
I

Object Caching in a Transactional,
Object-Relational CORBA

Environment

Thomas Sandholm

1Department of Computer and Systems Sciences
University of Stockholm

October 1998

Abstract

The OMG's CORBA and CORBA services li ke the OTS are a technology standard that
enable the building of transactional systems running in distributed and heterogeneous
environments. In large-scale CORBA systems that integrate relational databases, however,
careful attention must be paid to network traff ic and the number of I/O-operations (li ke
database access) performed, as these can degrade system performance significantly. Caching
is a well -known concept to improve performance in e.g. database systems. Caching in a
transactional object-relational CORBA environment has, however, not been studied in the
literature so far.

This thesis investigates concepts to improve performance and reliabilit y in large-scale
CORBA systems. An object caching strategy for transactional, object-relational CORBA
systems is developed. It employs distributed transaction management to replicate data, and
asynchronous multicast notifications to update caches that are distributed to load balanced
servers. The caching strategy is implemented and tested using a case study with real-world
assumptions, and described as a generic, software architectural abstraction that can be reused
in different CORBA system developments. Using the caching strategy proposed, the
performance of the system can be drastically increased, and system scalabilit y and reliabilit y
be well i mproved.

1 This thesis corresponds to the effort of twenty full-time working weeks.

II

Contents

1 INTRODUCTION .. 1
1.1 Background .. 1
1.2 Problem Statement ... 1
1.3 Objective .. 2
1.4 Approach and Thesis Outline... 2

1.4.1 Transaction Demonstrator Development..2
1.4.2 Software Architectural Design ...2

1.5 Contributions ... 3

PART I - CONCEPTS ... 4

2 DISTRIBUTED OBJECT SYSTEMS AND TRANSACTIONS.. 5
2.1 CORBA... 5

2.1.1 What is CORBA?...5
2.1.2 Why CORBA? ...5
2.1.3 Object Management Architecture ..6
2.1.4 CORBA IDL and ROI ...6
2.1.5 CORBA Implementations ..7

2.2 CORBA Services .. 7
2.2.1 Transactions...7
2.2.2 Events ..8

2.3 Transaction Processing Monitors .. 9
2.4 Object Transaction Monitors ... 9
2.5 Summary .. 10

3 OBJECT PERSISTENCE AND CACHING ... 11
3.1 Object-Relational Mapping.. 11

3.1.1 Why is Object-Relational mapping needed? ..11
3.1.2 Design Issues ...11
3.1.3 Mapping Approaches...12
3.1.4 Accessing the Database..12
3.1.5 CORBA to Persistent Objects Mapping...13
3.1.6 Persistence PowerTier Implementation..14

3.2 Load Balancing.. 15
3.2.1 What Is Load Balancing?...15
3.2.2 Problems Addressed ..16
3.2.3 Goals..16
3.2.4 Design Issues ...17
3.2.5 Approaches ..17
3.2.6 Strategies..17
3.2.7 OrbixNames Implementation ...18

3.3 Replication ... 18
3.3.1 What Is Replication?..19
3.3.2 Problems Addressed ..19
3.3.3 Goals..19
3.3.4 Design Issues ...19
3.3.5 Approaches ..19
3.3.6 Oracle8 Advanced Replication Implementation ..20

3.4 Caching .. 21
3.4.1 Why Use a Cache? ...21
3.4.2 Object Caching ..21
3.4.3 Cache Manager Interface ...22
3.4.4 Maintaining Consistency ...23
3.4.5 Cache Location Policy ...23
3.4.6 Cache Consistency - the Push Approach ...24
3.4.7 Object Caching Implementations...26

3.5 Summary .. 28
4 SOFTWARE ARCHITECTURE.. 30

4.1 What is Software Architecture?.. 30
4.2 Views and Patterns... 31

4.2.1 Views ...31

III

4.2.2 Patterns ..32
4.3 Describing Architectures ... 32

4.3.1 Ideal Properties of Architectural Descriptions ...33
4.3.2 UML ..34
4.3.3 Catalysis...34
4.3.4 Connector Framework ...34

4.4 Summary .. 35

PART II - PRACTICAL EXPERIMENTS.. 36

5 TECHNICAL SOLUTIONS ... 37
5.1 Distributed Object Systems and Transactions.. 37

5.1.1 OrbixOTS ..37
5.1.2 OrbixEvents and OrbixTalk ...37

5.2 Object Persistence and Caching .. 38
5.2.1 Oracle OCI...38
5.2.2 Oracle PRO*C ...38
5.2.3 DBTools...39
5.2.4 Persistence PowerTier..39

5.3 Summary .. 39
6 CASE STUDY .. 40

6.1 Problem Domain .. 40
6.1.1 System Architecture...40
6.1.2 Constraints ...41

6.2 Object Caching Development and Testing... 43
6.2.1 System Architecture...43
6.2.2 Design Issues ...43
6.2.3 Implementation ..45
6.2.4 Selecting Test Configuration ...47
6.2.5 Results ...48

6.3 Summary .. 50
6.3.1 Caching Strategy..50
6.3.2 ACID Properties ..50

7 ARCHITECTURAL ABSTRACTIONS FROM THE CASE STUDY... 51
7.1 Implementation Modeling with UML ... 51

7.1.1 Class View...51
7.1.2 Uses View..51
7.1.3 Physical View ..51

7.2 Architectural Modeling with the Connector Framework ... 55
7.2.1 Components ...55
7.2.2 Connector ObjectCaching_with_TransactionalReplication ...58
7.2.3 Abstract Architecture ...64
7.2.4 Concrete Architecture ..64

7.3 Summary .. 64
8 CONCLUSION AND DISCUSSION .. 68

8.1 Reliability ... 68
8.2 Scalability .. 68
8.3 Performance... 68
8.4 Final Remarks .. 69

ACKNOWLEDGEMENTS.. 70
REFERENCES ... 71
APPENDIX A: GLOSSARY .. 75
APPENDIX B: IDL INTERFACES FOR THE PTT SYSTEM ... 76

1

1 Introduction

This thesis was developed within a cooperation between IONA Technologies Dublin and
Berlin University of Technology (TU Berlin), as part of the project CORBA Object
Transaction Monitor Experimentation. In this project, advanced software design and
implementation issues of building CORBA OTM applications are studied. The thesis
describes the development of an object caching strategy using IONA's OrbixOTM
environment, and using software architectural modeling and abstraction techniques developed
at TU Berlin.

This chapter discusses as introduction, how the concept of CORBA OTM, and the research
field of software architecture, help to develop reliable and performant large-scale software
systems, and how they were combined in this work.

1.1 Background

Today’s software is developed on various platforms using different operating systems, pro-
gramming languages, and development tools to best meet the system requirements. Further,
systems are expensive to develop, and play an important role in the day-to-day business in
many companies. Typically, new applications therefore have to be integrated with existing
legacy systems. In such heterogeneous environments, concepts are needed that support ex-
change of information, or concurrent access to shared data, while assuring integrity of data
and performant computation.

Standards li ke the Object Management Group’s (OMG) Common Object Request Broker
Architecture (CORBA) address distributed computing in heterogeneous environments
[OMG_98b, Vinoski_97]. In CORBA, middleware functionality and features are specified,
and mappings and common interfaces for interoperation between diverse software are
defined.

Protecting data integrity and constructing reliable (distributed) applications is, on the other
hand, typically done by use of the concept of transactions. Transaction Processing Monitors
(TP Monitors) as common in traditional client/server systems e.g. guarantee ACID-properties
(Atomicity, Consistency, Isolation and Durabilit y) to all programs that run under its
protection, thus provide mechanisms to begin, commit, and rollback transactional requests
[Gray_&_Reuter_93, Bernstein_&_Newcomer_97].

Common TP Monitors are, however, not designed to manage transactions in large-scale
CORBA systems. In order to support transactions in heterogeneous CORBA environments,
CORBA and TP Monitor concepts can be combined, as exempli fied by IONA’s Object
Transaction Monitor (OTM) developments [IONA_98e].

Because of the combination of many different technologies, OTM systems are intrinsically
complex. The field of software architecture aims at supporting the design of such complex
systems by describing reusable software structures using architectural abstractions of
components and connectors (component interactions) [Garlan_&_Shaw_96, Bass_et_al_98].

1.2 Problem Statement

One common reason for using transactions is to manage persistence of data. Today, this is
typically done by a relational database. When integrating relational databases into an OTM

2

system, issues regarding mapping of persistent entities, scalabilit y, and management of
distributed data must be considered, while assuring performance and reliabilit y
[Orfali_&_Harkey_98, Shussel_96].

In large-scale distributed systems, network communication and database access degrade per-
formance significantly. Performance has traditionally been achieved by using caches, e.g. in
the development of operating systems. Further, object caching is a commonly used technique
in object-oriented databases [Versant_98]. Object caching in a transactional, object-relational
CORBA environment has, however, not been studied in the literature so far. The problem ad-
dressed in this thesis is - how to design object caching in a CORBA system integrated with
relational databases, while considering reliabilit y and scalabilit y issues.

1.3 Objective

The objective of this work is to investigate, develop, and test an object caching strategy im-
proving reliabilit y, scalabilit y, and performance in a CORBA system, and to capture the
results in a design pattern.

1.4 Approach and Thesis Outline

The work described consists of two main parts: transaction demonstrator development, and
software architectural design. Both parts comprise theoretical studies (part I, chapter 2-4), as
well as practical experiments (part II , chapter 5-7).

1.4.1 Transaction Demonstrator Development
This part, done at IONA Technologies in Dublin, focuses on designing and implementing a
distributed transaction demonstrator for CORBA environments. The system, originally devel-
oped for the IONA World trade-show held in Boston in March 1998, is further extended with
an object caching feature.

In order to choose a caching strategy, theoretical studies are carried out before. Distributed
objects and transactions (chapter 2) are investigated to ensure reliabilit y of the cache.
Studies of Object-relational mapping (section 3.1) help understand performance and
flexibilit y issues related to impedance mismatch between objects and relational structures.
Scalabilit y, availabilit y and performance issues are considered by investigating load
balancing (section 3.2), replication (section 3.3), and caching (section 3.4).

The practical experiments begin with evaluating and testing event manager, and database ac-
cess tools to be used with a distributed transaction tool (OrbixOTS) in the implementation
(chapter 5). Thereafter an implementation with the selected tool-chain is carried out. The
final implementation is tested by simulating a “real-world” scenario. The tests focus on
measuring the influence of caching on performance and throughput (chapter 6).

1.4.2 Software Architectural Design
This part, carried out at TU Berlin, concerns object-oriented and software architectural
modeling. Software architectural concepts are investigated (chapter 4). These concepts are
then applied using traditional object-oriented modeling, as well as the software architectural
modeling approach developed at TU Berlin in the research group Computation and
Information Structures (CIS) [Tai_98b]. As a final step, architectural abstractions are made to
form a generic design of the caching implementation (chapter 7).

3

1.5 Contributions

This work contributes to the design and development of CORBA OTM systems in two ways:
(1) it shows how to extend an existing large-scale OTM system with a caching-strategy that
improves performance and throughput, while assuring data consistency; (2) it provides a reus-
able connector abstraction [Tai_98a] for designing object caching of transactionally
replicated data in an OTM environment. In practice, the work is currently used at IONA for
OTM demonstrations, and it will contribute to a “design-handbook” of ORB-based systems
developed as part of the research at TU/CIS Berlin.

4

PART I - CONCEPTS
The first part of this thesis introduces concepts for designing and implementing large-scale
transactional systems. Chapter 2 presents the CORBA standard, and two CORBAservices for
managing transactions and events. Chapter 3 surveys techniques for developing scalable and
performant distributed systems using persistent data. In Chapter 4, the basic concepts of soft-
ware architecture are introduced.

5

2 Distributed Object Systems and Transactions

In this chapter the basics of the CORBA (Common Object Request Broker) standard and two
CORBA services; the Object Transaction Service (OTS) and the Event Service are explained.
These two services can be deployed in any CORBA system and are commonly used to ensure
reliabilit y in distributed systems. Further, TP Monitors and Object Transaction Monitors,
which provide similar functionality, are discussed.

2.1 CORBA

The CORBA standard has been developed by the (OMG) Object Management Group, which
was established in 1989. OMG is today a consortium of almost 700 software companies and
about 100 universities [OMG_98a]. Companies propose standards to the group and then the
proposal goes through a process where the OMG members vote for or against standard adop-
tion. A significant part of this process is that all standards finally adopted by the OMG must
have gone through a “proof of concept” . This means that the company or companies
proposing the standard must have an implementation with which they can prove that the
technique is versatile.

2.1.1 What is CORBA?
The CORBA standard is the core standard of all OMG standards. It consists of specifications
for an Object Request Broker (ORB). An ORB is a software bus through which distributed
objects communicate. The clients talk to the server objects by first “plugging into” the bus.
Thereafter, they can theoretically talk to any objects residing in servers also plugged into the
bus. The main objective of the bus is to encapsulate how the communication between clients
and servers is realized. Clients and servers can thereby communicate without having to deal
with mismatches caused by different programming languages or operating systems.

This functionality is often referred to as middleware, since the ORB operates above the level
of implementation techniques, but below the level of applications in a tier between clients
and servers. Apart from this basic functionality the current CORBA specification also
addresses issues li ke inter-ORB operabilit y [OMG_98b].

2.1.2 Why CORBA?
CORBA was introduced to standardize the development and deployment of applications
operating in distributed heterogeneous environments [Vinoski_97]. The main idea is to
standardize how clients and servers interoperate in a generic and object-oriented way, i.e.
how distributed objects communicate. Using an ORB, new software can easily be added to
the system (plugged into the bus). Further, old legacy software can be integrated into newer
systems in a flexible way because of the language independence. The CORBA standard was
developed with the component based software development paradigm in mind. Software is
developed in components or packages with predefined external interfaces. Hiding the
implementation details, these components should be easy to combine and “plug in” anywhere
to get the desired functionality. A distributed CORBA object is a component in that sense
[Orfali_et_al_96]. By developing components with clearly defined interfaces the historically
expensive integration phase of software development can be eliminated [Baker_97].

6

2.1.3 Object Management Architecture
The ORB fits in to a higher level architecture defined by OMG called the Object
Management Architecture (OMA) shown in figure 2.1.

Four different kinds of CORBA objects can be plugged into the ORB: application specific
objects, standardized domain objects (e.g. for the medical domain), standardized common
facility objects (e.g. system management), and finally the generic CORBA services that can
be deployed in any CORBA system (e.g. OTS, Events). All CORBA objects must be defined
with external interfaces in order to be connected to the ORB [OMG_97b].

2.1.4 CORBA IDL and ROI
The definition of interfaces is a key behind interoperability and language independence. This
is done with the interface definition language (IDL) specified by the OMG. IDL is a
declarative language with a syntax similar to the one of C++, however, IDL only specifies
behavior not implementation. Languages that can be used for implementing CORBA objects
must have corresponding IDL mappings. CORBA (revision 2.2 February 1998) currently
specifies mappings for C++, Smalltalk, COBOL, Ada, and Java [OMG_98b].

The IDL specifications are used to generate code that plugs client and server code into the
bus. On the client side, this code is called stub code, and on the server side, it is called
skeleton code [Vinoski_97]. The client stub marshals the request and sends it through the
ORB to the server. The server skeleton unmarshals the request, and sends it to the so called
target object (the implementation of the object that the client wants to access) within the
server process. When the target object has processed the request, the return value is sent to
the skeleton. The skeleton marshals the value, and sends it through the ORB back to the
client. On the client side, the stub now unmarshals the reply, and passes it on to the client.
The entire process is called a 1remote object invocation (ROI) and is performed transparently
to the client and server code.

1 The process is sometimes called remote method invocation (RMI). This is, however, also the term for
the distributed object feature built-in in Java , and it was therefore avoided.

Object Request Broker

Application
Interfaces

Domain
Interfaces

Common
Facilities

Object Services
OTS Events NamingSecurity ...Concurrency

Figure 2.1 The OMG Object Management Architecture

7

2.1.5 CORBA Implementations
A wide variety of organizations and companies have implemented the CORBA standard.
There are today two major commercial ORBs: Orbix from IONA, and VisiBroker from
Visigenic (owned by Inprise). Other vendors are ICL with DAIS (Distributed Application
Integration System), and Expersoft with CORBAplus. IONA currently has products
supporting the IDL to C++, Java, and COBOL mappings. Visigenic has products that support
the C++, and Java mappings. [OMG_98c, Inprise_98, IONA_98a]

2.2 CORBA Services

As described in the previous section, there are some generic services that can be used in any
CORBA environment. In this section, the CORBA Transaction and Event services are
presented. These services play an important role by supporting reliability in the implementa-
tions presented in chapter 6.

2.2.1 Transactions
The Object Transaction Service (OTS) was specified to enable transaction processing in
CORBA environments. This, for instance, involves management of distributed resources like
databases.

What is a Transaction?
A transaction is defined to be a series of operations that can be performed as one unit.
Transaction processing is the basis for reliable processing. By using transactions the client is
guaranteed:

• that all or none of the operations within the transaction will be performed, atomicity;
• that the transaction will bring the system into a consistent state;
• that all work inside of a transaction is isolated from other transactions as long as the

work is not committed;
• and finally, that when the transaction completes successfully (commits), its modifications

to the state are durable, that is survive failures.

These guarantees are called the ACID properties of a transaction [Gray_&_Reuter_93].

OTS Constituents
The OTS defines three major components, and the interactions between these. The
transaction originator who is responsible for beginning, committing, and rolling back
transactions; the recoverable server that is responsible for connecting resources to the
transaction; and the transaction service (TS) that is responsible for keeping the transactions
atomic and durable.[OMG_97a]

Resource Integration
Resources, typically databases, can be integrated into OTS transactions in two ways: as
CORBA 1Resource objects, or by using the X/Open DTP standard XA interface
[OpenGroup_92]. When using the CORBA Resource approach, the atomicity and recovery
of a transaction typically has to be implemented explicitly on a CORBA level by the
programmer. When using the XA approach, this functionality is normally supplied by the
resource vendor. The recoverable servers register new resources with the transactions. When

1 The courier font is used for denoting correspondences to interface or implementation entities.

8

it is time for a transaction to commit, the TS component calls these resources in order to carry
out the two phase commit protocol described below.

Two Phase Commit
How does OTS assure atomicity and durabilit y of a distributed transaction; i.e. a transaction
with resources residing on several nodes in a network? This is done by driving the two phase
commit protocol (2PC). The 2PC involves the following steps.

(1) The transaction originator calls commit after having completed its work within a transac-
tion.

(2) The transaction coordinator (a part of the TS responsible for coordinating several re-
sources participating in a transaction) asks all resources registered with the transaction
whether they can commit. The resources then respond either with a “yes” or “no” vote.
This phase is called the prepare phase.

(3) When the TS has got all the votes, and all votes were votes to commit, it calls all
resources again that they can commit. If one or more resources voted to roll back, the TS
component sends a request to all resources to roll back their work. When the resources
finally have committed or rolled back their work, they send back a message that they are
done to the TS.

(4) When the TS has got all done messages from the resources, it can forget the transaction.

Distributed Transactions
In order for distributed objects to participate in the same transaction, transactional
information has to be exchanged. This is achieved by passing a so called transaction context
explicitl y or implicitl y with every request that is part of a transaction. The TS component in
the process that receives the request transparently associates the work performed in that
process with the transaction identified by the transaction context. This is called
interpositioning. A recoverable server that has been interpositioned will be
called by the TS when it is time to carry out the 2PC.

2.2.2 Events
The second CORBA service to be presented is the Event service. Normally when invoking on
distributed objects in CORBA, the clients send their requests to a specific server, and wait for
the reply before carrying on. This message model is called synchronous. The CORBA Event
service messaging model differs in two ways from this scenario. Firstly, the clients don’ t
have to wait for a response, i.e. the message is sent asynchronously. Secondly, the clients and
servers are only indirectly coupled. Multiple clients can be connected to multiple servers,
without any of them knowing the identity of the others.

Why do we need events?
So, why is this messaging model so useful? Most applications, especially GUI programs are
event driven, i.e. when a certain event occurs, a predefined action should be performed. For
flexibilit y, it should be possible to add any number of event suppliers, and any number of
event consumers to the application. Most of today’s applications are developed in a modular
way. There might for instance be one module for database logic, one for business logic, and
one for GUI. The idea behind this structure is to keep the modules independent of one
another. This would not be possible without a messaging model using loose coupling between
event suppliers and consumers.

CORBA Event Service Constituents
The CORBA Event service specifies three basic components: The Suppliers that generate
events, the Consumers that can receive events and the Channel that is the only

9

component that has knowledge about the different participants in a communication. The
Suppliers register themselves with a specific Channel (many suppliers can register
themselves with the same Channel). The Consumers can get a reference to the same
Channel object and register themselves as Consumers of the Channel. When one
Supplier sends an event to the Channel all Consumers will receive a message.
[OMG_97a]

Models of Interaction
There are two different kinds of messaging models: the push model, and the pull model. In
the push model the events are pushed to their receivers, and in the pull model the receivers
wait for events to occur (or pull events periodically). Both the push and the pull models can
be applied independently of each other, both on the supplier side and on the consumer side of
the Channel. There could, for instance, be one Supplier sending events to a Channel
(pushing Supplier), another Supplier waiting for clients to pull events (pulled
Supplier), one Consumer that gets notified of events (a pushed Consumer), and one
Consumer that waits for events to occur, or makes explicit queries for events in a periodic
manner (a pulling Consumer), all connected to the same Channel and participating in the
same interactions.

2.3 Transaction Processing Monitors

In a distributed transactional system, some mechanism for processing multiple client requests
in an efficient way, while maintaining the transactional properties (ACID) is required in order
to achieve reliability. Transaction Processing Monitors (TP Monitors) are software
developed for this purpose. A TP Monitor works like a workflow manager or router between
the clients and the server where the transactional program resides. All access to data
resources goes through this server, but is coordinated by the TP Monitor. The software and
hardware built in this architecture (see figure 2.2) comprise a Transaction Processing System
(TP System) [Bernstein_&_Newcomer_97].

In a TP System, the resource manager (RM), e.g. a database manager, is kept separated from
the transaction manager (TM), the part of the system that, for instance, is responsible for
driving the two phase commit protocol. These two components have different responsibilities
for helping the application programmers develop reliable systems. The TM assures atomicity
and durability (logging of transaction information to enable recovery). Keeping the data con-
sistent lies on the responsibility of the application programmer, and to some extent on the
RM (e.g. database triggers). The RM further assures durability (before and after images of
data) and isolation (no uncommitted data is visible).

One of the most important tasks of a TP Monitor working in a distributed environment is to
carry out the two phase commit protocol. This, for instance, means that recovery has to be
supported by maintaining logs. A TP Monitor also has to keep track of all resource managers
that the application talks to in order to complete the 2PC protocol. Other common features
offered by TP Monitors are: load balancing, fault-tolerance, and security
[Gray_&_Reuter_93].

2.4 Object Transaction Monitors

An Object Transaction Monitor (OTM) combines the CORBA and TP Monitor concepts. The
main responsibility of an OTM is to manage the server side objects transparently to clients.

10

Automatic object management is crucial in large-scale systems with a large number of server
objects.

Typically an OTM would: activate and deactivate components (distributed objects),
coordinate distributed transactions, notify components of events, and automatically manage
the state of components [Orfali_&_Harkey_98]. The OTM should thereby introduce
scalability, load balancing, fault-tolerance, security, and persistence into a CORBA
environment. Both TP Monitor and ORB vendors currently move their products towards the
OTM framework. One example of this is the cooperation between Transarc (TP Monitor
vendor) and IONA resulting in the product OrbixOTM. OrbixOTM for currently offers:
object naming, event notification, distributed transactions, security, and system management
on top of the Orbix ORB [IONA_98e].

2.5 Summary

In this chapter, the basics of the CORBA standard, and how the standard solves the problems
faced when integrating heterogeneous systems were presented. The basic idea is to define
interfaces between components or distributed objects in a standardized and language
independent way. An object bus or ORB takes care of the communication between these
objects. This architecture makes it possible to extend the system, and incorporate legacy
systems in a straightforward and flexible way. The ORB functionality is often not sufficient
in a large-scale distributed systems. Two commonly used services are the Event service and
the Object Transaction Service (OTS). These services offer asynchronous messaging and
distributed transaction processing respectively.

TP Monitors, used for run time execution of programs (i.e. routing) to improve scalability
and reliability, were discussed. The OTM could be seen as a way to introduce this
functionality in the CORBA world. This chapter was mainly concerned with reliability of
OTM systems. In the next chapter, issues regarding persistence, scalability, and performance
in such environments are discussed in some more detail.

Client Client Client

TP
Monitor

Transaction
Program Data

Resource

Figure 2.2: TP System Architecture

11

3 Object Persistence and Caching

In this chapter, the theories behind object-relational mapping, load balancing, replication,
and caching are presented and discussed. How to map the object model of a system into a
relational database is often of vital importance to the performance. Performance and
scalability are main goals for all these techniques. Caching, replication, and load balancing
are closely related and often applied in large-scale systems in conjunction with each other.
These sections give a basic idea of general design issues and common approaches in order to
follow the discussions in chapter 5 and 6 (Technical Solutions and Case Study).

3.1 Object-Relational Mapping

Object-relational mapping has become increasingly important as object-oriented languages
and tools are becoming more frequently used in companies, whilst relational databases for a
long time have been dominating the database field. In this section, reasons for using a
consistent mapping policy, and aspects that have to be considered when designing and
implementing object-relational mapping are discussed. Further, common mapping
approaches, different ways of accessing the database, CORBA to persistent objects mapping,
and an example of a mapping tool called Persistence PowerTier are presented.

3.1.1 Why is Object-Relational mapping needed?
Object-oriented languages and relational databases have many advantages and are today de
facto standard in their respective fields. OO-languages offer encapsulation, polymorphism
and inheritance, which yields a natural mapping to the real-world domain. Relational
databases build on a simple concept (the relational model), and also offer techniques like
concurrency and replication off the shelf. The main reason why object-relational mapping is
needed is hence that these two concepts are commonly used, and developers frequently face
the problem of integrating an existing relational database into an object-oriented application.

Performance is an important reasons for using a suitable object-relational mapping. The main
goal is to minimize database queries and maximize in-memory object queries. For this reason,
an object-relational mapping approach often goes hand in hand with a caching approach.

A loose coupling between the application logic and the data schema supports system
evolution. Additionally, general mapping solutions minimize error prone repetitive work.
Flexibility and ease of integration are thus further reasons for considering an object-relational
mapping policy. This is further discussed in section 3.1.4, accessing the database.

3.1.2 Design Issues
How the database schema is represented in the object model, or vice versa, relies heavily on
how the persistent data is managed, e.g., whether there are only a fixed number of queries, or
whether queries are constructed ad hoc in a flexible manner. If many ad hoc queries are used,
a one-to-one mapping between classes and database tables would probably be unsuitable
[Leser_et_al_98]. Similarly, whether the queries are closely connected to objects of one class
only, or whether they involve traversing an object-graph must also be taken into
consideration when choosing a mapping approach.

In some cases denormalized tables and redundant data can be accepted to optimize access
time [ONTOS_98, Agarwal_&_Keller_98]. There is, however, always a trade-off between
flexibility and performance. Flexibility would be increased if the tables were kept

12

normalized. For ease of maintenance, one single mapping approach could be applied for the
entire system, which may be a reason for choosing a more generic and flexible approach.

3.1.3 Mapping Approaches
There are different ways to map object-oriented concepts into relational concepts. Below the
most common approaches for mapping classes to relational concepts, and how the problem
with object identities can be solved are discussed.

One-to-One
The mapping of classes into relational tables can be very simple. If all attributes of a class are
of basic types like integer and string, a one-to-one mapping could be used1. One class corre-
sponds to one table in the database and the attributes of the class correspond to columns in
the table. Further, tuples or rows of the table represent the objects.

One-to-Many and Many-to-Many
If a class has attributes that are collections of basic types, or represent many-to-many object
associations, a one-to-one mapping is not sufficient. Normally a complex class, e.g. a compo-
sition of several classes, is represented by multiple database tables. For performance reasons
the opposite may also be the case, i.e. multiple classes could be represented in one denormal-
ized database table. The relations on an object level are normally represented by foreign keys
in the relational database.

Inheritance
Mapping inheritance is not as straightforward as the other mappings. A table in the database
may represent an entire class hierarchy. Further, all the classes in the hierarchy may be repre-
sented by a table each, possibly with foreign keys to other tables to represent the hierarchy. A
third approach is to only let the lowest level classes or the leaves of the tree be represented by
database tables. This approach would lead to redundant data, but could still be an alternative
to gain performance advantages.

OID vs. Primary Keys
The notion of uniqueness is quite different in the two worlds. The relational databases use a
value-based approach by specifying some columns as primary keys to assure uniqueness
within a table. In the object-oriented world uniqueness is kept orthogonal to the data itself by
using object ids. There are basically two solutions to this mismatch. First, an object id
generated at object creation time could be stored in one column for each database table
[Ambler_98]. Second, a mapping algorithm between primary keys and the object ids could be
used [Fahl_&_Risch_97]. The first approach is the easiest one to implement but requires
database changes, which may not be possible to do when integrating legacy databases. The
second approach is harder to implement. In this approach the mapping, for example, becomes
invalid if primary keys are reused.

3.1.4 Accessing the Database
There are basically three different approaches for accessing databases from an object-
oriented programming environment: direct access, wrapped access, and tool-based access.
They are discussed in turn below.

1 If the attributes are objects that represent one-to-one associations, then this could also be seen as a
one-to-one mapping.

13

Direct Access
The easiest approach to implement, and possibly the most commonly used, is to issue direct
calls to the database via embedded SQL directly from the client code. This is not a very suit-
able approach for a larger system, though, because no code-reuse can be done, i.e. a new
mapping basically has to be implemented for each call . If the mapping is simple, and there is
a limited amount of persistent objects in the system, this approach may be acceptable,
however.

Wrapped Access
Embedded SQL code is not object-oriented, and the mapping of return values from SQL calls
into objects can be repetiti ve and error prone. Therefore some tools offer the programmer the
possibilit y to issue SQL calls by using objects that wrap in the database calls. The object-
relational mapping is still li mited in this case, as the programmer is always aware of the
underlying database structure.

Tool-based Mapping Access
The most sophisticated way of accessing databases through an object-oriented language is to
use a mapping tool that generates classes and access methods from relational database sche-
mata, or generate schemata from object models. The mapping, in this case, is static but easy
to maintain because of the code generation. Simple queries and updates of attributes can be
made from the client code by using the methods of the generated classes. For greater
flexibilit y, SQL commands can normally be issued as well . In theory, though, the database
structure could be unknown to the clients.

3.1.5 CORBA to Persistent Objects Mapping
So far, only the mapping between OO-language classes (representing persistent objects) and
relational database constructs has been discussed. There is, however, a second mapping that
has to be considered in a distributed object system integrated with a database: mapping
distributed objects specified by IDL to classes dealing with persistence.

Granularity Problem
Accessing a distributed object is very costly with regards to network traff ic and server
resources. For an object to be available for remote access, it has to be registered with the
ORB, and has to be linked with skeleton code to dispatch incoming requests. Because of the
high resource demand, and the extra work needed to access CORBA objects, these are
normally coarse grained. Fine-grained implementation details are thereby hidden from the
clients by providing a high-level external interface. Persistent objects having their
counterparts in database tables and rows are normally much finer grained though. The basic
problem is how to access large collections of small database objects in an eff icient way
through the ORB transparently to the clients. This issue is currently addressed in the new
CORBA Portable Object Adapter (POA) specification [Schmidt_&_Vinoski_97, OMG_98b],
the proposal for the new CORBA Persistent State Service (PSS) [IONA_et_al_98], and in the
standard specifications from the object database community’s counterpart to OMG; ODMG
(Object Data Management Group) [Cattel_&_Barry_97]. One solution to this problem is to
let the object implementers decide which subset of database objects that should be accessed
directly as CORBA objects, and which objects that should be accessed through higher level
delegating CORBA objects. Another solution is to provide an object caching mechanism to
improve the performance. These two solutions ideally should be used together, but in an
orthogonal way to ensure flexibilit y. They should further be transparent to the clients.

14

Object References Problem
CORBA objects are identified by an interoperable object reference (IOR), not necessaril y an
object id as expected in a non-distributed environment. Being able to tell which objects are
the same is crucial for a caching implementation, and for mapping the objects to primary keys
in the database. This is not always the case with CORBA IORs. This problem is addressed in
the new POA specification [OMG_98b] by stating that a part of the IOR must embed an
object id unique to the POA. IONA’s Object Database Adapter Framework [IONA_97a]
makes use of IONA proprietary markers, which are embedded in a similar way, for mapping
unique objects to unique database ids.

State Representation
A CORBA object contains a lot of information that is used at runtime and for distributed pur-
poses only. Further, in IDL, we specify the behavior of objects. These circumstances lead to
the fact that only certain parts of the distributed objects should be made persistent, i.e.
represent the state. So, which components of a CORBA object represent state? This is
currently dealt with in a standard proposal to the OMG for passing objects by value
1[IONA_et_al_98]. It contains an extension of the IDL so that the state of an object can be
defined explicitl y. This is for instance useful for caching purposes; the local object cache can
first request the remote object by value and then store its state locally. (In chapter 6, this
process is called localize. The case study implementation of localize would have been
simpli fied if the object-by-value semantics could have been used.)

Client or Server Controlled Persistence?
When integrating persistent objects into a CORBA system, two general approaches can be
taken: client transparent persistency or client exposed persistency. In the client transparent
approach, the ORB is responsible for fetching the persistent objects into memory when
clients start accessing them, and flush them to the database when the clients are finished. In
some cases, a more sophisticated caching mechanism may have to be implemented on the
client side. The clients then need to be aware of the persistence details of a CORBA object.
The IDL extension of state representation, for instance, provides the clients with such
information. For flexibilit y and maintainabilit y clients should not directly control server side
persistence, though.

3.1.6 Persistence PowerTier Implementation
With Persistence PowerTier, developers can describe their object model in a graphical tool.
Then a database schema, as well as classes that can be used to access the database are
generated. Classes and their attributes are specified similar to how database tables are
modeled. In addition to the class modeling, a modeling tool for relations is also available.
Cardinaliti es, access operations for the relation, and foreign keys can be specified with this
tool. The modeling is data oriented, and only the persistent objects should be modeled. There
is, however, an extension to the product that can be used to transform UML diagrams
modeled in Rational Rose to the Persistence format.

One-to-one and one-to-many relations between objects are supported by generating or
specifying foreign keys with the relations tool. A concrete class modeled in Persistence can
only be represented in one single database table. This table can, however, be changed at
runtime and many concrete classes can be mapped to it. Further, Persistence supports
inheritance by only representing the leaves as database tables. Only the leaves are represented
as concrete classes.

1 The reason for not referencing the specification itself is that it is not yet publicly available for non
OMG members.

15

The mapping is performed in a tier between the database server and the client to gain extra
performance advantages. This tier also provides an object cache discussed in greater detail i n
section 3.4.8.

An extension called DOCK (Distributed Object Connectivity Kit) provides a CORBA to per-
sistent objects mapping. This mapping is a one-to-one mapping, though, with the exception
that IDL does not have to be generated for some classes that are defined. The granularity
problem discussed earlier, however, is not addressed further than providing an object cache.
[Persistence_98]

3.2 Load Balancing

In this section server selection as a special form of load balancing is discussed. Server
selection refers to selecting the target server from a group of identical servers in order to
balance the load.

An analysis of how performance problems of large scale distributed systems can be solved by
using a proper server load balancing strategy and scheme is done. Scheme is defined as the
implementation of a strategy. The main goals of the use of load balancing, and what implica-
tions that must be dealt with when trying to achieve these goals are presented. Different
approaches that can be chosen to resolve these diff iculties are compared. Further, some
strategies are presented and related concerning implementation and use in different contexts.
Thereafter, an example of a load balancing implementation is presented; the load balancing
feature of the OrbixNames product from IONA Technologies.

3.2.1 What Is Load Balancing?
Load balancing deals with the distribution of requests among servers. The servers can all
reside on a single host or be distributed within a group of hosts. A simple server selection
load balancing scenario is depicted in figure 3.1. We focus on this form of load balancing
because selecting servers is a core part of the CORBA architecture and is a factor that easily
can be tailored by the CORBA developer.

Many load balancing algorithms for distributing the load between different hosts on an
operating system level have been investigated in various research projects. These algorithms
are of minor interest in a CORBA context, as they are applicable on another level of
granularity, and are not discussed here.

The selection of servers can be either static or dynamic. Static server selection means that
clients are always given the same server to invoke on, and the load balancing is achieved by
giving servers the responsibilit y to serve a certain group of clients at compile time. This form
of server selection is sometimes referred to as partitioning [IONA_98c]. A more flexible type
of server selection is dynamic selection. By dynamic selection, the decision of which server a
client invokes on is taken at runtime, and is totally decoupled from the client’s properties.

Load balancing is often done by the software responsible for workflow control li ke a TP
Monitor or an ORB. Load balancing schemes are used primarily to augment the throughput,
i.e. the number of requests handled in a correct way before deadline. Studies
[Friedman_&_Mosse_96] have, however, shown that there is a correlation between load
balancing policies and fault-tolerance in a system. A load balancing scheme only describes
which of several available servers to use, not any heuristics for what to do if the server called
happens to be down and unable to complete its task. Therefore a load balancing strategy

16

could be combined with some kind of fault-tolerance scheme making these decisions.
Handling fault-tolerance in this explicit way is beyond the scope of this work, though.

3.2.2 Problems Addressed
Large-scale distributed systems are often “mission criti cal” . That means that it is crucial that
they have a high availabilit y during the time that their services are offered. If, for instance,
the service is offered permanently the system must never go down for support and update
jobs. The abilit y to distribute the load to other servers when some are down, e.g. to do
updates, is therefore an important issue that load balancing strategies have to address.

The next problem addressed is overload. If some servers are overloaded, the risk of client
timeouts and possible client crashes increases, i.e. the clients will never be served because the
service is regarded as being down by the system after having waited too long for the reply.
Hence the load balancing strategy should prevent overloaded servers from getting requests. If
a server crash occurs, the scheme ideally should regard this server as overloaded. The load
balancing scheme in this case works as an implicit error detection mechanism normally
handled by the previously mentioned fault-tolerance schemes.

3.2.3 Goals
There is one major goal of load balancing; to increase throughput and thereby decrease the
number of errors due to overloaded servers in the system. From the client’s point of view,
load balancing should be transparent. The invocations sent should look the same regardless of
whether load balancing is implemented on the server side or not. Another important goal and
reason for deploying a load balancing scheme is to decrease the user request response time.

Figure 3.1: Load Balancing Scenario
(1) The client issues a lookup command to a Server Selector.
(2) The Server Selector selects a server from a group of servers that are
able to perform the request, and returns a reference to the selected server
to the client.
(3) The client invokes on the selected server.
(4) The selected server returns its reply to the invoking client.
The arrows between the Server Selector and the Member Servers indicate
that information, on e.g. server load, that is used for the selection could be
exchanged.

Client 1

Client 2

Client n

Member
Server 1

Member
Server 2

Member
Server n

(1)

(2)

(3)

(4)

Server
Selector

17

3.2.4 Design Issues
When implementing a load balancing strategy, server selection overhead, network overhead,
and replicated data have to be considered, while taking the system context into account.

Server Selection Overhead
The mechanism that keeps the server distribution transparent to the client should be kept as
simple as possible. Complicated algorithms can lead to the selector becoming a bottleneck in
the system, as most strategies demand that all client requests be located in a serialized way. A
system with a stable load that doesn’ t change much needs a less advanced algorithm.

Network Overhead
A possible scenario in a load balancing implementation is that the client sends a request to
the server selector which returns the chosen server to the client. The client then makes its
actual call to the server that was retrieved. Except from this network traff ic the load
information exchange between the server selector and the replicated servers also contributes
to performance degradation (see figure 3.1). The network could be a serious time consumer
when many clients and many replicated servers are involved [Garland_et_al_95].

Replicated data
Replicating stateful servers implies that a decision has to be made whether the data that is in
common also should be replicated. Replicated servers operating on the same data could result
in losing the concurrency intended, e.g. because of database locking. Therefore the data also
must be replicated, in some cases. Using replicated data means managing replicated copies
and considering hard disc space availabilit y. Replicated data is also used to make the system
more fault-tolerant. This topic is discussed in more detail i n section 3.3.

3.2.5 Approaches
To be able to fulfill t he requirements stated for a load balancing implementation, policies in
three different areas are chosen. These include:

(a) how to get information about the load of candidate servers (information policy),
(b) decide when it is appropriate to re-locate a job (threshold policy) and
(c) choosing algorithms for deciding which server is getting the request (location policy).

If stateful servers are involved, a migration policy has to be considered as well to solve
consistency issues [IONA_98d].

If no information policy is chosen, i.e. the schedule doesn’ t collect any information about the
load on the servers, then the load balancing is called load independent. If information about
the current system state is used to determine which server is getting the request, the load
balancing strategy is said to be load dependent, because it is able to adjust according to
changes in load.

3.2.6 Strategies
Only strategies concerning policies (a) and (c), mentioned in the previous section, are
discussed because they are the most commonly used for server selection load balancing.

Four common load balancing strategies are presented: random, round-robin, load, and request
queues. They all choose different location policies (c). Some of them also choose an
information policy (a).

18

Random (also referred to as random splitting), takes (c) into consideration
In this strategy one server in the server pool is chosen at random. The advantage of this tech-
nique is that it is easy to implement and has littl e overhead. Because of the fact that a server
that is overloaded or down could be chosen for a second time in a row, this strategy is the
least fault-tolerant, though.

Round-Robin (cyclic splitting, cyclic service), (c)
In the round-robin strategy, the servers are invoked starting with one server and then
invoking all other servers in turn before invoking the first one again. If all servers perform
their tasks in a similar amount of time, this strategy is suitable. It has the same problem as the
random strategy, though, it cannot cope with the situation where one server goes down or
becomes overloaded.

Load (lowest load), (a) and (c)
The load strategy is to collect information of the load from the individual servers in some
way (information policy) and then invoke on the server that is the least loaded. When using
this strategy, failed servers will be regarded overloaded, and thus will never be invoked.

Request Queues, (a) and (c)
Another way of balancing the load is to use request queues. This technique balances the load
dynamically. The clients’ requests are put in a queue and are then dequeued by the servers
ready to process a request. If the queue is persistent this approach has another feature. The
clients and/or servers can crash without the requests being lost. One big advantage of this
strategy is that no load information has to be polled from the servers and hence a lot of
network traff ic is saved.

Of the four strategies, the first two are load independent and the third and forth are load de-
pendent. Implementing the load and the request queues strategies are much harder, though,
and the load balancing has more overhead.

3.2.7 OrbixNames Implementation
OrbixNames from IONA Technologies is an OMG CORBA compliant implementation of the
CORBA Naming service. The Naming service offers a way to get object references from
hierarchically structured strings. OrbixNames is therefore in a good position to do load
balancing transparent to the clients when they are getting their object references.
OrbixNames in its current version (1.1) supports the round-robin and the random schemes.

OrbixNames normally consists of a repository of names which map to objects. With the load
balancing feature the names map to object groups instead of objects. An object group is a
collection of servers offering exactly the same service. The method pick() gets a member
from the object group using either the round-robin or the random scheme. To make the load
balancing available to the clients, an object group must be created and bound in the Naming
service. The object group members are then added to their group in the server mainline.
When a client resolves a name in the naming service that happens to be an object group, the
pick() method is automatically invoked on the object group transparently to the clients
[IONA_98b].

3.3 Replication

In this section, the reasons for using replication are presented, and different approaches that
can be made are discussed. Further, issues that have to be considered when implementing

19

replication are analyzed. Oracle8 Advanced Replication is presented in section 3.3.6 as an
example for a replication implementation.

3.3.1 What Is Replication?
Replication refers to the maintenance of redundancy in a system. Replication techniques use
multiple copies of data or invocations to make a distributed system more reliable and perfor-
mant. The copies are often called replicas [Bernstein_&_Newcomer_97].

3.3.2 Problems Addressed
As mentioned in the previous section on load balancing (3.2), distributed systems are often
mission critical, i.e. they have to be highly available. When using redundant data it is easy to
shift to another replica when the one in use becomes unavailable due to a server crash or
communication failure. Another problem with distributed systems is that the performance
often degrades severely when many users at many nodes are connected to the system. The
solution to that is to increase locality, i.e. to store data locally in order to reduce costly
network traffic. How to distribute the replicas is an important problem that has to be
investigated and tested when deploying a replication strategy.

3.3.3 Goals
There are two major goals of replication; increasing availability and increasing performance.
Higher availability can be accomplished due to higher fault-tolerance when storing or
processing data redundantly. Performance gains are achieved because of increased locality as
described in the previous section. A system using replication should do this transparently to
the clients in order to make it possible to easily test different replication strategies, and fine
tune the system. A replication scheme should also be as application independent as possible.
However, the replication approach chosen is often influenced by the application context. This
makes it impossible to find a fully generic solution.

3.3.4 Design Issues
In order to give the users the impression that only one data resource is used instead of a set of
replicas, there must be some synchronization of the replicas to maintain consistency. This is
the most challenging task when implementing replication. Synchronizing replicas distributed
over several nodes means a lot of communication overhead, and hence performance losses. If
performance was the reason for deploying replication, this is unacceptable. If, on the other
hand, availability was the most important goal, this overhead might not be of such great
importance, though. In addition to the communication overhead, storage space availability
also restricts the use of replication. If the processing is replicated too, processor load will
increase as well when introducing replication.

Synchronization in distributed systems is often achieved by using the 2PC protocol. This
technique has proved to scale poorly, though, because of its weak fault-tolerance semantics
[Shussel_96]. When replicas at multiple nodes are updated following the 2PC rules, it is
enough if one node is down to undo the whole propagation. In large-scale distributed systems
with numerous replicas, this is often unacceptable. In systems demanding absolute
consistency, this is the only possibility, though. Deploying replication is therefore always a
trade-off between availability (or fault-tolerance) and consistency [Faegri_95].

3.3.5 Approaches
There are two main groups of replication approaches: synchronous, and asynchronous
replication. The different approaches differ in how strong the consistency is maintained.

20

Synchronous Replication
In the synchronous approach the changes are propagated to the replicas within a 2PC transac-
tion for absolute consistency. The propagation may be started by some database trigger
before committing the data. This is applicable, e.g., in banking funds transfer and financial
trading systems that have high demands on accuracy. However, the overhead of this approach
is normally unacceptable, and it does not scale.

Asynchronous Replication
In asynchronous schemes the consistency is maintained in a weaker way. The updates can be
triggered in some way or can be done periodically. There are two different groups of
asynchronous replication: master/slave (or pessimistic replication) and peer-to-peer (or
optimistic replication).

• Master/Slave
This approach is also sometimes referred to as primary-copy replication in the literature
because one replica is selected to be the primary. Updates are only allowed on the primary
replica (master) and the secondary replicas (slaves) are read-only. One example of
master/slave replication supported by many database vendors is snapshots. The replication is
pessimistic because it avoids confli cting updates. For some systems this approach could be to
rigid and inflexible, though.

• Peer-to-Peer
A more flexible approach is the peer-to-peer approach where all replicas can be updated. In
this case there might be concurrent confli cting updates. In order to resolve confli cting
updates, which are detected when propagating, some reconcili ation strategy has to be chosen.
Example of such strategies are: latest timestamp (or Thomas’s Write Rule), earliest
timestamp, priority group (some groups of replicas have priority when a confli ct arises) and
site priority [Chen_96].

One example of an asynchronous system is a data warehouse system or Decision Support
Systems - Replication (DSS-R). In a DSS-R system it is more important to have a consistent
view at a certain point in time for decision making and analysis, and the currency is of less
importance. DSS-R systems are often implemented as master/slave.

Another example of asynchronous replication is Transaction Processing - Replication (TP-R)
[Shussel_96]. This approach is the one closest to the 2PC approach. In order to make the sys-
tem more fault-tolerant there is not a single 2PC transaction, but instead one per replica that
is to be updated. If the transaction rolls back at one replica node, the update request is stored
in a queue and can be processed when the replica is available again. The original updates are
made on one single replica in a local transaction. As soon as this transaction commits the
propagation to the other replicas starts automatically. The TP-R model is often used in
production systems, and can be implemented both as master/slave and peer-to-peer.

3.3.6 Oracle8 Advanced Replication Implementation
Oracle8 supports asynchronous row level replication. When an update is made each single
row that has changed is stored locally to be propagated at some later time. Another
interesting feature of Oracle8 is that the changes can be propagated in parallel to the different
replicas, while assuring that updates that are dependent on other updates are made in the
same order as they were made originally. All of the replicas can be updated concurrently at
each node (peer-to-peer model). Hence confli cts can occur, and has to be detected and
resolved.

21

In the Oracle8 implementation, confli cting updates are detected by comparing the before
image from the original site with the current image at the remote location (this is done on a
column level). If a confli ct is detected, then some reconcili ation strategies can be chosen by
the database administrator, e.g. latest timestamp and site priority. [Oracle_97a]

3.4 Caching

In a CORBA environment object caching (as opposed to data caching, which often is
provided by the database) is the most applicable caching concept due to the object-oriented
nature of CORBA. This chapter focuses on caching objects.

The motivation for using a cache, the concepts of object caching, and what functionality a
cache manager should offer are discussed. Different ways of managing the cache, that is
keeping the cache accurate, and some cache location policies are presented. Thereafter the
most complex problem of object caching is discussed in greater detail - how to keep caches
consistent using event propagation. Finally, two implementations from the industry are
exempli fied; live object caching in Persistence and the object caching in Versant.

3.4.1 Why Use a Cache?
Caches have been used for many years in the memory management of operating systems to
solve the problem of inexpensive memory vs. fast access. The well known idea is to transpar-
ently swap frequently accessed data to a faster medium, giving the impression that all data is
available in fast memory.

In distributed environments li ke CORBA, accessing information in remote databases is often
a bottleneck (as discussed in section 3.1, object-relational mapping). Hence a big problem of
these systems today is performance. The goal is to simulate local access in such a way that
the end user ideally doesn’ t notice that remote access is performed.

3.4.2 Object Caching
Object caching concerns the caching of programming level objects that either are stored in an
object database or in a relational database. The purpose of an object cache is to make some
objects faster to access, transparently to the clients. In this section, a brief description of how
an object cache normally works is given.

What Objects should be Cached?
Ideally you want to cache a small amount of data that is being accessed frequently and
updated infrequently. To model such behavior a rule called the “80/20 rule” could be applied.
The rule says that 80 percent of the users access 20 percent of the data. Thus to optimize
performance these 20 percent of the objects, which often are 1“core business objects”
(programming level objects that model the business logic), should be cached. Objects that
change their state very often should not be kept in the cache, though. Whether a caching
implementation is successful depends heavily on the application context. Applications where
clients issue many read request to analyze some situation, and then call write once are well
suited for caching, whereas applications where clients just read some client proprietary
information once, and then write back to the database don’ t gain as much from a caching
implementation [Keen_98].

1 Not to be confused with CORBA Business Objects defined by the OMG.

22

Object Faulting
An object cache must provide some way to deal with object faults. That is to decide what
should happen when a programmer references an object that is not available in the cache.
Some techniques are based on UNIX proprietary page faults (e.g. [Kordale_&_Ahmad_95])
that can be caught as exceptions. In the exception handler, the object is fetched from the
database into the cache. A more elegant technique is to view the cache as a logical database
by using a table with entries for each cached object. Object faulting is detected by checking a
memory pointer field in this table. If the pointer is invalid, then the object is fetched from the
source database.

Consistency of Replicated Data
When using caches, data is replicated locally. The same object could be replicated for
multiple clients at the same time on different machines. In such a situation, keeping the
copies consistent becomes a challenging task. Different cache management approaches
(described in section 3.4.4) solve this problem differently. How strong the consistency should
be held is very context dependent. For example, when browsing for information on a web
page it normally doesn’ t matter whether the page is full y accurate. Fast access is more
important. In a transactional system, though, it is more important that the data used by the
transactional participants is accurate in order to fulfill t he ACID guarantees.

Object Eviction
The size of the cache is often limited, and in applications dealing with a lot of objects, it
becomes impossible to keep all the objects in the cache at the same time. Therefore some
strategy has to be deployed concerning which objects should be evicted, and when they
should be evicted to prevent the cache from getting full . Objects can be evicted on a First In
First Out (FIFO) basis, or every time a transaction commits or aborts. One additional solution
is to time stamp all objects when they are used and then evict the Least Recently Used (LRU)
object when some upper threshold of cache usage is reached or in a periodical manner.
Another possibilit y is to register a Time To Live (TTL) value for each object and then
periodically evict all the objects with elapsed TTL values. [IONA_97b]

3.4.3 Cache Manager Interface
The cache can bee seen as a local database, as described in the previous section, on which a
set of operations can be performed. A table consists of one entry for each data item to be
cached normally with additional meta data. Below some operations that are in common for
most cache managers are li sted [Terry_85, Bernstein_&_Newcomer_97]. These operations
are normally used both internally by the cache manager using one of the caching policies
(section 3.4.4), and by the cache users i.e. the clients. The semantics of these operations are
presented in the succeeding sections.

purge (or deallocate) - deletes one cache entry.
fetch (refresh, reload) - retrieves new data from the real source and stores it in the cache.
flush - writes data in the cache to the source.
invalidate(complain) - gives cache users the possibilit y to inform the cache manager that
data in the cache is invalid.
revalidate – is used by some caches in order to see whether the data is valid without
accessing the source.
pin/unpin – are often used in a transactional context to ensure that the data is kept in the
cache and not written to the source.
getStatus - gets information or meta data about an entry in the cache table.

23

3.4.4 Maintaining Consistency
A cache manager, i.e. software that manages the physical cache, has to decide when to check
the values in the cache for consistency, and what actions to take if inconsistency is detected.
This can be done in four different ways: passively, on demand, periodically, or using pushes.

Passive
A passive cache manager waits until the user complains (invokes operation invalidate) about
invalid data, and then decides to purge, refresh, or invalidate depending on what the user
complained about. If the user, for instance, just noticed that there was an object in the cache
that was erroneous, but isn’ t interested in invoking any methods on that object, it would be
enough for the cache manager to call purge on the cache.

On Demand
In the on demand approach, the user says explicitl y what operation should be performed on
the cache. For example, a web browser that provides a refresh or reload button. This
technique is applicable when the clients’ demand on consistency is low [Terry_85].

Periodic
The cache manager could periodically check the accuracy of the data, and then refresh the
data that changed. The danger with this technique is that it can introduce a lot of unnecessary
network traff ic.

Push
The push approach ensures consistency and accuracy of the data in the strongest way of the
presented techniques. The cache manager gets a callback when the data has changed in the
database, and it can then call refresh or invalidate on the cache. This is also the most
expensive technique considering network traff ic consumption and demands fast tailor-made
messaging techniques, li ke multicasting. The push technique is further elaborated in section
3.4.6.

3.4.5 Cache Location Policy
The cache manager can work on different levels of granularity. By placing the cache on
different locations, it can be made accessible to different groups of clients. A cache manager
is here for simplicity defined to manage only one cache.

Per-process
In the per-process approach every client process has its own cache manager. The cache can
then not be shared between clients. This could be an appropriate approach for long li ved
clients accessing the same data multiple times, e.g. browsing for information in a web-
browser.

Per-processor/machine
All the clients on the same machine can share a cache manager. This is applicable when
clients on the same machine have similar tasks, and use similar data.

Per-site
If a fast LAN is available, the network traff ic within the site could have minor impact on the
user response time. In that case it could be a good idea to have one cache in common for all
the clients on that site. Sites connected with a fast network could also share a cache
[Terry_85].

24

The approaches mentioned so far could easily be combined into a hierarchy. If the object is
not available in the cache of the finer grained cache manager, the manager on the next higher
level is contacted to get the object. This is done in [Chankhunthod et_al_94] for caching web
pages located on web servers that are ordered in a hierarchy.

Per-transaction
In transactional systems it might be appropriate to let all participants in a transaction share
the same cache. When a participant references an object the cache manager first looks
whether the object is available in the cache. If the object is not there, it calls fetch and
increments the pin counter by calling pin. When the participant does not need the object
anymore unpin is called. Later when committing the transaction, the cache is flushed (this
can only be done if the pin counter is 0) and purged. Per-transaction cache management is
closely related to managing recovery and logging. Before unpin is called the recovery
manager checks whether the data has changed. If the data has changed (commonly referred to
as being dirty), a log record is written (containing before and after images of the data) in
order to enable recovery after a crash. This is done because unpinned data could potentially
be flushed [Bernstein_&_Newcomer_97].

Per-application
Application servers accessing data in a database on behalf of clients are inherently candidates
for offering caching. An application server could, for instance, combine a per-process
location policy (where the server is the cache client) and a per-transaction cache, as
exemplified by the Persistence PowerTier tool (section 3.4.7).

3.4.6 Cache Consistency - the Push Approach
In this section, different approaches that can be taken to keep multiple caches consistent are
discussed. This involves synchronizing multiple concurrent cache users and dealing with con-
flicts that can occur when different users have different views of the same object. Further,
updates have to be propagated, and the lifetime of objects controlled.

Optimistic vs. Pessimistic Approach
To prevent inconsistency of data different users must be prevented from updating the same
data at the same time. This is easily done in non-distributed environments because all
databases support some kind of synchronization mechanism to block users trying to read data
that is updated by another user at the same time. One common synchronization technique is
locking. Locking all the distributed caches of an object when one client wants to make an
update, or query some data is both very costly, and also difficult to implement.

As the main objective of deploying caching is to increase performance, it would be
unfortunate to limit the concurrency by blocking all users who want to read data currently
being updated by some user, and thereby causing a severe bottleneck. If concurrent updates
and read requests are unlikely to happen, however, this so called pessimistic approach, where
all caches are locked during updates, could be used. This could be the case in a scenario
where single clients access the same data frequently.

A more suitable approach, when having multiple distributed caches and many concurrent
users, is known as the optimistic approach or optimistic locking. When a client reads some
data into the cache it is not locked but instead some kind of log is written containing a
version number or a time stamp. At the time the client is ready to update, the logged version
of the cache is checked against the version currently available in the database. If these two
versions are consistent, the update can take place, otherwise another user has done an
intervening update, and the operation has to be canceled.

25

When using the optimistic approach, i.e. allowing multiple concurrent updates of the same
object, some solution has to be found concerning how to propagate the changes made. The
optimistic and the pessimistic approaches of locking are similar to the optimistic and the
pessimistic approaches of replication discussed in section 3.3.

Propagation
Clients or cache managers can keep their caches accurate by using one, or a combination of
the models described in section 3.4.4. In a distributed transactional environment where
concurrent updates are made, the most appropriate model would be to push the changes to all
caches at commit time, and thus minimizing the risk of confli ct when the actual database
update is made. A confli ct can occur if one user is updating concurrently to another user
pushing the same data (see figure 3.2). In this case, the second update should be able to tell ,
using its logs, that an intervening update has occurred, and cancel the second write operation
because this used inaccurate data.

When using the push approach, some additional decisions have to be made li ke when to
update the caches, and how to carry out the update. The caches could be updated just before,
or just after committing the transaction. If pushing is done before committing, then there is a
risk of the push mechanism being started concurrently by many users. Which of the updates
is the correct one could then become ambiguous. If a commit to the database is made before
propagation, confli cts will be detected before starting the pushing, and the operation can be
canceled before creating incorrect push events. If the database update is very costly compared
to the pushes, it could be a good idea to propagate before commit, though. The second
decision concerns whether to just notify the replicated caches of a change, or to provide them
with the new value. If all caches are just notified of a change, they have to access the
database for the new value, which could be costly. Propagating the value with the
notification, prevents this. Therefore this would be preferable, provided that the pushing
technology used is able to transmit all the data changed in an eff icient way, and the changed
data is not too complex to send within a push. Pushing changed data could be very dangerous
with respect to the consistency. Normally the order of which the events arrive has to be
controlled as exempli fied by Oracle8 advanced replication described in section 3.3.6.

Granularity of Events
Another important decision, to be made when deploying a caching strategy with an event
notification mechanism is - on which level of granularity should the events or pushes be
generated? Two contrasting factors should be considered. First, the overhead implied by the
sender generating many different kinds of events (potentiall y on multiple channels). Second,
the number of pushes invoked on clients not interested in the event. Another way to put it is;
who should do the filtering -the receiver or the sender of the push? The following
granularities could be appropriate depending on application context.

Database
[X': 121]

Object Cache 1
[X: 123]

Object Cache 2
[X: 121]

Client 1
[X->X+1]

Serialized
Execution:
X = 122
X'= 122

Client 2
[X->X-1]

(1) Write
X:123

(3) Write
X:121

(2) Update
X:123

(5) Push
X:123

(4) Update
X:121

Figure 3.2: Window of failure, concurrent updates by many clients

26

• Per-Object
As soon as an object changes its state an event is generated. If the application has few impor-
tant objects used by many clients, this would be appropriate. An example could be stock-
brokers interested in the stock of a company.

• Per-Class
If objects of a certain class are frequently read and less frequently changed, per-class
propagation may be a good idea. Per-class notifications could be useful when, for instance,
clients maintain a li st of objects of a certain class. One example application could be a
booking system where objects of the class that can be booked are cached.

• Per-Table/Row
If the database already supports events li ke triggers, it could in same cases be a good idea to
use these built -in database events for better performance. A per-table trigger corresponds to a
per-class event, and a per-row trigger corresponds to a per-object event if a one-to-one map-
ping is used. This might not always be the case, as discussed in section 3.1.3.

• Logical Grouping
There could be other groupings of objects suitable for pushing through the same event
channel for optimal benefit concerning number of events, and overhead vs. notifications
interesting to the receivers. This is useful in applications where the per-class propagation
sends too many events not interesting to receivers, and all filtering is done at the receiver
side. By ordering events into logical groups, some filtering could be done on the sender side.
An example could be a booking system that sends out different events for each booking made
in a different geographical area.

Lifetime of Objects
The li fetime of an object is closely related to the eviction policies chosen (described in
section 3.4.2) and the cache location (described in 3.4.5). If the per-transaction caching
model is used, the object li fetime could be the same as the time of the transaction. If the same
object is changed and read by many transactions concurrently (for instance in a per-site
cache), this would be an inappropriate approach, though, and a more general LRU strategy
would be suitable. If an object is not used much, evicting it could lead to better performance,
as update events don’ t have to be handled. Hence li fetime policies could have a big impact on
consistency policies.

3.4.7 Object Caching Implementations
In this section, two different object cache implementations are presented. The object cache
from Versant implemented in their object database, and the Live Object Caching concept
implemented in Persistence PowerTier (described in section 3.1.6).

Versant Object Cache
Whenever a database session is started, Versant allocates a pointer to a new object cache in
the virtual memory of the machine where the application is running. The same session can be
used by many clients who then share the same object cache. This object cache is managed
using a table containing one entry for each cached object. These entries contain one pointer
to the object in memory, and one logical object identifier to locate the object in the database.
Each entry also contains meta data li ke lock information, and pinning status. When a client
makes a request on an object, the cache table is queried, and if the memory pointer is null , the
logical object identifier is used to get the object from the database (see object faulting in
section 3.4.2). After the object is retrieved pin is called. When the transaction commits, the

27

meta data in the cache table is queried to check which objects changed. The objects that did
change are flushed, and then purge is called. The cache can optionally be kept after
committing. [Versant_98]

Persistence PowerTier Live Object Caching
The live object cache of Persistence was developed to solve the performance problems due to
accessing a relational database from an object-oriented environment, and having to map the
relational structure to objects. With a local cache containing the most frequently used objects,
a major performance improvement is possible. In addition to the faster access when the
network traffic is reduced, being able to query an object in the cache instead of doing SQL
joins also improves the performance. Another performance improving technique used is
optimistic locking on the object level, which is implemented using version stamps. The live
object cache implementation furthermore contains a notification mechanism which can be
used to maintain the consistency of the cache.

There are two different physical caches in order to support transactions. A shared cache
accessible by all clients, and a transactional cache only accessible by the client starting the
transaction. If the transaction is committed, then the transaction cache is cleared, and the
cache entry is copied to the shared cache [Persistence_98]. See figure 3.3.

28

3.5 Summary

The focus of this chapter was on how to improve scalability and performance in large-scale
distributed systems using persistent data

When mapping objects to relational databases basically two things are important to keep in
mind. First, do not make the application logic dependent on the database schema, i.e. separate
behavior (e.g. IDL) from how the data is actually stored. Second, try to retrieve as much data
in as few database calls as possible to avoid the object-relational mapping becoming a bottle-
neck (e.g. prefetch data that is likely to be read by others).

Three closely related techniques for improving performance and scalability in distributed
systems were discussed. Load balancing is mainly used to duplicate the processing for better
scalability. Replication involves duplicating data in order to improve performance and avail-
ability. Finally, caching is used to duplicate data in in-memory structures for better perform-
ance and to reduce network traffic.

Caching is the main focus of this thesis and was therefore discussed in greater detail. When
implementing caching, one major decision has to be taken: how the caches are going to be
updated when the source changes. This decision always leads to a trade-off between

Client 1 Client 2

Relational Database

X X
ProActive

Agent

Transaction
Cache

Shared
Cache

(1)(2) (3) (4)

Figure 3.3: Persistence Live Object Cache Synchronization with ProActive Agents
(1) Client 2 registers a criteria with the agent.
(2) Client 1 starts a transaction on Object x. The object is fetched from the
database into the shared cache, and copied into the transaction cache.
(3) The transaction is committed. The transaction cache is cleared, and the object
is copied back into the shared cache.
(4) An event is generated and pushed to the clients registered for the criteria.
These clients could then update their caches.

29

consistency and performance. If the caches always have to be kept consistent with the source
at any point in time, then the system is likely to suffer from serious performance degradation,
and will not scale. Therefore usually less strong consistency is accepted which is often
referred to as the optimistic approach.

30

4 Software Architecture

In this chapter, general concepts of software architecture are introduced. The concepts are
elaborated and applied in Chapter 7: Architectural Abstractions from the Case Study. There
are many different definitions of what software architecture is. Properties that all definitions
have in common are described in the first section of this chapter. The second section presents
the concepts of views and patterns. The last section describes three different techniques for
modeling architectures: UML, Catalysis, and the Connector framework.

4.1 What is Software Architecture?

In the literature, there are many different opinions on what a software architecture is. All
have in common that a software architecture should describe the software system in an ab-
stract way. In current practice, this is normally done with informal “box-and-line” diagrams.
The field of software architecture aims at formalizing these diagrams, and to make them more
expressive. The boxes are typically referred to as components, whereas the lines are called
connectors. Components are interrelated elements of software with externally visible proper-
ties. Components should be able to describe the software system on different levels of
granularity. The highest level would typically hide all details that concern implementation.
Connectors are used to describe the interactions between two or more components.

OO-programming languages and traditional OO-modeling techniques emphasize the
modeling of entities in the system. The descriptions of how these entities interact is often
distributed and embedded in the entity definitions. This approach is useful when trying to
design common behavior of single entities (by using inheritance). It is not so suitable,
however, for detecting common behavior involving several components. The software
architectural approach, on the other hand, makes a clear distinction between components and
connectors, and treats them independently.

A software architectural description should be able to address the composition of compo-
nents, the general control structure, communication between components, synchronization,
physical distribution, as well as scaling and performance issues [Garlan_&_Shaw_96].
Changing an architecture becomes increasingly costly as the development of a system pro-
gresses. Therefore, being able to consider design issues li ke those mentioned above is crucial
to detect design flaws early in the development li fecycle. Architectural abstractions help in
defining terminology for discussing the design among people involved in the development
project. Another important objective of software architecture is to enable reuse of design.
This is done by abstracting design solutions into generic patterns (discussed in the next
section). By reusing design, the time for developing new similar systems can be reduced
immensely. Furthermore, maintenance becomes easier when the system architecture is well
documented.

In a broader perspective, the research in software architecture aims at making software devel-
opment to an engineering discipline. That is the software development process should follow
strict scientifically proven steps in order to always yield satisfying solutions at a reasonable
cost. Many concepts therefore origin from other engineering disciplines.

31

4.2 Views and Patterns

In this section, two of the most essential techniques for creating software architectures are
presented. Views are fundamental in capturing different aspects of the system, and patterns
are used as “building-blocks” for composing architectures.

4.2.1 Views
A software system does not comprise one single architectural structure but several.
Depending on what the entities and relations depicted represent, different structures or views
of the system can be described. Examples of views are conceptual, class, physical, module,
process, data flow, and control flow [Bass_et_al_98]. They are all explained in some more
detail below.

Conceptual
Conceptual views are commonly used to model the problem domain. They are useful when
the functionality of a system is to be outlined without having to consider, e.g., which
implementation language is to be used. The entities refer to functional units and the relations
typically mean that information is shared between the entities.

Class
The class view is probably the most common view in traditional object-oriented modeling.
The entities are classes and the relations refer to methods or attributes. The diagrams in this
view are implementation dependent but still offer some abstraction from the algorithms in the
code.

Physical
In distributed systems where the system runs on multiple processors, machines, or hosts, a
physical view of the system would normally be created. In a physical view the entities are
hardware, and the relations represent communication. These views are important to be able to
consider performance and scalabilit y issues.

Module
A module view could be used for information hiding. The software system is grouped into
modules encapsulating parts that are li kely to change. When a change is made, only the
module in which the change resided, and possibly its sub-modules, should be affected. The
relations in the view are used to build a hierarchy of modules and sub-modules. The modules
on the highest level in the hierarchy are commonly parts of the system that have been
assigned to a group in an organization.

Data and Control Flow
A control flow view depicts states and how they transition into new states. Data flow
diagrams typically describe entities sending or receiving data, in order to see which entities
are involved in fulfilli ng a functional task.

Other commonly used views are: uses, calls, and process views [Bass_et_al_98]. By letting
different diagrams focus on different quality concerns li ke performance and modifiabilit y, a
clearer overall view of the system can be gained. Furthermore, the views support the design
process by incrementally defining new aspects of a complex system.

32

4.2.2 Patterns
As discussed earlier in this section, an important goal of software architecture is to reuse de-
signs. This is done by documenting solutions found in a generic way. The result is called a
pattern. A pattern is not created but detected. Finding patterns could be seen as forming reoc-
curring chunks of software into units that are associated with a representative name. Patterns
hence both make it easier to describe and discuss complex systems, as well as record experi-
ences from previous designs. By making patterns easy to use and understand, it should be
easy to design suitable systems by composing patterns from a repository.

Patterns occur on different levels of granularity, i.e. have different scopes. Three major levels
can be discerned: reference models, architectural styles, and design patterns.

Reference Models
This level is sometimes also referred to as the enterprise or global level
[Malveau_&_Mowbray_97]. It is the highest and most abstract level. The reference models
are standards defined for different domains. The standards could be defined by accredited
bodies, consortia, the market (de facto), or within an organization. All architectures designed
in an organization must conform to the chosen reference model. One example of a reference
model is the Object Management Architecture (OMA) described in section 2.1. All the
standards adopted by the OMG must conform to OMA.

Architectural Styles
Architectural styles describe patterns on a system level. This is a relatively new field of re-
search. It arose from the need of having a terminology to describe common computational
concepts on a higher level than the programming code. A catalogue of architectural styles and
their definitions was created in [Garlan_&_Shaw_96]. Styles described there are: dataflow
systems, call-and-return systems, independent components, virtual machines, and reposito-
ries. These styles are further refined into subcategories where, e.g., OO-systems are defined.

Design Patterns
Design patterns describe design solutions to common problems on a class level. Each pattern
comprises some classes and their relations, as well as a textual description including code
examples. The design patterns can be directly implemented in any programming language
(but an object oriented language would be preferable). An extensive catalogue of design
patterns can be found in [Gamma_et_al_95]. Patterns defined there include: observer, proxy,
adapter, abstract factory, iterator, and bridge.

The idea behind patterns originally came from the architect Christopher Alexander who
defined patterns for building houses in 1977. As a software research field, it is fairly new,
though. Patterns have become increasingly popular in the industry as well, especially on the
design level, because they can easily be applied and delivered with tools and standard class
libraries.

4.3 Describing Architectures

In this section, common requirements and properties of languages and modeling techniques to
describe software architectures are discussed. Thereafter three modeling approaches are pre-
sented. None of these was developed as an architectural description language (ADL), but
can be used for describing interesting aspects of architectures. UML is the standard object-
oriented modeling language. Catalysis is an extension of UML offering some more notations
suitable for describing architectures. Finally, the Connector framework is a framework to be

33

used in conjunction with object-oriented modeling languages to enhance their architectural
expressiveness.

4.3.1 Ideal Properties of Architectural Descriptions
The definitions of what exactly a language should support in order to be classified as an ADL
vary immensely. Some common ADL properties [Garlan_&_Shaw_96] are discussed below.

Support for composition of components
Components should be easy to combine by specifying interfaces that are used, and those that
are exposed by the component. By defining interfaces, contracts are defined between
providers and users. The contract should be independent of the realization of a component.
By combining components, large-scale and complex systems can be easier described.

Describing a system at different levels of granularity
The idea behind describing systems at different abstraction levels is to suppress unnecessary
detail during analysis and in earlier phases of the design. Later the descriptions can be refined
incrementally towards an implementation. At each level of abstraction different interactions
and behavioral aspects will be exposed. Further, designers may be used to work on various
levels of detail.

View support
In section 4.2.1, structures or views of a system were discussed. An ADL should have support
for documenting these views. With views, concerns can be separated to get a clear picture of
a complex system.

Identifying roles
Components in the systems can take part in several collaborations or interactions with other
components. In each collaboration the component contributes in different ways to the joint
behavior. A component can be said to play different roles. A component is an abstraction
above the notion of a class and often has a complex behavior. By specifying which roles a
component can play, the behavior can be decomposed. Each composition focuses on a
different aspect of the behavior.

Reuse of components and component patterns
The concept of patterns was described in section 4.2.2. An architectural description is
abstract and therefore often generic. In order to reuse generic patterns, an ADL should
support notions of instantiating components or groups of component. If the instantiation of a
component can be parameterized, the pattern could be seen as a stereotype. Further, if a
collaboration of components can be parameterized and instantiated, the pattern is typically
referred to as a framework.

Combining heterogeneous parts
A large-scale and complex system often comprises heterogeneous parts. To support the inte-
gration of these parts, an ADL should be able to describe how components realized in
different environments interact. Typically, all components are viewed uniformly at a higher
level of abstraction. The heterogeneity becomes visible in refinement processes where details
are added. To make a system modifiable and extensible, it is important to have a common
infrastructure that all the heterogeneous parts comply to.

34

Traceability from architecture to design
Traceability means that there should be a documented bi-directional path between the most
abstract levels of analysis to the implementation. Traceabilit y is useful when re-engineering
the system, and simpli fies maintenance.

4.3.2 UML
The Unified Modeling Language (UML) is an effort to combine concepts from several
object-oriented analysis and design (OOAD) methods into one unified language. The work
with UML started in 1994 and primarily consisted in unifying the Booch, OMT (Object
Modeling Technique), and OOSE (Object-Oriented Software Engineering) methods. UML is
developed by a consortium of industry and academia, and is currently in a standard adoption
process of the OMG.

In UML, as in traditional OO-modeling languages in general, most of the modeling focuses
on class diagrams (and hence implementation). More interesting from an architectural view-
point are the behavior diagrams defined in UML. One of these diagrams is the collaboration
diagram to model interactions between objects playing roles. The collaborations normally are
on an implementation level, though. Classes participating in a collaboration as well as the
relationships can be parameterized to form patterns.

UML has support for many different views, e.g. class, module, data flow, control flow, and
physical views. The physical view can be described in two diagrams: component diagrams
and deployment diagrams. The component diagrams depict components, the objects they
contain, and the interfaces they expose. In deployment diagrams, the run-time component
distribution of a system can be shown. Components and the hosts they reside on are
described. Further, dependencies between components and interfaces from other components
can be depicted. In the state and sequence diagrams, concurrency solutions can be shown.
[OMG_97c]

4.3.3 Catalysis
Catalysis is an extension of UML developed by ICON Computing and Trireme Object
Technology. Catalysis uses UML, but introduces some additions.

Catalysis focuses on modeling abstract behavior in type models. A type model specifies a
contract between suppliers and consumers of a component. The external behavior of an
object conforming to the type is defined. The contract is described by specifying the
operations supported by the type, and pre- and postconditions for each operation. The type
model suppresses all details about implementation. Types described in a type model can be
implemented by many classes, and one class can implement multiple types. Collaborations
can further describe how these objects interact depending on their external behavior. A third
important construct in Catalysis is refinement. Refinement is the process of providing more
detailed models. A refinement can be done on any model by assuring that the result – the
realization – is conformant to the original model – the abstraction. A refinement hence
provides traceability between models of different granularity. Type models, collaborations,
and refinements can all be parameterized and reused as patterns. The parameterized models
are called frameworks [D’Souza_&_Will s_98].

4.3.4 Connector Framework
The Connector framework has been developed at TU Berlin in the research group
Computation and Information Structures (CIS). The framework can be used in conjunction
with other OO-modeling languages li ke UML and Catalysis to elaborate certain parts of the

35

descriptions. There are two important constructs in the framework: components and
connectors.

Components model the computational parts in a system (e.g. clients and servers). A
component is described in terms of its exported and imported interfaces, a representation-
map, and a representation. The interfaces provide a means to describe the behavior of the
component in an implementation independent way. The representation-map describes how
the interfaces are mapped to constructs in a programming language. Finally, the
representation is a model of how the behavior is implemented. All these three parts can
internally be described using constructs from modeling languages like UML and Catalysis.

Connectors describe the interaction between components playing different roles. A Connector
specification comprises: a description of the roles participating in an interaction, role
interfaces, and interaction protocols specifying the collaboration. Roles are component
independent and used to provide an abstract view of participants in an interaction. This
promotes the use of connectors as patterns. Interfaces of the roles are specified and used for
describing the role dependencies in the interaction.

Connectors are instantiated by specifying the components playing the roles defined in the
connector. The instantiation is called an abstract architecture. The abstract architecture is
refined to form a concrete architecture. In a concrete architecture the realization of the
components, as a result of the roles they are playing, is shown. [Tai_96, Tai_98b, Tai_98a]

4.4 Summary

In this chapter, software architectural concepts were discussed. There are many different
interpretations on what a software architecture is. They, however, all have in common that a
software architecture is an abstraction of the structures of the system. These structures are de-
scribed using components and interactions between components, often referred to as
connectors.

The main purpose of software architecture is to provide implementation independent views of
the system to enable reuse of design, and support early design decisions. ADLs are languages
developed to support this process.

Three modeling approaches were discussed: UML, Catalysis, and the Connector framework.
They were not developed as ADLs, but they all support useful properties for describing archi-
tectures. Furthermore, they can be used in conjunction with each other. UML is suitable for
describing different views of a system. Catalysis has useful notations for describing contracts
between suppliers and users of a component. Finally, the Connector framework provides a
means to combine properties from other modeling languages. Further, it has sophisticated ab-
stract notions for describing interactions, which promotes the use of patterns.

In chapter 7, UML and the Connector framework were used to model the case study in this
thesis, as they are suitable for modeling object-oriented CORBA systems.

36

PART II - PRACTICAL
EXPERIMENTS
The second part of this thesis applies the concepts from part I in two steps. In the first step,
an object caching strategy is implemented in a case study. Thereafter, software architectural
modeling is used to describe a generic reusable design based on the case study. Chapter 5
presents the tools used for the implementation. Chapter 6 introduces the case study
implementation. Finally, chapter 7 introduces an approach to modeling the case study.

37

5 Technical Solutions

In this chapter, various technical solutions and tools available for an implementation of the
case study described in the next chapter are discussed. Investigated tools are presented by
considering how they solve the problems discussed in the previous chapters. The products are
grouped into two main categories based on the problems they address: distributed object
systems and transactions, and object persistence and caching. In the first category, the
products: OrbixOTS [IONA_98f], OrbixEvents [IONA_98g], and OrbixTalk [IONA_98h]
from IONA are reviewed. In the second category, the products: Oracle OCI [Oracle_97b],
Oracle Embedded SQL [Oracle_97c], Persistence PowerTier [Persistence_98], and
RogueWave's DBTools.h++ [RogueWave_98] are discussed.

Each tool is evaluated regarding its suitabilit y for the object caching strategy implementation
to be done. The most decisive decision to be made was whether to use an object cache
provided by a tool, or to write an object cache from “scratch” .

5.1 Distributed Object Systems and Transactions

In this category, it was quite clear that OrbixOTS was to be used for distributed transaction
support as this product served as basis for all the implementations made in this thesis.
OrbixOTS is also the core part of OrbixOTM (see section 2.4). The main question was
whether to use OrbixEvents or OrbixTalk for the event propagation. Tests showed that both
worked well with OrbixOTS. The question could also be put: whether a CORBA compliant
product (OrbixEvents), or a more performant and scalable product (OrbixTalk) was to be
used. OrbixTalk was finally chosen for its scalabilit y. Below a short description of each of
the products is given.

5.1.1 OrbixOTS
OrbixOTS is an implementation of the CORBA Object Transaction Service (see section
2.2.1). In compliance with the standards it supports distributed transactions by driving the
2PC protocol, and by propagating transaction information to enable interpositioning.
OrbixOTS can integrate database resources in two ways; either by wrapping them into a
Resource object or by using the X/Open DTP standard XA interface, which specifies the
interaction between the transaction manager and the resource manager transparently to the
database clients.

OrbixOTS thus can assure atomicity in a distributed environment. The isolation property of a
distributed transaction, on the other hand, is normally the responsibilit y of the database
implementing an XA interface. Durabilit y is assured both by logging made in the XA
implementation of the database (before and after-images of changed data) and logging done
by the OTS. The OTS logs the current status of transactions using log files connected to the
recoverable servers. Keeping the data consistent will very much rely on the application code.
However, assuring the other three transaction properties eases up the burden of the
application programmer to maintain consistency.

5.1.2 OrbixEvents and OrbixTalk
One way to maintain consistency in a distributed system (e.g. among distributed caches of the
same data) is to let an event service notify distributed sites using the data of changes. In a
large-scale system, this has to be done eff iciently not to cause an overload on network traff ic.

38

OrbixEvents is an implementation of the CORBA Event service (see section 2.2.2). It uses
IIOP (the internet inter orb protocol standardized by OMG) to send events over the network,
and could be used as a tool to maintain consistency. With OrbixEvents, multiple event
generators (suppliers) can be connected to multiple event subscribers (consumers) in an
asynchronous and decoupled manner by registering them with an event channel. If a supplier
sends an event to the channel, one message to each consumer registered is sent by the
channel.

OrbixTalk is an extension of OrbixEvents that additionally provides an implementation of
asynchronous messaging using the multicast protocol. Instead of sending the event notifica-
tions to all subscribers using IIOP as stated by the CORBA standard, the event message is
sent only once to a multicast port. The underlying network protocol then transmits the
message further on to the li steners to this port. This reduces network traff ic in a drastic way,
and OrbixTalk therefore scales better than an IIOP solution. OrbixTalk also has additional
features to ensure reliable delivery of the messages.

5.2 Object Persistence and Caching

In this category, the most diff icult decision had to be made: which of numerous database
tools should be used to access the database? Some tools li ke Persistence and Oracle OCI
already supported an object cache off the shelf, this on the other hand doesn’ t imply that the
built -in caches would be easier to use in the case study than a tailor-made solution written
from scratch. Another crucial part was which of the tools supported an XA interface and
could thus be smoothly integrated with OrbixOTS. At the time of implementation only OCI
and Oracle PRO*C had support, though. Oracle PRO*C embedded SQL was finally chosen
because it was the easiest product to use. Therefore, no product supplied object cache could
be used.

5.2.1 Oracle OCI
The Oracle Call Interface (OCI) offers a procedural interface to SQL. SQL statements are
built up by issuing subsequent calls in order to bind host variables (programming language
variables connected to the query), to prepare and execute a query etc. Oracle also enables ac-
cess to database tables through an object interface. Oracle8 implements a built -in object
cache that only can be used by issuing OCI calls. The major drawback of OCI is that it is
intricate to use. A lot of programming is required even to perform very simple tasks. Further,
it constrains the programmer to use a procedural style of programming far from the object
oriented ideas. Instead of f irst creating an object and setting up its internal state, (e.g.
representing all the database and transaction details, and then invoking subsequent queries on
this object), OCI requires that handlers are created and initiali zed, and passed in to all the
database functions as parameters. Some OCI functions requires up to 10 different handlers as
parameters. Because of the tight coupling to Oracle, and high functionality, OCI is suited to
be used when implementing object-oriented database access wrappers, though.

5.2.2 Oracle PRO*C
The most common way to access relational databases is through SQL. The SQL calls can be
embedded in the programming language using a precompiler. Oracle offers a C/C++ precom-
piler called PRO*C. The advantage of this approach is that it is almost as simple to program
as if SQL had been used directly. It requires some additional programming li ke declaring host
variables, but this extra work is small compared to building up a query in OCI. The Oracle
object cache mentioned in the previous section can, however, not be used with embedded
SQL.

39

Both PRO*C and OCI can easily be used with Oracle’s XA implementation for distributed
transactions.

5.2.3 DBTools
DBTools.h++ is an object-oriented SQL wrapper. SQL queries can be performed using a sim-
ple object-oriented API. RogueWave now also supports distributed transactions with their
new XA add-on product for DBTools. This was not supported when implementing the case
study, and could therefore not be tested. The data objects a programmer works with are only
wrappers though, and don’ t provide access to the data in a high level object-oriented and stor-
age independent way. (See discussion in section 3.1.4.)

5.2.4 Persistence PowerTier
Persistence is an object-relational mapping tool that enables an object model to be specified
for the persistent data. From this model, C++ code can be generated enabling object-oriented
and storage independent database access. Persistence also has an object caching feature (li ve
object caching).

The current drawback of Persistence is that it doesn’ t support distributed transactions through
an XA interface. This support is announced to be supported in the next release. For further
details on the Persistence tool see the sections 3.1.6 and 3.4.7.

5.3 Summary

The following tool-chain was chosen for the implementation: Orbix, OrbixOTS, OrbixTalk,
and Oracle PRO*C (Orbix is the core ORB needed by all other Orbix add-on products li ke
OrbixOTS and OrbixTalk). The use of OrbixOTS is central in the implementation to assure
the ACID properties in a distributed CORBA environment. All other tools therefore had to be
compatible with OTS. OrbixTalk was chosen to gain optimal performance by reducing the
network traff ic. The tool that supports caching and object-relational mapping in the best way
of the ones investigated is Persistence. It did not support XA, however, and could thus not be
integrated with OTS. When the implementation of the example scenario started, RogueWave
XA was not available and OCI was considered too complex to use, therefore all the database
access was done using PRO*C and embedded SQL. (See table 5.1.)

Orbix
Talk

Orbix
Events

OCI PRO*C DBTools Persistence

OTS
Support

Yes Yes Yes Yes No No

Scalable Very Yes - - - -
Object
Cache

- - Yes No No Yes

Easy to
use

Very Yes No Yes Very Very

Table 5.1: Comparison between tools that could be used for the object caching
implementation

40

6 Case Study

In this chapter, the problems addressed in part I of this thesis are investigated in the more
detail by designing and implementing an object caching strategy with the chosen tools
described in the previous chapter.

As an example scenario, the “Personal Touch Travel Agency” , originally design for the
IONA World 98 trade-show to demonstrate IONA’s OTM Product, was chosen as basis for
the implementation. In order to make the implementation and the tests as realistic as possible,
some assumptions were made on how the system could be used in a real-world scenario.
These assumptions serve as input to the test configuration setup. The result is summarized
regarding two different aspects: the caching strategy chosen, and the assurance of ACID
properties of the implementation.

First, the problem domain is introduced. Object caching is added to this picture gradually.
The caching concepts are introduced starting on an architectural level, and then going
through the levels of design and implementation. Finally, caching is introduced on an
application level by simulating a real-world scenario, and carrying out performance tests.

6.1 Problem Domain

In the Personal Touch Travel (PTT) Agency, Customers can book Cottages located at
different Resorts. Customers can also browse information on Resorts and Cottages
as well as the Availability of Cottages on-line in order to make the Booking
procedure easier (see figure 6.1).

The PTT Agency should be accessible from a wide geographical area, and should be able to
serve a large number of Customers concurrently. SalesOffices were introduced to meet
this demand. Their purpose is to serve local Customers by using information from a
CentralOffice. Information on Customers and Bookings made should be kept at
each SalesOffice in order to facilit ate services li ke invoicing and book keeping in the fu-
ture.

6.1.1 System Architecture
The CentralOffice maintains the central database (source database) with data for
Resorts, Cottages and Availability of Cottages. The SalesOffices, which
were introduced for server load balancing, maintain their own local databases with their local
Customers and Bookings, which in fact is replicated from the Availability data in
the CentralOffice (see figure 6.2).

The PTT System thus contains both replicated servers and replicated data. The load balancing
between the servers is static and visible to the clients. In this scenario it is reasonable to
assume that Customers have knowledge about their local SalesOffices, therefore the
load balancing is visible. Further, Customers always contact their SalesOffices, thus
the load balancing is static (known at compile time - as defined in section 3.2.1). The
CentralOffice and hence the replication of data is totally transparent to the clients.

In order to maintain consistency between the SalesOffices and the CentralOffice
distributed transactions should be used. The Booking data in the SalesOffices should at
any point in time be consistent with the Availability data in the CentralOffice.

41

6.1.2 Constraints
The scenario described above simulates a large-scale transactional CORBA system. To
understand the need of CORBA and distributed transactions, and performance issues implied
by this environment, some real-world assumptions have to be made here. The main aim of
these assumptions is to build a discussion basis for later implementation and test
configurations, not to find exact figures. Hence, for simplicity, server failure and down-time
has not been taken into consideration in the following calculations.

Number of Customers
To motivate the use of the architecture described above, we assume that the system has 1
million users. The Customers should furthermore be distributed evenly over a wide geo-
graphical area.

Use Pattern - Booking
Further assumptions rely on how these 1 million Customers use the system. First a distinc-
tion between peak season and off-season has to be made. Three months in the summer time is
peak season, whilst the rest of the year is assumed to be off-season. Every Customer makes
in average 1 Booking for one week each year. The Bookings are in 80 per cent of the
cases made in peak season. This means that during peak season there are about 61,540
Bookings per week (13 weeks June-August) and about 5,000 Bookings per week during
off-season (the rest of the year). For every Booking, the Customer has to query informa-
tion, i.e. use the SalesOffice server. A typical scenario would be that the user gets
information on all Resorts, gets all Cottages in one Resort and then checks the
Availability for 10 Cottages before the actual Booking is made. In this scenario the
Customer issues 12 queries and 1 update for each Booking.

Figure 6.1: Logical view of PTT Agency

Central Office

confirmBooking()

Sales Office

makeBooking()

branchName

bookings

Customer

name

address

Resort

details

Cottage

availability

ID

description

1

1

1

1..*

1..*

1..*

1..*

1..*

42

Number of Cottages
61, 540 Bookings could potentially be made each week. In order to meet this demand there
should be at least 61, 600 Cottages (some extra Cottages are needed to meet local peaks
and peaks within the peak season) in the system.

Number of Resorts
A Resort (small village) is assumed to consist of 100 Cottages in average. That leaves us
with 616 Resorts.

Load in the System
Totally in the system we have 61540 (bookings/week) / 5 (working days/week) / 8 / 60 / 60
(seconds/week) ≈ 10.43 bookings/second, i.e. 2.3 seconds between each booking.

Number of Sales Offices
We assume that it would take the SalesOffice servers about 1 second to perform one
query and 2 seconds to perform one update. A Booking would then take 12 * 1 + 1 * 2 =
14 seconds to execute (see Use Pattern). Therefore we need at least 14 (seconds/booking) *
0.43 (booking/s) ≈ 6 SalesOffices.

Load per Sales Office
With the above assumptions the load at each of the 6 SalesOffices would be 14 seconds
between each booking.

1 In these calculations, the exact value is always calculated and put into the next step of calculations.
For simplicity the rounded value is shown when presented.

CUSTOMER
BOOKING

RESORT
COTTAGE

AVAILABILITY

Sales Office

Central Office

Resort
Cottage

Customer

makeBooking()

confirmBooking()

SQL

SQL

Figure 6.2: System Architecture

43

Peak Load in Peak Season
To simulate peak load within peak season we assume that twice as many Bookings could be
made in the system, i.e. potentially 1.2 seconds between each booking.

Booking procedure
Every time a Customer wants to book a Cottage the CentralOffice is contacted to
confirm that the Booking can be made. Thereafter, a Booking is registered locally at the
SalesOffice within the same transaction. All these transactions must be serialized and
therefore could lead to the CentralOffice being both a single point of failure and becom-
ing a severe bottleneck by heavy load. How many seconds it takes for a SalesOffice to
perform a query or an update thus depends on how loaded the CentralOffice is.
However, this drawback has not been taken into consideration at this stage because it is more
of a design and implementation issue how to solve this issue.

6.2 Object Caching Development and Testing

In this section, an object cache is introduced into the PTT system. The changes to the system
architecture, and the caching strategy that was chosen are described. Further, implementation
issues are discussed, and the tests of the implementation are presented.

6.2.1 System Architecture
The system architecture changed in two ways:
(1) the SalesOffices administer local copies of Resort and Cottage objects, (2) the
CentralOffice sends out notifications when the source objects have changed (see figure
6.3). The source objects serve as masters in a master/slave approach.

This change was made to circumvent the CentralOffice becoming a bottleneck when
many Customers at many SalesOffices use the system. The single-point-of-failure
problem is only addressed indirectly by decreasing the CentralOffice load. Ideally some
kind of primary-copy replication solution could be used (see section 3.3.5).

6.2.2 Design Issues
When implementing a caching mechanism for the example scenario, some important design
decisions had to be made. These decisions together with the changed system architecture in
figure 6.3 could be seen as the general caching strategy chosen.

Optimistic or Pessimistic Consistency Control?
This question is the same as: should updates be propagated within or outside the scope of the
transaction changing the value? To keep the consistency of the system on an acceptable level
the local caches have to be updated in some way when the source data changes. As discussed
in the replication section (3.3), there are two possibilities: synchronous propagation of
updates within a transaction for total consistency at any stage, and asynchronous propagation
to trade-off consistency with performance. Because the Booking procedure ensures that no
Bookings can be made without confirmation from the central server controlling the source
data, the case when the cache is not consistent with the source only leads to the central server
telling the local server that the Booking cannot be made. It is, however, important that the
update notification reaches the local server as soon as possible so that as many Bookings as
possible will be successful. As mentioned earlier, OrbixTalk was used to asynchronously
propagate the updates. The propagation is started within the Booking transaction just after
the central server has confirmed the Booking in order to notify the local servers as soon as

44

possible. For performance reasons, the transaction should not wait until all local servers have
received the message, hence the propagation is non-transactional. The transactions will rarely
abort after the central server has confirmed the Booking, and therefore this trade-off is ac-
ceptable.

What should be Cached?
Important properties of cached objects are that they are read frequently by many users and
updated less frequently. Both the Resort objects and the Cottage objects fulfill this
requirement and thus were cached at each local server. The Resort objects contain
Cottages, i.e. provide the Customers with its Cottages. Because of this property, the
cache is hierarchically structured, and only cached Resorts can give access to cached
Cottages.

Caching in Relation to Load Balancing and Replication
The load on SalesOffices is balanced to provide a better service to local Customers.
To make the load balancing as efficient as possible, as many of the requests as possible
should be handled locally by the SalesOffices without having to contact the
CentralOffice. The object caches support this, and thus contribute to a better load
balanced system. In the system, Booking data is replicated at each SalesOffice for
availability reasons. The SalesOffices could still do invoicing tasks using this replicated
data even if the CentralOffice were down.

Object-Relational Mapping
The classes in the system have a 1-to-1 mapping to the database tables representing their state
with one exception. The list of Availability contained in the Cottage class is repre-
sented in a separate table in the database. The clients are not aware of any database structure
or persistent objects. All the database access is done transparently in the application servers.

CUSTOMER
BOOKING

RESORT
COTTAGE

AVAILABILITY

Sales Office

Resort_Cache
Cottage_Cache

Central Office

Resort
Cottage

Customer

makeBooking()

confirmBooking()

SQL

SQL

update()

update()

Figure 6.3: System Architecture with Caching

45

The actual results from the SQL queries are performed in a separate module in the system,
and returned in a struct format to the application servers that create objects to be put in the
cache from the struct representation. This struct could be seen as the state part of the CORBA
object as discussed in section 3.1.5.

6.2.3 Implementation
In this section, the problems faced when implementing the caching strategy that was chosen
are discussed: event granularity, localizing objects, serializing requests, and how caches are
updated or invalidated.

Granularity and Filtering of Events
As discussed in section 3.4.6 (cache consistency - the push approach), it is important to con-
sider how the events generated by updates should be filtered, and how much information the
event message should contain. On the one hand, not too many unnecessary messages should
be sent, but on the other hand, the servers generating events should not have to do any
filtering that is client dependent. In the example scenario, only one type of event (and one
event channel) exists. The event is pushed from the CentralOffice, and caught by the
SalesOffices when a Booking has been made. Therefore the CentralOffice sends
away just one event containing information on the Cottage that has been booked. The
SalesOffices then filter this message by checking if the Cottage is in the cache. When
the CentralOffice pushes the event (just after confirmation of the Booking) all
information on the Booking is available, and it is therefore straightforward to send this
information with the message. The SalesOffice passes this information on to its cache
implementation where the actual filtering is implemented. The implementation hence uses a
per-class (Cottage) event channel but sends information on an object level to the receiver
which, after filtering, enables the cache in the SalesOffice to update or invalidate
Cottages as if a per-object channel had been used. The idea behind this implementation
was to send away a notification without any filtering on the server side. The notification is
thereby tightly coupled to the application logic (no additional logic for sending away
notifications). Further, as much information as possible was sent with the notification to the
clients so that they could do the filtering and use the information passed with the event in a
flexible way.

Caching/Localizing Objects
The SalesOffice must provide its clients with the same interface and functionality in the
cached implementation as in the case when no caches are used. This means that the
implementation of the Resort and Cottage classes has to be redefined to use the cache
instead of contacting the database at the CentralOffice. The problem here is that the
SalesOffice only returns Resort proxies to clients and then the clients make
invocations on the resort proxy to get Cottages. The SalesOffice must therefore return
a proxy to an implementation of Resort that uses caching. This is done in a process called
localize where the original proxies from the CentralOffice are converted into
SalesOffice proxies for Resort and Cottage implementations using the cache. If the
localize process is not done, the cache always returns proxies to CentralOffice objects,
and the client still communicates with the CentralOffice when, for instance, accessing
Cottages. The cached Resort and cached Cottage implementations inherit from the
original implementations but override the methods where the database is accessed, and use
the cache instead. For the Resort class this method is getCottages() and for the
Cottage class it is the getAvailability() method that is overridden.

46

Serializing Non-Transactional Requests with Transactional Requests
A problem arose when the callbacks in the SalesOffice were executed at the same time
as the Booking transaction was running. This caused problems because both operations
access the cache. OTS only assures that transactional requests are serialized. As described
above the update notifications are sent asynchronously independent of any transaction.
Therefore non-transactional requests arriving at the SalesOffice that could access the
cache had to be serialized. This was achieved by using a semaphore in an Orbix Filter
(message interceptor) that serializes requests coming in to the SalesOffice server.

Update or Invalidate
There are two types of caches in the implementation. One that holds all cached Resorts and
one that holds all Cottages for a Resort. Both are implemented using a general cache
template. A cache implementation provides a get method that is similar to a smart pointer, i.e.
it hides the existence and the semantics of the cache from the clients, to access its value. This
method gets the value from the source if the cache has been invalidated, otherwise the cached
value is returned. A cache also has an operation to invalidate its value. Internally a cache
maintains a list of remote proxies to the source objects, and a proxy to an object returning
these source object proxies. Further a cache implementation has an internal method to
localize remote proxies to proxies pointing to the cache. Figure 6.4 shows the C++ template
for cached objects.

template <class Value>
class CachedObject
{
public:
 //ctor/dtor:
 CachedObject () : m_isValid (0),
m_value (0) {}
 // member functions:
 Value* get () {
 if (!m_isValid) {

m_isValid = 1;
fetch ();

 }
 return m_value;
 }
 Value* value() {
 return m_value;
 }
 int isEmpty() {
 return m_value ? 0 : 1;
 }
 void invalidate() {
 m_isValid = 0;
 }
protected:
 Value* m_value;
 int m_isValid;
 virtual void fetch()=0;
 virtual void localize()=0;
 virtual void purge()=0;
};

Figure 6.4: CachedObject Template

47

Every time a SalesOffice gets a notification of a Booking of a Cottage the list of
cached Resorts it maintains is informed. The list of cached Resorts is then traversed to
find the Cottage that has been booked. Recall that the event has Cottage information as
a parameter, which makes this straightforward. If the Cottage is found in the cache, its
cache entry is immediately updated (e.g. by making a remote call to the CentralOffice
server to get the new value). Tests showed that it was too time consuming to invalidate the
whole list of Cottages. Because the caches of all Cottages for a resort maintain a list of
source object proxies, the changed entry in the cache easily can be updated without affecting
the rest of the cache.

The implementation uses both invalidation and direct updating. The caches themselves - the
cache of all Resorts and the caches of all Cottages for a Resort - can be invalidated.
This is, for instance, used when the caches are filled for the first time; they are initialized as
invalid and then after their first use, when they get their value from the source, they are valid
until someone calls the invalidate operation. The single cache entries that are subject to
frequent changes, i.e. the single Cottages are updated directly to keep the cache as accurate
as possible. A strategy where the single cottage entries could be invalidated was also tested
but it just led to extra overhead and less accurate cache entries in the tests.

Could Update Requests from Sales Offices Get Old Data?
Because the notifications, that a Booking has been made, are sent asynchronously outside
the scope of a transaction after the Booking has been confirmed, it could happen that the
update request from a cache reaches the CentralOffice before the original transaction
has completed. In this case the cache should not be updated with the old value. This is
prevented by the CentralOffice server serializing all transactions. All the caches that
want to update their value will therefore wait until the original transaction has completed
before the update is made.

Updating from Source?
When the event arrives at the cache and the cache entry is found, two scenarios are possible:
the new value could be fetched from the source database, or the data sent with the event
could be used to update the value directly. If the approach is chosen where a remote call to
the source is made, the cache users are guaranteed that a cache entry (for a week to be
booked) always exists if a Cottage is available. It could however happen that a week that is
not possible to book is present in the cache. With the second approach, where event data is
used, no guarantees regarding the cache entries can be made. However, because this approach
saves one remote invocation, it is much faster than to update from the source, and also scales
much better under heavier load. Both approaches are simulated in the implementation.

6.2.4 Selecting Test Configuration
To be able to do some realistic testing a test configuration was set up that took the constraints
discussed in section 6.1.2 into consideration. In the real-world scenario there were 600
Resorts, 100 Cottages per Resort and about 1 Booking per second (from 6
SalesOffices) under peak load. To get an equivalent load in the test suite, the configura-
tions described below were made.

To make the configuration easier, two SalesOffices that use two separate databases were
used. Simulating the number of concurrent requests is no problem. The difficulty lies in simu-
lating the size of the databases. For the caching strategy chosen, it is important to know how
many Bookings that will be made at the same Resort, and how many Cottages that the
Resort will have.

48

The scenario we have is that there are many queries potentially on the same Resort for
Availability of Cottages before one Cottage is selected and booked. In order to
maintain consistency in a safe way, the queries are using the cache if it is available, while the
actual Booking always involves an update of the source data.

The caching implementation made relies on the assumption that Cottages within the same
Resort will be queried many consecutive times, possibly by the same Customer. Hence
all Cottages and their Availability within a Resort will be cached as soon as one
request on a Cottage in the Resort comes in to the SalesOffice. The number of
Resorts that can have their Cottages cached at the same time depends on memory avail-
ability and number of Cottages per Resort. If not enough memory is available, some kind
of eviction policy has to be implemented. For instance the LRU (Least Recently Used)
policy. This only makes sense, though, if we actually have a large system. To show
performance gains with caching in our small test suite, we concluded that eviction would be
too costly to use. The test environment restricts us to have cottage information in memory for
about 6 Resorts with 10 Cottages each.

The load on the CentralOffice is vital to the performance of the SalesOffices.
Therefore maximum load on the CentralOffice was simulated. Two tests were carried
out. The first test let one SalesOffice make one Booking each second . The second test
used two SalesOffices, each with the load of 1 Booking every second. The first test
thus simulated peak load in peak season in the system (1 Booking each second), and the
second test had twice that system load.

The fact that the Bookings are less spread over the Resorts and Cottages than in the
real case, will be compensated by doing the measurements over a very short period of time,
which eliminates the risk of running out of available Cottages. Table 6.1 summarizes the
test configuration and the real-world assumptions.

Real World Test Configuration
#Sales Offices 6 1 and 2
#Resorts 600 6
#Cottages/Resort 100 10
Bookings/sec 1 1 and 2
Table 6.1: Test Configuration

6.2.5 Results
The database configuration shown in Table 6.2. was set up to make measuring easy and to
comply to the discussion in the previous section. For instance, one Customer was made
responsible for each Booking at each SalesOffice, and no Bookings were stored in
the SalesOffice before running the test in order to easily track the results in the database.

To do the caching implementation justice, an initial prefetch of Resorts, Cottages and
Availability from the database was done. Further removing logging and debugging in-
formation written to disk could optimize these values. This information was crucial, though,
in order to measure and monitor the tests. The figures should only be seen as a means to
compare caching and non-caching servers.

49

Database Table Rows
Central Off ice Resort 6

Cottage 60
Availabilit y 2800

Sales Off ice 1 Customer 1
Booking 0

Sales Off ice 2 Customer 1
Booking 0

Table 6.2: Database Population before Test Run

With no caching and two SalesOffices, the network traff ic turned out to be too heavy
and almost half of the Customers’ Bookings received communication failure exceptions.
These exceptions were received after 1-4 seconds and they therefore make the average time
of a Booking in this test much lower (see table 6.3).

1 Caching
Server
(update from
source)

1 Non-
Caching
Server

2 Caching
Servers
(update from
source)

2 Non-Caching
Servers

Performance
(average response
time per booking)

1.2 (1.3) sec 37 sec 3.5 (27) sec 46 sec

Throughput
(percentage
successful bookings)

100 (100) % 100 % 100 (90) % 52 %

Table 6.3: Test Results

The results show that caching improved performance drastically when many users accessed
the same cache, as in the first test with one SalesOffice. The Bookings were made in
1.2 seconds with caching, and in 37 seconds without caching in average. All the requested
Bookings were successful in this case, both with and without caching which proves that the
cache was kept accurate in a satisfying way. The case with two SalesOffices shows that
the caching SalesOffices handled the load much better, i.e. the caching implementation
improved load balancing.

In the case when no caching was used, we had about twice as many remote calls as in the
caching case. This proved to be very performance degrading. The database access and the
2PC part of a Booking was of minor importance to the overall performance.

In the non caching case every read operation has to go through the CentralOffice and is
thus serialized. This is the same as having a distributed read lock as well as a distributed
write lock in the system. As discussed in section 3.4.6 this was exactly what we wanted to
avoid with our optimistic locking approach in the caching implementation in order to increase
concurrency.

The fact that the CentralOffice easily can become a bottleneck is underlined by the two
update approaches chosen. If the CentralOffice was contacted after each update notifi-
cation, it took in average 27 seconds to complete a Booking, and the throughput was 90 per
cent, in the case with 2 SalesOffices. If the caches were updated locally using event
parameters, then the corresponding figures were 3.5 seconds, and 100 per cent.

50

6.3 Summary

The case study is summarized in two sections: caching strategy, and ACID properties. In con-
junction, the solutions li sted in the two sections assure performance, scalabilit y, and
reliabilit y of the system.

6.3.1 Caching Strategy
In the tests, objects accessed by many users li ke Resort and Cottage were cached with a
performance improving result. The caches were located at an application server level and ex-
isted for the li fetime of the server without any eviction. Object faulting was implemented by a
generic get method that first checked whether the value was valid, and if not, fetched the new
value from the source. Other important operations in the cache interface are localize, fetch,
update, and invalidate.

The caches were synchronized using a pushing CORBA Event service model. This proved to
help the throughput in the tests. Events were generated on a per-class level but the events had
a parameter that enabled clients to filter the message and do updates on an object level.

The cached CORBA objects (Cottage and Resort) were mapped to C++ structs. The
Cottage object was mapped to two structs (Cottage and Availability). Further, the
Availability struct was mapped both to the central Availability table and to the
replicated Booking table. The IDL interfaces, however, suppress these details.

6.3.2 ACID Properties
Atomicity of the distributed transactions was assured by OTS. The confirmation of a
Booking and the actual Booking were always carried out in an “all -or-nothing” fashion,
which assured that consistency wasn't broken by the transaction.

Consistency must be assured on the application level or the database level (e.g. with triggers).
It was assured on an application level by an “ implicit” optimistic locking approach where cli -
ents read the cached value but couldn't change it before confirming that the value read
conformed to the source. The caches were therefore kept consistent with the source in an
asynchronous or optimistic way allowing inconsistency for a short period of time. The shorter
the time of inconsistency, the li kelier it is that the optimistic locking is successful, i.e. that the
transaction in the end succeeds. Therefore an “as-soon-as-possible” policy was chosen were
the updates of the source were pushed out to all the caches using an asynchronous event
channel mechanism, and the caches were updated immediately when receiving the event.

Isolation was assured partly by OTS by serializing all transactional requests at both the
SalesOffices and the CentralOffice. The database also assured transactional isola-
tion by holding read and write locks on data.

The application server layer assured durabilit y (persistence) of objects by issuing SQL com-
mands to the databases connected to the transaction by OTS. Durabilit y was also assured
partly by OTS by keeping logs to enable recovery.

The ACID properties were kept totally transparent to the clients who are making the
Bookings. All the transactions originate either from one of the SalesOffices, or from
the CentralOffice.

51

7 Architectural Abstractions from the Case Study

This chapter presents an approach to software architectural modeling of the case study that
was described in the previous chapter. The first section of this chapter describes the case
study implementation using UML [OMG_97c]. In the second section, the Connector
framework is used to describe the system on a higher and more abstract software architectural
level. The implementation and architectural diagrams in combination form a pattern for
designing an object cache of transactionally replicated data.

7.1 Implementation Modeling with UML

In this section, the PTT case study implementation described is modeled using three different
views: class view (static structure), uses view (dynamic structure), and physical view. The
first two views focus on the implementation of the SalesOffice, the locus of the cache
functionality.

7.1.1 Class View
The static structure, i.e. the class dependencies at compile time (represented by attributes and
inheritance), is depicted in figure 7.1. Three significant properties of the cache are exposed in
this view.

First, there is a generic cache template that all i mplementations of cached values must inherit
from. This template (CachedObject<Value>) encapsulates the semantics of the cache,
and thereby makes the cache functionality transparent to the clients.

Second, there are compositional dependencies between SalesOffice_i (_i is used to de-
note an implementation of an interface), ResortsCache (manages a collection of cached
Resorts), Resort_i_Cache (a cached Resort), CottagesCache (manages a
collection of cached Cottages), and Cottage_i_Cache (a cached Cottage). This
means that no objects from the lower levels (higher up in the diagram) can exist if an object
on a higher level doesn’ t exist.

Third, SalesOffice_i is an implementation of the IDL-interface CacheUser. A
CacheUser will receive information on changes to the source.

7.1.2 Uses View
In figure 7.2 the run-time dependencies of the classes (dynamic structure) are depicted. The
operations that are accessible remotely (system interfaces) are marked in bold. Further, +, * ,
and – denote public, protected, and private operations or attributes respectively. The
SalesOffice communicates with the cache using three methods. With get() the cached
Resorts are retrieved. The other two methods are used when the SalesOffice receives a
notification that the source has changed. They correspond to the choice whether to update
from the source, or to use event parameters to change the cache (discussed in section 6.2.3).

7.1.3 Physical View
Figure 7.3 shows the physical view of the whole PTT system. The CentralOffice
resides on a central node. The SalesOffices and Customers are distributed over
multiple nodes. The database at the central node contains all Resorts, Cottages, and their
Availability. Each SalesOffice manages a database containing their local

52

Customers and the Bookings made at that SalesOffice. The Booking table hence
has replicated data from the central Availability table. Each time a booking is made a
row in the Availability table is deleted, and a row in the local Booking table is added.
This is done within a distributed transaction. These tables are therefore always consistent.
The PTTSql component is responsible for separating database calls (embedded SQL) from
application logic code in the CentralOffice and SalesOffice servers.

Cottage_i

Cottage_i_Cache

CottagesCache

CachedObject<CottageSeq>

Resort_i

Resort_i_Cache

ResortsCache

SalesOffice_i

CachedObject<ResortSeq>

CacheUser_i

Figure 7.1: Cache Implementation in Sales Office - Class View

 -cottages: CottagesCache

 -resorts: ResortsCache

CachedObject

 *value: Value

Value: Object

1

*

*

1

resorts

cottages

value

value

53

get()
updateCottageFromDatabase()
updateCottageAvailability()

Cottage_i

 -cottage_data: CottageData
 -ID: CottageID

 +getID()
 +getDescription()
 +getAvailability()

Cottage_i_Cache

 -availability: WeekList

 +getAvailability()
 +update()
 +updateAvailability()

CottagesCache

 -resort: Resort
 -cottage_proxies: CottageSeq

 +getCottageProxies()
 -fetch()
 -localize()
 -purge()

CachedObject<CottageSeq>

Resort_i

 -resort_data: ResortDetails
 -ID: ResortID
 -all_cottages: CottageSeq

 +getDetails()
 +getCottages()

Resort_i_Cache

 -cottages: CottagesCache

 +getCottages()
 +getCachedCottages()

ResortsCache

 -central_office: CentralOffice
 -resort_proxies: ResortSeq

 +updateCottageFromDatabase()
 +updateCottageAvailability()
 -fetch()
 -localize()
 -purge()

SalesOffice_i

 -central_office: CentralOffice
 -resorts: ResortsCache
 -caching: Boolean
 -databaseUpdate: Boolean

 +getBranchName()
 +getResorts()
 +makeBooking()
 +listBookings()
 +update()
 +init()

CachedObject<ResortSeq>

CachedUser_i

 -o_talk: OrbixTalk

 +update()
 +init()

CachedObject

 *value: Value
 *isValid: Boolean

 *fetch()
 *localize()
 *purge()
 +get()
 +getValue()
 +isEmpty()
 +invalidate()

Value: Object

<<creates>>
getCachedCottages()

<<creates>>

update()
updateAvailability()

getCottageProxies()
getValue()
isEmpty()

get()

init() in CacheUser_i is
called by SalesOffice_i if
caching = true

init() in SalesOffice_i is
called by the server
mainline

fetch(), localize(), purge(),
and invalidate() are only
called internally in
CottagesCache and
ResortsCache

Figure 7.2: Cache Implementation in Sales Office - Uses View (with inheritance)

54

Figure 7.3: PTT System - Physical View

Customer

<<database>>
Central PTT Database

Resort Availability

Cottage

CentralOffice

Resort_i CentralOffice_i

Cottage_i

CentralOfficeServer:HostMachine

SQL

confirmBooking()
getResorts()

getAvailableWeeks()
getCottages()

CentralOffice

IIOP

PTTSql

PTTSql

<<database>>
Local PTT Sales Office
Database

Customer

Booking

makeBooking()

SQL

SalesOffice

Cottage_i_Cache

ResortsCache

CottagesCache

Cottage

Resort

SalesOffice

SalesOffice_i

PTTSql

PTTSql

Client

SalesOfficeServer:HostMachine

:PC or Workstation

IIOP

Resort_i_Cache

55

7.2 Architectural Modeling with the Connector Framework

This section introduces an approach to modeling distributed components on a software archi-
tectural level. The first step in the Connector framework (presented in section 4.3.4) approach
is to describe the components involved as independent entities. A connector is then modeled
to describe the interactions between the components in an abstract way using roles and
interaction protocols. The third step is to instantiate the roles with the components to form an
abstract architecture. Finally, the abstract architecture is refined by showing how the
components are realized. The result is called a concrete architecture.

By describing the connector ObjectCaching_with_TransactionalReplication, a generic design
is proposed. The design could potentiall y be reused in a CORBA environment for designing
an object cache while assuring consistency of replicated data.

7.2.1 Components
As a first step to describe a system architecture, the components and their core functionality
are analyzed and modeled. Core functionality refers to the domain-oriented component
behavior. The exported and imported system level interfaces of each component are
described. The interfaces could be seen as a contract that each component signs. If the
required (imported) interfaces are available, then the component promises to offer some
services (exported interfaces). Each interface should have a complete interface description
(e.g. in some IDL) including exceptions, type definitions, and pre- and postconditions.
Components in the case study that either import or export application defined system level
interfaces are described below. In the depicted components, CORBA IDL is used to describe
the interfaces. The complete IDL specifications for the PTT system are shown in
Appendix_B.

SalesOffice
Figure 7.4 shows the SalesOffice component. This view does not expose anything from
the caching implementation. These more detailed interfaces will be introduced after having
investigated in which interactions the SalesOffice takes part. The SalesOffice must
call confirmBooking() on CentralOffice in order to make a Booking. Further,
the CentralOffice is called to retrieve Resorts. These interactions must take place, re-
gardless of the technical solution chosen to implement the component’s interface. Therefore
the CentralOffice interface is shown as an imported interface.

CentralOffice
The CentralOffice component is depicted in figure 7.5. This component does not
depend on any other interfaces for its core functionality. The CentralOffice provides
interfaces to Resort and Cottage objects in order for the Customer to make a
Booking. If a component only exports interfaces, it is totally independent and easier to
reuse.

Customer
The Customer is the client component in the system and is not subject to reuse.
This component (figure 7.6) does not export any interfaces, but imports the Resort,
Cottage, and SalesOffice interfaces. The core functionality of a Customer is to
browse for Cottages in Resorts, and to make Bookings at the local SalesOffice.

Three other components are also used in the case study: the OrbixTalk, OTS, and PTTSql
components. OrbixTalk and OTS correspond to CORBAservices and are therefore reusable
components that are independent of this case study. Sample component descriptions of the

56

OTS and the Event service can be found in [Tai_&_Busse_97, Tai_&_Busse_98]. The
PTTSql component (used for database access) is not described here, as it neither exports nor
imports any system level interfaces.

<<IDL Interface>>
SalesOffice

string getBranchName();
ResortSeq getResorts();
BookingReference makeBooking (

in Cottage aCottage,
 in short fromWeek,
 in short toWeek,
 in Customer client,
);

BookingReferenceSeq listBookings();

Interfaces

Exported Interfaces

Imported Interfaces

Rep-Map

Representation

Figure 7.4: Component SALESOFFICE Core Functionality

<<IDL Interface>>
CentralOffice

ResortSeq getResorts();
BookingReference confirmBooking(

in CottageID
aCottage,

 in short fromWeek,
 in short toWeek

);

57

<<IDL Interface>>
Resort

ResortDetails getDetails();
CottageSeq getCottages();

<<IDL Interface>>
Cottage

CottageID getID();
CottageDetails getDescription();
WeekList getAvailability();

Interfaces

Exported Interfaces

Imported Interfaces

<<IDL Interface>>
CentralOffice

ResortSeq getResorts();
BookingReference confirmBooking(

in CottageID
aCottage,

 in short fromWeek,
 in short toWeek

);

Rep-Map

Representation

Figure 7.5: Component CENTRALOFFICE

<<IDL Interface>>
SalesOffice

string getBranchName();
ResortSeq getResorts();
BookingReference makeBooking (

in Cottage aCottage,
 in short fromWeek,
 in short toWeek,
 in Customer client,
);

BookingReferenceSeq listBookings();

Interfaces
Exported Interfaces

Imported Interfaces

<<IDL Interface>>
Cottage

CottageID getID();
CottageDetails getDescription();
WeekList getAvailability();

<<IDL Interface>>
Resort

ResortDetails getDetails();
CottageSeq getCottages();

Rep-Map

Representation

Figure 7.6: Component CUSTOMER

58

7.2.2 Connector ObjectCaching_with_TransactionalReplication
In this section, the ObjectCaching_with_TransactionalReplication connector is introduced.
The connector is a description of interactions between generic components called roles. The
connector can thus be applied to different caching and replication scenarios. Roles, role
interfaces, interface usage, and interactions comprise a specification of a connector
[Tai_98a].

Roles
Roles are generic participants of an abstract interaction. They are played by components. By
describing roles instead of specific components, common patterns are exposed when
specifying role interactions. The following roles can be identified:

TransManager, // drives 2PC protocol, e.g. OTS
TransObject, // executes transactional requests
EventManager, // propagates updates asynchronously
SourceObject, // in central server, e.g. Cottage_i
SourceManager, // e.g. CentralOff ice
CachedObject, // in local server, e.g. Cottage_i_Cache
CacheManager, // e.g. SalesOff ice
Client // e.g. Customer

Role Interfaces
The next step is to define interfaces for the roles. Components playing these roles must
support the interfaces specified here. The interfaces are used to specify dependencies and
interactions between roles. The arrows “<” and “>” refer to plug points that are replaced with
application specific interfaces when the connector is instantiated. <Object>State denotes
the state of Object. “ | value |” denotes that value is optional. Further, OID refers to an
object identifier. The interface operations are mainly used for inter-role communication, i.e.
they are on a system level. However, some operations are only used internally, and are li sted
because they show important characteristics of the role.

• Transaction interfaces
TransManager.Current { //Current is an interface specified by OTS

void begin();
void commit(in boolean report_heuristics);
void rollback();
...

}
TransObject.TransactionalObject {} //TransactionalObject is an

//interface specified by OTS.
//It indicates that the object
//is transactional

• Event interfaces
EventManager.<Registration> {

//The Registration interface in the case study was OrbixTalk
//This API wraps the CORBA Event service PushSupplier-
//PushConsumer model.
CORBA::Object registerTalker(in string subject,

 in string cacheUserInteface);
void registerListener(in CORBA::Object cacheUser

 |,in string subject|);
//CORBA::Object is cast to a CacheUser proxy.
//By registerListener, subject does not have to be
//passed. E.g. in OrbixTalk the object marker is used.

}
EventManager.CacheUser {

59

//In the CORBA Event service this interface corresponds to
//PushConsumer and the operation is called push. Similar to
//the previous interface, this interface could be seen as a
//wrapper on top of the Event service API
oneway void update(in any event);

}

• Source Interfaces
SourceObject.<SourceObject> {

<SourceObject>State getState(in OID id);
...

}

SourceManager.<CentralManager>:TransactionalObject {
//public use:
<SourceObject> get(in OID id);
boolean confirmModify(in OID id, in any value);
//internal use:
void makePersistent(in OID id, in any value);

}

• Cache Interfaces
CachedObject.<SourceObject> {

<SourceObject>State getState(in OID id);
...

}
CacheManager.CacheUser {

oneway void update(in Any event);
}
CacheManager.<LocalManager> {

//public use:
<SourceObject> get(in OID id);

Figure 7.7: Role Interface Usage

<SourceObject>

Current

:Client

CacheUser

<LocalManager>

<SourceObject>

:TransObject

:EventManager
CacheUser

<Registration>

:SourceManager

:CacheManager

:CachedObject

:TransManager

<CentralManager>

:SourceObject

60

void modify(in OID id,in any value);
//internal use:
boolean cacheIsValid();
<SourceObject> createCache(in OID id,

 in <SourceObject>State state);
void updateCache(in OID id, in <SourceObject>State state);
void convertEvent(in any event,

out OID id,
out <SourceObject>State state);

void makePersistent(in OID id, in any value);
}

Interface Usage
Figure 7.7 shows the dependencies between the roles (UML notation), i.e. how the interfaces
are used. Notable is that neither the CacheManager nor the SourceManager
communicate with the objects they manage directly by using public interfaces. These
managers are only responsible for creating and deleting the objects. Furthermore, they are
responsible for adding transactional and event based behavior to the cache. Transactions and
events are thereby kept transparent to the Client, SourceObject, and CachedObject
roles.

Interactions
Three interactions of this connector are specified below using UML sequence diagrams:
cache initiali zation and use (figure 7.8), replicated data modification (figure 7.9), and cache
update (figure 7.10).

• Cache Initialization and Use
This interaction describes the basic cache functionality. The Client sends a requests for an
object. If there is a valid object in the cache, it is returned directly by the CacheManager.
Otherwise, the accurate state of the source object is fetched from the source. The state is used
to create a cached object. A reference to the CachedObject is returned to the client. The
next operation on the object will use the cache if it hasn’ t been invalidated.

• Replicated Data Modification
This interaction shows how the source data is kept consistent with the locally stored data.
When a client wants to modify a value, a transaction is started. Within this transaction a con-
firmation with the SourceManager is done, and the local database is updated. Since these
operations are performed in an “all -or-nothing” fashion, the replicated data is always consis-
tent. The confirmation with the SourceManager serves to detect whether other clients
have updated the source concurrently, and a confli ct thereby has occurred. In the case study,
such a confli ct occurred when two clients selected the same Cottage and week from the
cache, and then tried to book it concurrently. A confli ct leads to a race condition where the
first transaction to execute will succeed, and the second one will roll back.

• Cache Update
The caches are updated by using event notifications. The events are pushed from the
SourceManager to the EventManager when a SourceObject has changed. The
EventManager then pushes the events to the registered CacheManagers. The
CacheManagers must filter the event to find out whether the object that has changed is in
the cache. If it is in the cache, the value can be updated in two ways. Firstly, it can be updated
by getting the state from the source. Secondly, it can be updated locally by using the value
passed by the event. The pros and cons of the two approaches were discussed in section 6.2.3.

61

Pre SourceManager and CacheManager are initialized
Client has proxy to CacheManager

Post Client communicates with CachedObject

Figure 7.8: Interaction Cache Initialization and Use

:SourceObject:Client :CacheManager

get(id)

cacheIsValid()

getState(id)

<SourceObject>State

createCache(id,<SourceObject>State)

<SourceObject>

[valid]

<SourceObject>

:SourceManager

[not valid] get(id)

<SourceObject>

:CachedObject

<someOperation>()

62

[currentVersion]
makePersistent(id,value)

:Client :CM : SM:TM

modify(id, value)

confirmModify(id, value)

Current::begin()

[modification ok]
makePersistent(id,value)

Current::commit(false)

TM – TransManager, CM – CacheManager, SM – SourceManager

Pre Interaction Cache Initialization and Use
Post Booking has been recorded by both CM and SM

or by neither of them

Figure 7.9: Interaction Replicated Data Modification

[modification not ok]
Current::rollback()

63

SM - Source Manager, CM - CacheManager, EM - EventManager

Pre SM has called registerTalker(subject,cacheUserInterface) and
CM has called registerListener(this |,subject|) and
SM has performed makePersistent(id,value) in
Interaction Replicated Data Modification

Post If object that changed was in the cache, it is
consistent with SourceObject

Figure 7.10: Interaction Cache Update

:SourceObject:CM :EM

update(event)

update(event)

convertEvent(event,id,state)

[source update and id in cache]

getState(id)

[id in cache]
updateCache(id,state)

<SourceObject>State

:SM

64

7.2.3 Abstract Architecture
With the connector now being specified, the next step is to instantiate the connector with spe-
cific components. The result is called an abstract architecture. The PTT abstract architecture
using the connector ObjectCaching_with_TransactionalReplication is depicted in figure 7.11.
By assigning a role to a component, all i nterfaces of the role are assured to be provided by the
component. Further, the component must be able to participate in all i nteractions specified
for the role. The plug points from the generic pattern is replaced by application specific
interfaces. E.g., <LocalManager> is changed to SalesOffice, <CentralManager>
becomes CentralOffice, and <SourceObject> is replaced by Resort and
Cottage interfaces. The diagram in figure 7.11 specifies detailed and complex system
behavior in a concise, but yet expressive model. This model does not describe how the
behavior is implemented, though. In order to specify the system realization, the component
models have to be refined.

7.2.4 Concrete Architecture
The abstract architecture is made to a concrete architecture by describing how the
components’ behavior is implemented. All components are described in three views:
imported and exported interfaces (system level), imported and exported representation-map
(programming level interfaces), and representation (implementation).

The concrete architecture for the SalesOffice component is depicted in figure 7.12 and
7.13. The caching functionality is now visible in the exported interfaces by exposing a
CacheUser interface, and the interfaces of the cached objects. To keep the cache accurate
the source objects have to be contacted. This is done by using the Resort and Cottage in-
terfaces from the CentralOffice (imported interfaces). The SalesOffice uses the
OTS-specified Current interface to start, commit and abort transactions. All the operations
on the CentralOffice must be executed within a transaction. This is assured by
inheriting from TransactionalObject (as specified by the OTS).

In the representation-map, the programming language classes that correspond to interfaces to
other components are shown. Notable here is that the OrbixOTS and OrbixTalk
interfaces are not exposed on a system interface level. They, however, still represent
interfaces to other components, and are therefore depicted in the imported representation
map. The tags, <<Generated C++ Class>>, denote classes generated from the IDL
interfaces by an IDL compiler (<<>> is used for specifying UML stereotypes).

The representation part of the model describes the classes used to implement the specified be-
havior. The classes ending with BOAImpl are skeletons used to convert the remote requests
to C++ method invocations on the implementation object. Dependencies on other components
are shown by links to the representation map. E.g., the CacheUser_i class uses Orbix-
Talk, and SalesOffice_i uses CosTransactions::Current. The representation
part corresponds to the models in figure 7.1 and 7.2.

7.3 Summary

In this chapter the implementation of the case study was modeled. Two different modeling
approaches were used: implementation centric modeling with UML, and software
architectural modeling with the Connector framework. The UML models showed class
structures, and the physical distribution of components on different hosts. Although these
models are useful to understand the implementation they offer littl e support for reuse.

65

Since the objective of this part of the work was to find abstract reusable designs to the case
study, software architectural modeling was carried out. Using the Connector framework, the
implementation was abstracted into a connector called ObjectCaching_with_Transactional-
Replication. The connector is a generic interaction specification, and provides plug points for
different components and implementations. Therefore the connector was proposed as a
generic design of object caches for transactionally replicated data.

A connector is realized by instantiating the connector roles with components and refining the
components to an implementation level. The realization of the specified connector was
demonstrated by describing the SalesOffice component on three levels: the system
interface, representation-map, and representation levels. This separation offers support for
reuse, and is well suited for describing CORBA based systems. This is further underlined in
[Tai_&_Busse_97, Tai_&_Busse_98, Tai_98b] where the CORBA Event service, CORBA
OTS, and a CORBA OTM system are described using the Connector framework.

TransObject
SourceObject

SourceManager

SALESOFFICE

CENTRALOFFICECUSTOMER

ORBIXOTS ORBIXTALK

ObjectCaching_with
TransactionalReplication

TransManager EventManager

CachedObject
CacheManager

Client

Figure 7.11: PTT System – Abstract Architecture

66

<<IDL Interface>>
SalesOffice

string getBranchName();
ResortSeq getResorts();
BookingReference makeBooking (

in Cottage aCottage,
 in short fromWeek,
 in short toWeek,
 in Customer client,
);

BookingReferenceSeq listBookings();

<<IDL Interface>>
CacheUser

oneway void update(in any event);

<<IDL Interface>>
Resort

ResortDetails getDetails();
CottageSeq getCottages();

<<IDL Interface>>
Cottage

CottageID getID();
CottageDetails getDescription();
WeekList getAvailability();

Interfaces

Exported Interfaces

Imported Interfaces

<<IDL Interface>>
CentralOffice

ResortSeq getResorts();
BookingReference confirmBooking(

in CottageID
aCottage,

 in short fromWeek,
 in short toWeek

);

<<IDL Interface>>
Cottage

CottageID getID();
CottageDetails getDescription();
WeekList getAvailability();

<<IDL Interface>>
Resort

ResortDetails getDetails();
CottageSeq getCottages();

Rep-Map <see Figure 7.13>

Representation <see Figure 7.13>

<<IDL Interface>>
CosTransactions::

Current

...

<<IDL Interface>>
CosTransactions::
TransactionalObject

Figure 7.12: Component SALESOFFICE Concrete Architecture (Interfaces)

67

Interfaces <see Figure 7.12>

Rep-Map
Export

Representation
<see also Figure
7.1 and 7.2>

<<Generated C++ Class>>
Resort

<<Generated C++ Class>>
SalesOffice

<<Generated C++ Class>>
CacheUser

<<Generated C++ Class>>
Cottage

Rep-Map
Import

<<C++ Class>>
OrbixOTS

<<C++ Class>>
OrbixTalk

<<C++ Class>>
CentralOffice

<<C++ Class>>

Cottage
<<C++ Class>>

Resort

<<Generated C++ Class>>
CacheUserBOAImpl

<<Generated C++ Class>>
SalesOfficeBOAImpl

<<Generated C++ Class>>
ResortBOAImpl

<<Generated C++ Class>>
CottageBOAImpl

<<C++ Class>>
Resort_i_Cache

<<C++ Class>>
Cottage_i_Cache

<<C++ Class>>
CacheUser_i

<<C++ Class>>
SalesOffice_i

<<C++ Class>>
ResortsCache

<<C++ Class>>
CottagesCache

<<C++ Function>>
main()

<<C++ Class>>

CosTransactions::Current
<<C++ Class>>

PTTSql

Figure 7.13: Component SALESOFFICE Concrete Architecture

68

8 Conclusion and Discussion

This chapter summarizes the investigations of influences of object caching on reliability,
scalability, and performance in a transactional, object-relational CORBA environment, and
discusses how this is captured in the generic design proposed in the previous chapter.

8.1 Reliability

Reliability of the object caching strategy was achieved by using distributed transactions and
asynchronous update messages. The distributed persistent data corresponding to the cached
objects was always kept synchronous by using the 2PC protocol. The caches themselves
were, however, synchronized in a less stringent way by using asynchronous non-transactional
pushed updates. The reason for this was to gain performance. To compensate for the
inconsistencies of the distributed caches, an optimistic locking approach was chosen. Before
modifications could be completed, a confirmation was done to detect inconsistencies.
Furthermore, to ensure that as many modifications as possible were successful, giving the
impression that the caches were absolutely synchronous with the source, the updates were
sent as soon as possible after the source confirmation.

In terms of the proposed generic design, this behavior is captured as follows. The Cache-
Manager confirms modification with the SourceManager and replicates data from the
SourceObject using the 2PC protocol (Interaction replicated data modification). The
SourceManager sends an update event to the CacheManagers through the Event-
Manager after modification has been confirmed (Interaction cache update).

8.2 Scalability

Scalability was mainly achieved by using load balanced servers, i.e. multiple servers offering
the same service. To improve scalability as many of the services offered as possible should be
possible to perform locally without contacting the central server. Two service localization
techniques were used to accomplish this. First, caches minimized central server load by
performing all read requests locally, and only contacting the central server for updates.
Second, modifications made at the local servers were replicated (made persistent) locally, and
kept absolutely synchronous with the source. Querying modifications that the local servers
have made is thus the same as querying the source.

In the generic design, the CachedObject offers the same interface as the Source-
Object. The CacheManager only contacts the SourceManager during a modification,
and if the cache is invalid. The replication is described in Interaction replicated data
modification.

8.3 Performance

Performance can be improved by localizing services (as described in the scalability section),
and trading off consistency (as described in the reliability section). Network communication
is a major performance consumer in a distributed system. The goal is therefore to minimize
remote invocations by using caches. Further, object-relational mapping policies can improve
performance. By encapsulating the database access in one module, the rest of the system can
access the persistent data in the form of objects. Furthermore, the cached objects offer
traversal on an object level as opposed to traversing database tables, which improves

69

performance significantly. By letting the cached objects be coarser grained than the database
entities, the overhead of distributed objects can be reduced (e.g. in the case study,
Availability was not exposed as an object on a CORBA IDL level but accessed through
the Cottage object.)

The service localization and consistency trade-offs are exposed in the generic design as de-
scribed above. Object-relational mapping is not visible in the generic description of the
system architecture. It is, however, visible on the realization level, and is documented by the
mapping of system level interfaces (e.g. IDL) to their implementations. For example, the
Booking table (figure 7.3) can be traced to its system level counterpart, the SalesOffice
interface (figure 7.12).

This exemplifies an important property of performance. Performance issues are exposed both
on a software architectural level, and on an implementation level. In order to enable reuse of
a pattern more information must hence be documented than the abstract architecture. A
sample realization of the abstract architecture is also part of the pattern. Both the case study
and the architectural abstraction chapter of this thesis should therefore be seen as part of the
same pattern. This pattern aims at helping to design object caches in a transactional object-
relational CORBA environment.

8.4 Final Remarks

The proposed pattern is very coarse grained on its generic level (the connector Object-
Caching_with_TransactionalReplication) in order to suit many different implementations. In
the case study implementations, two technical implications were deliberately avoided. First,
object eviction was not considered due to the scale of the test suite. Second, a generic version
check was not implemented, as only Bookings were subject to change in the example
scenario. Adding these two features to the caching implementation would, however, yield the
same design on the highest level of abstraction.

The connector descriptions presented highlighted important design decisions made. These
decisions would not have been as clearly documented if the case study had been modeled by
using traditional class-based modeling like UML solely.

70

Acknowledgements

First of all, I would like to thank my supervisor at TU Berlin, Stefan Tai, for reviewing
numerous drafts of this thesis, and for introducing me to the modeling approach of the
Connector framework. Many thanks to Dirk Slama at IONA who supervised the technical
parts of this thesis, and helped me understand the issues involved in developing large-scale
transactional systems. Further, I am grateful to Eamon Walshe, for giving me useful
comments on my implementation; Martin Bergljung, for helping me with the initial OTS
demonstrator implementation; and other employees at IONA, for their feedback on
presentations of my work. Finally, I would like to thank Prof. Janis Bubenko, my supervisor
at Stockholm University, and Hercules Dalianis, for their comments.

71

References

[Agarwal_&_Keller_98] S. Agarwal, A. Keller. The Power Tier Server, A Technical
Overview. White paper. Persistence Software, USA,1998.

[Ambler_98] S. W. Ambler. Mapping Objects To Relational Databases.
White paper. AmbySoft Inc., Canada, 1998.

[Baker_97] S. Baker. CORBA Distributed Objects - Using Orbix.
Addison-Wesley, UK, 1997.

[Bass_et_al_98] L. Bass, P. Clements, R. Kazman. Software Architecture in
Practice. Addison Wesley, USA, 1998.

[Bernstein_&_Newcomer_97] P. Bernstein, E. Newcomer. Principles of Transaction
Processing. Morgan Kaufmann Publisher, Inc., San
Francisco, Cali fornia, 1997.

[Cattel_&_Barry_97] R.G.G. Cattel, D. K. Barry. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann Publishers, San Francisco,
1997.

[Chankhunthod et_al_94] A. Chankhunthod, P.B. Danzig, C. Neerdales, M. F.
Schwartz, K. J. Worrel. A hierarchical object cache.
Technical report, CU-CS-766-95. Department of Computer
Science, University of Colorado, March 1994.

[Chen_96] J. Chen. From Distributed Database to Replication. CS445
reports. RMIT University, Melbourne, 1996.

[D’Souza_&_Will s_98] D. D’Souza, A. Will s. Objects, Components, and
Frameworks with UML – The Catalysis Approach. Book
draft. Addison Wesley, USA 1998.

[Faegri_95] T. E. Faegri. Limitations for Inconsistency in Support
Layers for Reliable Distributed Object Systems. Position
paper submitted to ECOOP’95. Department of Computer
Science, University of Glasgow, 1995.

[Fahl_&_Risch_97] G. Fahl, T. Risch. Query processing over object views of
relational data. The VLDB Journal 6:261-281. Springer-
Verlag, Germany, 1997.

[Friedman_&_Mosse_96] R. Friedman, D. Mosse. Load Balancing Schemes for High-
Throughput Distributed Fault-Tolerant Servers. Technical
report, TR96-1616. Department of Computer Science,
Cornell University, USA, 1996.

[Gamma_et_al_95] E. Gamma, R. Helm, R. Johnsson, J. Vlissides. Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison Wesley, USA, 1995.

[Garlan_&_Shaw_96] D. Garlan, M. Shaw. Software Architecture – Perspective
on an Emerging Discipline. Prentice Hall , USA, 1996.

[Garland_et_al_95] M. Garland, S. Grassia, R. Monroe, S. Puri. Implementing
Distributed Server Groups for the World Wide Web.
Technical report, CMU-CS-95-114. School of Computer
Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 1995.

[Gray_&_Reuter_93] J. Gray, and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, San Mateo, USA,
1993.

[Inprise_98] Inprise. VisiBroker. Internet site (http://www.inprise.com).
Inprise, USA, 1998.

72

[IONA_97a] IONA. The Orbix Database Adapter Framework. White
paper. IONA Technologies, Ireland, 1997.

[IONA_97b] IONA. The Evictor. Internet site
(http://www.iona.com/support/cookbook). IONA
Technologies, Ireland, 1997.

[IONA_98a] IONA. Products. Internet site (http://www.iona.com/).
IONA Technologies, Ireland, 1998.

[IONA_98b] IONA. OrbixNames 1.1. Manual. IONA Technologies,
Dublin, Ireland, 1998.

[IONA_98c] IONA. Orbix Advanced Workshop course 1.0. Training
course. IONA Technologies, Boston, USA, 1998.

[IONA_98d] IONA; The Orbix Object Transaction Monitor (OTM).
White paper. IONA Technologies, Ireland, 1998.

[IONA_98e] IONA. OrbixOTM Guide. Manual. IONA Technologies,
Ireland, 1998.

[IONA_98f] IONA. OrbixOTS Programmer's and Administrator's
Guide. Manual. IONA Technologies, Ireland, 1998.

[IONA_98g] IONA. OrbixEvents Programmer's Guide. Manual. IONA
Technologies, Ireland, 1998.

[IONA_98h] IONA. OrbixTalk Programmer's Guide. Manual. IONA
Technologies, Ireland, 1998.

[IONA_et_al_98] IONA, FUJITSU, INPRISE , Objectivity, Oracle,
Persistence, Secant, Sun. Joint Revised Submission
Persistent State Service 2.0. Object Management Group,
USA, 1998.

[Keen_98] C. Keene. Building Better Performance: Scalable
Application Development with the Persistence PowerTier
Server. White paper. Persistence Software, San Mateo,
Cali fornia, 1998.

[Kordale_&_Ahmad_95] R. Kordale, M. Ahmad. Object Caching in a CORBA
Compliant System. Technical report, GIT-CC-95-23.
College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332, 1995.

[Leser_et_al_98] U. Leser, S. Tai, S. Busse. Design Issues of Database
Access in a CORBA Environment. Technical paper.
Department of Computation and Information Structures,
Technical University Berlin, 1998.

[Malveau_&_Mowbray_97] R. C. Malveau, T. J. Mowbray. CORBA Design Patterns.
Wiley, USA, 1997.

[OMG_97a] OMG. CORBAservices: Common Object Service
Specifi cation. Object Management Group, USA, 1997.

[OMG_97b] OMG. A Discussion of the Object Management
Architecture. Object Management Group, USA, 1997.

[OMG_97c] OMG. UML Version 1.1. Internet site
(http://www.rational.com/uml), Object Management Group,
September 1997.

[OMG_98a] OMG. About OMG. Internet site
(http://www.ontos.com/mapcon.htm). Object Management
Group, USA, 1998.

[OMG_98b] OMG. The Common Object Request Broker: Architecture
and Specifi cation, Rev. 2.2. Object Management Group,
USA, 1998.

73

[OMG_98c] OMG. Success Stories. Internet site
(http://www.ontos.com/mapcon.htm). Object Management
Group, USA, 1998.

[ONTOS_98] ONTOS. ONTOS*Integrator Object/Relational Mapping
Concepts. Internet site
(http://www.ontos.com/mapcon.htm). ONTOS, 1998.

[OpenGroup_92] The Open Group. Distributed Transaction Processing: The
XA Specification. X/Open Document C193, ISBN 1-
85912-057-1. X/Open Company Ltd., Reading,
U.K, 1992.

[Oracle_97a] Oracle. Oracle8 Server Replication. Manual. Oracle
Corporation, Ireland, 1997.

[Oracle_97b] Oracle. Oracle8 OCI. Manual. Oracle Corporation, Ireland,
1997.

[Oracle_97c] Oracle. Oracle8 Pro*C. Manual. Oracle Corporation,
Ireland, 1997.

[Orfali_&_Harkey_98] R. Orfali , D. Harkey. Client/Server Programming with
JAVA and CORBA. 2nd edition. Wiley, USA, 1998.

[Orfali_et_al_96] R. Orfali , D. Harkey, J. Edwards. The Essential Distributed
Objects Survival Guide. Wiley, USA, 1996.

[Persistence_98] Persistence. Power Tier User Guide, Version 4.1. Manual.
Persistence Software, USA, 1998.

[RogueWave_98] Rogue Wave. DBTools - Family of Products. Brochure.
Rogue Wave Software. USA. 1998.

[Schmidt_&_Vinoski_97] D. C. Schmidt, Steve Vinoski. Object Adapters: Concepts
and Terminology. C ++ Report October. SIGS, USA, 1997.

[Shussel_96] G. Schussel. Replication, The Next Generation of
Distributed Database Technology. Internet site
(http://www.dciexpo.com/geos/replica.htm). USA, 1996

[Tai_&_Busse_97] S. Tai, S. Busse. Connectors for Modeling Object Relations
in CORBA-based Systems. Proc. 24th Intl. Conference
on the Technology of Object-Oriented Languages and
Systems (TOOLS 24). IEEE Computer Society, Beijing,
China,
September 1997.

[Tai_&_Busse_98] S. Tai, S. Busse. Software Architectural Modeling of the
CORBA Object Transaction Service. In Proc, 22nd Annual
International Computer Software & Application
Conference. IEEE Computer Society, Vienna, 1998.

[Tai_96] S. Tai. Object abstractions in the design of corba systems
for air traffic control simulation. Technical report 27/96.
EUROCONTROL Experimental Centre, Paris, 1996.

[Tai_98a] S. Tai. A Connector Model for Object-Oriented Component
Integration. Proc. ICSE'98 Intl. Workshop on
Component-Based Software Engineering (ICSE'98/CBSE-
Workshop), Kyoto, Japan, April 1998.

[Tai_98b] S. Tai. Architectural Representation of a CORBA OTM
Application. To appear. Technical University Berlin, 1998.

[Terry_85] D. Terry. Distributed Name Servers: Naming and Caching
in Large Distributed Computing Environments. Technical
report, CSD-85-228. University of Cali fornia, Berkley,
1985.

74

[Versant_98] Versant. Versant ODBMS 5.0 Concepts and Usage.
Manual. Versant Object Technology Corporation,
California, 1997.

[Vinoski_97] S. Vinoski. CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments. IEEE
Communications Magazine, 14:2. USA, 1997.

75

Appendix A: Glossary

2PC Two Phase Commit
ACID Atomicity, Consistency, Isolation, Durability
ADL Architectural Description Language
BOA Basic Object Adapter (CORBA Object Adapter)
CORBA Common Object Request Broker (defined by OMG)
DTP Distributed Transaction Processing (defined by X/Open - now the Open

Group)
FIFO First In First Out (eviction policy)
IDL Interface Definition Language
IIOP Internet Inter-ORB Protocol
IOR Interoperable Object Reference
LRU Least Recently Used (eviction policy)
OCI Oracle Call Interface
ODMG Object Data Management Group
OMA Object Management Architecture (defined by OMG)
OMG Object Management Group
OOAD Object-Oriented Analysis and Design
ORB Object Request Broker (the object bus in CORBA)
OTM Object Transaction Monitor (merge of CORBA and TP Monitor concepts)
OTS Object Transaction Service (CORBAservice)
POA Portable Object Adapter (CORBA Object Adapter)
PSS Persistent State Service (CORBAservice)
RM Resource Manager (defined in X/Open DTP model)
ROI Remote Object Invocation
TM Transaction Manager (defined in X/Open DTP model)
TP Monitor Transaction Processing Monitor
TP System Transaction Processing System
TS Transaction Service (component of the OTS)
TTL Time To Live (eviction policy)
UML Unified Modeling Language
XA Interface between RM and TM (defined in the X/Open DTP standard)

76

Appendix B: IDL Interfaces for the PTT System

PTT.idl
module PTT
{
 // --
 // General
 // --

 typedef sequence<short> WeekList;
 typedef string BookingReference;
 typedef sequence<BookingReference> BookingReferenceSeq;
 typedef long CottageID;

 interface Cottage;
 interface Resort;

 typedef sequence<Cottage> CottageSeq;
 typedef sequence<Resort> ResortSeq;

 exception NotAvailable {};

 // --
 // Resort
 // --
 struct ResortDetails {

string name;
string description;

 };

 interface Resort
 {

ResortDetails getDetails();
CottageSeq getCottages ();

 };

 // --
 // Cottage
 // --
 struct CottageDetails {

string name;
string description;
string address;

 };

 interface Cottage
 {

CottageID getID();
CottageDetails getDescription ();
WeekList getAvailability ();

 };
};

CacheUser.idl
interface CacheUser {
 oneway void invalidate(in any update);
};

SalesOffice.idl
#include "PTT.idl"
#include "CacheUser.idl"
module PTT_SalesOffice

77

{
 struct Customer {

string lastName;
string firstName;
string address;

 };

 struct CreditCardDetails {
 string number;
 string expiryDate;
 };

 // -------------------------------
 // SalesOffice
 // -------------------------------
 interface SalesOffice : CacheUser
 {

string getBranchName ();

PTT::ResortSeq getResorts ();

PTT::BookingReference makeBooking (
 in PTT::Cottage aCottage,
 in short fromWeek,
 in short toWeek,
 in Customer client,
 in CreditCardDetails card)
 raises (PTT::NotAvailable);

PTT::BookingReferenceSeq listBookings ();
 };
};

CentralOffice.idl
#include "PTT.idl"
#include <ots/orbix/cos_ots.idl>

interface CentralOffice : CosTransactions::TransactionalObject
{
 PTT::ResortSeq getResorts ();

 PTT::BookingReference confirmBooking (
 in PTT::CottageID aCottage,
 in short fromWeek,
 in short toWeek)
raises (PTT::NotAvailable);

};

