the selected server.

(4) The selected server returnsitsreply to theinvoking client.

The arrows between the Server Selector and the Member Serversindicate
that information, on e.g. server load, that is used for the selection could be
exchanged.

coud be acmbined with some kind d fault-tolerance scheme making these dedsions.
Handing fault-tolerancein this explicit way is beyondthe scope of this work, though.

3.2.2 Problems Addressed

Large-scde distributed systems are often “misson criticd”. That means that it is crucia that
they have ahigh avail ability during the time that their services are offered. If, for instance,
the service is offered permanently the system must never go down for suppat and updie
jobs. The aility to dstribute the load to aher servers when some ae down, e.g. to do
updates, istherefore an important issue that load balancing strategies have to address

The next problem addressed is overload. If some servers are overloaded, the risk of client
timeouts and psgble dient crashesincreases, i.e. the dients will never be served because the
serviceis regarded as being down by the system after having waited too long for the reply.
Hencethe load balancing strategy shoud prevent overloaded servers from getting requests. If
a server crash oceurs, the scheme idedly shoud regard this srver as overloaded. The load
balancing scheme in this case works as an implicit error detedion medhanism normally
handed by the previously mentioned fault-tolerance schemes.

3.2.3 Goals

There is one mgjor goal of load balancing; to increase throughpu and thereby deaease the
number of errors due to overloaded servers in the system. From the dient’s paint of view,
load balancing shoud be transparent. The invocaions sent shoud ook the same regardlessof
whether load balancing is implemented onthe server side or not. Anather important goal and
reason for deploying aload balancing schemeisto deaease the user request resporse time.
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3.2.4 Design | ssues

When implementing a load balancing strategy, server seledion overhead, network overhead,
and replicated data have to be mnsidered, whil e taking the system context into accourt.

Server Selection Over head

The mechanism that keeps the server distribution transparent to the dient shoud be kept as
simple & possble. Complicaed algorithms can leal to the seledor becoming a bottlened in
the system, as most strategies demand that all client requests be located in a serialized way. A
system with a stable load that doesn’t change much reeds alessadvanced algorithm.

Network Overhead

A possble scenario in aload balancing implementation is that the dient sends a request to
the server seledor which returns the dhosen server to the dient. The dient then makes its
adua cdl to the server that was retrieved. Except from this network traffic the load
information exchange between the server seledor and the replicaed servers also contributes
to performance degradation (seefigure 3.1). The network could be aserious time ansumer
when many clients and many replicaed servers are involved [Garland et a 95].

Replicated data

Replicaing stateful serversimplies that a dedsion hes to be made whether the datathat isin
common also shoud be replicated. Repli cated servers operating on the same data could result
in losing the @ncurrency intended, e.g. because of database locking. Therefore the data dso
must be replicated, in some caes. Using replicated data means managing replicaed copies
and considering hard disc space @ail ability. Replicaed datais also used to make the system
more fault-tolerant. Thistopic is discussed in more detail in sedion 3.3.

3.2.5 Approaches

To be ale to fulfill the requirements gated for a load balancing implementation, pdiciesin
threedifferent areas are dhosen. These include:

() how to get information abou the load of candidate servers (information policy),
(b) deddewhenit isappropriate to re-locae ajob (threshold policy) and
(c) choosing algorithms for dedding which server is getting the request (location palicy).

If stateful servers are involved, a migration pdicy has to be mnsidered as well to solve
consistency isaies[IONA 98d.

If noinformation pdicy is chasen, i.e. the schedule doesn't colled any information abou the
load onthe servers, then the load balancing is cdled load independent. If information about
the arrrent system state is used to determine which server is getting the request, the load
balancing strategy is said to be load dependent, becaise it is able to adjust acwrding to
changesin load.

3.2.6 Strategies

Only strategies concerning padlicies (a) and (c), mentioned in the previous wdion, are
discussed because they are the most commonly used for server seledionload balancing.

Four common load balancing strategies are presented: randam, roundrobin, load, and request
gueues. They al choose different location pdicies (c). Some of them also choose an
information pdicy ().
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Random (also referred to asrandom splitting), takes (c) into consideration

In this grategy one server in the server pod is chosen at random. The advantage of this tedh-
niqueisthat it is easy to implement and hes littl e overheal. Because of the fad that a server
that is overloaded or down could be chosen for a seaondtime in a row, this grategy is the
least fault-tolerant, though.

Round-Robin (cyclic splitting, cyclic service), (c)

In the round-robin strategy, the servers are invoked starting with ore server and then
invoking all other serversin turn before invoking the first one again. If al servers perform
their tasksin a similar amourt of time, this grategy is giitable. It has the same problem as the
randam strategy, though, it canna cope with the situation where one server goes down or
becomes overloaded.

Load (lowest load), (a) and (c)

The load strategy is to colled information d the load from the individual servers in some
way (information pdicy) and then invoke on the server that is the least loaded. When using
this grategy, fail ed serverswill be regarded overloaded, and thus will never be invoked.

Request Queues, (a) and (c¢)

Ancther way of balancing the load isto use request queues. This technique balances the load
dynamicdly. The dients requests are put in a queue and are then dequeued by the servers
ready to processa request. If the queue is persistent this approadh has another feaure. The
clients and/or servers can crash withou the requests being lost. One big advantage of this
strategy is that no load information hes to be pdled from the servers and hence alot of
network traffic is saved.

Of the four strategies, the first two are load independent and the third and forth are load de-
pendent. Implementing the load and the request queues drategies are much harder, thouwgh,
andthe load balancing has more overhead.

3.2.7 OrbixNames | mplementation

OrbixNames from IONA Tedchndogiesis an OMG CORBA compliant implementation d the
CORBA Naming service. The Naming service offers a way to get objed references from
hierarchicdly structured strings. OrbixNames is therefore in a good paition to do load
balancing transparent to the dients when they are getting their objed references.
OrbixNamesin its current version (1.1) suppats the roundrobin and the random schemes.

OrbixNames normally consists of arepository of names which map to oljeds. With the load
balancing feaure the names map to object groups instead of objeds. An oljed groupis a
colledion d servers offering exadly the same service. The method pi ck() gets a member
from the objed group wsing either the roundrobin or the randam scheme. To make the load
balancing avail able to the dients, an oljed group must be aeaed and boundin the Naming
service. The objed group members are then added to their group in the server mainline.
When a dient resolves a name in the naming service that happens to be a1 oljed group, the
pi ck() method is automaticdly invoked onthe objed group transparently to the dients
[IONA 98h.

3.3 Replication

In this ®dion, the reasons for using replication are presented, and dfferent approaches that
can be made ae discussed. Further, isdles that have to be mnsidered when implementing
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replication are analyzed. Oracle8 Advanced Replication is presented in section 3.3.6 as an
example for areplication implementation.

3.3.1 What IsReplication?

Replication refers to the maintenance of redundancy in a system. Replication techniques use
multiple copies of data or invocations to make a distributed system more reliable and perfor-
mant. The copies are often called replicas[Bernstein & Newcomer 97].

3.3.2 Problems Addressed

As mentioned in the previous section on load balancing (3.2), distributed systems are often
mission critical, i.e. they have to be highly available. When using redundant data it is easy to
shift to another replica when the one in use becomes unavailable due to a server crash or
communication failure. Another problem with distributed systems is that the performance
often degrades severely when many users at many nodes are connected to the system. The
solution to that is to increase locality, i.e. to store data locally in order to reduce costly
network traffic. How to distribute the replicas is an important problem that has to be
investigated and tested when deploying areplication strategy.

3.3.3 Goals

There are two major goals of replication; increasing availability and increasing performance.
Higher availability can be accomplished due to higher fault-tolerance when storing or
processing data redundantly. Performance gains are achieved because of increased locality as
described in the previous section. A system using replication should do this transparently to
the clients in order to make it possible to easily test different replication strategies, and fine
tune the system. A replication scheme should also be as application independent as possible.
However, the replication approach chosen is often influenced by the application context. This
makes it impossible to find afully generic solution.

3.3.4 Design | ssues

In order to give the users the impression that only one data resource is used instead of a set of
replicas, there must be some synchronization of the replicas to maintain consistency. Thisis
the most challenging task when implementing replication. Synchronizing replicas distributed
over several nodes means alot of communication overhead, and hence performance losses. If
performance was the reason for deploying replication, this is unacceptable. If, on the other
hand, availability was the most important goal, this overhead might not be of such great
importance, though. In addition to the communication overhead, storage space availability
also restricts the use of replication. If the processing is replicated too, processor load will
increase as well when introducing replication.

Synchronization in distributed systems is often achieved by using the 2PC protocol. This
technigue has proved to scale poorly, though, because of its weak fault-tolerance semantics
[Shussel 96]. When replicas at multiple nodes are updated following the 2PC rules, it is
enough if one node is down to undo the whole propagation. In large-scal e distributed systems
with numerous replicas, this is often unacceptable. In systems demanding absolute
consistency, this is the only possibility, though. Deploying replication is therefore always a
trade-off between availability (or fault-tolerance) and consistency [Faegri 95].

3.3.5 Approaches

There are two main groups of replication approaches. synchronous, and asynchronous
replication. The different approaches differ in how strong the consistency is maintained.
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Synchronous Replication

In the synchronous approac the dhanges are propagated to the repli cas within a 2PC transac
tion for absolute mnsistency. The propagation may be started by some database trigger
before committing the data. This is applicable, e.g., in banking funds transfer and financia
trading systems that have high demands on acaracy. However, the overhead o this approacd
isnormally unacceptable, and it does nat scde.

Asynchronous Replication

In asynchronows <hemes the mnsistency is maintained in awedker way. The updates can be
triggered in some way or can be dore periodicdly. There ae two dfferent groups of
asynchronous replication: master/slave (or pesgmistic replication) and peer-to-peer (or
optimistic replication).

* Master/Slave

This approach is also sometimes referred to as primary-copy replicaion in the literature
becaise one replicais sleded to be the primary. Updates are only alowed onthe primary
replica (master) and the seoondary replicas (aves) are read-only. One example of
master/slave replicaion suppated by many database vendas is siapshats. The replicaionis
pessmistic becaise it avoids confli cting updates. For some systems this approach could be to
rigid andinflexible, though.

*  Peer-to-Peer

A more flexible gpproad is the pea-to-pea approach where dl replicas can be updated. In
this case there might be ncurrent conflicting updetes. In order to resolve nflicting
updates, which are deteded when propagating, some reconcili ation strategy has to be dhosen.
Example of such strategies are: latest timestamp (or Thomas's Write Rule), earliest
timestamp, priority group (some groups of replicas have priority when a conflict arises) and
site priority [Chen 96].

One example of an asynchronows g/stem is a data warehouse system or Decision Support
Systems - Replication (DSSR). In aDSSR system it is more important to have a onsistent
view at a cetain padnt in time for dedsion making and analysis, and the aurrency is of less
importance DSSR systems are often implemented as master/d ave.

Anather example of asynchronots replication is Transaction Processing - Replication (TP-R)
[Shus=l 96]. This approach isthe one dosest to the 2PC approach. In order to make the sys-
tem more fault-tolerant there is not a single 2PC transadion, bu instead ore per replicathat
isto be updated. If the transadionrolls bad at one replicanode, the update request is dored
in aqueue and can be processed when the replicais avail able again. The original updates are
made on ore single replicain a locd transadion. As on as this transadion commits the
propagation to the other replicas darts automaticdly. The TP-R model is often used in
production systems, and can be implemented bah as master/slave and pea-to-peq.

3.3.6 Oracle8 Advanced Replication | mplementation

Orade8 suppats asynchronouws row level replication. When an updite is made eab single
row that has changed is gored locdly to be propagated at some later time. Ancther
interesting feaure of Orade8 isthat the dhanges can be propagated in paral el to the diff erent
replicas, while asauring that updates that are dependent on aher updates are made in the
same order as they were made originally. All of the replicas can be updated concurrently at
eat nock (pea-to-pee model). Hence onflicts can occur, and hes to be deteded and
resolved.
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In the Orade8 implementation, conflicting updates are deteded by comparing the before
image from the original site with the aurrent image & the remote location (this is dore on a
column level). If a corflict is deteded, then some reconcili ation strategies can be dhosen by
the database administrator, e.g. latest timestamp and site priority. [Orade 974

3.4 Caching

In a CORBA environment object caching (as oppcsed to data cathing, which often is
provided by the database) is the most applicable cahing concept due to the objed-oriented
nature of CORBA. This chapter focuses on caching objeds.

The motivation for using a cade, the oncepts of objea cading, and what functionality a
cade manager shoud dfer are discussed. Different ways of managing the cade, that is
keeping the cade acarate, and some cade locaion pdicies are presented. Theredter the
most complex problem of objea cading is discussed in greaer detail - how to keep cades
consistent using event propagation. Finally, two implementations from the industry are
exemplified; live object caching in Persistence and the objed cading in Versant.

3.4.1 Why Use a Cache?

Cacdhes have been used for many yeas in the memory management of operating systems to
solve the problem of inexpensive memory vs. fast access The well known ideais to transpar-
ently swap frequently accessed data to a faster medium, giving the impresson that all datais
avail able in fast memory.

In distributed environments like CORBA, accessng information in remote databases is often
abattlenedk (as discussed in sedion 3.1, olped-relational mapping). Hence abig problem of
these systems today is performance The goal is to simulate locd accessin such a way that
the end wser idedly doesn't naticethat remote accesis performed.

3.4.2 Object Caching

Objea cating concerns the cating of programming level objeds that either are stored in an
objed database or in arelational database. The purpose of an oljed cade is to make some
objeds faster to access transparently to the dients. In this sdion, a brief description d how
an oljed cade normally worksis given.

What Objects should be Cached?

Idedly you want to cache asmall amount of data that is being accessed frequently and
updated infrequently. To model such behavior arule cdled the “80/20 rule” could be gplied.
The rule says that 80 percent of the users access 20 percent of the data. Thus to ogtimize
performance these 20 percent of the objeds, which often are “core business objeds’
(programming level objeds that model the business logic), shoud be catied. Objeds that
change their state very often shoud na be kept in the cate, though. Whether a cading
implementation is succesful depends heavily on the gplication context. Applicaions where
clients issue many read request to analyze some situation, and then cdl write once ae well
suited for cading, wheress applicaions where dients just read some dient proprietary
information orce, and then write badk to the database dorit gain as much from a cading
implementation [Keen 9§].

! Not to be cnfused with CORBA BusinessObjeds defined by the OMG.
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Object Faulting

An oljeda cade must provide some way to ded with object faults. That is to dedde what
shoud happen when a programmer references an oljed that is not available in the cade.
Some techniques are based on UNIX proprietary page faults (e.g. [Kordale & Ahmad 95])
that can be caight as exceptions. In the exception hander, the objed is fetched from the
database into the catie. A more degant technique is to view the cate & alogicd database
by using atable with entries for eat cadhed oljed. Objed faulting is deteded by chedking a
memory pointer field in this table. If the pointer isinvalid, then the objed is fetched from the
source database.

Consistency of Replicated Data

When uwsing cadies, data is replicaed locdly. The same objed could be replicaed for
multiple dients at the same time on dfferent madiines. In such a situation, keeuing the
copies consistent becomes a dallenging task. Different cade management approaches
(described in sedion 3.4.4 solve this problem diff erently. How strong the mnsistency shoud
be held is very context dependent. For example, when krowsing for information ona web
page it normally doesn't matter whether the page is fully acarate. Fast access is more
important. In a transadiona system, though, it is more important that the data used by the
transadional participantsisacaratein order to fulfill the ACID guarantees.

Object Eviction

The size of the cate is often limited, and in applicaions deding with a lot of objeds, it
bemmes impassble to ke al the objeds in the cabe & the same time. Therefore some
strategy has to be deployed concerning which oljeds doud be evicted, and when they
shoud be evicted to prevent the catbe from getting full. Objeds can be evicted onaFirst In
First Out (FIFO) basis, or every time atransadion commits or aborts. One alditional solution
isto time stamp al objeds when they are used and then evict the Least Recently Used (LRU)
objead when some upper threshold of cade usage is readed o in a periodicd manner.
Ancther posshility is to register a Time To Live (TTL) value for ead oljed and then
periodicdly evict al the objedswith elapsed TTL values. [IONA 974

3.4.3 Cache Manager Interface

The catie can beeseen as alocd database, as described in the previous dion, onwhich a
set of operations can be performed. A table cmnsists of one entry for ead data item to be
caded namally with additional meta data. Below some operations that are in common for
most cade managers are listed [Terry 85, Bernstein & Newcomer 97]. These operations
are normally used bah internally by the cate manager using one of the cading padlicies
(sedion 3.4.4, and by the cate usersi.e. the dients. The semantics of these operations are
presented in the succeealing sedions.

purge (or deallocate) - deletes one cade entry.

fetch (refresh, reload) - retrieves new data from the red source and storesit in the cade.
flush - writes datain the cate to the source

invalidate(complain) - gives cade users the posshility to inform the cate manager that
datain the cadeisinvalid.

revalidate — is used by some cades in order to see whether the data is valid withou
accessng the source

pinfunpin — are often used in a transadional context to ensure that the data is kept in the
cade and nd written to the source

getStatus - getsinformation a meta data ébout an entry in the cate table.
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3.4.4 Maintaining Consistency

A cade manager, i.e. software that manages the physicd cade, has to dedde when to chedk
the values in the cate for consistency, and what adions to take if inconsistency is deteded.
This can be dorein four different ways: passvely, on cemand, periodicdly, or using pushes.

Passive

A passive cade manager waits until the user complains (invokes operation invalidate) abou
invalid data, and then deddes to puge, refresh, a invalidate depending on what the user
complained abou. If the user, for instance, just naticed that there was an oljed in the cate
that was erroneous, bu isn't interested in invoking any methods on that objed, it would be
enough for the catie manager to cdl purge onthe cate.

On Demand

In the on demand approacd, the user says explicitly what operation shoud be performed on
the cade. For example, a web browser that provides a refresh o reload buton. This
technique is applicable when the dients' demand onconsistency islow [Terry 85].

Periodic

The cate manager could periodically chedk the acaracy of the data, and then refresh the
data that changed. The danger with thistechniqueis that it can introduce alot of unrecessary
network traffic.

Push

The push approach ensures consistency and acairacy of the data in the strongest way of the
presented techniques. The cate manager gets a cdlbad when the data has changed in the
database, and it can then cdl refresh or invalidate on the cade. This is also the most
expensive technique mnsidering network traffic consumption and demands fast tail or-made
messaging techniques, like multicasting. The push technique is further elaborated in sedion
3.4.6.

3.4.5 Cache L ocation Policy

The cate manager can work on dfferent levels of granularity. By pladng the cate on
different locdions, it can be made accesble to dfferent groups of clients. A cache manager
is here for simpli city defined to manage only one cate.

Per-process

In the per-process approach every client process has its own cate manager. The cate can
then na be shared between clients. This could be a appropriate gproac for long lived
clients accessng the same data multiple times, e.g. browsing for information in a web-
browser.

Per -processor/machine
All the dients on the same machine can share a cahe manager. This is applicable when
clients on the same madine have simil ar tasks, and wse simil ar data.

Per-site

If afast LAN is avail able, the network traffic within the site could have minor impad on the
user resporse time. In that case it could be agoodideato have one cate in common for all
the dients on that site. Sites conreded with a fast network could also share a cahe
[Terry 85.
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The approaches mentioned so far could easily be combined into a hierarchy. If the object is
not available in the cache of the finer grained cache manager, the manager on the next higher
level is contacted to get the object. Thisis done in [Chankhunthod et al 94] for caching web
pages located on web serversthat are ordered in a hierarchy.

Per-transaction

In transactional systems it might be appropriate to let all participants in a transaction share
the same cache. When a participant references an object the cache manager first looks
whether the object is available in the cache. If the object is not there, it calls fetch and
increments the pin counter by calling pin. When the participant does not need the object
anymore unpin is called. Later when committing the transaction, the cache is flushed (this
can only be done if the pin counter is 0) and purged. Per-transaction cache management is
closely related to managing recovery and logging. Before unpin is caled the recovery
manager checks whether the data has changed. If the data has changed (commonly referred to
as being dirty), a log record is written (containing before and after images of the data) in
order to enable recovery after a crash. This is done because unpinned data could potentially
be flushed [Bernstein & Newcomer 97].

Per-application

Application servers accessing data in a database on behalf of clients are inherently candidates
for offering caching. An application server could, for instance, combine a per-process
location policy (where the server is the cache client) and a per-transaction cache, as
exemplified by the Persistence PowerTier tool (section 3.4.7).

3.4.6 Cache Consistency - the Push Approach

In this section, different approaches that can be taken to keep multiple caches consistent are
discussed. Thisinvolves synchronizing multiple concurrent cache users and dealing with con-
flicts that can occur when different users have different views of the same object. Further,
updates have to be propagated, and the lifetime of objects controlled.

Optimistic vs. Pessimistic Approach

To prevent inconsistency of data different users must be prevented from updating the same
data at the same time. This is easily done in non-distributed environments because al
databases support some kind of synchronization mechanism to block users trying to read data
that is updated by another user at the same time. One common synchronization technique is
locking. Locking all the distributed caches of an object when one client wants to make an
update, or query some datais both very costly, and also difficult to implement.

As the main objective of deploying caching is to increase performance, it would be
unfortunate to limit the concurrency by blocking all users who want to read data currently
being updated by some user, and thereby causing a severe bottleneck. If concurrent updates
and read requests are unlikely to happen, however, this so called pessimistic approach, where
al caches are locked during updates, could be used. This could be the case in a scenario
where single clients access the same data frequently.

A more suitable approach, when having multiple distributed caches and many concurrent
users, is known as the optimistic approach or optimistic locking. When a client reads some
data into the cache it is not locked but instead some kind of log is written containing a
version number or a time stamp. At the time the client is ready to update, the logged version
of the cache is checked against the version currently available in the database. If these two
versions are consistent, the update can take place, otherwise another user has done an
intervening update, and the operation has to be canceled.
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with the new value. If al cades are just natified of a thange, they have to access the
database for the new vaue, which could be wstly. Propagating the value with the
natification, pevents this. Therefore this would be preferable, provided that the pushing
techndogy used is able to transmit all the data changed in an efficient way, and the dhanged
datais not too complex to send within a push. Pushing changed data wuld be very dangerous
with resped to the cnsistency. Normally the order of which the events arrive has to be
controlled as exemplified by Orade8 advanced replicaion described in sedion 3.3.6.

Granularity of Events

Ancther important dedsion, to be made when deploying a cating strategy with an event
natificaion medianism is - on which level of granularity shoud the events or pushes be
generated? Two contrasting fadors sioud be wnsidered. First, the overhead implied by the
sender generating many different kinds of events (potentially on multiple channels). Second,
the number of pushesinvoked onclients not interested in the event. Anather way to put it is;
who shoud do the filtering -the recever or the sender of the push? The following
granularities could be gpropriate depending on appli caion context.
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* Per-Object

As onas an oljed changesits date an event is generated. If the goplicaion hes few impor-
tant objeds used by many clients, this would be gpropriate. An example muld be stock-
brokers interested in the stock of a cmpany.

* Per-Class

If objeds of a cetain class are frequently read and less frequently changed, per-class
propagation may be agood idea Per-classnatifications could be useful when, for instance,
clients maintain a list of objeds of a cetain class One example gplicaion could be a
bodking system where objeds of the dassthat can be bodked are caded.

* Per-Table/Row

If the database dready suppats events like triggers, it could in same caes be agoodideato
use these built-in database events for better performance. A per-table trigger corresponds to a
per-classevent, and a per-row trigger corresponds to a per-objed event if a one-to-one map-
ping is used. This might not always be the case, as discussd in sedion 3.1.3.

* Logical Grouping

There wuld be other groupings of objeds siitable for pushing through the same event
channel for optimal benefit concerning number of events, and overheal vs. naificaions
interesting to the recavers. This is useful in applications where the per-class propagation
sends too many events not interesting to recevers, and al filtering is done & the recaver
side. By ordering eventsinto logicd groups, some filtering could be dore on the sender side.
An example could be abodking system that sends out diff erent events for ead bodking made
in adifferent geographicd area

Lifetime of Objects

The lifetime of an oljed is closely related to the eviction pdicies chasen (described in
sedion 3.4.2 and the cate locaion (described in 3.4.5. If the per-transadion cading
model is used, the objed lifetime muld be the same & the time of the transadion. If the same
objed is changed and read by many transadions concurrently (for instance in a per-site
cade), this would be an inappropriate gproad, though, and a more general LRU strategy
would be suitable. If an ojed is not used much, evicting it could lead to better performance,
as updte events don't have to be handed. Hencelifetime pdlicies could have abigimpad on
consistency palicies.

3.4.7 Object Caching | mplementations

In this dion, two dfferent objed cade implementations are presented. The objed cade
from Versant implemented in their objed database, and the Live Objed Caching concept
implemented in Persistence PowerTier (described in sedion 3.1.6.

Versant Object Cache

Whenever a database sesgon is garted, Versant all ocates a pointer to a new objed cadein
the virtual memory of the madcine where the gplicationis running. The same sesgon can be
used by many clients who then share the same objed cade. This objed cade is managed
using atable containing one entry for ead caded oljed. These entries contain ore painter
to the objed in memory, and ore logicd objed identifier to locate the objed in the database.
Ead entry aso contains meta data like lock information, and gnning status. When a dient
makes arequest onan oljed, the cadetableis queried, andif the memory painter is null, the
logicd objed identifier is used to get the objed from the database (see objed faulting in
sedion 3.4.2. After the objed isretrieved pin is cdled. When the transadion commits, the
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meta data in the cache table is queried to check which objects changed. The objects that did
change are flushed, and then purge is caled. The cache can optionally be kept after
committing. [Versant 98]

Persistence Power Tier Live Object Caching

The live object cache of Persistence was developed to solve the performance problems due to
accessing a relational database from an object-oriented environment, and having to map the
relational structure to objects. With alocal cache containing the most frequently used objects,
a major performance improvement is possible. In addition to the faster access when the
network traffic is reduced, being able to query an object in the cache instead of doing SQL
joins aso improves the performance. Another performance improving technique used is
optimistic locking on the object level, which is implemented using version stamps. The live
object cache implementation furthermore contains a notification mechanism which can be
used to maintain the consistency of the cache.

There are two different physical caches in order to support transactions. A shared cache
accessible by all clients, and a transactional cache only accessible by the client starting the
transaction. If the transaction is committed, then the transaction cache is cleared, and the
cache entry is copied to the shared cache [Persistence 98]. See figure 3.3.
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Figure 3.3: Persistence Live Object Cache Synchronization with ProActive Agents
(1) Client 2registersacriteriawith the agent.

(2) Client 1 starts a transaction on Object x. The object is fetched from the
databaseinto the shared cache, and copied into the transaction cache.

(3) Thetransaction is committed. The transaction cache is cleared, and the object
is copied back into the shared cache.

(4) An event is generated and pushed to the clients registered for the criteria.
These clients could then update their caches.

3.5 Summary

The focus of this chapter was on how to improve scalability and performance in large-scale
distributed systems using persistent data

When mapping objects to relational databases basically two things are important to keep in
mind. First, do not make the application logic dependent on the database schema, i.e. separate
behavior (e.g. IDL) from how the data is actually stored. Second, try to retrieve as much data
in as few database calls as possible to avoid the object-relational mapping becoming a bottle-
neck (e.g. prefetch datathat islikely to be read by others).

Three closely related techniques for improving performance and scalability in distributed
systems were discussed. Load balancing is mainly used to duplicate the processing for better
scalability. Replication involves duplicating data in order to improve performance and avail-
ability. Finally, caching is used to duplicate data in in-memory structures for better perform-
ance and to reduce network traffic.

Caching is the main focus of this thesis and was therefore discussed in greater detail. When

implementing caching, one major decision has to be taken: how the caches are going to be
updated when the source changes. This decision always leads to a trade-off between
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consistency and performance. If the caches always have to be kept consistent with the source
a any point in time, then the system is likely to suffer from serious performance degradation,
and will not scale. Therefore usualy less strong consistency is accepted which is often
referred to as the optimistic approach.
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4 Softwar e Ar chitecture

In this chapter, general concepts of software achitedure ae introduced. The cncepts are
elaborated and applied in Chapter 7. Architedural Abstradions from the Case Study. There
are many different definitions of what software achitedure is. Properties that all definitions
have in common are described in the first sedion d this chapter. The second sedion presents
the concepts of views and patterns. The last sedion describes three diff erent techniques for
modeling architedures. UML, Catalysis, and the Connector framework.

4.1 What is Softwar e Architecture?

In the literature, there ae many different opinions on what a software achitedure is. All
have in common that a software achitedure shoud describe the software system in an ab-
strad way. In current pradice, this is normally dore with informal “box-and-line” diagrams.
Thefield of software achitedure ams at formali zing these diagrams, and to make them nmore
expressve. The boxes are typicdly referred to as components, whereas the lines are cdled
connectors. Comporents are interrelated elements of software with externally visible proper-
ties. Comporents houd be ale to describe the software system on dfferent levels of
granularity. The highest level would typicdly hide dl detail s that concern implementation.
Conredors are used to describe the interadions between two or more comporents.

OO-programming languages and traditional OO-modeling techniques emphasize the
modeling of entities in the system. The descriptions of how these entities interad is often
distributed and embedded in the entity definitions. This approach is useful when trying to
design common tehavior of single etities (by using inheritance). It is not so suitable,
however, for deteding common kehavior involving several comporents. The software
architedura approach, onthe other hand, makes a dea distinction between comporents and
conredors, and treas them independently.

A software achitedural description shoud be éle to address the wmposition o compo-
nents, the general control structure, communicaion ketween comporents, synchronization,
physicd distribution, as well as sding and performance isdles [Garlan & Shaw 96].
Changing an architedure becomes increasingly costly as the development of a system pro-
gresss. Therefore, being able to consider design issues like thase mentioned above is crucial
to deted design flaws ealy in the development lifecycle. Architedural abstradions help in
defining termindogy for discussng the design among people involved in the development
projed. Ancther important objedive of software achitedure is to enable reuse of design.
This is dore by abstrading design solutions into generic patterns (discussed in the next
sedion). By reusing design, the time for developing new similar systems can be reduced
immensely. Furthermore, maintenance becomes easier when the system architecure is well
documented.

In a broader perspedive, the reseach in software achitedure ams at making software devel-
opment to an engineaing discipline. That is the software development process $ioud foll ow
strict scientificdly proven steps in arder to always yield satisfying solutions at a ressonable
cost. Many concepts therefore origin from other engineeing disciplines.
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4.2 Views and Patterns

In this ®dion, two o the most essential techniques for creaing software achitedures are
presented. Views are fundamental in capturing different aspeds of the system, and patterns
are used as “buil ding-blocks’ for composing architedures.

4.2.1Views

A software system does not comprise one single achitedura structure but several.
Depending on what the entiti es and relations depicted represent, diff erent structures or views
of the system can be described. Examples of views are conceptual, class, physical, module,
process, data flow, and control flow [Bass et a 98]. They are dl explained in some more
detail below.

Conceptual

Conceptua views are ommonly used to model the problem domain. They are useful when
the functionality of a system is to be outlined withou having to consider, e.g., which
implementation language is to be used. The antities refer to functional units and the relations
typicdly mean that informationis shared between the entities.

Class

The dassview is probably the most common view in traditional objed-oriented modeling.
The antities are dasses and the relations refer to methods or attributes. The diagrams in this
view are implementation dependent but still offer some éstradion from the dgorithmsin the
code.

Physical

In dstributed systems where the system runs on multiple processors, machines, or hosts, a
physicd view of the system would namally be aeded. In a physicd view the antities are
hardware, and the relations represent communication. These views are important to be aleto
consider performance and scdability issues.

Module

A modde view could be used for information hiding. The software system is grouped into
modues encapsulating parts that are likely to change. When a change is made, orly the
modue in which the dhange resided, and pesbly its sib-modues, shoud be dfeded. The
relations in the view are used to buld a hierarchy of modues and sub-modues. The modues
on the highest level in the hierarchy are commonly parts of the system that have been
assgned to agroupin an organization.

Data and Control Flow

A control flow view depicts gates and hav they transition into new states. Data flow
diagrams typicdly describe entities nding or receving data, in order to see which entities
are involved in fulfilli ng a functional task.

Other commonly used views are: uses, cdls, and processviews [Bass et a 98]. By letting
different diagrams focus on dfferent quality concerns like performance and modifiability, a
cleaer overal view of the system can be gained. Furthermore, the views suppat the design
processhy incrementally defining new aspeds of a complex system.
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4.2.2 Patterns

As discussed earlier in this section, an important goal of software architecture is to reuse de-
signs. This is done by documenting solutions found in a generic way. The result is called a
pattern. A pattern is not created but detected. Finding patterns could be seen as forming reoc-
curring chunks of software into units that are associated with a representative name. Patterns
hence both make it easier to describe and discuss complex systems, as well as record experi-
ences from previous designs. By making patterns easy to use and understand, it should be
easy to design suitable systems by composing patterns from a repository.

Patterns occur on different levels of granularity, i.e. have different scopes. Three major levels
can be discerned: reference models, architectural styles, and design patterns.

Reference Models

This level is sometimes also referred to as the enterprise or globa level
[Maveau & Mowbray 97]. It is the highest and most abstract level. The reference models
are standards defined for different domains. The standards could be defined by accredited
bodies, consortia, the market (de facto), or within an organization. All architectures designed
in an organization must conform to the chosen reference model. One example of a reference
model is the Object Management Architecture (OMA) described in section 2.1. All the
standards adopted by the OMG must conform to OMA..

Architectural Styles

Architectural styles describe patterns on a system level. This is a relatively new field of re-
search. It arose from the need of having a terminology to describe common computational
concepts on a higher level than the programming code. A catalogue of architectural styles and
their definitions was created in [Garlan & Shaw 96]. Styles described there are: dataflow
systems, call-and-return systems, independent components, virtual machines, and reposito-
ries. These styles are further refined into subcategories where, e.g., OO-systems are defined.

Design Patterns

Design patterns describe design solutions to common problems on a class level. Each pattern
comprises some classes and their relations, as well as a textual description including code
examples. The design patterns can be directly implemented in any programming language
(but an object oriented language would be preferable). An extensive catalogue of design
patterns can be found in [Gamma et a 95]. Patterns defined there include: observer, proxy,
adapter, abstract factory, iterator, and bridge.

The idea behind patterns originally came from the architect Christopher Alexander who
defined patterns for building houses in 1977. As a software research field, it is fairly new,
though. Patterns have become increasingly popular in the industry as well, especialy on the
design level, because they can easily be applied and delivered with tools and standard class
libraries.

4.3 Describing Architectures

In this section, common requirements and properties of languages and modeling techniques to
describe software architectures are discussed. Thereafter three modeling approaches are pre-
sented. None of these was developed as an architectural description language (ADL), but
can be used for describing interesting aspects of architectures. UML is the standard object-
oriented modeling language. Catalysis is an extension of UML offering some more notations
suitable for describing architectures. Finally, the Connector framework is a framework to be
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used in conjunction with object-oriented modeling languages to enhance their architectural
expressiveness.

4.3.1 Ideal Propertiesof Architectural Descriptions

The definitions of what exactly alanguage should support in order to be classified asan ADL
vary immensely. Some common ADL properties[Garlan & Shaw 96] are discussed below.

Support for composition of components

Components should be easy to combine by specifying interfaces that are used, and those that
are exposed by the component. By defining interfaces, contracts are defined between
providers and users. The contract should be independent of the realization of a component.
By combining components, large-scale and complex systems can be easier described.

Describing a system at different levels of granularity

The idea behind describing systems at different abstraction levels is to suppress unnecessary
detail during analysis and in earlier phases of the design. Later the descriptions can be refined
incrementally towards an implementation. At each level of abstraction different interactions
and behavioral aspects will be exposed. Further, designers may be used to work on various
levels of detail.

View support

In section 4.2.1, structures or views of a system were discussed. An ADL should have support
for documenting these views. With views, concerns can be separated to get a clear picture of
acomplex system.

Identifying roles

Components in the systems can take part in several collaborations or interactions with other
components. In each collaboration the component contributes in different ways to the joint
behavior. A component can be said to play different roles. A component is an abstraction
above the notion of a class and often has a complex behavior. By specifying which roles a
component can play, the behavior can be decomposed. Each composition focuses on a
different aspect of the behavior.

Reuse of components and component patterns

The concept of patterns was described in section 4.2.2. An architectural description is
abstract and therefore often generic. In order to reuse generic patterns, an ADL should
support notions of instantiating components or groups of component. If the instantiation of a
component can be parameterized, the pattern could be seen as a stereotype. Further, if a
collaboration of components can be parameterized and instantiated, the pattern is typically
referred to as a framework.

Combining heter ogeneous parts

A large-scale and complex system often comprises heterogeneous parts. To support the inte-
gration of these parts, an ADL should be able to describe how components realized in
different environments interact. Typically, all components are viewed uniformly at a higher
level of abstraction. The heterogeneity becomes visible in refinement processes where details
are added. To make a system modifiable and extensible, it is important to have a common
infrastructure that all the heterogeneous parts comply to.
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Traceability from architectureto design

Traceability means that there shoud be adocumented bi-diredional path between the most
abstrad levels of analysis to the implementation. Tracedility is useful when re-engineeing
the system, and simplifies maintenance.

4.3.2 UML

The Unified Modeling Language (UML) is an effort to combine awncepts from several
object-oriented analysis and design (OOAD) methods into ore unified language. The work
with UML started in 1994 and pimarily consisted in urifying the Booch, OMT (Objed
Modeling Tedhnique), and OOSE (Objed-Oriented Software Engineeing) methods. UML is
developed by a consortium of industry and acalemia, and is currently in a standard adoption
processof the OMG.

In UML, as in traditional OO-modeling languages in general, most of the modeling focuses
on class diagrams (and hence implementation). More interesting from an architedural view-
point are the behavior diagrams defined in UML. One of these diagrams is the collaboration
diagramto model interadions between oljeds playing roles. The mllaborations normally are
on an implementation level, though. Classes participating in a allaboration as well as the
relationships can be parameterized to form patterns.

UML has suppat for many different views, e.g. class modue, data flow, control flow, and
physicd views. The physicd view can be described in two diagrams. component diagrams
and deployment diagrams. The cmporent diagrams depict comporents, the objeds they
contain, and the interfaces they expose. In deployment diagrams, the run-time componrent
distribution d a system can be shown. Comporents and the hosts they reside on are
described. Further, dependencies between comporents and interfaces from other comporents
can be depicted. In the state and sequence diagrams, concurrency solutions can be shown.
[OMG 97c]

4.3.3 Catalysis

Cataysis is an extension d UML developed by ICON Computing and Trireme Objed
Tedhndogy. Catalysis uses UML, bu introduces sme alditi ons.

Catalysis focuses on modeling abstrad behavior in type models. A type model spedfies a
contrad between supgiers and consumers of a wmporent. The external behavior of an
objea conforming to the type is defined. The @ntrad is described by spedfying the
operations supported by the type, and pre- and pastcondtions for eat operation. The type
model suppresses al detail s about implementation. Types described in a type model can be
implemented by many classs, and ore dass can implement multiple types. Collaborations
can further describe how these objeds interad depending on their external behavior. A third
important construct in Catalysis is refinement. Refinement is the process of providing more
detail ed models. A refinement can be dore on any model by asauring that the result — the
realization — is conformant to the original model — the abstraction. A refinement hence
provides traceability between models of different granularity. Type models, collaborations,
and refinements can all be parameterized and reused as patterns. The parameterized models
are cdled frameworks [D’ Souza & Wills 9§].

4.3.4 Connector Framework

The Conredor framework has been developed at TU Berlin in the reseach group
Computation and Information Structures (CIS). The framework can be used in conjunction
with ather OO-modeling languages like UML and Catalysis to elaborate catain parts of the
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descriptions. There are two important constructs in the framework: components and
connectors.

Components model the computational parts in a system (e.g. clients and servers). A
component is described in terms of its exported and imported interfaces, a representation-
map, and a representation. The interfaces provide a means to describe the behavior of the
component in an implementation independent way. The representation-map describes how
the interfaces are mapped to constructs in a programming language. Finaly, the
representation is a model of how the behavior is implemented. All these three parts can
internally be described using constructs from modeling languages like UML and Catalysis.

Connectors describe the interaction between components playing different roles. A Connector
specification comprises. a description of the roles participating in an interaction, role
interfaces, and interaction protocols specifying the collaboration. Roles are component
independent and used to provide an abstract view of participants in an interaction. This
promotes the use of connectors as patterns. Interfaces of the roles are specified and used for
describing the role dependencies in the interaction.

Connectors are instantiated by specifying the components playing the roles defined in the
connector. The instantiation is caled an abstract architecture. The abstract architecture is
refined to form a concrete architecture. In a concrete architecture the realization of the
components, as aresult of the rolesthey are playing, isshown. [Tai 96, Tai 98b, Tai 984]

4.4 Summary

In this chapter, software architectural concepts were discussed. There are many different
interpretations on what a software architecture is. They, however, al have in common that a
software architecture is an abstraction of the structures of the system. These structures are de-
scribed using components and interactions between components, often referred to as
connectors.

The main purpose of software architecture is to provide implementation independent views of
the system to enable reuse of design, and support early design decisions. ADLSs are languages
devel oped to support this process.

Three modeling approaches were discussed: UML, Catalysis, and the Connector framework.
They were not developed as ADLS, but they all support useful properties for describing archi-
tectures. Furthermore, they can be used in conjunction with each other. UML is suitable for
describing different views of a system. Catalysis has useful notations for describing contracts
between suppliers and users of a component. Finally, the Connector framework provides a
means to combine properties from other modeling languages. Further, it has sophisticated ab-
stract notions for describing interactions, which promotes the use of patterns.

In chapter 7, UML and the Connector framework were used to model the case study in this
thesis, as they are suitable for modeling object-oriented CORBA systems.
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PART |l - PRACTICAL
EXPERIMENTS

The second part of this thesis applies the concepts from part | in two steps. In the first step,
an object caching strategy is implemented in a case study. Thereafter, software architectural
modeling is used to describe a generic reusable design based on the case study. Chapter 5
presents the tools used for the implementation. Chapter 6 introduces the case study
implementation. Finally, chapter 7 introduces an approach to modeling the case study.
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5 Technical Solutions

In this chapter, various tedhnicd solutions and tod's avail able for an implementation d the
case study described in the next chapter are discussed. Investigated tools are presented by
considering how they solve the problems discussed in the previous chapters. The products are
grouped into two main caegories based on the problems they address distributed oljea
systems and transadions, and ohed persistence and cadiing. In the first caegory, the
prodwcts: OrbixOTS [IONA 98f], OrbixEvents [IONA 98g], and OrbixTalk [IONA 98H
from IONA are reviewed. In the second category, the products: Orade OCI [Orade 97H,
Orade Embedded SQL [Orade 97c], Persistence PowerTier [Persistence 98], and
RogueWave's DBTod s.h++ [RogueWave 98] are discus=d.

Ead tod is evaluated regarding its suitability for the objea cading strategy implementation
to be dore. The most dedsive dedsion to be made was whether to use an oljed cade
provided by atodl, or to write an oljed cade from “ scratch”.

5.1 Distributed Object Systemsand Transactions

In this caegory, it was quite dea that OrbixOTS was to be used for distributed transadion
suppat as this product served as basis for al the implementations made in this thesis.
OrbixOTS is also the wre part of OrbixOTM (see sedion 2.4. The main guestion was
whether to use OrbixEvents or OrbixTalk for the event propagation. Tests $rowed that bath
worked well with OrbixOTS. The question could also be put: whether a CORBA compliant
product (OrbixEvents), or a more performant and scdable product (OrbixTalk) was to be
used. OrbixTalk was finally chosen for its cdability. Below a short description d ead of
the prodictsis given.

5.1.1 OrbixOTS

OrbixOTS is an implementation d the CORBA Objed Transadion Service (see sedion
2.2.7). In compliance with the standards it suppats distributed transadions by driving the
2PC protocol, and by propagating transadion information to enable interpositioning.
OrbixOTS can integrate database resources in two ways; either by wrapping them into a
Resource objed or by using the X/Open DTP standard XA interface which spedfies the
interadion ketween the transadion manager and the resource manager transparently to the
database dients.

OrbixOTS thus can assure @omicity in a distributed environment. The isolation roperty of a
distributed transadion, onthe other hand, is normally the resporsibility of the database
implementing an XA interface Durability is asaured bah by logging made in the XA
implementation o the database (before and after-images of changed data) and logging dore
by the OTS. The OTS logs the arrent status of transadions using log fil es conreded to the
recoverable servers. Kegoing the data cnsistent will very much rely onthe gplication code.
However, asaring the other three transadion properties eases up the burden o the
applicaion programmer to maintain consistency.

5.1.2 OrbhixEvents and OrbixTalk

One way to maintain consistency in adistributed system (e.g. among distributed caces of the
same data) is to let an event service natify distributed sites using the data of changes. In a
large-scde system, this has to be dore dficiently not to cause an overload on retwork traffic.
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OrbixEvents is an implementation d the CORBA Event service (seesedion 2.2.2. It uses
IIOP (the internet inter orb protocol standardized by OMG) to send events over the network,
and could be used as a tod to maintain consistency. With OrbixEvents, multiple event
generators (supdiers) can be mnreded to multiple event subscribers (consumers) in an
asynchronouws and decougded manner by registering them with an event channel. If a supgier
sends an event to the channel, ore message to ead consumer registered is ent by the
channel.

OrbixTalk is an extension d OrbixEvents that additionally provides an implementation o
asynchronows messaging using the multi cast protocol. Instead of sending the event natifica
tions to all subscribers using I1OP as gated by the CORBA standard, the event message is
sent only once to a multicast port. The underlying network protocol then transmits the
message further on to the listeners to this port. This reduces network traffic in a drastic way,
and OrbixTalk therefore scaes better than an 110P solution. OrbixTak aso has additi onal
feduresto ensure reli able delivery of the messages.

5.2 Object Persistence and Caching

In this caegory, the most difficult dedsion had to be made: which of numerous database
tods soud be used to access the database? Some tods like Persistence and Orade OCI
already suppated an oljed cade off the shelf, this on the other hand daesn’t imply that the
built-in cades would be eaier to use in the cae study than a tail or-made solution written
from scratch. Ancther crucial part was which o the tods suppated an XA interface ad
could thus be smocthly integrated with OrbixOTS. At the time of implementation orly OCI
and Orade PRO*C had suppat, though. Orade PRO* C embedded SQL was finally chosen
becaise it was the eaiest product to use. Therefore, no poduct supfied oljed cade uld
be used.

5.2.1 Oracle OCI

The Oracle Call Interface (OCI) offers a procedural interfaceto SQL. SQL statements are
built up by issiing subsequent cdls in arder to hind hast variables (programming language
variables conreded to the query), to prepare and exeaute aquery etc. Orade dso enables ac
cessto database tables through an oljed interface Orade8 implements a built-in oljea
cade that only can be used by isaling OCI cdls. The magjor drawbad of OCI is that it is
intricae to use. A lot of programming is required even to perform very simple tasks. Further,
it constrains the programmer to use aprocedural style of programming far from the objea
oriented ideas. Instead o first creaing an oljed and setting up its internal state, (e.g.
representing all the database and transadion cetail s, and then invoking subsequent queries on
this objea), OCI requires that handers are aeaed and initialized, and passd in to all the
database functions as parameters. Some OCI functions requires up to 10different handers as
parameters. Because of the tight couding to Orade, and hgh functiondity, OCI is siited to
be used when implementing objed-oriented database acceswrappers, though.

5.2.2 Oracle PRO*C

The most common way to accessrelational databases is through SQL. The SQL cdls can be
embedded in the programming language using a precompil er. Orade offers a C/C++ precom-
piler cdled PRO*C. The alvantage of this approac is that it is amost as smple to program
asif SQL had been used dredly. It requires ome alditional programming like dedaring host
variables, bu this extra work is gnall compared to bulding up a query in OCI. The Orade
objeda cadte mentioned in the previous sdion can, havever, na be used with embedded

SQL.

38



Both PRO*C and OCI can easily be used with Orade’'s XA implementation for distributed
transadions.

5.2.3 DBTools

DBTods.h++ isan ojed-oriented SQL wrapper. SQL queries can be performed using asim-
ple objed-oriented APl. RogueWave now also suppats distributed transadions with their
new XA addon product for DBTodls. This was nat suppated when implementing the cae
study, and could therefore not be tested. The data objeds a programmer works with are only
wrappers though, and dorit provide accesto the datain a high level objed-oriented and stor-
age independent way. (Seediscussonin sedion 3.1.4)

5.2.4 Persistence Power Tier

Persistenceis an oljed-relational mapping tod that enables an oljed model to be spedfied
for the persistent data. From this model, C++ code can be generated enabling objed-oriented
and storage independent database acces Persistence dso has an oljed cading feaure (live
objed cading).

The aurrent drawbadk of Persistenceisthat it doesn’'t suppat distributed transadions through
an XA interface This suppat is annourced to be suppated in the next release. For further
detail s on the Persistencetod seethe sedions 3.1.6and 3.4.7.

5.3 Summary

The following tod-chain was chosen for the implementation: Orbix, OrbixOTS, OrbixTalk,
and Orade PRO*C (Orbix is the core ORB neeaded by all other Orbix add-on products like
OrbixOTS and OrbixTalk). The use of OrbixOTS is central in the implementation to asaure
the ACID propertiesin a distributed CORBA environment. All other toals therefore had to be
compatible with OTS. OrhixTak was chosen to gain otimal performance by reducing the
network traffic. The todl that suppats cating and oljed-relational mapping in the best way
of the ones investigated is Persistence It did nd suppat XA, howvever, and could thus not be
integrated with OTS. When the implementation d the example scenario started, RogueWave
XA was nat available and OCI was considered too complex to use, therefore dl the database
accesswas dore using PRO* C and embedded SQL. (Seetable 5.1)

Orbix [Orbix |OCI PRO*C DBTools |Persistence
Talk |Events
OoTS Yes Yes Yes Yes No No
Support
Scalable |Very |Yes - - - -
Object |- - Yes No No Yes
Cache
Easyto |[Very |Yes No Yes Very Very
use

Table5.1: Comparison between toolsthat could be used for the object caching
implementation
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6 Case Study

In this chapter, the problems addressed in part | of this thesis are investigated in the more
detail by designing and implementing an oljed cading strategy with the chosen tods
described in the previous chapter.

As an example scenario, the “Personal Touch Travel Agency”, originally design for the
IONA World 98trade-show to demonstrate IONA’s OTM Product, was chosen as basis for
the implementation. In order to make the implementation and the tests as redistic as passhble,
some asmptions were made on hov the system could be used in a red-world scenario.
These assumptions rve a inpu to the test configuration setup. The result is simmarized
regarding two dfferent aspeds. the cating strategy chasen, and the asaurance of ACID
properties of the implementation.

First, the problem domain is introduced. Objed cading is added to this picture gradualy.
The cating concepts are introduced starting on an architedura level, and then going
through the levels of design and implementation. Finally, cading is introduced on an
applicaionlevel by ssimulating ared-world scenario, and carrying out performancetests.

6.1 Problem Domain

In the Personal Touch Travel (PTT) Agency, Cust onmer s can bod Cot t ages locaed at
different Resor t s. Cust oner s can also browse information onResor t sand Cot t ages
as well as the Avail ability of Cottages online in ader to make the Booki ng
procedure eaier (seefigure 6.1).

The PTT Agency shoud be acceshle from a wide geographicd areg and shoud be ale to
serve alarge number of Cust oner s concurrently. Sal esOF f i ceswere introduced to med
this demand. Their purpose is to serve locd Cust oners by using information from a
Central O fice. Information on Cust ormer s and Booki ngs made shoud be kept at
eath Sal esO fi ce in arder to fadlit ate services like invoicing and bod keeping in the fu-
ture.

6.1.1 System Architecture

The Central O fi ce mantains the ceitral database (source database) with data for
Resorts, Cottagesand Avai l abil ity of Cottages The Sal esOf fi ces, which
were introduced for server load balancing, maintain their own loca databases with their locd
Cust oner s and Booki ngs, which in fad is replicated from the Avai | abi | i ty datain
theCentral O fi ce (seefigure6.2).

The PTT System thus contains both repli cated servers and replicated data. The load balancing
between the servers is datic and visible to the dients. In this <enario it is reasonable to
asume that Cust oner s have knowledge a&ou their locd Sal esOf f i ces, therefore the
load balancing is visible. Further, Cust oner s always contad their Sal esOf f i ces, thus
the load balancing is datic (known at compile time - as defined in sedion 3.2.). The
Central O fi ce and hencethe replicaion d dataistotaly transparent to the dients.

In order to maintain consistency between the Sal esOf f i ces and the Central O fi ce

distributed transadions shoud be used. The Booki ng datain the Sal esOf fi ces soud at
any point intime be cwnsistent withthe Avai | abi | i ty dataintheCentral O fi ce.
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Figure6.1: Logical view of PTT Agency

6.1.2 Constraints

The scenario described above simulates a large-scale transactional CORBA system. To
understand the need of CORBA and distributed transactions, and performance issues implied
by this environment, some real-world assumptions have to be made here. The main aim of
these assumptions is to build a discussion basis for later implementation and test
configurations, not to find exact figures. Hence, for simplicity, server failure and down-time
has not been taken into consideration in the following calculations.

Number of Customers

To motivate the use of the architecture described above, we assume that the system has 1
million users. The Cust oner s should furthermore be distributed evenly over a wide geo-
graphical area.

Use Pattern - Booking

Further assumptions rely on how these 1 million Cust orrer s use the system. First a distinc-
tion between peak season and off-season has to be made. Three months in the summer timeis
peak season, whilst the rest of the year is assumed to be off-season. Every Cust oner makes
in average 1 Booki ng for one week each year. The Booki ngs are in 80 per cent of the
cases made in peak season. This means that during peak season there are about 61,540
Booki ngs per week (13 weeks June-August) and about 5,000 Booki ngs per week during
off-season (the rest of the year). For every Booki ng, the Cust oner has to query informa-
tion, i.e. use the Sal esOF fi ce server. A typical scenario would be that the user gets
information on al Resorts, gets all Cottages in one Resort and then checks the
Avai | abi |'i ty for 10 Cot t ages before the actual Booki ng is made. In this scenario the
Cust oner issues 12 queriesand 1 update for each Booking.
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Number of Cottages

61, 540 Booki ngs could potentially be made each week. In order to meet this demand there
should be at least 61, 600 Cot t ages (some extra Cot t ages are needed to meet local peaks
and peaks within the peak season) in the system.

Number of Resorts
A Resort (small village) is assumed to consist of 100 Cot t agesin average. That leaves us
with 616 Resort s.

Load in the System
Totally in the system we have 61540 (bookings/week) / 5 (working days/week) / 8 / 60 / 60
(seconds/week) = '0.43 bookings/second, i.e. 2.3 seconds between each booking.

Number of Sales Offices

We assume that it would take the Sal esOf fi ce servers about 1 second to perform one
guery and 2 seconds to perform one update. A Booki ng would thentake 12* 1+ 1* 2 =
14 seconds to execute (see Use Pattern). Therefore we need at least 14 (seconds/booking) *
0.43 (booking/s) =6 Sal esOf fi ces.

Load per Sales Office
With the above assumptions the load at each of the 6 Sal esOf f i ces would be 14 seconds

between each booking.

! In these calculations, the exact value is always cal culated and put into the next step of calculations.
For simplicity the rounded value is shown when presented.
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Peak Load in Peak Season
To simulate peak load within peak season we assume that twice as many Booki ngs could be
made in the system, i.e. potentially 1.2 seconds between each booking.

Booking procedure

Every time a Cust onmer wants to book a Cot t age the Central Of fi ce is contacted to
confirm that the Booki ng can be made. Thereafter, a Booki ng is registered locally at the
Sal esOF f i ce within the same transaction. All these transactions must be serialized and
therefore could lead to the Cent r al Of f i ce being both a single point of failure and becom-
ing a severe bottleneck by heavy load. How many seconds it takes for a Sal esOf fi ce to
perform a query or an update thus depends on how loaded the Central O fice is.
However, this drawback has not been taken into consideration at this stage because it is more
of a design and implementation issue how to solve thisissue.

6.2 Object Caching Development and Testing

In this section, an object cache isintroduced into the PTT system. The changes to the system
architecture, and the caching strategy that was chosen are described. Further, implementation
issues are discussed, and the tests of the implementation are presented.

6.2.1 System Architecture

The system architecture changed in two ways:

(1) the Sal esOf fi ces administer local copies of Resort and Cot t age objects, (2) the
Central O fi ce sends out notifications when the source objects have changed (see figure
6.3). The source objects serve as masters in a master/slave approach.

This change was made to circumvent the Cent ral O fi ce becoming a bottleneck when
many Cust omers at many Sal esOf fi ces use the system. The single-point-of-failure
problem is only addressed indirectly by decreasing the Cent r al Of f i ce load. Ideally some
kind of primary-copy replication solution could be used (see section 3.3.5).

6.2.2 Design I ssues

When implementing a caching mechanism for the example scenario, some important design
decisions had to be made. These decisions together with the changed system architecture in
figure 6.3 could be seen as the general caching strategy chosen.

Optimistic or Pessimistic Consistency Control?

This question is the same as: should updates be propagated within or outside the scope of the
transaction changing the value? To keep the consistency of the system on an acceptable level
the local caches have to be updated in some way when the source data changes. As discussed
in the replication section (3.3), there are two possibilities: synchronous propagation of
updates within atransaction for total consistency at any stage, and asynchronous propagation
to trade-off consistency with performance. Because the Booki ng procedure ensures that no
Booki ngs can be made without confirmation from the central server controlling the source
data, the case when the cache is not consistent with the source only leads to the central server
telling the local server that the Booki ng cannot be made. It is, however, important that the
update notification reaches the local server as soon as possible so that as many Booki ngs as
possible will be successful. As mentioned earlier, OrbixTalk was used to asynchronously
propagate the updates. The propagation is started within the Booki ng transaction just after
the central server has confirmed the Booki ng in order to notify the local servers as soon as
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possible. For performance reasons, the transaction should not wait until all local servers have
received the message, hence the propagation is non-transactional. The transactions will rarely
abort after the central server has confirmed the Booki ng, and therefore this trade-off is ac-
ceptable.

What should be Cached?

Important properties of cached objects are that they are read frequently by many users and
updated less frequently. Both the Resort objects and the Cot t age objects fulfill this
requirement and thus were cached at each local server. The Resort objects contain
Cot t ages, i.e. provide the Cust oner s with its Cot t ages. Because of this property, the
cache is hierarchically structured, and only cached Resort s can give access to cached
Cot t ages.

Cachingin Relation to L oad Balancing and Replication

The load on Sal esOf f i ces is balanced to provide a better service to local Cust oner s.
To make the load balancing as efficient as possible, as many of the requests as possible
should be handled locally by the Sal esOFfi ces without having to contact the
Central O fice. The object caches support this, and thus contribute to a better load
balanced system. In the system, Booki ng data is replicated at each Sal esCf fi ce for
availability reasons. The Sal esOf f i ces could still do invoicing tasks using this replicated
dataevenif theCentral O fi ce were down.

Object-Relational Mapping

The classes in the system have a 1-to-1 mapping to the database tables representing their state
with one exception. The list of Avai | abi | ity contained in the Cot t age classis repre-
sented in a separate table in the database. The clients are not aware of any database structure
or persistent objects. All the database access is done transparently in the application servers.



The actual results from the SQL queries are performed in a separate module in the system,
and returned in a struct format to the application servers that create objects to be put in the
cache from the struct representation. This struct could be seen as the state part of the CORBA
object as discussed in section 3.1.5.

6.2.3 Implementation

In this section, the problems faced when implementing the caching strategy that was chosen
are discussed: event granularity, localizing objects, serializing requests, and how caches are
updated or invalidated.

Granularity and Filtering of Events

As discussed in section 3.4.6 (cache consistency - the push approach), it is important to con-
sider how the events generated by updates should be filtered, and how much information the
event message should contain. On the one hand, not too many unnecessary messages should
be sent, but on the other hand, the servers generating events should not have to do any
filtering that is client dependent. In the example scenario, only one type of event (and one
event channel) exists. The event is pushed from the Central O fi ce, and caught by the
Sal esOF f i ceswhen aBooki ng has been made. Thereforethe Central O f i ce sends
away just one event containing information on the Cot t age that has been booked. The
Sal esO f i cesthen filter this message by checking if the Cot t age isin the cache. When
the Central O fice pushes the event (just after confirmation of the Booki ng) all
information on the Booki ng is available, and it is therefore straightforward to send this
information with the message. The Sal esOf f i ce passes this information on to its cache
implementation where the actual filtering is implemented. The implementation hence uses a
per-class (Cot t age) event channel but sends information on an object level to the receiver
which, after filtering, enables the cache in the Sal esOf fi ce to update or invalidate
Cot t ages as if a per-object channel had been used. The idea behind this implementation
was to send away a notification without any filtering on the server side. The notification is
thereby tightly coupled to the application logic (no additional logic for sending away
notifications). Further, as much information as possible was sent with the notification to the
clients so that they could do the filtering and use the information passed with the event in a
flexible way.

Caching/L ocalizing Objects

The Sal esOF f i ce must provide its clients with the same interface and functionality in the
cached implementation as in the case when no caches are used. This means that the
implementation of the Resort and Cot t age classes has to be redefined to use the cache
instead of contacting the database at the Cent ral Of fi ce. The problem here is that the
Sal esOfice only returns Resort proxies to clients and then the clients make
invocations on the resort proxy to get Cot t ages. The Sal esOf f i ce must therefore return
a proxy to an implementation of Resort that uses caching. Thisis done in a process called
localize where the origina proxies from the Central Offi ce are converted into
Sal esOF fi ce proxiesfor Resort and Cot t age implementations using the cache. If the
localize process is not done, the cache always returns proxies to Cent ral O f i ce objects,
and the client still communicates with the Cent r al O f i ce when, for instance, accessing
Cot t ages. The cached Resort and cached Cot t age implementations inherit from the
original implementations but override the methods where the database is accessed, and use
the cache instead. For the Resort class this method is get Cott ages() and for the
Cot t age classitistheget Avai | abi | i ty() method that is overridden.
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tenpl ate <cl ass Val ue>
cl ass CachedObj ect

-
public:
[lctor/dtor:
Cachedbject () : misvalid (0),
m val ue (0) {}
/1 menber functions:
Val ue* get () {
if (!misvalid) {
misvValid = 1;
fetch ();

return mval ue

Val ue* val ue() {
return mval ue

}
int iseEmpty() {
return mvalue ? 0 : 1

void invalidate() {
misValid = 0;

pr ot ect ed:
Val ue* m val ue;
i nt m_i sVal i d;

virtual void fetch()=0;
virtual void localize()=0;
virtual void purge()=0;

b

Figure 6.4: CachedObject Template

Serializing Non-Transactional Requests with Transactional Requests

A problem arose when the callbacks in the Sal esCOF f i ce were executed at the same time
as the Booki ng transaction was running. This caused problems because both operations
access the cache. OTS only assures that transactional requests are serialized. As described
above the update notifications are sent asynchronously independent of any transaction.
Therefore non-transactional requests arriving at the Sal esOf f i ce that could access the
cache had to be serialized. This was achieved by using a semaphore in an Orbix Fi | t er
(message interceptor) that serializes requests coming in to the Sal esCOf f i ce server.

Update or Invalidate

There are two types of cachesin the implementation. One that holds all cached Resort sand
one that holds al Cott ages for a Resort . Both are implemented using a general cache
template. A cache implementation provides a get method that is similar to a smart pointer, i.e.
it hides the existence and the semantics of the cache from the clients, to access its value. This
method gets the value from the source if the cache has been invalidated, otherwise the cached
value is returned. A cache also has an operation to invalidate its value. Internally a cache
maintains a list of remote proxies to the source aobjects, and a proxy to an object returning
these source object proxies. Further a cache implementation has an internal method to
localize remote proxies to proxies pointing to the cache. Figure 6.4 shows the C++ template
for cached objects.
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Every time a Sal esOF fi ce gets a notification of a Booki ng of a Cot t age the list of
cached Resort sit maintains is informed. The list of cached Resort sis then traversed to
find the Cot t age that has been booked. Recall that the event has Cot t age information as
a parameter, which makes this straightforward. If the Cot t age is found in the cache, its
cache entry is immediately updated (e.g. by making a remote call to the Central O fi ce
server to get the new value). Tests showed that it was too time consuming to invalidate the
whole list of Cot t ages. Because the caches of all Cot t agesfor aresort maintain alist of
source object proxies, the changed entry in the cache easily can be updated without affecting
the rest of the cache.

The implementation uses both invalidation and direct updating. The caches themselves - the
cache of all Resort s and the caches of all Cott agesfor aResort - can be invalidated.
This s, for instance, used when the caches are filled for the first time; they are initialized as
invalid and then after their first use, when they get their value from the source, they are valid
until someone calls the invalidate operation. The single cache entries that are subject to
frequent changes, i.e. the single Cot t ages are updated directly to keep the cache as accurate
as possible. A strategy where the single cottage entries could be invalidated was also tested
but it just led to extra overhead and less accurate cache entriesin the tests.

Could Update Requests from Sales Offices Get Old Data?

Because the natifications, that a Booki ng has been made, are sent asynchronously outside
the scope of a transaction after the Booki ng has been confirmed, it could happen that the
update request from a cache reaches the Cent ral Of f i ce before the original transaction
has completed. In this case the cache should not be updated with the old value. This is
prevented by the Central O fi ce server serializing al transactions. All the caches that
want to update their value will therefore wait until the original transaction has completed
before the update is made.

Updating from Sour ce?

When the event arrives at the cache and the cache entry is found, two scenarios are possible:
the new value could be fetched from the source database, or the data sent with the event
could be used to update the value directly. If the approach is chosen where a remote call to
the source is made, the cache users are guaranteed that a cache entry (for a week to be
booked) always existsif aCot t age isavailable. It could however happen that aweek that is
not possible to book is present in the cache. With the second approach, where event data is
used, no guarantees regarding the cache entries can be made. However, because this approach
saves one remote invocation, it is much faster than to update from the source, and also scales
much better under heavier load. Both approaches are simulated in the implementation.

6.2.4 Selecting Test Configuration

To be able to do some realistic testing atest configuration was set up that took the constraints
discussed in section 6.1.2 into consideration. In the real-world scenario there were 600
Resorts, 100 Cottages per Resort and about 1 Booki ng per second (from 6
Sal esOF fi ces) under peak load. To get an equivalent load in the test suite, the configura-
tions described below were made.

To make the configuration easier, two Sal esOf f i cesthat use two separate databases were
used. Simulating the number of concurrent requests is no problem. The difficulty liesin simu-
lating the size of the databases. For the caching strategy chosen, it is important to know how
many Booki ngs that will be made at the same Resor t , and how many Cot t ages that the
Resort will have.
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The scenario we have is that there are many queries potentially on the same Resort for
Avai | abi ity of Cottages before one Cot t age is selected and booked. In order to
maintain consistency in a safe way, the queries are using the cache if it is available, while the
actual Booki ng awaysinvolves an update of the source data.

The caching implementation made relies on the assumption that Cot t ages within the same
Resort will be queried many consecutive times, possibly by the same Cust oner . Hence
all Cot t ages and their Avai | abi | ity within aResort will be cached as soon as one
request on a Cot t age in the Resort comes in to the Sal esOf fi ce. The number of
Resor t sthat can have their Cot t ages cached at the same time depends on memory avail-
ability and number of Cot t agesper Resor t . If not enough memory is available, some kind
of eviction policy has to be implemented. For instance the LRU (Least Recently Used)
policy. This only makes sense, though, if we actually have a large system. To show
performance gains with caching in our small test suite, we concluded that eviction would be
too costly to use. The test environment restricts us to have cottage information in memory for
about 6 Resor t swith 10 Cot t ages each.

The load on the Central O fi ce is vita to the performance of the Sal esO fi ces.
Therefore maximum load on the Cent ral O f i ce was simulated. Two tests were carried
out. Thefirst test let one Sal esOf f i ce make one Booki ng each second . The second test
used two Sal esCf f i ces, each with the load of 1 Booki ng every second. The first test
thus simulated peak load in peak season in the system (1 Booki ng each second), and the
second test had twice that system load.

The fact that the Booki ngs are less spread over the Resort s and Cot t ages than in the
real case, will be compensated by doing the measurements over a very short period of time,
which eliminates the risk of running out of available Cot t ages. Table 6.1 summarizes the
test configuration and the real-world assumptions.

Real World Test Configuration
#Sales Offices 6 land?2
#Resorts 600 6
#Cottages/Resort 100 10
# Bookings/sec 1 land 2

Table6.1: Test Configuration

6.2.5 Results

The database configuration shown in Table 6.2. was set up to make measuring easy and to
comply to the discussion in the previous section. For instance, one Cust oner was made
responsible for each Booki ng at each Sal esOf fi ce, and no Booki ngs were stored in
the Sal esOf f i ce before running the test in order to easily track the results in the database.

To do the caching implementation justice, an initial prefetch of Resort s, Cot t ages and
Avai | abi | i ty from the database was done. Further removing logging and debugging in-
formation written to disk could optimize these values. This information was crucial, though,
in order to measure and monitor the tests. The figures should only be seen as a means to
compare caching and non-caching servers.
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Database Table Rows
Central Office Resort 6
Cottage 60
Avail ability 2800
Sales Officel Customer 1
Booking 0
Sales Office2 Customer 1
Booking 0

Table 6.2: Database Population before Test Run

With no cading and two Sal esOf f i ces, the network traffic turned ou to be too heavy
and almost half of the Cust oner s Booki ngs recaved communication fail ure exceptions.
These exceptions were recaved after 1-4 seconds and they therefore make the average time
of aBooki ng in this test much lower (seetable 6.3).

1 Caching 1 Non- 2 Caching 2 Non-Caching
Ser ver Caching Servers Servers
(updatefrom | Server (update from
sour ce) sour ce)
Performance 1.2(1.9) sec 37sec 3.5(27) sec 46 sec
(average resporse
time per bodking)
Throughpu 100(200 % 100% 100(90) % 52%
(percentage
succesgul bodkings)

Table 6.3; Test Results

The results how that cadiing improved performance drasticdly when many users accessed
the same cadte, as in the first test with ore Sal esOf f i ce. The Booki ngs were made in
1.2 semnds with cading, and in 37 seconds withou cadiing in average. All the requested
Booki ngswere succesul in this case, bah with and withou cacing which proves that the
cade was kept acaurate in a satisfying way. The cae with two Sal esOf f i ces ows that
the cading Sal esO i ces handed the load much better, i.e. the cating implementation
improved load balancing.

In the cae when no cading was used, we had abou twice & many remote cdls as in the
cading cese. This proved to be very performance degrading. The database acces and the
2PC part of aBooki ng was of minor importanceto the overall performance

In the noncading case every read operation hesto go through the Central O fi ce andis
thus srialized. This is the same & having a distributed read lock as well as a distributed
write lock in the system. As discussd in sedion 3.4.6this was exadly what we wanted to
avoid with ou optimistic locking approad in the caing implementationin arder to increase
concurrency.

Thefad that the Cent ral O f i ce easily can become abattlenedc is underlined by the two
update gproades chosen. If the Cent ral O f i ce was contaded after ead updite natifi-
cdion, it took in average 27 semnds to complete aBooki ng, and the throughpu was 90 per
cent, in the cae with 2 Sal esCO fi ces. If the caties were updated locdly using event
parameters, then the mrrespondng figures were 3.5seconds, and 100 @r cent.
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6.3 Summary

The cae study is simmarized in two sedions. cading strategy, and ACID properties. In con
junction, the solutions listed in the two sedions asaure performance scdability, and
reliability of the system.

6.3.1 Caching Strategy

In the tests, objeds accessed by many users like Resort and Cot t age were cated with a
performance improving result. The caties were located at an appli cation server level and ex-
isted for the lifetime of the server withou any eviction. Objed faulting was implemented by a
generic get methodthat first chedked whether the value was valid, and if nat, fetched the new
value from the source. Other important operations in the cate interface ae locdize, fetch,
update, and invali date.

The cates were synchronized using a pushing CORBA Event service model. This proved to
help the throughpu in the tests. Events were generated ona per-classlevel but the events had
a parameter that enabled clients to filter the message and do updtes onan oljed level.

The catied CORBA objeds (Cott age and Resort) were mapped to C++ structs. The
Cot t age objed was mapped to two structs (Cot t age and Avai | abi | i ty). Further, the
Avai | abi |'i ty struct was mapped bah to the central Avai | abi | ity table and to the
replicated Booki ng table. The IDL interfaces, however, suppressthese detail s.

6.3.2 ACID Properties

Atomicity of the distributed transadions was asaured by OTS. The onfirmation d a
Booki ng and the adua Booki ng were dways caried ou in an “all-or-nothing” fashion,
which asaured that consistency wasn't broken by the transadion.

Consistency must be asaured onthe gplicaionlevel or the database level (e.g. with triggers).
It was asaured onan application level by an “implicit” optimistic locking approach where di-
ents read the catied value but couldnt change it before anfirming that the value read
conformed to the source The cates were therefore kept consistent with the source in an
asynchronots or optimistic way all owing inconsistency for ashort period d time. The shorter
the time of inconsistency, the likelier it isthat the optimistic locking is succesdul, i.e. that the
transadionin the end succeals. Therefore an “as-soonas-possble” palicy was chosen were
the updates of the source were pushed ou to al the cates using an asynchronouws event
channel medchanism, and the cades were updated immediately when receving the event.

Isolation was asaured partly by OTS by serializing all transadional requests at both the
Sal esO ficesandthe Central O fi ce. The database dso asaured transadional isola
tion by halding read and write locks on data.

The goplicaion server layer asaured durability (persistence) of objeds by isaing SQL com-
mands to the databases conreded to the transadion by OTS. Durability was also assured
partly by OTS by keeping logs to enable recovery.

The ACID properties were kept totally transparent to the dients who are making the

Booki ngs. All the transadions originate ather from one of the Sal esOf fi ces, or from
theCentral O fice.
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7 Architectural Abstractionsfrom the Case Study

This chapter presents an approach to software achitedural modeling of the case study that
was described in the previous chapter. The first sedion d this chapter describes the cae
study implementation wing UML [OMG 97c]. In the semnd sedion, the Connector
framework is used to describe the system on a higher and more astrad software achitedural
level. The implementation and architedural diagrams in combination form a pattern for
designing an oljed cade of transadionally replicaed data.

7.1 Implementation M odeling with UM L

In this edion,the PTT case study implementation described is modeled using threediff erent
views:. class view (static structure), uses view (dynamic structure), and physical view. The
first two views focus on the implementation o the Sal esOf f i ce, the locus of the cabe
functionality.

7.1.1 Class View

The static structure, i.e. the dassdependencies at compil e time (represented by attributes and
inheritance), is depicted in figure 7.1. Threesignificant properties of the cate ae exposed in
thisview.

First, there is a generic cate template that all i mplementations of caded values must inherit
from. This template (CachedObj ect <Val ue>) encapsulates the semantics of the cade,
and thereby makes the cate functionality transparent to the dients.

Sewnd, there ae compasitional dependencies between Sal esOF fi ce_i (Ui isused to de-
note an implementation d an interface, Resort sCache (manages a wlledion d caded
Resorts), Resort i Cache (a cated Resort), CottagesCache (manages a
colledion d caded Cott ages), and Cottage_i _Cache (a cated Cott age). This
means that no oljeds from the lower levels (higher up in the diagram) can exist if an ojed
onahigher level doesn’t exist.

Third, Sal esOfice i is an implementation d the IDL-interface CacheUser. A
CacheUser will receveinformation onchangesto the source

7.1.2 UsesView

In figure 7.2 the run-time dependencies of the dasses (dynamic structure) are depicted. The
operations that are accedble remotely (system interfaces) are marked in bdd. Further, +, *,
and — cdnote public, proteded, and frivate operations or attributes respedively. The
Sal esOF f i ce communicates with the cade using threemethods. With get () the cated
Resor t sareretrieved. The other two methods are used when the Sal esOf f i ce recevesa
natification that the source has changed. They correspondto the choice whether to updhite
from the source, or to use event parameters to change the cade (discussed in sedion 6.2.3.

7.1.3 Physical View

Figure 7.3 shows the physicd view of the whole PTT system. The Central O fi ce
resides on a ceitral node. The Sal esOf fi ces and Cust oner s are distributed over
multi ple nodes. The database a the cantral node cntainsall Resor t s, Cot t ages, and their
Avai l ability. Each Sal esOfice manages a database @ntaining their locd
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Cust oner s and the Booki ngs made at that Sal esOf f i ce. The Booki ng table hence
has replicated data from the central Avai | abi | i ty table. Each time a booking is made a
row inthe Avai | abi | i ty tableisdeleted, and arow in the local Booki ng table is added.
This is done within a distributed transaction. These tables are therefore always consistent.
The PTTSql component is responsible for separating database calls (embedded SQL) from
application logic codeintheCentral O fi ce and Sal esO f i ce servers.

|
1 Value: Object

Cott age_i

CachedObj ect e e — ==

*val ue: Val ue

JAY JAY

Cottage_i _Cache

CachedObj ect <Oottége$eq> Catl:hedOoj ect <Resort Seq>

val ue

/\

Cot t agesCache Resort i

cott ages

Resort i _Cache
-cottages: CottagesCache

val ue

Resort sCache

CacheUser _i

resorts

Sal esOfice_i

-resorts: ResortsCache

Figure 7.1: Cache Implementation in Sales Office - Class View
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Figure 7.2: Cache Implementation in Sales Office - Uses View (with inheritance)
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7.2 Architectural Modeling with the Connector Framework

This fdionintroduces an approach to modeling distributed comporents on a software achi-
tedural level. Thefirst step in the Conredor framework (presented in sedion 4.3.4 approach
is to describe the components involved as independent entities. A connector is then modeled
to describe the interadions between the cmporents in an abstrad way using roles and
interadion protocols. The third step isto instantiate the roles with the componrents to form an
abstraa architedure. Finaly, the @strad architedure is refined by showing how the
comporents are realized. Theresult is cdled a cncrete achitedure.

By describing the mnredor ObjectCaching_with Transactional Replication, a generic design
is proposed. The design could pdentialy be reused in a CORBA environment for designing
an oljed cade while aauring consistency of replicated data.

7.2.1 Components

As afirst step to describe asystem architedure, the comporents and their core functionality
are aalyzed and modeled. Core functionality refers to the domain-oriented component
behavior. The eported and imported system level interfaces of eady comporent are
described. The interfaces could be seen as a @ntrad that eady comporent signs. If the
required (imported) interfaces are available, then the comporent promises to offer some
services (exported interfaces). Each interface shoud have a omplete interface description
(e.g. in some IDL) including exceptions, type definitions, and pe- and pastcondtions.
Comporents in the cae study that either import or export applicaion defined system level
interfaces are described below. In the depicted componrents, CORBA IDL is used to describe
the interfaces. The @mplete IDL spedficaions for the PTT system are shown in
Appendix B.

SalesOffice

Figure 7.4 shows the Sal esOf f i ce comporent. This view does not expase aything from
the cahing implementation. These more detail ed interfaces will be introduced after having
investigated in which interadions the Sal esOf f i ce takes part. The Sal esOF fi ce must
cdl confi rnBooki ng() onCentral O fice in order to make aBooki ng. Further,
theCentral O fi ce iscdledto retrieve Resor t s. These interadions must take place re-
gardlessof the technicd solution chosen to implement the mmporent’s interface Therefore
theCent ral O f i ce interfaceis snown as an imported interface

CentralOffice

The Central O fi ce comporent is depicted in figure 7.5. This comporent does not
depend onany other interfaces for its core functionality. The Central O fi ce provides
interfaces to Resort and Cottage obeds in ader for the Cust onmer to make a
Booki ng. If a component only exports interfaces, it is totally independent and easier to
reuse.

Customer

The Cust orrer isthe dient comporent in the system andis not subjed to reuse.

This comporent (figure 7.6) does nat export any interfaces, bu imports the Resort,
Cot t age, and Sal esO fi ce interfaces. The core functionality of a Cust oner is to
browse for Cot t agesin Resort s, andto make Booki ngsat thelocd Sal esOf f i ce.

Threeother comporents are dso used in the cae study: the Or bi xTal k, OTS, and PTTSql

comporents. O bi xTal k and OT'S correspondto CORBAservices and are therefore reusable
comporents that are independent of this case study. Sample comporent descriptions of the
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OrSandtheEvent service canbefoundin[Tai & Busse 97, Tai & Busse 98]. The
PTTSql component (used for database access) is hot described here, as it neither exports nor
imports any system level interfaces.

| nterfaces

<<IDL Interface>>
Sal esOfice

string getBranchName();

Resort Seq get Resorts();

Booki ngRef er ence nakeBooki ng (
in Cottage aCottage,
in short fromAtek,
in short toWek,
in Custoner client,

)
Booki ngRef er enceSeq | i st Booki ngs();

Exported I nterfaces

Imported I nterfaces

<<IDL Interface>>
Central O fice

Resort Seq get Resorts();

Booki ngRef erence confi r mBooki ng(
in Cottagel D
aCot t age,
in short fromAtek,

in short toWek

)

Rep- Map

Represent ati on

Figure 7.4: Component SALESOFFICE Core Functionality
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I nterfaces

<<IDL Interface>>
Central O fice

<<IDL Interface>>
Resort

Resort Seq get Resorts();

in Cottagel D
aCot t age,

in short toWek
)

Booki ngRef er ence confi r nBooki ng(

in short fronheek,

ResortDetails getDetails();
Cot t ageSeq get Cottages();

<<IDL Interface>>
Cot t age

Cottagel D get1D);
Cott ageDet ai | s get Descri ption();
WeekLi st get Avai lability();

Exported I nterfaces

Imported I nterfaces

Rep-Map

Representation

Figure 7.5: Component CENTRALOFFICE

I nterfaces

Exported | nterfaces

<<IDL Interface>>
Sal esO fice

string getBranchNane();

Resort Seq get Resorts();

Booki ngRef er ence makeBooki ng (
in Cottage aCottage,
in short fromAtek,
in short toWek,
in Custoner client,

)
Booki ngRef erenceSeq |i st Booki ngs();

I mported I nterfaces

<<IDL Interface>>
Resort

ResortDetails getDetails();
Cot t ageSeq get Cott ages();

<<IDL Interface>>
Cot t age

Cottagel D getlD();

Cott ageDet ai | s getDescription();
WeekLi st getAvailability();

Rep-Map

Representation

Figure 7.6: Component CUSTOMER
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7.2.2 Connector ObjectCaching with_TransactionalReplication

In this ®dion, the ObjectCaching_with_Transactional Replication conredor is introduced.
The mnredor is a description d interadions between generic comporents cdled roles. The
conredor can thus be gplied to dfferent cacing and replicaion scenarios. Roles, role
interfaces, interface usage, and interactions comprise a spedficaion d a onredor

[Tai 984

Roles

Roles are generic participants of an abstrad interadion. They are played by comporents. By
describing roles instead o spedfic comporents, common petterns are exposed when
spedfying role interadions. The following roles can be identified:

TransManager, /I drives 2PC protocol, e.g. OTS
TransObject, /Il exeautes transadional requests
EventManager, Il propagates updates asynchronously
SourceObject, Il in central server, e.g. Cottage i
SourceManager, I/l e.g. Central Office

CachedObject, /l'inlocd server, e.g. Cottage i_Cache
CacheManager, /l e.g. SalesOffice

Client I/l e.g. Customer

Role Interfaces

The next step is to define interfaces for the roles. Comporents playing these roles must
suppat the interfaces pedfied here. The interfaces are used to spedfy dependencies and
interadions between roles. The arows “<” and“>" refer to plug points that are replaced with
applicaion spedfic interfaces when the mnredor isinstantiated. <Cbj ect >St at e denotes
the state of Obj ect . “| value [* denates that value is optional. Further, OID refers to an
objed identifier. The interfaceoperations are mainly used for inter-role communication, i.e.
they are on a system level. However, some operations are only used internaly, and are listed
because they show important charaderistics of the role.

» Transaction interfaces

TransManager. Current { //Current is an interface specified by OIS
voi d begin();
void commit(in bool ean report_heuristics);
voi d roll back();

}

TransObj ect . Transacti onal Gbj ect {} Transacti onal Cbject is an
interface specified by OTS.
It indicates that the object

is transacti onal

~ N~~~
~ N~~~

* Eventinterfaces
Event Manager . <Regi strati on> {
/1 The Registration interface in the case study was O bi xTal k
/1 This APl wraps the CORBA Event service PushSuppli er-
/I PushConsuner nodel .
CORBA: : Obj ect registerTal ker(in string subject,
in string cacheUserl nteface);
voi d registerListener(in CORBA:: Object cacheUser
| ,in string subject|);
/1 CORBA: : Ohj ect is cast to a CacheUser proxy.
/1By registerListener, subject does not have to be
/Il passed. E.g. in ObixTalk the object marker is used.

}
Event Manager . CacheUser {
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/11n the CORBA Event service this interface corresponds to

/I PushConsuner and the operation is called push.
//the previous interface,

/Iwrapper on top of the Event service API
oneway voi d update(in any event);

}

e Sourcelnterfaces

Sour ceCbj ect . <Sour ceChj ect > {
<Sourcehj ect>State getState(in A D id)

}

Sour ceManager . <Cent r al Manager >: Tr ansacti onal Obj ect {

/I public use:

<Sourcebject> get(in ADid)

bool ean confirmvodi fy(in A D id,

//internal use:

voi d makePersistent(in ODid

}

e Cachelnterfaces

Cachedbj ect . <Sour ceOhj ect > {
<Sourcehj ect>State getState(in A D id)

}
CacheManager . CacheUser {

oneway voi d update(in Any event);

}
CacheManager . <Local Manager > {

/I public use:

<Sourcehject> get(in ADid)

: TransQbj ect

: Sour ceManager

<Regi stration>

CacheUser

in any val ue);

in any val ue);

<Cent r al Manager >

Simlar to
this interface could be seen as a

: Sour ceCbj ect

o

B

<Sour ceObj ect >

: Event Manager

O—
CacheUser

Figure7.7: Role Interface Usage

: CacheManager CQurrent | ansmanager
A\
:dient

<Local Manager >
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void nodify(in ODid,in any val ue);
/linternal use:
bool ean cachelsVvalid();
<Sour ceOhj ect > createCache(in A D id,
in <Source(bj ect>State state);

voi d updateCache(in ODid, in <SourceCbject>State state);
voi d convertEvent (in any event,

out ADid,

out <Sourcehject>State state);
voi d makePersistent(in ODid, in any val ue);

}

Interface Usage

Figure 7.7 shows the dependencies between the roles (UML notation), i.e. how the interfaces
are used. Notable is that neither the CacheManager no the Sour ceManager
communicate with the objeds they manage diredly by using pulic interfaces. These
managers are only resporsible for creaing and deleting the objeds. Furthermore, they are
resporsible for adding transadional and event based behavior to the cade. Transadions and
events are thereby kept transparent to the C i ent , Sour ceObj ect , and CachedObj ect
roles.

I nteractions

Three interadions of this conredor are spedfied below using UML sequence diagrams:
cade initialization and wse (figure 7.8), replicaed data modificaion (figure 7.9), and cade
update (figure 7.10).

» Cachelnitialization and Use

Thisinteradion describes the basic cate functionality. The Cl i ent sends arequests for an
objed. If thereisavalid ohjed in the cade, it is returned dredly by the CacheManager .
Otherwise, the acairate state of the source objed is fetched from the source The state is used
to creae a cabed oljed. A reference to the CachedCbj ect is returned to the dient. The
next operation onthe objea will usethe cate if it hasn't been invalidated.

* Replicated Data M odification

This interadion shows how the source data is kept consistent with the locdly stored data
When a dient wants to modify a value, atransadionis darted. Within this transadion a con-
firmation with the Sour ceManager is dore, and the locd database is updated. Since these
operations are performed in an “all-or-nathing” fashion, the replicated data is always consis-
tent. The confirmation with the Sour ceManager serves to deted whether other clients
have updated the source @ncurrently, and a conflict thereby has occurred. In the case study,
such a orflict occurred when two clients €leded the same Cot t age and week from the
cade, and then tried to bod it concurrently. A conflict leads to a race ondtion where the
first transadionto exeaute will succeal, and the second ore will roll badk.

» Cache Update

The cades are updated by using event ndatificaions. The events are pushed from the
Sour ceManager to the Event Manager when a SourceObjed has changed. The
Event Manager then puwshes the events to the registered CacheManagers. The
CacheManager s must filter the event to find ou whether the objed that has changed isin
the cade. If it isin the cade, the value can be updated in two ways. Firstly, it can be updated
by getting the state from the source Seaondy, it can be updated locdly by using the value
passed by the event. The pros and cons of the two approaches were discussed in sedion 6.2.3.
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:Client

: CacheManager

Pre

Post

get (id)

>

[valid] ,

/
/
/
/
/

<Sour ceQvj ect >

cachel sval i d()

4—

[not valid]

get (i d)

: Sour ceManager

: Sour ce(hj ect

<Sour cehj ect >

get State(id)

" <Sour cehj ect >

——»]

<Sour ce(hj ect >Stat e

: Cachedhj ect

<soneQperati on>()

Sour ceManager

i

and CacheManager

are initialized

Cient has proxy to CacheManager
Cient communi cates with CachedObj ect

Figure 7.8: Interaction Cache Initialization and Use
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[ currentVersion]
makePersistent(  id,value)

:Client :CM T™M SM
1 1 1
modify(id, value)’J'_ ! !
Current::begin() : :
1 1
T] :
D e e :
1 1
1 1
confirmM odify(id, value) ! »i
:
1
1
1
1
1
1
1
1
1
1

[modification not ok]
Current::rollback()

[modification ok]
makePersistent(  id,value)

<
Current::commit(false)

Sp——
~

TM — TransManager, CM — CacheManager, SM — SourceManager

Pre Interaction Cache Initialization and Use
Post  Booking has been recorded by both CM and SM
or by neither of them

Figure 7.9: Interaction Replicated Data M odification
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. SM QM - EM : Sour cehj ect
1
1
1
1

1
1
1
1
1
convertEvent (even},id, state)
1
1
1
1
1
1
1

«
[source update and id in cache]
getState(id) I

|
1
< | <Sour ceObj ect>State
|
1
[id in cache] !

updateCache(id.state)

4—

SM - Source Manager, CM - CacheManager, EM - Event Manager

Pre SM has cal | ed regi sterTal ker (subj ect, cacheUserl nterface) and
CM has called registerListener(this |,subject|) and
SM has performed makePersistent(id,value) in
Interaction Replicated Data Mdification

Post If object that changed was in the cache, it is
consi stent with SourceObj ect

Figure 7.10: Interaction Cache Update
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7.2.3 Abstract Architecture

With the mnnedor now being spedfied, the next step is to instantiate the conredor with spe-
cific comporents. The result is cdled an abstrad architedure. The PTT abstrad architedure
using the mnredor ObjectCaching_with_Transactional Replication is depicted in figure 7.11.
By asdggning arole to a ammporent, all i nterfaces of the role ae aaured to be provided by the
comporent. Further, the comporent must be ale to participate in al interadions edfied
for the role. The plug paints from the generic pattern is replacel by applicaion spedfic
interfaces. E.g., <Local Manager > is changed to Sal esO fi ce, <Cent r al Manager >
bewwmes Central Office, and <SourceObj ect> is replacel by Resort and
Cot t age interfaces. The diagram in figure 7.11 spedfies detailed and complex system
behavior in a cncise, bu yet expresdve model. This model does not describe how the
behavior is implemented, though. In order to spedfy the system redization, the comporent
models have to be refined.

7.2.4 Concrete Architecture

The astrad architedure is made to a @ncrete achitedure by describing how the
comporents behavior is implemented. All comporents are described in three views:
imported and exported interfaces (system level), imported and exported representation-map
(programming level interfaces), and representation (implementation).

The oncrete achitedure for the Sal esOf fi ce comporent is depicted in figure 7.12 and
7.13. The cating functiondity is now visible in the exported interfaces by exposing a
CacheUser interface and the interfaces of the catied oljeds. To keep the cade acarate
the source objeds have to be cntaded. Thisis dore by using the Resort and Cot t age in-
terfaces from the Central O fi ce (imported interfaces). The Sal esOf fi ce uses the
OTS-spedfied Cur r ent interfaceto start, commit and abort transadions. All the operations
on the Central O fi ce must be exeauted within a transadion. This is assured by
inheriting from Tr ansact i onal Obj ect (as pedfied by the OTS).

In the representation-map, the programming language dasses that correspondto interfaces to
other comporents are shown. Notable here is that the Orbi xOTS and O bi xTal k
interfaces are not exposed on a system interface level. They, however, still represent
interfaces to aher comporents, and are therefore depicted in the imported representation
map. The tags, <<Generated C++ C ass>>, dencote dasss generated from the IDL
interfaces by an IDL compil er (<<>>is used for spedfying UML stereotypes).

The representation part of the model describes the dasses used to implement the spedfied be-
havior. The dasses ending with BOAI npl are skeletons used to convert the remote requests
to C++ methodinvocaions on the implementation oljed. Dependencies on aher comporents
are shown by links to the representation map. E.g., the CacheUser _i classuses O bi x-

Tal k, and Sal esO fi ce_i uses CosTransacti ons: : Current. The representation
part corresponds to the modelsin figure 7.1and 7.2.

7.3 Summary

In this chapter the implementation d the cae study was modeled. Two dfferent modeling
approaches were used: implementation centric modeling with UML, and software
architedura modeling with the Conredor framework. The UML models howed class
structures, and the physicd distribution d comporents on dfferent hosts. Although these
models are useful to uncerstand the implementation they offer littl e suppat for reuse.
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Since the objective of this part of the work was to find abstract reusable designs to the case
study, software architectural modeling was carried out. Using the Connector framework, the
implementation was abstracted into a connector called ObjectCaching_with_Transactional-
Replication. The connector is a generic interaction specification, and provides plug points for
different components and implementations. Therefore the connector was proposed as a
generic design of object caches for transactionally replicated data.

A connector is realized by instantiating the connector roles with components and refining the
components to an implementation level. The realization of the specified connector was
demonstrated by describing the Sal esOF fi ce component on three levels. the system
interface, representation-map, and representation levels. This separation offers support for
reuse, and is well suited for describing CORBA based systems. This is further underlined in
[Ta & Busse 97, Tai & Busse 98, Tai 98b] where the CORBA Event service, CORBA
OTS, and aCORBA OTM system are described using the Connector framework.

SALESOFFICE

CUSTOMER CENTRALOFFICE

CachedObject
CacheManager

Client TransObject
. . . SourceObject
ObJeCt_CaChmg—W'th SourceManager
TransactionalReplication
ORBIXOTS ORBIXTALK
TransManager EventManager

Figure 7.11 PTT System — Abstract Architecure
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I nterfaces

<<IDL Interface>>
CacheUser

<<IDL Interface>>
Resort

oneway void update(in any event);

i

ResortDetails getDetails();
Cot t ageSeq get Cottages();

<<IDL Interface>>
Sal esOfice

<<IDL Interface>>
Cot t age

string get BranchNane();

Resort Seq get Resorts();

Booki ngRef er ence makeBooki ng (
in Cottage aCottage,
in short fromAtek,
in short toWeek,
in Customer client,

Cottagel D getlD();
Cott ageDet ai | s get Descri ption();
WeekLi st get Avai lability();

)
Booki ngRef erenceSeq | i st Booki ngs();

Exported I nterfaces

I mported I nterfaces

<<IDL Interface>>
CosTransactions::
Transact i onal Obj ect

<<IDL Interface>>
Resort

ResortDetails getDetails();
Cot t ageSeq get Cottages();

<<IDL Interface>>
Cot t age

<<IDL Interface>>
Central O fice

Cottagel D get1DX);
Cott ageDet ai | s get Descri ption();
WeekLi st get Avai lability();

Resort Seq get Resorts();

Booki ngRef er ence confi r nBooki ng(
in Cottagel D
aCot t age,
in short fromAtek,

in short toWek

);

<<IDL Interface>>
CosTransactions::
Current

Rep-Map <see Figure 7.13>

Representation <see Figure 7.13>

Figure 7.12: Component SALESOFFICE Concrete Architectur e (I nterfaces)




I nterfaces

<see Figure 7.12>

Rep-Map
Export
<<Gener ated C++ O ass>> <<Gener ated C++ O ass>> <<Gener ated C++ O ass>>
Resort Sal esO fice Cott age
N\ AN AN
<<Gener ated C++ O ass>>
CacheUser

/\

I [
Representatlon <<Gener ated C++ O ass>> <<Generated C++ O ass>>

<seeldso Figure

CacheUser BOAI npl

Cot t ageBQAI npl

7.1and 7.2>
<<Generated C++ O ass>>
Resor t BOAI npl

<<Gener ated C++ O ass>>
Sal esO f i ceBQAI npl

<<C++ O ass>>
CacheUser _i

<<C++ O ass>>
Resort _i _Cache

L2

]

<<C++ O ass>>
Cottage_i _Cache

<<C++ O ass>>
Sal esO fice_i

L 2

<<C++ O ass>>

<<C++ O ass>>

Resort sCache

1

Cot t agesCache

.

<<C++ Function>>

mai n()
Rep-Map
I mport
<<C++ O ass>> <<C++ O ass>> <<C++ O ass>> <<C++ O ass>>
O bi xOTS O bi xTal k Central Ofice

Cottage Resort

<<C++ C ass>>
CosTransactions::Current

PTTSql

Figure 7.13: Component SALESOFFICE Concrete Architecture
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8 Conclusion and Discussion

This chapter summarizes the investigations of influences of object caching on reliability,
scalability, and performance in a transactional, object-relational CORBA environment, and
discusses how thisis captured in the generic design proposed in the previous chapter.

8.1 Reliability

Reliability of the object caching strategy was achieved by using distributed transactions and
asynchronous update messages. The distributed persistent data corresponding to the cached
objects was always kept synchronous by using the 2PC protocol. The caches themselves
were, however, synchronized in aless stringent way by using asynchronous non-transactional
pushed updates. The reason for this was to gain performance. To compensate for the
inconsistencies of the distributed caches, an optimistic locking approach was chosen. Before
modifications could be completed, a confirmation was done to detect inconsistencies.
Furthermore, to ensure that as many modifications as possible were successful, giving the
impression that the caches were absolutely synchronous with the source, the updates were
sent as soon as possible after the source confirmation.

In terms of the proposed generic design, this behavior is captured as follows. The Cache-
Manager confirms modification with the Sour ceManager and replicates data from the
Sour ceQnj ect using the 2PC protocol (Interaction replicated data modification). The
Sour ceManager sends an update event to the CacheManager s through the Event -
Manager after modification has been confirmed (Interaction cache update).

8.2 Scalability

Scalability was mainly achieved by using load balanced servers, i.e. multiple servers offering
the same service. To improve scalability as many of the services offered as possible should be
possible to perform locally without contacting the central server. Two service localization
techniques were used to accomplish this. First, caches minimized central server load by
performing al read requests locally, and only contacting the central server for updates.
Second, modifications made at the local servers were replicated (made persistent) locally, and
kept absolutely synchronous with the source. Querying modifications that the local servers
have made is thus the same as querying the source.

In the generic design, the Cachedhj ect offers the same interface as the Sour ce-
hj ect . The CacheManager only contacts the Sour ceManager during a modification,
and if the cache is invalid. The replication is described in Interaction replicated data
modification.

8.3 Performance

Performance can be improved by localizing services (as described in the scalability section),
and trading off consistency (as described in the reliability section). Network communication
isamajor performance consumer in a distributed system. The goal is therefore to minimize
remote invocations by using caches. Further, object-relational mapping policies can improve
performance. By encapsulating the database access in one module, the rest of the system can
access the persistent data in the form of objects. Furthermore, the cached objects offer
traversal on an object level as opposed to traversing database tables, which improves
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performance significantly. By letting the cached objects be coarser grained than the database
entities, the overhead of distributed objects can be reduced (e.g. in the case study,
Avai | abi |'i t'y wasnot exposed as an object on a CORBA IDL level but accessed through
the Cot t age object.)

The service localization and consistency trade-offs are exposed in the generic design as de-
scribed above. Object-relational mapping is not visible in the generic description of the
system architecture. It is, however, visible on the realization level, and is documented by the
mapping of system level interfaces (e.g. IDL) to their implementations. For example, the
Booki ng table (figure 7.3) can be traced to its system level counterpart, the Sal esCf fi ce
interface (figure 7.12).

This exemplifies an important property of performance. Performance issues are exposed both
on a software architectural level, and on an implementation level. In order to enable reuse of
a pattern more information must hence be documented than the abstract architecture. A
sample redlization of the abstract architecture is also part of the pattern. Both the case study
and the architectural abstraction chapter of this thesis should therefore be seen as part of the
same pattern. This pattern aims at helping to design object caches in a transactional object-
relational CORBA environment.

8.4 Final Remarks

The proposed pattern is very coarse grained on its generic level (the connector Object-
Caching_with_TransactionalReplication) in order to suit many different implementations. In
the case study implementations, two technical implications were deliberately avoided. First,
object eviction was not considered due to the scale of the test suite. Second, a generic version
check was not implemented, as only Booki ngs were subject to change in the example
scenario. Adding these two features to the caching implementation would, however, yield the
same design on the highest level of abstraction.

The connector descriptions presented highlighted important design decisions made. These

decisions would not have been as clearly documented if the case study had been modeled by
using traditional class-based modeling like UML soldly.
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Appendix A: Glossary

2PC
ACID
ADL
BOA
CORBA
DTP

FIFO
IDL
I1OP
IOR
LRU
OCl
ODMG
OMA
OMG
OOAD
ORB
OT™M
OTS
POA
PSS
RM
ROI
™

TP Monitor
TP System
TS
TTL
UML
XA

Two Phase Commit

Atomicity, Consistency, Isolation, Durability
Architectural Description Language

Basic Object Adapter (CORBA Object Adapter)
Common Object Request Broker (defined by OMG)
Distributed Transaction Processing (defined by X/Open - now the Open
Group)

First In First Out (eviction policy)

Interface Definition Language

Internet Inter-ORB Protocol

Interoperable Object Reference

Least Recently Used (eviction policy)

Oracle Call Interface

Object Data Management Group

Object Management Architecture (defined by OMG)
Object Management Group

Object-Oriented Analysis and Design

Object Request Broker (the object busin CORBA)
Object Transaction Monitor (merge of CORBA and TP Monitor concepts)
Object Transaction Service (CORBASservice)

Portable Object Adapter (CORBA Object Adapter)
Persistent State Service (CORBAservice)

Resource Manager (defined in X/Open DTP model)
Remote Object Invocation

Transaction Manager (defined in X/Open DTP model)
Transaction Processing Monitor

Transaction Processing System

Transaction Service (component of the OTYS)

Time To Live (eviction policy)

Unified Modeling Language

Interface between RM and TM (defined in the X/Open DTP standard)
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Appendix B: IDL Interfacesfor the PTT System

PTT.idl
nmodul e PTT

{

/'l GCeneral
B T T

typedef sequence<short> WeekLi st;

typedef string Booki ngReference;

typedef sequence<Booki ngRef erence> Booki ngRef er enceSeq;
typedef | ong Cottagel D

i nterface Cottage;
i nterface Resort;

typedef sequence<Cottage> CottageSeq;
typedef sequence<Resort> Resort Seq;

exception NotAvail able {};

e e
/1 Resort
e e
struct ResortDetails {

string narme;

string description;

}1
interface Resort

ResortDetails getDetail s();
Cot t ageSeq get Cottages ();

}1
e e
/1l Cottage
e e
struct CottageDetails {
string nane;
string descri ption;
string addr ess;
3
i nterface Cottage
Cottagel D getl D();
CottageDetail s getDescription ();
WeekLi st getAvailability ();
3
3
CacheUser.idl

i nterface CacheUser {
oneway void invalidate(in any update);

H

SalesOffice.idl

#include "PTT.idl"

#i ncl ude "CacheUser.idl™"
nmodul e PTT_Sal esOfi ce
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struct Custoner {
string | ast Name;
string firstNaneg;
string address;

H

struct CreditCardDetails {
string number;
string expiryDate;

}1
e
/1 SalesOifice
e
interface Sal esOfice : CacheUser
{
string getBranchNanme ();
PTT: : Resort Seq get Resorts ();
PTT: : Booki ngRef erence makeBooki ng (
in PTT:: Cottage aCottage,
in short fromhéek,
in short toWeek,
in Customer client,
in CreditCardDetails card)
rai ses (PTT:: Not Avai |l abl e);
PTT: : Booki ngRef erenceSeq |i st Booki ngs ();
3

b

CentralOffice.idl
#include "PTT.idl"
#i ncl ude <ots/orbix/cos_ots.idl>

interface Central Ofice : CosTransactions:: Transacti onal Obj ect

{
PTT: : Resort Seq get Resorts ();

PTT: : Booki ngRef erence confirnBooki ng (
in PTT:: Cottagel D aCott age,
in short fromhéek,
in short toWek)
rai ses (PTT:: Not Avai |l abl e);
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