
Statistical Methods for Computational Markets

Proportional Share Market Prediction and Admission Control

THOMAS SANDHOLM

Doctoral Thesis

Stockholm, Sweden 2008

DSV Report series No. 08-006
ISSN 1101-8526
ISRN SU-KTH/DSV/R--08/6--SE
ISBN 978-91-7178-924-2

KTH School of Information and Communication Technology
Forum 100, SE-164 40 Kista

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av Filosofie doktorsexamen i Data- och
Systemvetenskap måndagen den 26 maj 2008 klockan 13.00 i Sal C, Forum, Kungl
Tekniska högskolan, Kista.

Tryck: Universitetsservice US AB

iii

Abstract

We design, implement and evaluate statistical methods for managing un-
certainty when consuming and provisioning resources in a federated computa-
tional market. To enable efficient allocation of resources in this environment,
providers need to know consumers’ risk preferences, and the expected future
demand. The guarantee levels to offer thus depend on techniques to forecast
future usage and to accurately capture and model uncertainties. Our main
contribution in this thesis is threefold; first, we evaluate a set of techniques
to forecast demand in computational markets; second, we design a scalable
method which captures a succinct summary of usage statistics and allows
consumers to express risk preferences; and finally we propose a method for
providers to set resource prices and determine guarantee levels to offer. The
methods employed are based on fundamental concepts in probability theory,
and are thus easy to implement, as well as to analyze and evaluate. The key
component of our solution is a predictor that dynamically constructs approx-
imations of the price probability density and quantile functions for arbitrary
resources in a computational market. Because highly fluctuating and skewed
demand is common in these markets, it is difficult to accurately and auto-
matically construct representations of arbitrary demand distributions. We
discovered that a technique based on the Chebyshev inequality and empiri-
cal prediction bounds, which estimates worst case bounds on deviations from
the mean given a variance, provided the most reliable forecasts for a set of
representative high performance and shared cluster workload traces. We fur-
ther show how these forecasts can help the consumers determine how much
to spend given a risk preference and how providers can offer admission con-
trol services with different guarantee levels given a recent history of resource
prices.

Keywords: Distributed Systems, Grid Computing, Performance Analysis, Work-
load Modeling, Middleware, Quality of Service, Prediction, Admission Control, Grid
Economics, High Performance Computing, Time Series Analysis

iv

Sammanfattning

Vi utformar, implementerar och utvärderar statistiska metoder för att
hantera osäkerhet vid användning och tillhandahållande av datorresurser på
en marknad. För att kunna möjliggöra en effektiv allokering av resurser i en
sådan miljö måste konsumenters riskpreferenser och framtida efterfrågan tas
med i beräkningen. De garantinivåer som erbjuds beror således på tekniker för
att prognostisera framtida användning och på precis modellering av osäkerhet
i prognoserna.

Denna avhandling har tre huvudsakliga bidrag: en utvärdering av tekniker
för att prognostisera efterfrågan på datorresursmarknader, en skalbar metod
för att summera användningsstatistik som tillåter konsumenter att uttrycka
riskpreferenser, samt en metod för att sätta resurspriser och bestämma vilka
garantinivåer som kan erbjudas. Metoderna som använts bygger på grund-
läggande sannolikhetsteori och är därför enkla att implementera, analysera
och utvärdera.

Den viktigaste komponenten i vår lösning är en prognosgenerator som
dynamiskt konstruerar approximeringar av prisfördelningsfunktioner för god-
tyckliga resurser på en datorresursmarknad. Eftersom kraftigt fluktuerande
och sneda pristäthetsfunktioner är vanliga är det svårt att approximera efter-
frågans godtyckliga fördelningsfunktioner automatiskt och precist. Vi fann att
en teknik som bygger på Chebyshevs olikhet och empiriska prognosintervaller,
vilken uppskattar avvikelser från ett medelvärde givet en varians, producerade
de mest tillförlitliga prognoserna i tester med olika användningsloggar från
superdatorcentra. Vi visar också hur dessa prognoser kan hjälpa konsumenter
att bestämma hur mycket som skall spenderas givet riskpreferenser och hur
tillträdesregler för resurser kan bestämmas med olika servicegarantier givet
en resurs prishistorik.

To Gisell and Errol

Acknowledgments

Thanks to Professor Magnus Boman, my advisor, for taking me on as a graduate
student and being instrumental in helping me through a difficult transition between
research departments as well as research topics midway through my graduate pro-
gram. I am also thankful for all the general thesis and scientific advice and prompt
and detailed feedback on my manuscripts, which helped shape this thesis.

I am very grateful to Lars Rasmusson, my secondary advisor, and also a former
colleague and collaborator at Hewlett-Packard Labs, who with his insightful advice
allowed me to refocus my research and who constantly challenged me to improve
my scientific reasoning and presentation.

Most of the research presented in this thesis was done in a collaboration with
the Information Dynamics Lab at Hewlett-Packard Labs, in Palo Alto. I therefore
received most of the day-to-day technical advice and feedback from my mentor
there, Kevin Lai. He taught me the economics and resource allocation science un-
derlying computational markets, and gave me a new perspective on how software
systems should be developed to be economically efficient. As a co-author of many
of the papers in this thesis he also contributed a great deal in terms of focussing
and positioning my work to address interesting research problems, guiding experi-
mental setups, relating the work to the grander research challenges and refining the
presentation of the motivation and the results. Needless to say, his contributions
were invaluable to me. My work at HP Labs would not have been possible without
the constant support from Bernardo Huberman, who has been a great inspiration
both as a scientist and as a research manager. I had the pleasure of collaborating
with many great scientists at HP Labs who helped improve the work in this thesis
through numerous discussions and direct feedback on regular presentations I gave.
I particularly would like to mention Scott Clearwater, who introduced me to the
statistics of high performance computing, and Li Zhang who mentored me on most
of the mathematical theory covered in this thesis. I would also like to thank Fang
Wu, Mike Brzozowski, Ali Ghodsi, John Wilkes, Tad Hogg and all the members of
the IDL group.

Since this thesis is the end product of a long education and previous work
in other research labs, I would also like to take the opportunity to thank people
who inspired me in my research career and helped me choose this path. Professor
Stefan Tai, my master’s thesis advisor, was the person who first got me interested

vii

viii Acknowledgments

in research as a career and who introduced me to the scientific method, which I
have benefited greatly from both academically and professionally ever since. While
working as a consultant at IONA Technologies, I learned a great deal about large-
scale distributed computing and professional programming through my mentors
Eamon Walshe, and Tom Watson. During my 2-year visit as a research programmer
at Argonne National Laboratories, I was mentored by Steven Tuecke and Ian Foster
who helped shape my research focus on Grid computing. When I first started out
as a graduate student at the Royal Institute of Technology in Stockholm I was able
to keep my focus on Grid research and expand my knowledge about Grid security
thanks to the expertise of fellow researcher Olle Mulmo. I would also like to thank
Professor Lennart Johnsson who gave me the opportunity to embark on my PhD
studies, and Peter Gardfjell and Erik Elmroth, who I collaborated with on my first
research project as a graduate student, Grid accounting.

On a more personal note, I would like to thank my wife Gisell and my son
Errol, whom I dedicate this thesis to, for always being there for me and helping me
through the hard work of pushing the envelope and coming up with new research
results, and for their understanding of daddy spending many weekends at work
instead of being around.

Finally, I would like to thank my family in Sweden, my parents Hete and
Lennart, and my brother Peo, for making it possible through their constant and
tireless help with tasks that had to be done locally, which allowed me to be a
graduate student in Stockholm while living in Palo Alto.

Chronological List of Contributions

[1] Thomas Sandholm, Kevin Lai, and Scott Clearwater. Admission Control in a
Computational Market. In CCGrid ’08: Proceedings of the 8th International
Symposium on Cluster Computing and the Grid, 2008. To appear.

[2] Thomas Sandholm. Autoregressive Time Series Forecasting of Computational
Demand. Technical Report 0711.2062v1 [cs.DC], arXiv, 2007.

[3] Thomas Sandholm and Kevin Lai. Prediction-Based Enforcement of Perfor-
mance Contracts. In GECON ’07: Proceedings of the 4th International Work-
shop on Grid Economics and Business Models, 2007.

[4] Thomas Sandholm. Managing Service Levels in Grid Computing Systems. Li-
centitate Thesis ISRN KTH/CSC/A–07/06–SE. Royal Institute of Technology,
Stockholm, 2007.

[5] Thomas Sandholm and Kevin Lai. A Statistical Approach to Risk Mitiga-
tion in Computational Markets. In HPDC ’07: Proceedings of the 16th ACM
International Symposium on High Performance Distributed Computing, 2007.

[6] Peter Gardfjell, Erik Elmroth, Lennart Johnsson, Olle Mulmo, and Thomas
Sandholm. Scalable Grid-wide Capacity Allocation with the SweGrid Account-
ing System (SGAS). Concurrency and Computation: Practice and Experience,
2007. To appear.

[7] Thomas Sandholm and Kevin Lai. Evaluating Demand Prediction Techniques
for Computational Markets. In GECON ’06: Proceedings of the 3rd Interna-
tional Workshop on Grid Economics and Business Models, May 2006.

[8] Thomas Sandholm, Kevin Lai, Jorge Andrade, and Jacob Odeberg. Market-
Based Resource Allocation using Price Prediction in a High Performance Com-
puting Grid for Scientific Applications. In HPDC ’06: Proceedings of the 15th
IEEE International Symposium on High Performance Distributed Computing,
June 2006.

[9] Thomas Sandholm, Peter Gardfjell, Erik Elmroth, Lennart Johnsson, and
Olle Mulmo. A Service-Oriented Approach to Enforce Grid Resource Al-

ix

locations. International Journal of Cooperative Information Systems, 15(3):
439–459, 2006.

[10] Kevin Lai and Thomas Sandholm. The Design, Implementation, and Eval-
uation of a Market-Based Resource Allocation System. Technical Report
Manuscript for Publication, Royal Institute of Technology and Hewlett-
Packard Labs, Stockholm, Sweden, May 2006.

[11] Thomas Sandholm. Service Level Agreement Requirements of an Accounting-
Driven Computational Grid. Technical Report TRITA-NA-0533, Royal Insti-
tute of Technology, Stockholm, Sweden, September 2005.

[12] Thomas Sandholm. The Philosophy of the Grid: Ontology Theory - From
Aristotle to Self-Managed IT Resources. Technical Report TRITA-NA-0532,
Royal Institute of Technology, Stockholm, Sweden, September 2005.

[13] Ludwig Seitz, Erik Rissanen, Thomas Sandholm, Babak Sadighi Firozabadi,
and Olle Mulmo. Policy Administration Control and Delegation using XACML
and Delegent. In Proceedings of the 6th IEEE/ACM International Workshop
on Grid Computing, November 2005.

[14] Frank Siebenlist, Takuya Mori, Rachana Ananthakrishnan, Liang Fang, Tim
Freeman, Kate Keahey, Sam Meder, Olle Mulmo, and Thomas Sandholm. The
Globus Authorization Processing Framework. In Workshop on New Challenges
for Access Control, Ottawa, Canada, April 2005.

[15] Erik Elmroth, Peter Gardfjell, Olle Mulmo, and Thomas Sandholm. An OGSA-
Based Bank Service for Grid Accounting Systems. In Jerzy Wasniewski, editor,
Lecture Notes in Computer Science: Applied Parallel Computing. State-of-the-
art in Scientific Computing. Springer Verlag, 2004.

[16] Thomas Sandholm, Peter Gardfjell, Erik Elmroth, Lennart Johnsson, and
Olle Mulmo. An OGSA-based Accounting System for Allocation Enforcement
across HPC Centers. In ICSOC ’04: Proceedings of the 2nd international con-
ference on Service oriented computing, pages 279–288, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-871-7.

[17] Steven Tuecke, Karl Czajkowski, Ian Foster, Jeff Frey, Steven Graham, Carl
Kesselman, Tom Maquire, Thomas Sandholm, David Snelling, and Peter Van-
derbilt. Open Grid Services Infrastructure (OGSI) Version 1.0. Technical
report, Global Grid Forum, 2003.

Contents

Chronological List of Contributions ix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Main Contribution . 2
1.3 Other Contributions . 3
1.4 Methodology . 3
1.5 Related Work . 5
1.6 Disposition . 5

Part I: Overview 9

2 Foundation 9
2.1 Grid Computing . 9
2.2 Microeconomic Theory . 12
2.3 Computational Markets . 14
2.4 Forecasting . 16
2.5 Admission Control . 19
2.6 Statistical Tests . 21

3 Model 25
3.1 Proportional Share Allocation . 26
3.2 Statistics Collection . 26
3.3 Density Estimation . 27
3.4 Risk Probing . 29
3.5 Admission Control . 30

4 Software 31
4.1 Tycoon . 31
4.2 Market-Based Grid Resource Broker 32
4.3 Market Prediction and Admission Control 35

xi

xii Contents

5 Contributions 41
5.1 Main Contribution Papers . 41
5.2 Other Contributions . 45

6 Related Work 51
6.1 Computational Economies . 51
6.2 Grid Market Systems . 52
6.3 Computational Demand Prediction 54
6.4 Economic Parallel Job Scheduling . 56
6.5 Resource Admission Control . 57

7 Conclusions 59
7.1 Concluding Remarks . 59
7.2 Future Directions . 61

Bibliography 63

Part II: Main Contribution Papers 75

Chapter 1

Introduction

Computational resources are becoming easier to share as a result of technological
advances in network, operating system, and middleware infrastructure. This new
infrastructure has enabled a trend towards openness, accessibility, and community
contribution where resources, services and applications are hosted and consumed
on the Internet. The scientific computing community has led the advancement
of highly-scalable wide-area network distributed compute farms (a.k.a. compute
clouds), capable of solving complex, academic, grand-challenge problems by means
of large pools of commodity resources. Operating system virtualization technologies
have made it possible to both consume and provide these commodity resources
with a high level of control over the Quality-of-Service (QoS) being delivered. This
increased control allows more accurate scheduling decisions to be made to shape
the supply to fit the demand, in addition to the more traditional approach of fitting
the demand to the supply. However, when allowing individual consumers to control
their own allocations, some mechanism is required to ensure fairness and efficiency
in the system as a whole.

Traditional compute-farm job schedulers have focussed on optimizing utiliza-
tion, throughput and response time and have only given users minimal control over
service levels for individual jobs. Priorities among users and jobs are typically con-
figured a priori by system administrators, and cannot easily adapt to changes in
demand and supply.

Computational markets have been proposed as an economic solution to this
problem of large-scale resource sharing. The general idea is to allow users to express
their preferences both in terms of resource requirements and value or priority of
tasks to be computed. Priorities and service levels are automatically set based
on how much money is spent. Users can thus budget their jobs by minimizing
cost while maximizing performance. Conversely, providers can multiplex users’
jobs by applying some algorithm that maximizes their profit. The advantage of
this approach is that the self-optimizing behavior of users and providers lead to
globally fairer and more efficient allocations without centralized control. Providers

1

2 CHAPTER 1. INTRODUCTION

can control the demand by setting prices dynamically, and users can signal their
satisfaction with a service level delivered by their willingness to pay a certain price
for it.

Just like in traditional markets such as the stock market, being able to predict
future demand is important to make sensible and economically sound resource al-
location decisions both for the seller (resource provider) and the buyer (resource
consumer). For example, if a user has a low priority job and the price is predicted
to drop, the execution of the job could be deferred. On the other hand, a provider
who sees a trend of increasing prices may want to be careful with admitting low-
priority tasks that cannot be preempted. The advantage of a computational market
is that prices can effectively summarize a large set of system states, which simpli-
fies the monitoring and accounting as well as the forecasting processes. Price and
time series forecasting are well studied fields in economics and physics, and a large
number of techniques have been developed to summarize trends and make claims
of future outcomes.

1.1 Problem Statement

The main question addressed in this thesis is how statistical demand forecasting
methods can be integrated into a large-scale compute farm infrastructure to allow
both resource consumers and resource providers to make economically and compu-
tationally efficient allocation decisions.

1.2 Main Contribution

The main contribution of this thesis is a set of methods to predict demand in com-
putational markets based on the proportional share resource allocation principle.
We call the model encompassing these methods the Proportional Share Market Pre-
diction and Admission Control (PS-MP/AC) model. PS-MP/AC comprises meth-
ods to efficiently collect and summarize resource prices; algorithms to approximate
bounds of future demand with statistical claims; a risk probing interface for re-
source consumers; and finally an access control mechanism for resource providers.
In addition to developing and analyzing these methods we also contribute:

• a Grid market broker which schedules Grid applications in an economic com-
pute farm,

• an evaluation of a large set of computational demand prediction techniques,

• an analysis and characterization of demand measured in existing compute
farms,

• a time-series regression (ARIMA) modeling evaluation of computational de-
mand,

1.3. OTHER CONTRIBUTIONS 3

• and finally experimental and simulation based evaluations of access control
in computational markets.

1.3 Other Contributions

This thesis also summarizes some contributions leading up to the development of
the PS-MP/AC model including:

• contributions to a standard Grid service protocol,

• development of a Grid accounting system,

• development of a Grid security policy framework,

• experimental evaluation of economic efficiency and fairness bounds in a pro-
portional share market,

• and an analysis of the accounting requirements of High Performance Com-
puting (HPC) applications.

The contributions in this category were described in the Licentiate thesis: Man-
aging Service Levels in Grid Computing Systems: Quota Policy and Computational
Market Approaches [101], and will therefore only be briefly summarized in this
thesis.

1.4 Methodology

The results in this thesis were obtained mainly by five means:

• Trace Analysis. High Performance Computing (HPC) and super computing
center job traces as well as load traces from a large-scale shared computational
network were pre-processed to represent time series of global demand. The
time series were then analyzed to find patterns and statistical properties.
Traces were also used to evaluate predictor models, and to drive simulations
and experiments. Exploratory data-analysis with a focus on distribution and
correlation visualizations was extensively employed. Distribution fitting tech-
niques, such as moment fitting, maximum entropy and maximum-likelihood
optimization, and expectation maximization (for mixed distributions) were
used to create quantitative models of the data.

• Mathematical Modeling. Probabilistic models were designed based on
the trace analyses and the distributional properties discovered. Alternative
models were designed and compared through simulations and experiments.
Standard models used in related studies were also compared to the new models
proposed. This typically included one or many benchmark models that lacked
one or more properties that were considered important based on the data

4 CHAPTER 1. INTRODUCTION

analysis. A preference was given to models that were a) easy to implement
and b) easy to analyze. Occam’s razor was one of the leading principles of
this step.

• Prototype Implementation. Models are simplifications, and some behav-
ior can only be uncovered in actual implementations, for example performance
overhead. All models were therefore implemented in both prototype simula-
tions and more robust implementations in full-scale systems. Many of the
implementations were also tested with real users and under real workloads.
Feedback was received from users and this information was used to refine the
models and implementations. The feedback in some cases also helped refine
the questions that we focussed on in our research. Implementation languages
used included: Python, R, Matlab, Java and Bash-shell.

• Simulation Evaluation. Simulations were designed to test initial imple-
mentations and to narrow down the problem and parameter space that was
most interesting to test in a live system. Simulations could also more eas-
ily be compared to previous work and standard as well as purely theoret-
ical models. For instance optimal off-line clairvoyance scenarios could be
compared to the on-line algorithms proposed. Statistical significance tests
are used where appropriate, including Monte Carlo bootstrap driven tests,
Kolmogorov-Smirnov tests, Student t-tests, various distributional boundary
tests and standard time-series regression tests, such as Dickey-Fuller and Box-
Ljung tests.

• Experiment Evaluation. Simulations in closed, controlled virtual systems
are easier to evaluate but the end-goal is to build a distributed system that
works in practice. To this end the focus of the work in this thesis has been
on running experiments under as realistic conditions as possible, allocating
real resources in live systems with real users and applications. Ideally we
would have preferred to have a heavily used (competitive) computational
pilot market to verify the models on, but since no such pilot was available
to us, we had to go with the second best option of running simulated user
loads with real applications in the real system, and measuring sporadic usage
from real users. We finally note that both the main predictor contribution
as well as the accounting system contribution (under other contributions)
implementations have been tested in production mode with external users,
and are also available to the community as open source. All experiments
were conducted in the HP Labs Tycoon cluster of 80 nodes in Palo Alto. The
core part of the Tycoon system had already been developed before the work
with this thesis began, so most of the development work involved extending
Tycoon in the areas of Grid integration, predictability, and admission control
and to write simulation and experiment test suites.

1.5. RELATED WORK 5

1.5 Related Work

Related work in this area has focussed on the problem of predicting wait times in
batch schedulers and predicting economic equilibrium prices based on centralized
optimization algorithms [77, 124, 127, 13, 128]. We found these techniques to be
insufficient either in terms of economic viability or computational efficiency. The
fact that these methods do not leverage the inherent predictability of proportional
share resource allocations also made them suboptimal for our purpose. Many robust
statistical techniques exist if stationarity, independent and identically-distributed
(iid) samples, and symmetry of distributions are assumed. However, our compute
farm workload trace analyses confirmed what others also have found when analyzing
parallel compute center traces: that these assumptions do not hold in most real sys-
tems [80, 40, 60, 26]. Our solution is fully decentralized and thus scales better than
the centralized optimization-based techniques, such as [24, 62, 93, 5]. Furthermore,
the centralized optimization solutions typically depend on home-grown heuristics,
because the general problem of scheduling parallel non-preemptive tasks has been
shown to be NP-hard [53]. What sets our solution apart from other work is also
the careful attention to scalability issues and the minimal collection of statistical
summary data points while imposing as few restrictions as possible on the types of
predictions the data point consumers can make. A more elaborate description and
treatment of related work can be found in Chapter 6.

1.6 Disposition

The thesis is organized as follows. In Part I we summarize the foundations and
results of our work. Chapter 2 presents the problem domain and the underlying
technology and theory. Our solution is described in Chapter 3. The software that
was developed as part of the thesis research is described in some more detail in
Chapter 4, and then the contributions are summarized in Chapter 5. In Chapter 6
we discuss related work, and finally Chapter 7 provides concluding remarks.

In Part II we include six papers that represent the main contribution of this
thesis. These papers have all been previously published in conference proceedings
or as technical reports.

Part I

Overview

7

Chapter 2

Foundation

In this chapter, we discuss the foundational concepts and theory of the work pre-
sented in this thesis. First, we describe the new paradigm of computing emerging
in Computational Grid systems. Then, we review the fundamental microeconomic
theory of games and strategic behavior; discuss the concepts and different flavors
of computational markets; present the underlying theory of the prediction models
used in this thesis; and outline some common approaches to distributed resource
admission control. Finally, we describe the purpose of various statistical tests em-
ployed.

2.1 Grid Computing

In the context of this thesis the Grid refers to a collection of computational resources
shared across organizational boundaries to deliver non-trivial Qualities of Service
(QoS) [49, 48, 7]. Non-trivial here means that services beyond pure information
sharing, as typical in the World Wide Web, are offered. What is in common for
these more advanced services offered by a Grid is that they typically involve large-
scale resource consumption within a dynamic community of users and providers
spread across a large geographic area. This community is known as a Virtual
Organization (VO) [47]. An example VO architecture is shown in Figure 2.1. One
of the first super computing projects to span multiple organizations while utilizing
a cross-Atlantic Grid was the I-WAY project [31], which paved the way for Grid
computing as a scientific field.

Security

Many of the trust, privacy and general security issues appearing in the Grid revolves
around management of rights within a VO. The idea is that a VO is a web of
trust where information exchange and resource sharing can take place just like in
a corporate Intranet. The difference is that Virtual Organizations may be created,

9

10 CHAPTER 2. FOUNDATION

Figure 2.1: Virtual Organization Example.

managed and destroyed in a more dynamic manner. Examples include ATLAS 1, a
particle physics experiment utilizing the computational Grid of the Large Hydron
Collider at CERN; and HapGrid, a bioinformatics project performing haplotype
reconstruction and frequency estimation using the SweGrid computational Grid
resources [2].

The trust verification mechanism in Grid systems is based on the Public Key
Infrastructure (PKI) [59], with extensions to allow delegation of rights and single
sign-on using self-signed proxy certificates [114, 123]. A user will have a secret
key on her local machine and then distribute a public key to all communication
partners. A message can then be signed or encrypted with the private key by the
sender to allow the recipient to verify the authenticity of the message including
non-repudiation, and protection against denial-of-service (DoS) and replay attacks.
The PKI handshake protocol where authenticity is verified has two main advan-
tages compared to more traditional username and password based authentication
protocols. First, no personal secret such as a password or private key needs to be
sent across the communication link exposing it to eavesdropping. Second, mutual
authentication of senders and receivers is seamless, making it a good fit for peer-to-
peer like systems, such as the Grid. Another fundamental concept is the Certificate
Authority (CA), which is a trust anchor asserting the identity of its users by sign-
ing their credentials (public keys). CA’s may be established for individual VO’s, a

1http://atlas.web.cern.ch/Atlas/

2.1. GRID COMPUTING 11

collection of VO’s using a particular Grid environment, a country for its citizens,
etc. Certificate Authorities may also be organized hierarchically, where the parent
nodes assert the identity of their child nodes.

The use of proxy certificates allows brokers or agents to act on behalf of users
to complete a task. The broker will not simply receive the private key of the user,
as it would violate the rule of strong authentication, which states that no long-lived
personal secrets should be distributed as part of the identity verification process.
Instead the user creates a temporary key-pair, signs it, encrypts it, and sends it
to the broker. Proxy certificates thus enables single sign-on across a network of
brokers.

Resource Allocation

Service level and QoS enforcement was addressed in a Grid context in the Grid Ad-
vanced Reservation and Allocation (GARA) [44, 45] project allowing CPU, band-
width and OS process resource capacity enforcement at different levels of service.
Here resources were configured using resource specific control mechanisms, such
as DiffServ and RSVP router management [9, 12], and DSRT CPU scheduling
control [83]. This work evolved into the SNAP protocol [28] and then eventually
was standardized in the WS-Agreement specification [3], by GGF, which also bor-
rows many concepts from IBM’s WSLA (SLA for Web services) solution [29] and
SLAng [72].

Complimentary to protocol standardization, heterogeneity can also be addressed
by resource virtualization. For example, virtualization of a host operating sys-
tem [34] gives fine-grained control over the service levels offered. CPU, disk, mem-
ory, and other resource shares can be allocated to user specific virtual machines.
This technique has been explored in the context of Grid job execution management
in [64].

As the Grid deployments extend beyond academic projects, such as EDG 2 [10],
EGEE 3 , TeraGrid 4, NEESit 5, ESG 6, and OSG 7 to self-sufficient commercial
Grid environments, the need to charge for compute resource usage like any other
commodity arises. This business model is in-line with many IT companies’ utility
(or cloud) computing strategy [54, 16, 58]. Economic models from the field of
utility computing could also solve the growing problem in academic Grid projects
of a small number of strategic users hogging the system. We will elaborate on how
this could be approached in the next section.

2European Data Grid, http://www.edg.org
3Enabling Grids for ESciencE, http://egee-intranet.web.cern.ch/egee-intranet/gateway.html
4http://www.teragrid.org
5http://it.nees.org
6Earth System Grid, http://www.earthsystemgrid.org
7Open Science Grid, http://www.opensciencegrid.org

12 CHAPTER 2. FOUNDATION

2.2 Microeconomic Theory

When managing service levels, we would like to make sure that the system cannot be
abused by strategic users, who could starve out competing resource consumers. We
therefore turn to microeconomic theory to study how mechanisms can be developed
to ensure an overall healthy system even with strategic users.

Tragedy of the Commons

Consider the problem often referred to as the Tragedy of the Commons [57]. Farmers
let their sheep eat grass on a common. A farmer can sell one of his sheep when it has
been well fed and earn a profit compared to the original purchase price of the sheep.
Let’s further assume that the profit that an individual farmer gains from selling
a sheep is higher than the relative cost of having one more sheep share the grass
of the common, and thus leaving less grass available for other sheep. A strategic
farmer who is trying to optimize his own profits would under such circumstances
always choose to purchase another sheep. The main issue with this situation is
that the overall health of the community of farmers declines as individuals optimize
their profits, and eventually it will collapse when there are too many sheep on the
common for any single one of them to get fed well enough to be sold. It is not hard
to see that such situations could easily arise if computational power is offered as a
common good without providing some incentive for users to constrain their usage.

Game Theory

In Game Theory [88, 87] a number of players and their possible actions with as-
sociated individual preferences model a game. Other players’ actions affect the
utility or payoff a player receives from a game. However, the other players’ actions
may not be known before a player chooses an action. In order to choose an action
each player hence needs to make a guess of other players’ likely actions given past
experience, which is referred to as forming a belief.

Let
a∗ = {a1...ak} (2.1)

be the set of actions taken by the k players in a game, where ai is the action taken
by player i. This set is called the action profile of the game.

We can now make statements about the steady states of a game, when no player
has an incentive to change her action.

Nash Equilibrium

A Nash equilibrium is defined as an action profile a∗ where no player i can get a
higher utility by changing her action a∗i , given that every other player j performs
the action a∗j . More concisely expressed

ui(a
∗) ≥ ui(ai, a∗−i) (2.2)

2.2. MICROECONOMIC THEORY 13

for every action ai of player i, where ui is the utility function that represents player
i’s preferences and (ai, a

∗
−i) is the action profile where player i performs action ai

and all other players j perform action a∗j .
It is important to note that a Nash equilibrium does not make any statements

about uniqueness of the solution, and many games can indeed have multiple Nash
equilibria.

To simplify the decision making process for a player given prior beliefs a best
response function is typically defined. It yields the set of best actions to take for a
player given an action profile of the other players, or more precisely

Bi(a−i) = {ai ∈ Ai : ui(ai, a−i) ≥ ui(a′i, a−i)|∀a′
i
∈Ai
} (2.3)

where Ai is the set of all possible actions player i can take, a−i the action profile
including all players except player i, and Bi is the set of best response actions.

Resource Allocation Game

In our case a game can be defined as the process of allocating available Grid re-
sources, or shares of a resource, to the applications that users are requesting to run
on those resources. The users can form their prior beliefs of other users’ demand
of the resources by studying the current resource prices on the market. In order to
analyze the efficiency and fairness of a resource allocation algorithm we need some
additional definitions.

The efficiency or price of anarchy [89] is calculated as the sum of all users’
utilities of a certain allocation outcome compared to the optimal utility in the
system. The sum of all users’ utilities is typically referred to as the social welfare,
and it is an indication of the global health of the system.

The social welfare for an allocation scheme ω is defined as

U(ω) =
∑k

i=1
ui(ri) (2.4)

where k is the number of users, ri is the resource share allocated to user i, and ui
is the utility function of user i.

The fairness of a resource allocation scheme can be defined in terms of envy-
freeness [116] which can be calculated as

ρ(ω) = min(min
i,j

ui(ri)

ui(rj)
, 1) (2.5)

where ui(ri) is the utility that user i received from being allocated share ri, whereas
ui(rj) is the utility user i would have received had she been allocated the resource
share rj of user j instead. In an envy-free system (optimally fair) ρ(ω) equals
1. The closer the value is to 0 the more envy there is, and the more unfair the
allocation scheme is.

The task of an economically healthy resource allocation scheme is to enforce
both high efficiency and high fairness in the Nash equilibrium states of the game.

14 CHAPTER 2. FOUNDATION

When constructing a mechanism to allocate resources in a computational mar-
ket, it is therefore important to force users towards taking actions that yield one
of these equilibrium state. In a system where a Tragedy of Commons behavior is
possible no equilibrium states will ever be reached. In other words, it should not be
possible to game (trick) the allocator for individual benefit at the cost of the overall
health of the system in terms of fairness and efficiency. A mechanism that yields
an equilibrium state in the presence of strategic users is said to be strategy proof.
Likewise a software system architecture implementing a computational economy is
truth-telling if users have an incentive to restrict their signaled and actual usage of
a resource to their true needs. Further, it is incentive-compatible if users who have
an incentive to perform a task either perform it themselves or transfer the incentive
to a broker to perform the task on behalf of them. Incentive-compatibility is key
to any system to avoid the Tragedy of Commons problem occurring, and it necessi-
tates the deployment of transposable (tradable) and commensurable (comparable)
entities, e.g. a currency.

Best Response Agent

A game theoretical analysis tries to model the behavior of players and make state-
ments about optimal strategies and mechanisms enforcing certain global behavior
based on local rules. Strategies can be implemented on behalf of a player by an
agent. One example of an agent that implements an optimal strategy to solve
the resource allocation game just described is the best response agent presented
in [41, 132]. Given a fixed budget and a pool of divisible resources allocated accord-
ing to a proportional share mechanism that allows users to bid on shares (described
in more detail in Section 3.1 and 4.1), the best response agent finds the distribution
of bids across resources that yields the highest utility for an individual player. The
prior beliefs of the demand used by the agent to make its decision is the sum of all
bids in the previous bidding cycle for all the available resources. Zhang [132] shows
that there always exists a Nash equilibrium when the players’ utility functions are
strongly competitive, i.e. when there are at least two users competing for each
resource. Furthermore, a tight, lower efficiency bound of Θ(1/

√
m) and a lower

envy-freeness bound of 2
√

2− 2 or approximately 0.828 in Nash equilibria with m
players are theoretically deduced.

2.3 Computational Markets

The concept of computational markets was defined in [81] as a software system
using market mechanisms. Other terms used are agoric system and computational
ecology to emphasize the meeting aspect or the decentralized, evolutionary, and
self-organizing properties of markets respectively.

2.3. COMPUTATIONAL MARKETS 15

Why use markets?

Markets can effectively aggregate information from multiple sources in large, dy-
namic and complex systems where there is not a single source with complete in-
formation. In a computational market, resource allocation can be made locally,
where detailed performance information is available, to achieve better scalability
and reliability. Prices summarize demand succinctly and uniformly and can be com-
municated globally to enable economic load balancing between resources as well as
between different resource types. The vision is that selfishly utility-optimizing re-
source consumers and selfishly profit-optimizing resource providers will move the
system into an equilibrium state where resources are allocated efficiently.

There are a couple of fundamental goals of computational markets to meet this
vision. First, to provide the right incentive to users to specify truthful cross-user
priorities of their resource needs. Second, to dynamically set resource prices to find
the level where demand equals supply, a.k.a. the market equilibrium price.

Incentives

Most computational markets use some kind of currency to meet the first goal, which
in essence combats the tragedy of commons effect, and the main differences here
are whether real or fake money is used and how users receive funding. A stream
of income [120, 36], automatic refunding after resources have been consumed [113],
and closed loop funding [69, 92] are all examples of funding policies that have been
implemented. Closed loop funding refers to the policy where resource providers
receive currency spent during local usage and this income can later on be used to
consume resources elsewhere. Whether fake or real money is used as a currency
can change the user behavior drastically. Risk attitudes of users tend to change, for
example. Lessons learned from experimental economics [19] tell us that the most
truthful behavior is obtained when real money is at stake. Fake money, on the
other hand has the advantage of allowing full control over inflation, which is why
it is preferred in most experimental settings. A compromise is to provide exchange
rates between fake and real money.

Price-Setting

The most distinguishing feature of a computational market is how prices are set.
The simplest approach is to assume that the providers manually set prices based on
observed demand [63, 6, 99]. One critique of this approach is that price levels adapt
very slowly and some price fluctuations may be missed completely. The result is lost
profit for the provider caused by truncated demand during peak-demand periods
and utilization loss during low-demand periods.

The most popular approach in computational markets is to use some form of
auction to extract the market price directly from users’ bids. Examples of auc-
tions that have been used include open-bid English [113] and Dutch auctions [43]

16 CHAPTER 2. FOUNDATION

(auctioneer increases or decreases prices until a single bidder is found); sealed-bid
second price auctions a.k.a. Vickrey auctions [120]; and continuous double auc-
tions [71, 20], typical for the stock market where both buy and sell requests are
posted concurrently and dynamically matched. More advanced combinatorial auc-
tions, where preferences across multiple resource can be expressed in bundles, have
also been used [30, 18]. They typically rely on centralized evaluation, and are
known to be NP-complete and thus require heuristics to solve. There are four main
critiques against auctions. First, they rely on high market liquidity to be success-
ful, in particular continuous double auctions are known to fail for this reason [91].
Second, bidders have to wait for auction clearing (resolution) times before they get
their allocations. Third, there can be extensive computational overhead when bid-
ding for resources under contention, leading to a slow adjustment to market prices.
Fourth, auctions may cause unpredictable and heavily fluctuating price levels.

To achieve price stability more rapidly, market equilibrium prices may also be
found directly by the providers using mathematical and economic optimization
models such as Walras’s tatonnement process, Smale’s equilibrium method or gra-
dient descent methods [128, 66, 125]. The main drawback of these methods is that
they are complex and hard to implement efficiently in large-scale systems. Simpler
methods of finding stable prices include proportional share auctions [119, 69, 23],
where allocations are proportional to the bid a consumer places and inversely pro-
portional to the sum of all other bids for the same resource; and prices based on
exponential smoothing of observed demand in the past [36].

2.4 Forecasting

The most efficient resource allocations can be inferred a posteriori by analyzing the
complete set of usage interactions in the system. Hence, models that can predict
future usage accurately can make more efficient allocation decisions. For example,
a long job of little importance with a large footprint of resource usage may be
rejected or delayed if short and important jobs are expected to arrive. Demand
forecasts can, furthermore, be exploited both by users to determine the optimal
time to submit their jobs, and by providers to price capacity reservations. In that
sense, a forecasting tool can have a self-optimizing effect on the system. More
specifically, forecasts provide the foundation when making a priori estimates of the
risk of missing deadlines, or losing profit. To make good predictions the dynamics
of the demand needs to be effectively captured and reproduced. A good predictor
is recognized both by its accuracy, most estimates are close to the true value, and
its reliability, even the worst estimates are close to the true value. Below a number
of techniques, known from the fields of economics and econometrics, to forecast
demand and to estimate risk are discussed.

2.4. FORECASTING 17

Central Limit Theorem

The central limit theorem (CLT) due to de Moivre and Laplace [82] postulates
that any sum of independent and identically-distributed (iid) random variables
with finite variance tend to a normal distribution. The CLT implies that the mean
obtained from a large enough sample is the best predictor for future point estimates.
This property is also known as the law of large numbers due to Bernoulli and
Poisson [55]. It also implies that the risk of outliers can be easily obtained from the
sample variance, and the known Gaussian distribution function. A typical usage of
the CLT is to create (1− α)100 per cent confidence bounds of a prediction as

µ± σΦ−1(1− α
2

) (2.6)

where µ is the sample mean, σ the sample standard deviation (square root of
sample variance), and Φ−1 is the inverse of the standard Gaussian (zero mean and
variance 1) cumulative distribution function (CDF). For example based on the CLT
assumptions and measured values of µ and σ of a large enough sample (typically at
least 30 data points) we can claim that 95 per cent of future values will lie within
the interval [µ − 1.96σ, µ + 1.96σ]. Many known processes such as the Poisson
process and Brownian motion or Wiener processes adhere to the assumptions of
the CLT, and can thus be accurately estimated with this technique. The CLT
assumptions are however violated for processes that can be described by so called
scale-free or power law distributions with infinite higher moments, such as the
Pareto distribution. Furthermore, it does not hold if the samples are correlated,
which is typical in time-dependent series. Demand for computational resources has
been observed to be both highly time-correlated and exhibit extreme peaks as a
result of highly skewed, heavy tailed power law distributions [40, 60].

Time Series Analysis

The observation that samples often exhibit correlations in time, is the cornerstone
of the theory of time series analysis [122, 108]. Time series analysis is heavily based
on the theory of regression analysis where maximum likelihood algorithms are used
to fit data trends. The time series models, however, introduce additional restric-
tions on the model parameters to ensure stationarity. Stationarity here means that
the mean and the variance are stable over time. If a series is not stationary it is
transformed or detrended using techniques such as differencing (studying the dif-
ference or the increments of subsequent values), and power (Box-Cox) transforms.
Time series analysis methods fall into two broad categories, the time-domain ap-
proach and the frequency-domain approach. We will focus on the former as it uses
more easily tractable and simple mathematical models. The advantage of the time
series approach is that it provides very generic mathematical formulations encom-
passing a wide range of widely used statistical techniques such as moving average,
exponential smoothing, and random walk or Wiener process modeling. The general

18 CHAPTER 2. FOUNDATION

idea is to measure the correlations in time, and then to reconstruct models that re-
produce these correlations as accurately as possible. The models are built up from
two parts; a regressive part representing the correlation between the current and
previous values; and a moving average part representing the correlation between a
random error in the current value and previous random errors. These models are
in their general form referred to as ARIMA(p, d, q) or autoregressive integrated
moving average models with regression order p, differencing order d and moving
average order q. The orders determine how far back in time correlations should
be represented. The mathematical representation for a time dependent series Z at
time t is:

φp(B)(1−B)dZt = θ0 + θq(B)at. (2.7)

where φp(B) = (1 − φ1B − · · · − φpBp), θq(B) = (1 − θ1B − · · · − θqBq) and B
is the backshift operator where (1 − B)Zt = Zt − Zt−1 The constants φ and θ
are determined by studying the autocorrelations (correlations between time lags in
the same series) of the time series typically using autocorrelation function (ACF)
and partial autocorrelation function (PACF) plots. The plots allow the estima-
tion of p, d, and q, and variations of maximum likelihood or other regression and
correlation fitting techniques can then be used to estimate the most likely values
of the constants. Once the model dimensions and the parameters are found the
model can be used to make forecasts. One weakness of these models is that predic-
tions typically quickly converge to a mean value or diverge to infinity. But short
term (e.g. 1,2,3 steps ahead) forecasts can be very accurate, and it is straight-
forward to construct confidence intervals analytically. Other weaknesses include:
the stationary assumption may be violated beyond transformational repair, and
the model dimensions and parameters themselves may not be stationary. Various
extensions of the ARIMA model try to address these shortcomings, such as the
popular GARCH model by Engle [39] which models heteroskedasticity or volatility
changes over time. In general, though, time series models have been more success-
ful in describing and understanding time-correlated processes than predicting them.
For example a random walk process is described as an ARIMA(0,1,0) process, an
exponential smoothing process can be described by an ARIMA(0,1,1) process, and
standard q-order regressive models reduce to ARIMA(q,0,0).

Density Estimation

To make predictions that focus on confidence bounds and general distributional
properties of a time series as opposed to point estimates, a density estimation [106]
predictor may be used. The approach generalizes the predictor in Equation 2.6 and
allows for arbitrary underlying distributions, instead of assuming normal or Gaus-
sian distributions. The general idea is that summary statistics are collected from
samples and then an approximation of the density function, CDF, or its inverse,
the percent point function, PPF, is constructed. To obtain a confidence interval
the appropriate percent points serve as input to the PPF. The simplest approach is

2.5. ADMISSION CONTROL 19

to build a histogram with bins recording the portion of the samples falling within
fixed intervals within the full range of values. The number of bins used will affect
the results, and thus needs to be chosen with great care. One popular approach is
the Freedman-Diaconis binning [50] algorithm which looks at the distance between
quartiles to determine the number of bins to use. This approach still produces
unreliable results if the range of values is very large, which is the case in power law
or heavy tailed distributions. Moreover the optimal bin size to use may change over
time, e.g. when there are regime shifts in the series. To resolve these shortcomings
smoother functional representations are used. These functions may be constructed
by explicitly smoothing empirical distributions (shaving off outliers and shrinking
the distance between local samples of values), by fitting the moments to generic
density functions, or by optimizing the entropy given a set of restrictions such
as moment estimates. Explicit smoothing has the problem of knowing when to
stop smoothing the distribution, the more you smooth the further away from the
sample distribution you get and the closer you get to a straight line through the
mean. Capturing the empirical distribution is also expensive computationally, and
not practical for on-line ad hoc predictions. Generic distributional models include,
generalized extreme value theory models (generalization of Weibull which in turn
generalizes normal and heavy tailed distributions) and deviation theory bounds
distributions (e.g. Chebyshev and the 3σ-rule [42]). Finally, the entropy model is
based on information theory results obtained by Shannon [27]. The approach is
known as MaxEnt [129], since it maximizes the entropy defined as

H(X) = −
∑

i

p(xi)log(p(xi)) (2.8)

where p is Pr(X = xi) or the probability of a given outcome, xi, and the sum-
mation is done over all possible outcomes of the random variable X. The entropy
intuitively represents the level of randomness (or information contained in a model).
So the idea is to maximize the randomness allowed by the model (encompass as
many extreme deviations as possible) given a set of restrictions in the form of mo-
ments (typically the first three or four). If only the first two moments are used
the maximum entropy algorithm produces the normal distribution model. The
algorithm can be implemented using a standard optimization algorithm such as
gradient descent. It has the nice property that not only the mean and variation
can be mimicked in the model but also the skewness and the kurtosis behavior.
However, a high skewness or high kurtosis will cause problems for the model to
converge, so they are sometimes not fit directly but estimated through transforma-
tions. In any case, the risk of not converging imposes both computational overhead
and unreliable result during highly unstable periods (e.g. regime shifts).

2.5 Admission Control

Purely statistical models assume that there is a correlation between the current
value and the past history of values observed, and that some structural pattern

20 CHAPTER 2. FOUNDATION

or trend can be extracted. They also assume that there is an opportunity for
statistical multiplexing, i.e. some users can preempt others while still meeting the
statistical guarantees for everyone. In cases where these assumptions are not true,
a model where the provider can reject admission is needed. A system without the
capability of making explicit rejections is known as a best-effort system, whereas a
system which makes explicit decisions about rejections is known as a reservation
system. Admission controllers can be designed to optimize the utility for users or
the profit for providers. The general goal is to reject as few users as possible to
avoid underutilization, while violating (preempting) as few existing commitments
or contract reservations as possible. A good admission controller ensures that high
priority tasks receive a high level of service even when the system is overloaded. A
provider deciding on whether to use a best-effort or a reservation model must make
tradeoffs between optimizing scalability, reliability, and utilization (best-effort) or
offering higher guarantees to users (reservations). Higher guarantees thus come at
a cost for the provider and would therefore naturally result in a premium price for
users. The key issue to solve is hence to set the price for reservations to compensate
for the incurred costs while still meeting the price and guarantee preferences of the
users in the system. Since the price depends on supply and demand, the expected
load (demand) as well as the capacity to offer (supply) on the reservation versus
best-effort (spot) markets must be taken into account.

Traffic Engineering

The Internet was designed as a best-effort service in terms of bandwidth at its core
in order to be reliable and scalable. But some applications need more stringent
flow performance guarantees to operate, and thus various QoS models were pro-
posed on top of the core infrastructure. DiffServ [8] uses a decentralized approach
where packets are marked with per-hop-forwarding behavior (PHB) priorities, at
network boundary nodes, which are enforced at the core nodes. Services built on
top of the DiffServ architecture can give guaranteed boundaries of throughput, de-
lay, jitter and loss at differentiated price levels, to accommodate a heterogeneous
set of applications with different risk and guarantee preferences. The IntServ [11]
architecture on the other hand allows end-to-end network paths to be reserved by
applications with real-time requirements, such as on-demand media streaming. The
fundamental change to the original best-effort model of the Internet is that flow
specific state is maintained in the routers at the core of the network. This state
allows the routers to enforce absolute end-to-end reservations of bandwidth for spe-
cific flows using admission control. DiffServ is in general seen as the more successful
attempt of the two at ensuring QoS in IP networks as it is more scalable and ro-
bust. The usefulness of the models depends heavily on whether there is a need to
explicitly resolve resource contention conflicts between different applications and
whether these applications are willing to pay the additional cost incurred by the
providers. However, due to the massive improvement of bandwidth performance
and availability in recent years these models have only had limited success and very

2.6. STATISTICAL TESTS 21

marginal impact on the Internet infrastructure as a whole.

Queuing Network Theory

Most computational systems can be represented as a set of connected resources
with different service times, queue sizes and arrival rates. Markov chain models
(states with memory-less transition probabilities) can then be applied to provide
throughput and response time guarantees to users as well as provide capacity plan-
ning recommendations to the providers based on measured service times and arrival
rates. The fundamental result often used is Little’s theorem [74]:

N = λT (2.9)

which states that the average number of users, N , in a stable system equals the
inter-arrival rate, λ, of users times the average time, T , users spend in the system.
Queuing network models have been particularly popular in Web server admission
control and capacity planning applications, as both service times and arrival time
models are simple and predictable. However, as Web servers provide more advanced
services in addition to simple file retrieval, the queueing models become harder to
apply.

2.6 Statistical Tests

Statistical tests are used to confirm or reject hypotheses (conjectures) formally and
quantitatively in order to make claims about experimental results with different
levels of confidence. Typically 5 per cent confidence levels are used, which means
that there is less than 5 per cent probability that the test results could have been
obtained by virtue of pure randomness and not because the hypothesis is true.
More formally, if the significance level (confidence) of a test is a, it means that the
probability of rejecting a hypothesis given that it is true, Pr(Reject|True) = a.
To determine whether to reject or not to reject (supporting but not accepting) a
hypothesis a test statistic T , is used. If the test statistic of an experiment falls
within a range (lower, upper), the significance level a, mapped to that range by
some appropriate distribution is said to be the significance level of the result.

Monte Carlo Bootstrapping

One issue with these tests is that they depend on the size of the sample generated
by the experiment. Furthermore, most standard statistical tests have been designed
with the assumption that a very small sample is taken from a very large population.
In a computational setting with very large samples of job traces, one might in
some cases rather like to test a theoretical model on many small subsamples of
the entire trace, and then make statements about how well the model fits these
subsamples. The technique of generating a large number of samples and evaluating

22 CHAPTER 2. FOUNDATION

their individual fits to models is known as Monte Carlo bootstrapping [35, 32]
and it was conceived as a way to leverage the power of automated computational
verification to test large parameter spaces. A typical use-case is to run risk scenario
evaluations of different portfolios of securities in finance.

Kolmogorov-Smirnov

One of the most popular tests is the Kolmogorov-Smirnov (K-S) test, which takes
two distributions, typically one generated by a standard model and one generated
by an experiment, and then determines whether they are the same. In essence the
K-S test measures the maximum difference between the CDFs of the distributions
and is thus both intuitive and easy to calculate. Formally, the K-S statistic is
defined as:

D = sup
x
|Fn(x)− F (x)| (2.10)

where Fn(x) is the empirical distribution function obtained from the experiment,
and F (x) is the distribution function of the standard model.

Distributional Confidence Bounds

The Central Limit Theorem is commonly applied to simplify the test procedure.
If one can assume that the experimental results have a normal distribution, e.g.
because of a large number of independently drawn samples, then the z-test may
be applied. The z-test uses the normal (Gaussian) distribution to calculate the
lower a/2 and upper 1 − a/2 confidence bounds of an experimental measurement
with significance level a, i.e. the probability is 1 − a that the measured variable
is within the confidence bounds given the mean and variance of its distribution.
However, when the sample size is small (typically less than 30) the z-test may not
be applied, because the sample variance can then no longer be assumed to be the
population variance. In this case the t-student test may be applied instead. It de-
termines whether the mean of two samples are the same given their sample means
and variances. Instead of constructing the confidence bounds using the Gaussian
distribution they are taken from the t-student distribution. If the population dis-
tribution model is known, the confidence bounds can be calculated in the same way
as for the z and the t-student tests using the percent point (quantile) function of
the known distribution. Alternatively if the model is unknown but the sample is
large enough the empirical CDF/PPF may be used as basis for the bounds.

Time-Series Regression Tests

When constructing models of time-series, a large number of statistical tests are
applied at different stages of the analysis. Here we just summarize some of the most
important ones used in this thesis. The Box-Ljung test [75] is used to determine
whether the autocorrelations (lagged correlations) of the residuals of a model are

2.6. STATISTICAL TESTS 23

significant, i.e. if the model represents the data well. The Dickey-Fuller test [33] is
used for unit-root testing to determine whether the series needs to be differentiated
and to determine if the process is well represented by a memory-less Brownian
motion or Wiener process where the correlation between the current and last value
is 1, that is the movement of the process is fully determined by white noise (Gaussian
randomness). The t-test, and ANOVA (Analysis of Variance) tests [82] such as the
R2-test are also very common in time series regression analysis to determine how
many lags to include in the ARIMA model, and how well the models explain the
variance of the data respectively. The R2 statistic for n data points is generally
computed as:

R2 = 1−
∑n
i (xi − ri)2

∑n
i (xi − µ)2

(2.11)

where xi is data point i, ri is the regression model point i, and µ is the mean of all
data points. As the model fit improves, the R2-statistic approaches 1.

Chapter 3

Model

In this chapter we present our Proportional Share Market Prediction and Admis-
sion Control (PS-MP/AC) model. The goal of PS-MP/AC is twofold, first it should
allow users to bid for resources according to their risk preferences, and second it
should allow providers to price admission control services. There are four layers
in the model. The bottom layer is responsible for allocating proportional resource
shares, the second layer collects and summarizes price history, the third layer gen-
erates density estimation based predictions, and the top layer comprises two com-
ponents, one that serves as a risk probing interface to users and one that helps
providers control admissions (see Figure 3.1).

Figure 3.1: Proportional Share Market Prediction and Admission Control Model.

25

26 CHAPTER 3. MODEL

3.1 Proportional Share Allocation

In the proportional share allocation model, each consumer obtains a share of the
resource which equals the ratio of the weight of the consumer to the sum of all
weights of consumers of the resource,

qj =
wj

∑k
i=1 wi

(3.1)

where qj is the resource share obtained by consumer j, wj the weight of consumer
j, and k the number of consumers. The weights can all be equal in which case the
allocation reduces to 1/k for all consumers. In our market-based resource allocation
model the weights are set by bids made by the individual consumers, and the sum
of all bids on a resource represents the price, c.

c =

k
∑

i=1

bi (3.2)

where bi is the bid of consumer i.

3.2 Statistics Collection

The next layer in our model is responsible for continuously collecting and summa-
rizing historical prices for resources. Statistics are provided in the form of a series
of sample moments over different time intervals. Two alternative models have been
implemented to collect the moments, exponential smoothing used in [104, 103], and
time horizon slots used in [105].

Exponential Smoothing

The moments for a time window of size n samples are calculated as follows:

µi,p = αµi−1,p + (1− α)cpi
µ0,p = cp0

(3.3)

where µi,p is the pth-order moment in snapshot i, α = 1−1/n, and ci is the sample
price value in snapshot i. The advantage of this approach is that it is very flexible
and easy to implement but it does not handle regime shifts symmetrically. A regime
shift from high to low values will linger longer in memory than a regime shift from
low to high values. This is an issue particularly for longer time intervals.

Time Horizon Slots

To address the asymmetric memory issue, a second model was designed. In this
model running sums of moments are aggregated in time slots at different scales or

3.3. DENSITY ESTIMATION 27

time horizons, with one series of time slots per scale. The series at scale dimension
d, for moment m, at time t contains

S(d) =

{

d−1
∑

i=0

cmt−i,

d−1
∑

i=0

cmt−d−i, · · · ,
d−1
∑

i=0

cmt−s×d−i

}

(3.4)

where s is the number of slots in the series, which can vary between different
dimensions. For example, an hour dimension would have 60 slots, a day dimension
24 slots, a week dimension 7 slots, and a month dimension 30 slots. The mth-order
sample moment over the last n-scale(d) time interval can then be calculated as:

µ(m) =
1

n

n
∑

j=1

Sj(d)/d (3.5)

where Sj(d) is the jth slot in the series of dimension d. As an example, to get the
average (first moment) over the last three-day time interval at time t and assuming
new values appear every minute, we have m = 1,n = 3, d = 60 × 24 = 1440, and
get

(

∑1439
i=0 ct−i

)

+
(

∑1439
i=0 ct−1440−i

)

+
(

∑1439
i=0 ct−1440×2−i

)

3× 1440
(3.6)

We note that a separate series of slots is needed for each moment and each dimension
that is supported, and the moments obtained are moments about the origin (as in
the exponential smoothing model). The advantage of this model is that the accuracy
of historical moments is much higher. However, it requires some more data to be
gathered, and it is thus not feasible if a large number of moments is to be collected.

To calculate the moments about the mean (central moments) which are needed
to obtain, e.g. the standard deviation, skewness and kurtosis values the binomial
transformation [90] can be applied:

momm =
m
∑

j=0

(

m

j

)

(−1)m−jmom′j × µm−j (3.7)

where momm is the mth-order central moment, mom′j is the jth-order moment
about the origin, and µ is the sample mean.

3.3 Density Estimation

To make predictions based on the statistics collected, we can first use a time series
smoothing technique to predict the T -step ahead moments. Since the most common
use case is to predict the 1-step ahead moment and it can be approximated well
with the 1-step back moment directly, this smoothing phase may be skipped. We in
other words assume an ARIMA(0,1,0) model or a random walk process. For T > 1

28 CHAPTER 3. MODEL

more advanced ARIMA models may be applied. Using the collected and possibly
smoothed moments we create a functional approximation of the CDF and PPF of
the price. In our model we apply the Chebyshev inequality [42] and 3-σ rule [118] to
extract the CDF from the first two moments as follows. The Chebyshev inequality
postulates that

Pr(|C − µ| ≥ kσ) ≤ 1

k2
(3.8)

where C is the random variable representing the price c, µ is the sample mean
and σ the sample standard deviation. The proof of this bound can be sketched as
follows:
Define I(|X|≥a) to be 1 if |X| ≥ a and 0 if |X| < a. Thus we have

aI(|X|≥a) ≤ |X|
E[aI(|X|≥a)] ≤ E[|X|]
Pr(|X| ≥ a) ≤ E[|X|]/a

which is the Markov bound. Now Setting X = (C − µ)2

and a = (kσ)2 we get

Pr(|C − µ| ≥ kσ) ≤ 1/k2

(3.9)

This bound can be tightened in two ways. First by considering the one-tailed
Chebyshev ineqality called Cantelli’s inequality [42]

Pr(C − µ ≥ kσ) ≤ 1

1 + k2
. (3.10)

and second by applying the 3-σ rule (Vysochanskii-Petunin inequality) which tight-

ens the bound for unimodal distributions for k >
√

8
3

Pr(|C − µ| ≥ kσ) ≤ 4

9k2
(3.11)

The resulting CDFs are then obtained as follows, using Cantelli’s tightened Cheby-
shev bound as our example:

Pr(C − µ ≥ kσ) ≤ 1

1 + k2

Pr(C ≥ kσ + µ) ≤ 1

1 + k2

1− Pr(C ≥ kσ + µ) ≥ 1− 1

1 + k2

Pr(C < kσ + µ) ≥ 1− 1/(1 + k2)

(3.12)

This last inequality can be used as a conservative bound for the price CDF, i.e.
Pr(C ≤ c), where c = kσ+µ. In other words the likelihood is at least 1−1/(1+k2)
that the price is less than c but most likely greater. Hence we define

3.4. RISK PROBING 29

CDF (c) =







1− 1
1+k2 , k ≤

√

8
3 ,

1− 4
9k2 , k >

√

8
3 .

(3.13)

where k is c−µ
σ

, and the PPF (inverse CDF)

PPF (p) =







µ± σ
√

1
1−p − 1 , k ≤

√

8
3 ,

µ± σ
√

4
9(1−p) , k >

√

8
3 .

(3.14)

3.4 Risk Probing

With approximations of the CDF and PPF of the price in our market, we can now
return to the proportional share definitions in Equation (3.1) and (3.2) to make
predictions regarding performance (expected resource shares), bids, and guarantees.
The model can answer three questions posed by resource consumers to probe the
risk involved in bidding for resources.

1. What is the performance q that can be obtained with a g100 per
cent likelihood if b monetary units (e.g. dollars) are bid? Our model
gives:

q =
b

b+ PPF (g)
(3.15)

2. What should be bid, b, to obtain a g100 per cent likelihood that
the performance will not drop below q? Our model gives:

b =
PPF (g)q

1− q (3.16)

3. What is the g100 per cent likelihood that the performance will not
drop below q when bidding b? Our model gives:

g = CDF

(

(1− q)b
q

)

(3.17)

To provide information about the uncertainty of the predictions and the model
itself, we also calculate empirical prediction bounds [56, 126]. The PPF and CDF
will then be applied to historical values of the price, and upper percentiles of the
results will be used as opposed to the current point estimates. This gives a sense
about how stable the price predictions are over time and how far ahead in time it
makes sense to predict before the prediction bounds become too wide. The three
questions above can thus be extended with a fourth parameter describing which
upper prediction bound percentile to use. This percentile can be interpreted as the

30 CHAPTER 3. MODEL

likelihood that the prediction made is true. We also note that the PPF function
can be used instead of the current price in a game theoretical best response agent
algorithm to determine bids and performance risks of bids across a set of hosts
when competing for resources with other consumers. This approach is described in
more detail in [104].

3.5 Admission Control

The prediction model (CDF and PPF approximations) can also be used by the
provider to determine which resource contract requests to admit and which to
reject. In our model the admission decision is made based on two admission tests
that both have to evaluate to true to grant admission. The first test is whether
the bid associated with the request is greater than a certain percentile of the price
distribution of the resource requested, i.e.

(1− q)b
q

≥ PPF (g) (3.18)

where q is the resource share (performance) requested by the user, b is the user’s
bid, and g is a guarantee level set by the provider to account for non-preemption
loss. The basic idea is to force consumers to pay more for the additional service
of not allowing preemption of admitted requests. The additional price paid can
be seen as a compensation for the provider’s loss of rejecting future higher pay-
ing requests. The second test is whether the contract request would violate any
previously admitted contracts, determined as

∀s ∈ S :

n
∑

h

bh(s)

bh(s) + bh(r) + c
≥ qs (3.19)

where S is the set of all existing contracts including the requested contract, n is the
number of resource hosts, bh(s) is the bid on resource host h in contract s, bh(r)
is the bid on resource host h in the requested contract r, and qs is the minimum
performance share promised in contract s.

Chapter 4

Software

In this chapter we present the two key software contributions related to the main
theme of this thesis, statistical methods for computational markets. The first con-
tribution is an economic broker developed for academic High Performance Com-
puting Grid applications, and the second contribution is the proportional share
market prediction and access control implementation. Both of these contributions
are based on a marked-based resource allocation system, called Tycoon. Although
the core part of Tycoon was developed by others we describe it here to set the
context for the software contributions described in Section 4.2 and Section 4.3. For
more details on which parts of Tycoon were contributed to, see Chapter 5.

4.1 Tycoon

Tycoon [68, 69, 67] is a market-based resource allocation system allowing resource
shares to be auctioned out proportionally to users’ bids. In short it implements the
resource allocation game and the best response agent as described in Section 2.2.
Furthermore, Tycoon implements resource virtualization as described in Section 2.1.
A user i bids on a resource by specifying a total bid size bi and a bidding interval
ti. The bid is then calculated as bi

ti
. If the total size of a resource is R, then ri, the

total amount of resource allocated to user i over a period P , is

ri =
bi
ti

∑n−1
j=0

bj
tj

R (4.1)

If qi is the amount of the resource consumed by user i in period P , then i pays
at a rate of:

si = min(
qi
ri
, 1)
bi
ti

(4.2)

Note that payments are made, as common for a utility, per time unit on a continuous
basis. A resource exposes its price y as the sum of all the currently paid rates on

31

32 CHAPTER 4. SOFTWARE

a resource,
∑

si. A worst case bound for this price is thus the sum of all bids
normalized by time,

∑

bi/ti, which can be used as a conservative assumption in
predictions.

To determine the best response function yielding a distribution of bids across a
set of resources given a total budget and the resource prices, Tycoon implements
the best response algorithm [41] that solves the following optimization problem for
a user: from a set of n resources pick the set {xij ...xin} that

maximizes Ui =
∑n
j=1 wij

xij
xij+yj

subject to
∑n
j=1 xij = Xi, and xij ≥ 0 (4.3)

where Ui is the utility of user i across a set of resources, wij is the preference of
machine j as perceived by user i (for example the CPU capacity of the machine),
xij is the bid user i should put on host j, yj the total of all current bids or the
price of host j, and finally Xi is the total budget of user i.

The prior beliefs of the demand used as input to the algorithm are represented
by the yj values, which are reported by all resource auctioneers after each completed
bidding and accounting cycle, typically once a minute. However, users are allocated
their appropriate shares instantaneously after bidding. Furthermore, a bid may be
placed at any time.

4.2 Market-Based Grid Resource Broker

As part of our investigation of service-level management in Grid systems we de-
veloped a Grid broker on top of Tycoon (see Figure 4.1), which allows Grid HPC
users to prioritize their jobs in an incentive-compatible way by transferring Tycoon
credits to the broker. The broker receives credits from the user and automatically
creates local virtual host accounts to execute the job on the resources picked by the
best response algorithm described in Equation (4.3). The jobs run on each host at a
service level determined by the Tycoon allocator proportional to the bid determined
by the best response algorithm. The actual enforcement of the service level is done
by the virtualization engine in Tycoon, which is Xen [34]. An important addition
to Tycoon that we also developed was a tool for Grid users to predict future prices
of resources in order to make better decisions on how much money should be spent
on a resource to get a certain performance level (see Section 4.3 for more details).

The user interface of the broker uses the Nordugrid ARC meta-scheduler [110]
which in turn is based on the Globus Toolkit [46], both extensively deployed in
production Grid systems worldwide.

Our Grid market broker also performs a number of job related tasks on behalf
of the user, and it is important to note that these tasks are all performed as a result
of the user transferring additional money to the broker to maintain the incentive-
compatible properties of Tycoon in the Grid market. Some of the tasks we added
to the broker are enumerated here:

4.2. MARKET-BASED GRID RESOURCE BROKER 33

Figure 4.1: Tycoon Grid Market Architecture. Grid clients attach a transfer token
to their ARC metascheduler XRSL job description before submitting the job with the
regular ARC client. The job is received at the back-end Tycoon cluster and is first parsed,
authenticated and then pre-staged (input transferred to the back-end access node) by
the ARC/Globus middleware. The Tycoon node scheduler then picks the nodes to run
on based on the funding provided and charges the bank account associated with the job
(transfer token). The individual bids on nodes are determined using the best response
algorithm, and the current node prices obtained from the Tycoon SLS service. Finally a
virtual machine is created to host each subjob and the job script is run.

• Job Payments. A Grid user can pay for her jobs by attaching a transfer to-
ken to the job submission. The transfer token is a receipt of a credit transfer
from the user account to the Grid broker account. The token maps the Grid
identity to a Tycoon bank account user identity. The token can also be issued
by a third party to clients who do not have any Tycoon components installed,
and thereby use the token as a gift certificate. More commonly, though, the
token will be created as part of the job submission process on the client side.
This design allows the broker to also utilize the full VO-authorization man-
agement support provided by the Grid job manager, a.k.a. the gatekeeper.
It could be seen as a combination of identity-based authentication, policy-
based VO authorization and then finally capability-based authorization in
the Tycoon layer.

• Price Prediction. Future prices, performance estimates, at certain guaran-
tee levels are communicated to the user in order to give guidance as to how
much a job may cost (see Section 4.3).

• Job Boosting. A job that is running slower than first anticipated and that
is not likely to meet its deadline can be boosted with initial funds without

34 CHAPTER 4. SOFTWARE

resubmitting the job.

• Job Snapshots. It is hard to tell from a generic infrastructure perspective,
how close the job is to completing and whether it is therefore likely to meet its
deadline. We therefore added an interface that allows users to get snapshots
of their output files while the job is still running.

• Job Stage-In, Stage-Out. Input files are seamlessly transferred from the
user to the compute node that was selected to run the job, and output files
are gathered and transferred back to the user when a job has completed.

• Multijob Support. If multiple jobs are to be run at the same time it is
preferrable to submit them all at once and let the best response algorithm
take care of the optimal distribution and funding of them on each host. We
therefore provide support for submitting one Grid job with different inputs
for each individual compute node subjob.

• Runtime Setup. We use the YUM1 installer to automatically provide a wide
range of installation packages that may optionally be installed on demand
before the job is run to customize the compute node configuration easily for
the specific application needs and dependencies.

• Bank Account Isolation and Refunds. Each Grid user using our broker
gets a separate local bank account used to fund end refund jobs. This improves
accounting and isolation of individual user jobs, and allows the Grid broker
to maintain the Tycoon property that users only pay for what they use.

• Virtual Machine Recycling. A user can create at most one virtual machine
per compute node at any point in time to avoid the user competing with
herself, and creating a higher price of the resource than necessary. It further
helps in terms of avoiding starvation problems on a machine, since there are
physical memory limitations in the virtualization engine of maximum number
of virtual machines that can be served. In general the more slices a machine
can handle the better effect does the market approach have. However, there
is also substantial overhead incurred when creating and starting up a new
virtual machine and installing the runtimes, so we allow the user to reuse
virtual machine runtimes between job submissions (but not scratch space),
but only if the idle virtual machine was not outcompeted by other users in
the meantime. The reason why we do not support scratch space reuse is that
the VM reuse should be transparent and only be detectable by means of a
perceived performance improvement.

• Seamless Backend Integration. In order to allow seamless backend de-
ployment of the Tycoon Grid scheduler into any Grid middleware job submis-

1Yellow dog Updater, Modified. http://linux.duke.edu/projects/yum/

4.3. MARKET PREDICTION AND ADMISSION CONTROL 35

sion infrastructure we provide the same command line interface as OpenPBS 2,
one of the most common cluster job submission toolkits.

4.3 Market Prediction and Admission Control

The Proportional Share Market Prediction and Admission Control Model (PS-
MP/AC), presented in Section 3, was implemented as a set of cross-platform Python
classes. The overall design of PS-MP/AC is depicted in Figure 4.2. The modular
design increases generality and component reuse. The Statistics Collection classes
can handle any stream of time series data, such as prices from any of the resources
in our computational market. The Density Estimation classes can be reused by
both the Risk Probing class supporting the user and the Admission Control class
serving the provider. Furthermore, only the Risk Probing and Admission Control
classes are aware of the underlying proportional share allocation mechanism.

Below we discuss the implementation of the five main components of the system.

• Proportional Share Allocation. This part comprises all the components
of the core Tycoon resource allocation system. Tycoon implements a propor-
tional share spot market with best effort guarantees enforced by decentralized
auctioneers deployed at every physical machine in a cluster hosting virtual
machines. The auctioneers publish information about their status and price
to a centralized service location service. The service location service is then
queried by best response agents which implement the game theory based best
response optimization described in Section 4.1.

• Statistics Collection. Each auctioneer has a set of classes collecting his-
torical price values for all the resources supported. The historical values are
summarized into a parsimonious set of statistics that are published to the
service location service. The statistics include a list of statistical moments
in different time intervals and a history of previous moments. A typical con-
figuration is to collect the current mean and variance for the last 5 minutes,
last hour, last day, last week, and last month; and additionally three histori-
cal values of these moments that get refreshed periodically. For example the
average price of CPU for the last 7 days, as well as the averages for the last
three weeks updated every 7 days are collected. The current average calcu-
lated is thus only the same as the most recent historical value right after the
historical update has occurred. This semantic difference between current and
historical summary statistics becomes more important the longer the time in-
terval is. The statistics collector must be aware of the combinatorial explosion
of statistics maintained. Each host in the cluster has five distinct resources,
each resource supports four time intervals, with three historical data points
each, and each data point is a list of moments collected. A service loca-
tion service serving a cluster of 1000 machines, would thus need to maintain

2Open Portable Batch System. http://www.openpbs.org

36 CHAPTER 4. SOFTWARE

Figure 4.2: Market Prediction and Admission Control Design.

4.3. MARKET PREDICTION AND ADMISSION CONTROL 37

1000 · 5 · 4 · 3 · 2 = 120000 price points to support the first two moments or
180000 price points to support the first three moments. Assuming that all
hosts report their values once every minute to the service location service, the
service needs to be capable of handling 2000 or 3000 price points per second
when collecting two or three moments respectively. Density estimators which
only rely on the first two moments are thus preferred for scalability reasons.
We have deployed this collection method in a Tycoon cluster with up to 400
hosts without observing any scalability issues, and simulations confirm that
it will scale well beyond that. An excerpt from the time horizon slots im-
plementation in Python, which adds a new datum to the historical values
and calculates the average across a slot series (cf. Equation (3.4) and Equa-
tion (3.5)) can be seen in Listing 4.1. Note that the implementation applies
linear smoothing of the first and last element in a slot series (which has an
additional element) to calculate the moment continuously.

Listing 4.1: Functions to add a new datum and calculate moments.

1 # S − s l o t s e r i e s
2 # c − p r i c e snapshot (datum)
3 # m − moment
4 # S [’ i ’] − number o f i tems in curren t s l o t
5 # S [’ d ’] − dimension o f s e r i e s
6 def add_datum (self , S , c , m) :
7 S [’i’] += 1
8 S [’sum’] += c∗∗m

9 S [’avg’] [−1] = S [’sum’] / S [’i’]
10 i f S [’i’] == S [’d’] :
11 S [’i’] = 0
12 S [’sum’] = 0
13 S [’avg’] . pop (0)
14 S [’avg’] . append (0 . 0)
15
16 def mu (self , S) :
17 n = len (S [’avg’])
18 weight = S [’i’] / float (S [’d’])
19 return ((1 − weight) ∗ S [’avg’] [0] + \
20 sum (S [’avg’] [1 : − 1]) + \
21 weight ∗ S [’avg’] [n − 1]) / (n − 1)

• Density Estimation. The purpose of our probability density estimator is
to continuously construct approximations of cumulative density functions and
their inverses. Empirical representations as well as histogram representations
suffer a high performance penalty if the number of evaluations per model con-
structed is high. As we would like to encourage user risk probing, faster func-
tional (arithmetic as opposed to algorithmic) representations of the density

38 CHAPTER 4. SOFTWARE

function are preferred. A large number of distributional models were imple-
mented as seen in Figure 4.2. The Chebyshev model described in Section 3
rendered the most reliable predictions, verified by means of HPC workload
trace experiments and analyses, while meeting our statistics collection scal-
ability requirements. The Normal estimator fits the first two moments to
the standard normal distribution, The Histogram (value binning) and Raw
(empirical distribution) estimators are benchmark estimators making use of
the entire time series sample (which is not distributed in the live system for
the scalability reasons mentioned above). The MaxEnt estimator uses three
moments to optimize the model entropy through gradient descent, BoxCox
performs a BoxCox transformation to remove skewness and non-stationarity
in the second moment, and then applies the normal distribution estimator.
MixGauss fits a Gaussian mixture model using an expectation maximization
algorithm for a predefined number of mixtures, and the AR estimator im-
plements an autoregressive model predicting a set of point values into the
future and then taking the empirical distribution of these point values. The
Chebyshev PPF is calculated as seen in Listing 4.2 (cf. Equation (3.14)).

Listing 4.2: Chebyshev percent point function.

1 # p − p e r c e n t i l e
2 # mom non−c e n t r a l moments
3 # mu − f i r s t non−c e n t r a l moment (mean)
4 # mu2 − second non−c e n t r a l moment
5 # sigma − s tandard d e v i a t i o n
6 def chebyshev_ppf (p , mom) :
7 mu = mom [0]
8 mu2 = mom [1]
9 sigma = sqrt (mu2 − mu ∗∗2)

10 cantelli = sqrt (1/(1 − p) − 1)
11 petunin = mu + sigma ∗ sqrt (4/(9 ∗ (1 − p)))
12 k = (petunin − mu)/ sigma

13 i f k > sqrt (8 . / 3) :
14 return petunin

15 return mu + sigma ∗ cantelli

• Risk Probing. A resource consumer uses the density estimator in four
different ways: to calculate the probability that the price drops below a certain
value (CDF), to get the price corresponding to a certain likelihood of a price
minimum (PPF), to get an interval within which a certain percentage of the
values will fall (confidence bounds), and finally to estimate the uncertainty
of the prediction model itself (prediction bounds). Risk probing is done by
means of three operations mapping performance, q, guarantees, g, and price
c. The operations with their corresponding mappings are get_performance():

4.3. MARKET PREDICTION AND ADMISSION CONTROL 39

(g × c) → q, get_guarantee(): (q × c) → g, and finally get_price(): (q ×
g) → c. The implementations of these three operations follow intuitively
from the formulas given in Equations (3.15), (3.16) and (3.17). The typical
reason for probing is to determine the diminishing returns of spending more
money on a computation. Capturing risk explicitly with different percentile
points and prediction confidence levels, as described above, allows a provider
to efficiently multiplex between users with different resource requirements
and risk attitudes. The prediction intervals are calculated empirically as
seen in Listing 4.3. An upper bound is created based on the distribution
of past predictions. This distribution is then fit to a CDF/PPF model to
estimate a percentile which is the same as the confidence of the prediction
(the probability of the probability or model uncertainty). Note that the error
distribution is fit separately to allow for e.g. a perfect model and white
noise error assumption. By default the prices are assumed to be distributed
using our Chebyshev model and the errors in predictions are assumed to be
Gaussian. Further note that the implementation allows both an arbitrary
number of historical values and an arbitrary number of moments to be used
when calculating the bound.

Listing 4.3: Empirical prediction bound function.

1 # moms − h i s t o r i c a l s e r i e s o f non−c e n t r a l moments
2 # conf − con f idence l e v e l o f p r e d i c t i o n bound
3 # p − p e r c e n t i l e
4 # order − max order o f moments c o l l e c t e d
5 # m − moment
6 def prediction_bound (moms , conf =.9 , \
7 p =.95 , \
8 ppf=chebyshev_ppf , \
9 err_ppf=normal_ppf) :

10 weight = 1./ len (moms)
11 order = len (moms [0])
12 mom_avg = []
13 for mom in moms :
14 ppf_val = ppf (p , mom)
15 for m in range (1 , order + 1) :
16 i f len (mom_avg) < m :
17 mom_avg . append (weight ∗ ppf_val ∗∗m)
18 else :
19 mom_avg [m − 1] += weight ∗ ppf_val ∗∗m

20 return err_ppf (conf , mom_avg)

The input to the function is a list of historical statistical moments that are
used to run individual predictions and then capture the spread of errors ob-

40 CHAPTER 4. SOFTWARE

tained. Note that the actual outcome corresponding to a predicted moment
appears in the subsequent historical value, and we can thus focus on calcu-
lating the spread of predicted values as a means to determine the stability of
the predictions and as a proxy for model uncertainty.

• Admission Control. A resource provider uses the same density estimation
primitives as a resource user. The main question the provider needs to answer
is however, how much profit will be lost if a resource request that cannot be
preempted is accepted. The likelihood that competing consumers will come
along and increase the price (and thereby increase the provider’s profit) can
be directly obtained from the cumulative distribution function of the current
price. Conversely if the provider wants to set a price that guarantees with a
certain likelihood that no losses will be made if the consumer is admitted the
inverse or the percent point function can be used. Refusing all requests from
users with a budget lower than a certain percent point guarantee is an effective
way of filtering out low priority users during high demand periods. However,
one might conceive periods when there simply is not enough capacity to serve
all users’ needs even with statistical guarantees. This kind of saturation
can lead to price inflation and reduced predictability as was shown in [102].
Explicit capacity management will then have to complement the statistical
guarantees. Capacity management in a proportional share allocation model
is very straightforward. A new request for a share is simply rejected if its bid
will cause the promise of a share to an already existing user to be violated.
A capacity manager component in our access control service enforces this
restriction across a set of hosts and also allows users to set performance limits
across hosts. However, if consumers are given this access control service
without increasing the price of the service beyond the current spot market
price, the provider will make a certain profit loss. In our experiments we saw
that a 60 or 70 percentile of the price could be used instead of the spot market
price and still yield high system efficiency.

Chapter 5

Contributions

In this chapter, the published contributions related to this thesis are presented.
First we discuss the six publications that form the main contribution of this thesis1,
and then additional contributions are summarized. The contribution level of the
author of this thesis is given within parenthesis in each paper headline.

5.1 Main Contribution Papers

The six main publications represent the evolution of approaches leading to the
design and implementation of the Proportional Share Market Prediction and Access
Control model proposed in this thesis. They are presented in chronological order
below.

Paper 1: Market-Based Resource Allocation using Price
Prediction in a High Performance Computing Grid for Scientific
Applications (90% Main Author)

In conference paper2 [104], we present the design, implementation and evaluation of
a Grid resource market for HPC users. This market is further supported by a suite
of prediction models and tools to allow users to spend their money more efficiently
in the market to meet their requirements.

Our solution is to integrate a Grid meta-scheduler and resource manager with
Tycoon. We thus maintain the cross organizational VO-supported PKI security
model and the support for high-volume data transfers to stage in and out jobs to
compute nodes seamlessly. At the same time we leverage the economically efficient
and fair Tycoon model including the best response scheduler and the proportional
share allocator. The integration is achieved by two means, a) a transfer token used

1Attached to the end of this thesis in full.
2Published in the proceedings of the 15th IEEE International Symposium on High Performance

Distributed Computing, Paris, France, June 2006.

41

42 CHAPTER 5. CONTRIBUTIONS

as a lightweight contract simulating a gift certificate to purchase resource shares,
and b) a broker that receives the transfer token attached to the jobs to be submitted,
and funds and executes the jobs according to the best response bidding algorithm.

The experimental results were obtained by running a Bioinformatics application,
from SweGrid, in a cluster managed by the Tycoon Grid Market. We showed that
a continuous service level (as opposed to the binary one in SweGrid) proportional
to the funding of the job could be offered. Account management is also simplified
in our Grid Market, as a result of the local accounts being created on demand and
then dynamically configured to match the service level purchased. Finally, rights
delegation is seamless as it only involves transferring Tycoon credits between user
accounts, and resources get credits when users run jobs. These credits can then in
turn be used to submit jobs. Therefore, our Grid Market has the desirable property
of offering closed-loop (self-sustained) sharing of resources among peers, true to the
foundational idea of the Grid.

Paper 2: Evaluating Demand Prediction Techniques for
Computational Markets (90% Main Author)

In invited workshop paper3 [104], a series of prediction techniques are evaluated us-
ing workload demand traces from the PlanetLab network. The techniques studied
included probability density estimation based on histograms, maximum entropy,
normal distribution approximation, and autoregressive forecasting. Paper 1 as-
sumed a normal distribution of demand. This paper, on the other hand, addresses
and highlights the problem of non-symmetric demand distributions, common in
computational workload traces. Additionally, this paper introduces the general
formulation of long tail percentile predictions as a means to mitigate risk of perfor-
mance degradation of market-based resource allocations.

A PlanetLab trace containing 5-min snapshots of overall demand (Unix uptime
load) across all machines in the network during a 2-month period was used as basis
for the evaluation, and demand densities (cumulative distribution functions) in time
windows from 2 hours to 3 days were approximated and predicted.

The conclusion of this paper was that the maximum entropy technique captured
the distribution asymmetry better than the other techniques, when predicting long
tail percentiles for demand. However, the algorithm had convergence problems
when predicting long time windows.

3Published in the proceedings of the 3rd International Workshop on Grid Economics and
Business Models, Singapore, May 2006.

5.1. MAIN CONTRIBUTION PAPERS 43

Paper 3: A Statistical Approach to Risk Mitigation in a
Computation Market (90% Main Author)

In conference paper4 [103], we propose a general prediction model for statistics
collection and risk mitigation probing, based on the long tail prediction formula-
tion presented in Paper 2. The Chebyshev inequality predictor is introduced, and
evaluated against a normal distribution predictor and a histogram based predictor.
The maximum entropy convergence problem previously mentioned and the high
overhead of the inherent optimization rendered the MaxEnt technique presented in
Paper 2 inferior to the other predictors in terms of scalability in the more realistic
on-line predictions performed in this study.

The study contains two parts. In the first part distributional characteristics of
demand from four computational clusters, PlanetLab, San Diego Super Computer
Center, Ohio Super Computing Center and KTH Parallel Computer Center are ana-
lyzed. We show that all traces (based on demand from job submissions during a one
year period) show signs of distribution asymmetry; time correlations and long term
dependence; and heteroskedasticity5 and long distribution tails. These properties
are then in turn addressed in the prediction model presented using distribution-
free percentile bound estimations, moving prediction time windows, and empirical
prediction bounds.

The main result from the predictor evaluation is that the Chebyshev model
produced the most reliable predictions in terms of accurate percentile bounds and
high success rates of prediction bounds. We also performed a simple prediction
experiment showing that the overall performance of a batch of parallel jobs can
increase by 20 per cent if demand prediction is applied when scheduling jobs as
opposed to basing the scheduling decision on the current demand. An experiment
measuring system overhead was also conducted, which showed that the implemented
predictor scaled very well.

Paper 4: Prediction-Based Enforcement of Performance
Contracts (90% Main Author)

In workshop paper6 [102], the notion of a hybrid reservation and spot market re-
alized by proportional share, and statistical admission control is introduced. The
main point of the paper is to show that statistical guarantees are not sufficient
when the market is saturated by users demanding high guarantees, without the
presence of best-effort users who do not have any guarantee requirements. Further-
more pure statistical guarantees can lead to price inflation, and more skewed and
thus less predictable demand.

4Published in the proceedings of the 16th ACM International Symposium on High Performance
Distributed Computing, Monterey, USA, June 2007.

5Variance changes over time.
6Published in the proceedings of the 4th International Workshop on Grid Economics and

Business Models, Rennes, France, August 2007.

44 CHAPTER 5. CONTRIBUTIONS

To address these issues we implement a mechanism where the provider offers
absolute guarantees in limited time windows at prices set by the statistical models
presented in Paper 3 (Chebyshev bound predictions). The idea is that the users
need to pay a premium price for getting their jobs admission controlled with more
reliable guarantees. This premium price is based on expected demand so that higher
guarantees cost more when demand fluctuates more.

Simulations show that the admission controller can provide guarantees more
accurately during high contention (guarantee saturation) periods while avoiding
inflation.

Paper 5: Autoregressive Time Series Forecasting of
Computational Demand (100% Single Author)

In technical report7 [97], we evaluate techniques to predict demand using Autore-
gressive Integrated Moving Average (ARIMA) models. The motivation for this
evaluation was that we saw problems with the exponential smoothing of statistical
moments, introduced in Paper 3, in the live market during regime shifts, when
the demand level changed. The standard procedure for constructing and evaluat-
ing ARIMA models is used to study different moment smoothing techniques for
the statistics collected in our model before it is sent to the risk probing predictor.
Traces both from PlanetLab and our proportional share market (Tycoon) are used
in the evaluations.

First the general model structure including regression, integration and moving
average orders, is evaluated using a sample part of the data. This model structure
is then instantiated with parameter values estimated continuously from a separate
evaluation part of the data, and used for predictions in different time windows. The
predictions performed are designed to mimic the on-line predictions performed in
our computational market.

The results of this study show that a random walk model where no moment
smoothing is done performs best for one-step-ahead predictions, whereas
ARIMA(1,1,0) and exponential smoothing models perform better for two- and
three-step-ahead forecasts. As a result we perform no smoothing of values by de-
fault in our PS-MP/AC model but use the average values calculated from the time
slot tables directly. An interesting secondary result from this study was that the
statistical properties of the Tycoon trace and the PlanetLab trace were very similar,
which puts more confidence in previous studies where we used PlanetLab traces as
a proxy for demand in our computational market, e.g. Paper 2 and Paper 3.

7Published in the arxiv.org archive in November 2007.

5.2. OTHER CONTRIBUTIONS 45

Paper 6: Admission Control in a Computational Market (90%
Main Author)

In conference paper8[105], we extend the study in Paper 4, on the evaluation of a
hybrid reservation and spot market, in four ways. First, experiments are run in our
live computational market. Second, the workload is generated based on a careful
analysis and construction of a workload model from an extensive HPC trace. Third
the economic efficiency and fairness of the system as a whole are evaluated. Finally,
experimental and analytical results are used to give quantitative guidelines on how
to partition the reservation and spot markets dynamically based on demand.

The experimental setting included a set of clients with the same initial budget
and the same number of jobs. Each job was assigned various characteristics such as
run time, priority, inter-arrival time, size in CPUs, based on our workload model.
The clients then split their budget appropriately based on the expected value of
each job. After the run of all jobs, the price paid and the performance obtained of
all jobs were recorded, and used to calculate the utility. We also recorded the price
fluctuations during all experiment runs to study the correlation between the price
dynamics of different admission models. The idea here was that a fair admission
model sets prices that correlates well with the demand in a completely unrestricted
(best-effort) market.

The results show that the admission controller achieves high efficiency and ac-
ceptable fairness during high contention periods in particular with jobs that are
inelastic in their performance requirements. Simple functional formulations were
deduced to aid both consumers when determining whether to submit their jobs on
the spot or reservation market, and providers when deciding how to partition the
pool of resources on the different markets based on demand.

5.2 Other Contributions

Other contributions comprise contributions made to a Grid accounting system, an
authorization framework and a standard Grid service protocol. These contributions
were summarized in the licentiate thesis described in Contribution 11 below, and are
not directly related to the prediction and access control problem which is the main
theme of this thesis. However, the work on the accounting system, in particular,
motivated and identified many of the research problems addressed in the main
contribution papers.

8Admitted to the 8th International Symposium on Cluster Computing and the Grid, Lyon,
France, May 2008.

46 CHAPTER 5. CONTRIBUTIONS

Contribution 1: A Service-Oriented Approach to Enforce Grid
Resource Allocations (90% Main Author)

In journal article9 [100], we discuss the initial approach of enforcing global resource
quotas on a project basis across the SweGrid machines. SweGrid is the Swedish
national Grid resource comprising 600 compute nodes distributed across six High
Performance Computing (HPC) Centers and interconnected with a 10Gbit/s WAN.
Various research projects are allocated CPU quota by the Swedish National Alloca-
tion Committe (SNAC), after a peer review of the scientific value of the project and
its computational needs. Allocations are administered and renewed on a six-month
basis. The problem we are addressing in this work is how the allocations can be
enforced in real-time on all of the SweGrid machines in a coherent manner.

The problem is to a large extent a systems integration problem, in that all HPC
centers already use their own resource management system and their own account-
ing and access control policies and tools. We therefore introduced an integration
platform based on a service-oriented XML Web services architecture entirely writ-
ten in Java. The architecture comprises a Bank service, responsible for enforcing
the global resource quota and managing project accounts; a Logging and Usage
Tracking service, for off-line usage analysis and post-accounting; and finally a Job
Account Reservation Manager, which integrates the local site resource manager into
the global accounting system.

The most important research contribution from this work is the policy-based
access control system, which, at real-time, lets user, resource, and allocation au-
thority policies determine whether a Grid job should be allowed to run on a resource
and at what level of service. We call this solution soft real-time allocation enforce-
ment, because resources may not want to strictly refuse access if the quota has
been exceeded, but instead downgrade the priority of the job. This model extends
the state-of-the art in that a binary service-level is provisioned based on usage his-
tory and centrally allocated grants. A higher level of fairness is thus achieved, and
problems like denial-of-service attacks and job starvation can be mitigated.

Contribution 2: Service Level Agreement Requirements of an
Accounting-Driven Computational Grid (100% Single Author)

In technical report10 [96], we discuss the requirements obtained after studying the
first production deployment of the accounting system presented in Contribution
1 [100]. We more specifically focus on how electronic contracts, a.k.a. Service
Level Agreements, can be used to address some of the shortcomings of the existing
system.

9First edition published in the proceedings of the 2nd ACM International Conference on
Service-Oriented Computing, New York City, USA, November 2004. Second edition published in
the World Scientific International Journal on Cooperative Information Systems, September 2006.

10Published in the NADA TRITA technical report series at the Royal Institute of Technology,
Stockholm, Sweden, September 2005.

5.2. OTHER CONTRIBUTIONS 47

An enhanced, agent and policy-driven architecture is proposed, where the service
levels are determined and enforced in a continuous and automatic way based on
mutually signed contracts. The contracts represent a user capability as well as a
resource provider obligation, and can thus be used as the basis for access control
and service-level configuration.

The main contribution of this paper is the mapping of typical Grid user require-
ments to an agent-based, contract-driven architecture. The first insight gained from
the SweGrid accounting system [100], was that it was very flexible to customize
policies of all components, but determining what those policies should be quickly
became a non-trivial task for a human actor. Agents could thus use contracts em-
bodying user and provider preferences to optimize user utility, or provider profit
and utilization by automatically setting these policies.

Contribution 3: The Design, Implementation, and Evaluation of
a Market-Based Resource Allocation System (50% Co-Author)

In manuscript11 [70], we introduce Tycoon, a market-based resource allocation sys-
tem for large-scale networks like PlanetLab and the Grid. Tycoon allocates virtu-
alized slices on hosts proportional to user bids. The main focus of this paper is to
evaluate and benchmark the economic properties of the Tycoon resource allocation
algorithms in a real cluster environment through a set of experiments. We study
efficiency, based on the sum of the utilities across all users, a.k.a. as social welfare;
and fairness, defined as the level of envy-freeness. Envy in turn is defined as the
ratio between the maximum utility a user would get from another user’s allocation
and the utility of the allocation obtained. An optimally fair system would thus
have an envy-freeness value of 1.

It is shown in our experiments that the Tycoon proportional share allocation is
more efficient than an equal-share allocation algorithm like the one used in Plan-
etLab when slicing individual resources in shares. It is further shown that the best
response algorithm implemented in Tycoon to distribute bids optimally across hosts
yields a higher efficiency than other load balancing algorithms. In terms of fairness
our experiments were not able to show clear trends due to noise in the live cluster
contributing to increased envy.

The results in this paper confirms previous simulation results and also shows
how Tycoon can be used to dynamically trade off winner-takes-it-all and equal-
share allocation algorithm properties. In essence, the higher the statistical variance
on the bids is, the closer the Tycoon algorithm is to the winner-takes-it-all scheme.
If the variance is 0 it is equivalent to an equal-share algorithm.

11Manuscript prepared for publication at Hewlett-Packard Laboratories, Palo Alto, USA, May
2006.

48 CHAPTER 5. CONTRIBUTIONS

Contribution 4: Open Grid Services Infrastructure (OGSI)
Version 1.0 (10% Co-Author)

The Global Grid Forum Open Grid Services Infrastructure (OGSI) specification [115]
introduces many of the fundamental integration concepts that the Swegrid Account
System (SGAS) work is based on. The thesis author contributed the XML rendering
and a reference implementation of that specification.

Contribution 5: An OGSA-based Accounting System for
Allocation Enforcement across HPC Centers (90% Main Author)

A conference version of Contribution 1 was presented in [99]. It contains some
additional Fuzzy Logic experiments and it is based on an earlier Web service inte-
gration platform. Contribution 1 also contains some lessons learned from deploying
the solution presented in [99] in SweGrid.

Contribution 6: An OGSA-Based Bank Service for Grid
Accounting Systems (50% Co-Author)

The Bank service of SGAS is presented in some more detail in the conference
paper [37]. The Bank was implemented by a collaborator, but the core Web services
infrastructure, and the access control and policy framework were the thesis author’s
contributions. The overall design of the Bank was also a collaborative effort.

Contribution 7: The Globus Authorization Processing
Framework (10% Co-Author)

The SGAS authorization framework was contributed to the Globus Toolkit, and it
is the foundation for extended work presented in the workshop publication [109].
Our authorization framework, in turn, borrows many concepts from the XACML
architecture [1] and the GGF Authorization Working Group model [76].

Contribution 8: Policy Administration Control and Delegation
using XACML and Delegent (10% Co-Author)

SGAS provides a testbed for authorization management rights delegation, in the
conference paper [107]. This work is also based on the authorization policy frame-
work developed as part of SGAS, and extends it by integrating a third-party au-
thorization engine as a policy administration and decision point.

5.2. OTHER CONTRIBUTIONS 49

Contribution 9: The Philosophy of the Grid – Ontology Theory
from Aristotle to Self-managed IT Resources (100% Single
Author)

In technical report [95], a philosophical view of the Grid is presented. The main
contribution is to relate the concept of Ontologies in the Philosophy of Science
community to the use of Ontologies in Computer Science in general and in Service
Level Agreement protocols in particular. Ontologies play an important role in
policy definition and embodies the universe of discourse used by agents to optimize
the users’ utility based on their preferences. The discussion in this report shows
that work as early as Aristotle had striking similarities to the use of Ontologies
today.

Contribution 10: Scalable Grid-wide Capacity Allocation with
the Swegrid Accounting System (SGAS) (10% Co-Author)

In journal article [52], the SGAS system is extended with a more scalable and robust
Bank based on a novel Naming service authorization scheme. The Globus GRAM
scheduler was integrated with the SGAS resource allocator and simulations showed
that the SGAS component incurred negligible overhead. The thesis author’s con-
tribution to this work was restricted to a consulting role and some text comparing
the solution to market-based systems.

Contribution 11: Managing Service Levels in Grid Computing
Systems (100% Single Author)

In thesis12 [98], two approaches to manage service levels in Grid systems are com-
pared. First a policy based quota enforcement approach implemented in the Swe-
Grid accounting system, and second, a market based resource allocation approach
implemented in Tycoon. This contribution summarizes the research in Paper 1,
and Contribution 1, 2, and 3. The conclusion was that the policy approach was
very effective when enforcing a dual service level model, with high and low priority
tasks, but made it hard to enforce and offer finer-grained differentiated services.
Furthermore, the inherently static pricing model in the policy management ap-
proach did not allow load balancing based on demand. These shortcoming were
all addressed in the market-based resource allocation approach, but at the cost
of non-deterministic run-time performance levels due to fluctuating demand. This
conclusion motivated the research on predicting demand in market-based compute
farms, which was initially addressed in Paper 1 and subsequently served as the
main theme of Paper 2, 3, 4, 5, and 6 presented in Section 5.1.

12Published as a Licentiate Thesis at the School of Computer Science and Communication,
KTH, May 2007.

Chapter 6

Related Work

In this chapter we summarize related work in five general categories: first, general
purpose computational economies; second, Grid market systems; third, compu-
tational demand prediction; fourth, economic parallel job scheduling; and finally
resource admission control.

6.1 Computational Economies

Computational economies have been used as a mechanism to allocate scarce re-
sources more efficiently as far back as in 1968. Seminal work by Sutherland [113],
Nielsen [85], and Ellison [36] share many of the same design concerns (funding pol-
icy, closed- or open-loop economies, dynamic or static pricing, etc.) as computa-
tional markets being developed today including our work. However, their work was
only considering access to centralized resources, such as monolithic supercomput-
ers. They therefore did not face problems which we have to address such as packing
parallel jobs efficiently across machines or distributing bids optimally across mul-
tiple hosts. Distributed computational markets were popularized by Ferguson et
al. [43], Miller and Drexler [81], and Waldspurger et al. [120].

Spawn [120] was one of the first successful implementations of a distributed
computational market, and Tycoon, on which we base our work, is an incarnation
and evolution of many ideas presented in that work. Tycoon, in essence, extends
Spawn by providing a best response agent for optimal and incentive-compatible
bid distribution and host selection, and by virtualizing resources to give more fine-
grained control over QoS enforcement. Spawn does not have the demand prediction
capabilities which are central to our work. However, the general, continuous bid
and proportional share auction architecture is largely the same.

Bellagio [84] uses a centralized allocator called SHARE. SHARE uses a cen-
tralized combinatorial auction allowing users to express preferences with comple-
mentarities. Solving the NP-complete combinatorial auction problem results in an
optimally efficient allocation. The price-anticipating scheme in Tycoon is decen-

51

52 CHAPTER 6. RELATED WORK

tralized, i.e. runs an auction at every single host, and does not explicitly operate
on complementarities. The efficiency in our system may thus not be as high but all
the overhead and computational complexities of combinatorial auctions, as well as
the issues with strategic users gaming the mechanism are avoided [70].

REXEC [23] is a proportional share market system that is very similar to our
system architecturally. However, contrary to our system, it only allows bidding on
the CPU resource, it is not work conserving, and it does not utilize operating system
virtualization. The accounting mechanism is also less flexible than in Tycoon in
terms of allocation distribution, and fund deduction.

In [119] Waldspurger proposed lottery and stride scheduling algorithms based on
proportional share resource allocations, similar to the mechanisms we use. The ab-
stractions are different and there is no notion of markets or price setting mechanisms
in Waldspurger’s model. However, our statistical methods are general enough to fit
both systems based on REXEC and those based on lottery and stride scheduling,
thanks to their proportional share semantics.

Other related approaches using computational economies are described in [94,
78, 51, 22, 112, 17].

In summary, our system (Tycoon) provides a novel virtualized, proportional
share market-based allocator for different localized resources, (such as CPU, disk,
and memory), across distributed hosts.

6.2 Grid Market Systems

Grid market designs were pioneered by Buyya et al. [14] in the Nimrod/G project.
Nimrod/G schedules bag-of-task Grid jobs based on resource prices set by the
providers and uses dedicated machines for all running jobs. Our price-setting mech-
anism, on the other hand, allows the price to dynamically follow the demand, and
resources are sliced in virtual machines automatically configured for each job based
on users’ resource requirements, spending preferences and risk attitudes.

Faucets [63] is another framework for providing market-driven selection of com-
pute servers. Compute servers compete for jobs by bidding out their resources. The
bids are then matched with the requirements of the users by the Faucets schedulers.
Adaptive jobs can shrink and grow depending on utilization and prioritization. QoS
contracts decide how much a user is willing to pay for a job. The main difference to
our work is that Faucets does not provide any mechanism for price setting. Further,
it has no banking service, use central server based username-password mechanisms,
and does not virtualize resources.

G-commerce [128] is a Grid resource allocation system based on the commodity
market model where providers decide the selling price after considering long-term
profit and past performance. It is argued and shown in simulations that this model
achieves better price predictability than auctions. However, the auctions used in
the simulations are quite different from the ones we use in our work. The simu-
lated auctions are winner-takes-it-all auctions and not proportional share, leading

6.2. GRID MARKET SYSTEMS 53

to reduced fairness. Furthermore, the auctions are only performed locally and sep-
arately on all hosts leading to poor efficiency across a set of host. In our work the
best response algorithm ensures fair and efficient allocations across resources. An
interesting concept in G-commerce is that users are allocated budgets that may
expire, which could be useful for controlling periodic resource allocations and to
avoid price inflation. The price-setting and allocation model differs from our work
in that resources are divided into static slots that are sold with a price based on ex-
pected revenue. However, the preemption and agile reallocation properties inherit
in the bid-based proportional share allocation mechanism employed in our system
to ensure work conservation and prevent starvation are missing in the G-commerce
model.

A large number of European research projects have investigated Grid markets
recently. The UK eScience Grid Markets project1 was one of the first projects in this
area. It aimed at extending existing standard Grid protocols such as OGSA/OGSI
with capabilities to account and charge for services. A Grid economic services
protocol (GESA) was proposed to the Global Grid Forum (GGF) as a result of
this work. The Grid Markets work was focussed on charging for services, whereas
we charge for resource usage. It was akin to our previous work on Grid Account-
ing in that it had more of a standards-based systems integration and middleware
focus. Our contribution, on the other hand, is more focused on the modeling, de-
sign, implementation and evaluation of economic and statistical mechanisms for
computational markets.

The EU GridEcon project2 is very similar in spirit to our work in that it designs
economic models for Grid software systems. Our work is more experimentally driven
and it is also more focussed on demand prediction models.

The EU SORMA project3 aims to develop methods and tools for market-based
allocation of resources in open self-organizing Grid environments. The mechanisms
proposed in our work could be used to enhance predictability and to offer differen-
tiated service level guarantees in such environments.

The EPSRC GRAIL4 and Grid Market5 projects in the UK work on applying
stochastic techniques to set verifiable performance constraints, and applying Peer-
to-Peer protocols to set prices in Grid environments respectively. Our approach
is to merely approximate upper bounds of performance using simple probabilistic
laws not to formally verify constraints. Furthermore, our system is not strictly
Peer-to-Peer because we use central bank and service location services to simplify
resource search and accounting.

Additional Grid Market models are described in [25, 130, 15]. A comprehensive
survey of Grid market systems is provided in [131].

1http://www.lesc.ic.ac.uk/markets/.
2Grid Economics and Business Models. http://www.gridecon.eu/.
3Self-Organizing ICT Resource Management. http://www.iw.uni-karslruhe.de/sorma
4Grid Enabled Performance Analysis using Stochastic Logics.

http://aesop.doc.ic.ac.uk/projects/grail/.
5Market Models for Grid Computing. http://aesop.doc.ic.ac.uk/projects/grid-market/

54 CHAPTER 6. RELATED WORK

To summarize, our Grid market is unique in employing a user-exposed best
response agent on top of a proportional share allocation mechanism and thereby
allowing independent decentralized schedulers.

6.3 Computational Demand Prediction

Many prediction models targeted at Grid environments, including ours, have been
inspired by the techniques used in the widely deployed Network Weather Service
(NWS). Wolski et al. describe how they designed and provide an evaluation of
the Network Weather Service in [127]. NWS is mainly designed for monitoring
compute jobs in large-scale Grid deployments. Our work differs from NWS in
both how statistics are collected and stored and how predictions are computed.
NWS uses a multi-service infrastructure to track, store and distribute entire time-
series feeds from providers to consumers via sensors and memory components (feed
history databases). Our solution only maintains summary statistics and therefore
is more light-weight. A separate persistent storage or searching infrastructure is
therefore not needed in our system. For predictions, NWS uses combinations of
simple moving average models with static parameters, selected based on mixture-
of-experts heuristics. We use more general predictors that can handle any dynamics
and adapt their parameters automatically. In addition, the focus in [127] is on
predicting queue wait times, whereas we focus on predicting actual demand or
future prices.

Brevik et al. [13] present a Binomial Method Batch Predictor (BMBP) com-
plementing NWS [127]. The approach is to assume that each observed value in
the time-series can be seen as an independent draw from a Bernoulli trial. The
problem is that this does not account for time correlations, which we have found
to be substantial in our analysis. Brevik addresses the correlation issue by first
detecting structural changes in the feed when BMBP generates a sequence of bad
predictions and thereafter truncating the history which the predictor model is fit
against. Our approach is to leverage the correlations by using biased samples of
the most recent time intervals, which results in dynamic adaptation of structural
changes in the feed. The problem of monitoring and fixing prediction problems a
posteriori as in BMBP is that the detection mechanism is somewhat arbitrary and
a structural failure of the model could result in great losses, which could defeat the
purpose of providing risk mitigating predictions [79].

MacKie-Mason et al. [77] investigate how price predictors can improve users’
bidding strategies in a market-based resource scheduling scenario. They conclude
that simple predictors, such as taking the average of the previous round of auctions,
improve expected bidder performance. Although the goal of this work is similar to
ours, they investigate a different combinatorial allocation scenario where first price
winner-takes-it-all auctions are employed, as opposed to the proportional share
allocation in our work.

Another use of economic predictions is described by Wellman et al. [124], where

6.3. COMPUTATIONAL DEMAND PREDICTION 55

bidding agents use the expected market clearing price in a competitive or Wal-
rasian equilibrium. They employ tatonnement which involves determining users’
inclination to bid a certain value given a price-level. Wellman et al. compare their
competitive analysis predictor to simple historical averaging and machine learn-
ing models. They conclude that strategies that consider both historical data and
instance-specific data have a competitive advantage. The conditional probability
of price dynamics given a price-level could serve as additional useful information in
our model. However, this is probably impractical in large-scale systems with users
entering and leaving the market at will, and with large real-valued price ranges, so
we assume this behavior is incorporated in the price history itself.

Catallactics is an economic theory for reaching market prices, which is very
similar to the tatonnement process but with more focus on decentralization and
individual self-interested actors. It was applied by Ardaiz et al. [4] to coordinate
service provisioning in peer-to-peer networks. Simulations showed that the Catal-
lactic approach made service provisioning less sensitive to node dynamics. However,
this approach exhibits the same challenges as the work by Wellman et al. dis-
cussed above; it is complex to implement in a scalable way in a real system. Client
and server implementations of a catallactic system are also more involved and re-
quire both broadcasting protocols and heuristics combined with machine learning
techniques to be employed in order to support price negotiations. Contrast this
procedure to the proportional share mechanism we employ, where prices are set in-
stantaneously and deterministically given a locally measured level of demand, using
a single network roundtrip.

Oppenheimer et al. [86], like us, analyze PlanetLab resource usage and further
evaluate usage predictors and conclude that mean reverting processes such as ex-
ponential smoothing, median, adaptive median, sliding window average, adaptive
average and running average all perform worse than simple random walk predic-
tors and, what they call, tendency predictors which assume that the trend in the
recent past continues into the near future. They further notice no seasonal corre-
lations over time due to PlanetLab’s global deployment. We do see some seasonal
correlations in our initial time series analysis but they are not significant enough
to take advantage of in predictions. Further, our evaluation approach follows the
traditional ARIMA model evaluation method, and we provide a statistical test to
verify and compare prediction efficiency. One major difference between our studies
and thus also the conclusions is that Oppenheimer et al. only considered one-step
ahead predictions whereas we also consider two, and three-step ahead predictors to
do justice to the models considering correlations beyond the last observed step.

Our prediction interval calculation was inspired by Haan and Meeker [56] but
they also assume that random independent samples are drawn and that a large
number of sample data points are used to yield tight prediction bounds. Neither of
these two assumptions are true in our scenario. Our calculation of the prediction
interval can be seen as more in the spirit of the simple empirical intervals proposed
by Williams and Goodman [126]. Their empirical source is the previous sample
point, whereas, we use summary statistics as input to the empirical predictions.

56 CHAPTER 6. RELATED WORK

This allows us to cover larger prediction horizons with greater confidence using
fewer data points.

Our focus on estimating skewness risk and measuring long range dependence
was inspired by the work by Mandelbrot on modeling risk in volatile financial mar-
kets [80] and Hurst’s seminal work on predicting floods [61]. The fat-tail behavior
of the demand volatility we observed in HPC traces fits well with the volatility
Mandelbrot has seen in the cotton-price, Deutschmark-Dollar exchange rate, and
the stock price market dynamics, which he calls wild randomness or chance.

To summarize, our focus on providing both computationally efficient and eco-
nomically efficient predictions sets our work apart from other predictors.

6.4 Economic Parallel Job Scheduling

End-user centric and utility-based batch job scheduling was introduced in Chun
and Culler [24], who present a performance analysis of three different scheduling al-
gorithms, FirstPrice (priorities paid for on centralized auction market), SJF (short
jobs have priority), and PrioFIFO (three priority queues with different prices set
statically) based on aggregate user utility. The utility function used is designed
to decline lineary with completion time. FirstPrice outperforms both SJF and
PrioFIFO significantly for highly parallel jobs. PrioFIFO was sensitive to changes
in demand and deteriorated in performance if the wait time in the most expensive
queue was long. In Chun’s and Culler’s work job valuations followed a bimodal
normal distribution representing high (20 per cent of all jobs) and low (80 percent)
valued jobs. Our work differs from this work in that our results are independent
of which scheduling algorithm is used, our workload is constructed by carefully
modeling real traces, and our underlying allocation mechanism is a continuously
cleared decentralized spot market auction. To compare the results between eco-
nomic and non-economic algorithms, Chun and Culler do not factor the price paid
for a resource into the utility function. They further assumed that the IAT and
runtime distributions were normal, and that the CPU distribution was uniform. In
our workload analysis we found these distributional assumptions to be unrealistic.
Furthermore, we run experiments in a real cluster with a real economic market, as
opposed to simulations, and we take the price but not the completion time (not
significant the way the experiment was set up) into account in our evaluation. We
also use both economic and system metrics to evaluate or approach, and we focus
on resource allocation (selecting a host to run on), rather than on scheduling (se-
lecting a job to run). Furthermore the underlying auction mechanism we use in
Tycoon is quite different, where proportional shares are bid for on a spot market
which is continuously cleared and has unrestricted preemption. These differences
are also apparent in extensions of Chun’s and Culler’s work [62, 93, 5] that study
more elaborate scheduling algorithms and utility functions that take resource price
and provider profit into account.

In summary, the combination of reservation and spot market pricing with sta-

6.5. RESOURCE ADMISSION CONTROL 57

tistical guarantees is novel and sets this work apart from other microeconomic
systems that control job performance in shared clusters for parallel jobs, such
as [120, 111, 128, 15, 124, 63, 22].

6.5 Resource Admission Control

There is a substantial body of work on Internet Protocol quality-of-service enforce-
ment or traffic engineering, represented by the two IETF specifications IntServ [11],
and DiffServ [8]. The IntServ specification takes the approach of reserving paths for
individual users, and thus does not scale as well as the DiffServ approach, which is
based on marking individual packets with different per-hop behaviors in a stateless
and decentralized architecture. We are facing the same issues and tradeoffs when al-
locating computational resources across large distributed systems. However, thanks
to new virtualization technology and the fact that many of the resources are local-
ized (e.g. CPU, memory, disk) we found it worthwhile to revisit the reservation
concepts.

Wang [121] gives an overview of lessons learned and the pros and cons of the
reservation approach which can be implemented with IntServ versus the propor-
tional share approach which can be built on top of DiffServ. The conclusion was
that fixed allocations over a point-to-point path incur too much overhead for most
of the web traffic, it is difficult to determine the resource requirements a priori,
inter-ISP relationships make end-to-end reservations complicated, and traffic polic-
ing breaks down in the event of partial allocation failures. All of these factors result
in many IP reservation providers over-provisioning their network capacity, leading
to poor utilization.

Knightly and Shroff [65] provide an evaluation of the different admission con-
trol algorithms available for IP traffic shaping. The dilemma of choosing between
denying access to flows that might have been served and thereby cause underuti-
lization and serving requests that might break existing QoS contracts makes it hard
to use coarse statistical bounds and too simplified assumptions about traffic flow
distributions. Put differently, both accuracy maximization and risk minimization
are desired. The algorithms that accounted for economies of scale and not simply
looked at the statistical properties of individual flows were shown to perform much
better on average. Again, our admission control decision differs from the IP flow
one, in that we can, through virtualization, more directly enforce that an admitted
request stays within its bounds. Our decision is thus more about making sure that
the provider does not lose out on utilization or profit by admitting low priority
tasks prematurely.

Admission control as a means to avoid service degradation of high priority tasks
during overload has also been extensively studied in the context of Web servers, as
exemplified in [38, 21, 73]. Priorities of individual requests are either set explicitly
in the server configuration or inferred implicitly by the admission algorithm. Our
admission controller, on the other hand, gives users an incentive to specify the

58 CHAPTER 6. RELATED WORK

priority truthfully themselves. Another key difference is that, in a Web server
context, the focus is on optimizing throughput and response time by applying
queuing and control theory, and estimating expected service time. Our system does
not use centralized queues and the performance levels and thereby service times
are not estimated but explicitly requested by the users and enforced by virtualized
resource configuration, which both simplifies and improves the accuracy of our
implementation.

Yet another common type of application of admission control includes multime-
dia servers. Both the media itself (e.g. JPEG, MPEG) and the media consumers
may have different tolerance of loss during playback, as well as different playback
speed requirements. On the other end the disk I/O bandwidth limits the server
capacity. Deterministically ensuring that all consumer frame-rate requests are met
severely under-utilizes server resources under overload scenarios, which is why sta-
tistical approaches which exploit the loss tolerance and playback rate preference
variations are popular [117, 133]. Our work differs from these I/O and storage
centric algorithms, in that any type of resource share may be admission controlled,
and the performance obtained is based on the budget spending rate, not solely on
consumer preferences.

In general our focus on provider profit loss and price volatility as a means to
control admission in a proportional share market makes our approach novel in this
context.

Chapter 7

Conclusions

7.1 Concluding Remarks

We have investigated how statistical methods can be used in computational markets
to predict demand. The methods proposed were designed for flexibility, scalability,
and simplicity. Using only a few fundamental concepts of probability theory, such
as statistical moments, probability density, Chebyshev’s inequality and empirical
prediction bounds we implemented a forecasting infrastructure that can easily be
integrated with compute farm resource allocators to offer service guarantees ranging
from best-effort to absolute (hard) guarantees. The main benefit of our solution
is that it eases the burden on consumers in a computational market when making
budget decisions. Instead of specifying that they are willing to spend a certain
amount of currency on a computation they can much more intuitively express their
valuation of the job in terms of the preferred guarantee of meeting a particular
performance level, or meeting a deadline. A risk averse consumer can thereby
spend more insurance money to complete a job on time. Moreover, by exposing the
risk of performance degradation of resources, more efficient scheduling decisions
can be made. A risk averse consumer might choose not to schedule jobs on the
currently cheapest resource but on a resource that has the greatest likelihood to
be the cheapest over the course of the execution of the job. Conversely we have
also applied our prediction model to provide absolute guarantees by compensating
providers for loss of profit as a result of rejecting consumers that would violate
existing users’ contracts.

The greatest challenge when predicting demand is that the statistical structure
changes over time. Depending on which time window the forecast is based on very
different results may be obtained. Our solution to this problem is twofold; first
we provide standard time-based prediction windows, such as 5-min, hourly, daily,
weekly, and monthly forecasts; second we calculate prediction bounds that indicate
the uncertainty of the prediction model. For example if the prediction bounds are
too wide for a 95 percentile guarantee of a service level using the daily forecasting

59

60 CHAPTER 7. CONCLUSIONS

window, it tells the consumer that only hourly predictions may be made reliably on
that resource due to a constantly changing structure of the dynamics of the demand.
Other types of predictions may be more reliable the longer time window is used.
Furthermore, reasoning about reliability of predictions is the only option in systems
where demand fluctuates extensively. This observation mimics lessons learned from
stock market predictions, where it is very hard to make point estimates of risk, but
risky periods are known to cluster, and an indication of the current stability and
predictability of the market might thus be the most valuable information to traders.

The second biggest challenge was to address the asymmetry of demand. Many
popular prediction techniques known from, e.g. time series analysis and stock mar-
ket asset pricing are based on the assumption of a completely random Brownian
motion process where the increments of the demand between two subsequent pe-
riods are uncorrelated, and results in an overall demand distribution following the
Gaussian density model. This assumption makes it easy to analyze dynamics math-
ematically, but risk estimates may be severely off when true demand follows a more
erratic process, which has been observed in most real systems including both stock
markets and computational markets. If the demand distribution is right skewed,
or long tailed a normal distribution would under-estimate the risk of high demand.
Predicting tail behavior is important as it gives users bounds of worst case scenarios.
Our solution to this problem is to base our predictions on the theoretical Cheby-
chev bound, which is independent of the asymmetry of the distribution, refined
with the 3-σ bound where appropriate. We found in our analysis of real workload
traces from high performance computing centers that this method resulted in more
reliable forecasts than the Gaussian-based methods.

Finally, we have demonstrated in this thesis how resource providers can trade
off spot market offerings with reservation market offerings. This trade-off can be
compared to the trade-off airline reservation systems have to make when pricing
passenger seats. Well ahead of time, airlines are uncertain about the actual demand
on the departure date, and might thus want to trade off this uncertainty with a
guaranteed profit and give an incentive to passengers to book early by means of
discounts. Closer to departure, demand becomes more predictable as fewer seats
are available and more passengers’ travel plans are finalized, but on the other hand
the demand might also change more rapidly. In this case the airline might want
to put seats on the spot market to follow the demand as closely as possible to
make sure that all the seats get sold, and to profit from last minute travelers who
desperately need a seat and are willing to pay a very high price. Our solution to
this problem is a set of simple functional expressions that can be evaluated both
by consumers and providers to decide which market to enter to optimize efficiency
and value based on utility functions representing the elasticity or flexibility of the
resource requirements.

7.2. FUTURE DIRECTIONS 61

7.2 Future Directions

The main remaining challenge for computational markets is to make resource alloca-
tions as simple as possible without losing the fine-grained control of service-levels.
Whether this usability goal is met can only be evaluated in pilot projects with
real users in large markets with resource contention. A thorough analysis of the
benefits of predictions and economic allocations in a live system with real users
would expose the psychological factors of decision making which are hard to cap-
ture accurately in simulations and experiments with modeled user behavior. One
approach we are investigating to make these kinds of systems more accessible for
distributed applications is to support standard parallel programming environments
such as Map/Reduce. This approach also has the benefit of providing higher-level
monitoring metrics that can be used as input to the risk probing functionality in
our model to make job budgeting self-managed.

Once more experience is gained with real users, the next challenge is to provide
more advanced contractual models. Different types of financial derivatives, such
as forwards, options, and futures have been suggested in the literature, but their
deployment in real computational markets still remain a challenging research topic.
Our admission control implementation can be used as the basis for offering these
higher level contracts. Design of insurance agent models is a related research topic,
where the idea is that agents can aggregate risk from a large pool of consumers
and provide a higher level of risk mitigation than can be achieved individually by
the budgets of individual consumers. In general the research on computational
markets have only barely scraped the surface of economic mechanisms available in
more mature financial markets. As consumption of computational resources become
more commercialized, commoditized and globalized, as exemplified by the recent
trend of cloud computing initiatives, such as Amazon’s Elastic Compute Cloud,
Hewlett-Packard’s Flexible Compute Service, Google’s GFS and MapReduce-based
Vdoop, IBM’s Blue Cloud, Yahoo’s M45, Sun’s Sun Grid and Microsoft’s Dryad,
more sophisticated economic models of resource allocation are needed.

Bibliography

[1] A. Anderson, A. Nadalin, B. Parducci, D. Engavatow, H. Lockhart, M. Kudo,
P. Humenn, S. Godik, S. Abderson, S. Crocker, and T. Moses. eXtensible
Access Control Markup Language (XACML) Version 1.0. Technical report,
OASIS, 2003.

[2] Jorge Andrade and Jacob Odeberg. HapGrid: a Resource for Haplotype Re-
construction and Analysis using the Computational Grid Power in Nordugrid.
HGM2004: New Technologies in Haplotyping and Genotyping, April 2004.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification
(WS-Agreement). Technical report, Global Grid Forum, 2005.

[4] Oscar Ardaiz, Pau Artgas, Torsten Eymann, Felix Freitag, Roc Messeguer,
Leandro Navarro, and Michael Reinicke. Exploring the Catallactic Coordina-
tion Approach for Peer-to-Peer Systems. In Proceedings of the 9th Interna-
tional Euro-Par Conference, 2003.

[5] Alvin AuYoung, Laura Grit, Janet Wiener, and John Wilkes. Service Con-
tracts and Aggregate Utility Functions. In Proceedings of the IEEE Inter-
national Symposium on High Performance Distributed Computing (HPDC),
June 2006.

[6] A. Barmouta and R. Buyya. GridBank: A Grid Accounting Services Ar-
chitecture (GASA) for Distributed Systems Sharing and Integration. In Int.
Parallel and Distributed Processing Symposium (IPDPS’03), Nice, France,
2003. IEEE.

[7] F. Berman, G Fox, and A.J.G. Hey, editors. Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons, 2003.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W Weiss. An
Architecture for Differentiated Services. RFC 2475, IETF, December 1998.

[9] S. Blake, D. Black, M. Carlson, E. Davis, W. Zheng, and W. Weiss. RFC
2475: An Architecture for Differentiated Services. Technical report, IETF,
1998.

63

64 BIBLIOGRAPHY

[10] Diana Bosio, James Casey, Akos Frohner, Leanne Guy, Peter Kunszt, Er-
win Laure, Sophie Lemaitre, Levi Lucio, Heinz Stockinger, Kurt Stockinger,
William Bell, David Cameron, Gavin McCance, Paul Millar, Joni Hahkala,
Niklas Karlsson, Ville Nenonen, Mika Silander, Olle Mulmo, Gian-Luca
Volpato, Giuseppe Andronico, Federico DiCarlo, Livio Salconi, Andrea
Domenici, Ruben Carvajal-Schiaffino, and Floriano Zini. Next-Generation
EU DataGrid Data Management Services. In Proceedings of Computing in
High Energy and Nuclear Physics, La Jolla, CA, USA, March 2003.

[11] R. Braden, S. Clark, and S. Shenker. Integrated Services in the Internet
Architecture. RFC 1633, IETF, June 1994.

[12] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205: ReSer-
Vation Protocol (RSVP) Version 1 Functional Specification. Technical report,
IETF, 1997.

[13] John Brevik, Daniel Nurmi, and Rich Wolski. Predicting Bounds on Queuing
Delay for Batch-scheduled Parallel Machines. In PPoPP ’06: Proceedings of
the 2006 ACM Principles and Practices of Parallel Programming, New York,
NY, USA, 2006. ACM.

[14] Rajkumar Buyya, David Abramson, and Jonathan Giddy. An Architecture of
a Resource Management and Scheduling System in a Global Computational
Grid. In HPC Asia, pages 283–289, 2000.

[15] Rajkumar Buyya, Manzur Murshed, David Abramson, and Srikumar Venu-
gopal. Scheduling Parameter Sweep Applications on Global Grids: A Dead-
line and Budget Constrained Cost-Time Optimisation Algorithm. Software:
Practice and Experience (SPE) Journal, 35(5):491–512, April 2005.

[16] Germano Caronni, Tim Curry, Pete St. Pierre, and Glenn Scott. Supernets
and snHubs: A Foundation for Public Utility Computing. Technical Report
TR-2004-129, Sun Microsystems, 2004.

[17] Anthony Chavez, Alexandros Moukas, and Pattie Maes. Challenger: a Multi-
agent System for Distributed Resource Allocation. In AGENTS ’97: Pro-
ceedings of the First International Conference on Autonomous Agents, pages
323–331, New York, NY, USA, 1997. ACM Press. ISBN 0-89791-877-0.

[18] Chunming Chen, Muthucumaru Maheswaran, and Michel Toulouse. Sup-
porting Co-allocation in an Auctioning-based Resource Allocator for Grid
Systems. In Proceedings of the 16th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’02), 2002.

[19] Kay-Yut Chen, Lesli R. Fine, and Bernardo A. Huberman. Predicting the
Future. Information Systems Frontiers, 5(1):47–61, 2003.

65

[20] Ming Chen, Guangwen Yang, and Xuezheng Liu. Gridmarket: A Practical,
Efficient Market Balancing Resource for Grid and P2P Computing. Lecture
Notes in Computer Science, 3033:612–619, 2004.

[21] Xiangping Chen, Prasant Mohapatra, and Huamin Chen. An Admission
Control Scheme for Predictable Server Response Time for Web Accesses. In
WWW ’01: Proceedings of the 10th international conference on World Wide
Web, pages 545–554, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-
348-0.

[22] Brent N. Chun, Philip Buonadonna, Alvin AuYoung, Chaki Ng, David C.
Parkes, Jeffrey Shneidman, Alex C. Snoeren, and Amin Vahdat. Mirage: A
Microeconomic Resource Allocation System for SensorNet Testbeds. In Pro-
ceedings of the 2nd IEEE Workshop on Embedded Networked Sensors, 2005.

[23] Brent N. Chun and David E. Culler. REXEC: A Decentralized, Secure Remote
Execution Environment for Clusters. In Communication, Architecture, and
Applications for Network-Based Parallel Computing, pages 1–14, 2000.

[24] Brent N. Chun and David E. Culler. User-centric Performance Analysis of
Market-based Cluster Batch Schedulers. In Proceedings of the 2nd IEEE
International Symposium on Cluster Computing and the Grid, 2002.

[25] Li ChunLin and Li Layuan. A two Level Market Model for Resource Alloca-
tion Optimization in Computational Grid. In CF ’05: Proceedings of the 2nd
conference on Computing frontiers, pages 66–71, New York, NY, USA, 2005.
ACM Press. ISBN 1-59593-019-1.

[26] Scott Clearwater and Stephen D. Kleban. Heavy-tailed Distributions in Su-
percomputer Jobs. Technical Report SAND2002-2378C, Sandia National
Labs, 2002.

[27] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., 1991.

[28] Karl Czajkowski, Ian Foster, Carl Kesselman, Volker Sander, and Steven
Tuecke. SNAP: A Protocol for Negotiating Service Level Agreements and
Coordinating Resource Management in Distributed Systems. Lecture Notes
in Computer Science, 2537:153–183, 2002.

[29] A. Dan, E. Davis, R. Kearney, A. Keller, R.P. King, D. Kuebler, H. Ludwig,
M. Polan, M. Spreitzer, and Y.A. Web Services on Demand: WSLA-driven
Automated Management. IBM Systems Journal, 43, 2004.

[30] Abnubhav Das and Daniel Grosu. Combinatorial Auction-Based Protocols for
Resource Allocation in Grids. In Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05), 2005.

66 BIBLIOGRAPHY

[31] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview
of the I-WAY: Wide Area Visual Supercomputing. International Journal of
Supercomputer Applications, 10:123–130, 1996.

[32] Persi Diaconis and Brad Efron. Computer-Intensive Methods in Statistics.
Scientific American, (6):116–130, 1983.

[33] D. A. Dickey and W. A. Fuller. Likelihood Ratio Statistics for Autoregressive
Time Series with a Unit Root. Econometrica, (49):1057–1072, 1981.

[34] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris, Alex Ho, Ian Pratt,
Andrew Warfield, Paul Barham, and Rolf Neugebauer. Xen and the Art of
Virtualization. In Proceedings of the ACM Symposium on Operating Systems
Principles, 2003.

[35] Brad Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals
of Statistics, 7(1):1–26, 1979.

[36] Carl M. Ellison. The Utah TENEX Scheduler. Proceedings of the IEEE, 63
(6):940–945, 1975.

[37] Erik Elmroth, Peter Gardfjell, Olle Mulmo, and Thomas Sandholm. An
OGSA-Based Bank Service for Grid Accounting Systems. In Jerzy Was-
niewski, editor, Lecture Notes in Computer Science: Applied Parallel Com-
puting. State-of-the-art in Scientific Computing. Springer Verlag, 2004.

[38] Sameh Elnikety, Erich Nahum, John Tracey, and Willy Zwaenepoel. A
Method for Transparent Admission Control and Request Scheduling in e-
Commerce Web Sites. In WWW ’04: Proceedings of the 13th International
Conference on World Wide Web, pages 276–286, New York, NY, USA, 2004.
ACM Press. ISBN 1-58113-844-X.

[39] Robert Engle. Autoregressive Conditional Heteroscedasticity with Estimates
of the Variance of United Kingdom Inflation. Econometrica, 50:987–1007,
1982.

[40] Dror G. Feitelson. Workload Modeling for Performance Evaluation. Lecture
Notes in Computer Science, (2459):114–141, 2002.

[41] Michal Feldman, Kevin Lai, and Li Zhang. A Price-Anticipating Resource
Allocation Mechanism for Distributed Shared Clusters. In Proceedings of the
ACM Conference on Electronic Commerce, 2005.

[42] William Feller. An Introduction to Probability Theory and its Applications,
volume II. Wiley Eastern Limited, 1988.

[43] Donald Ferguson, Yechiam Yemimi, and Christos Nikolaou. Microeconomic
Algorithms for Load Balancing in Distributed Computer Systems. In Inter-
national Conference on Distributed Computer Systems, pages 491–499, 1988.

67

[44] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A Dis-
tributed Resource Management Architecture that Supports Advance Reser-
vations and Co-Allocation. In Proceedings of the International Workshop on
Quality of Service, 1999.

[45] I. Foster, A. Roy, V. Sander, and L. Winkler. End-to-End Quality of Service
for High-End Applications. Technical report, Argonne National Laboratory,
1999.

[46] Ian Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.
In IFIP’05: Proceedings of International Conference on Network and Parallel
Computing, volume 3799, pages 2–13. LNCS, Springer-Verlag GmbH, 2005.

[47] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organization. International Journal of Supercom-
puting Applications, 15(3), 2001.

[48] Ian Foster and Carl Kessleman, editors. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999.

[49] Ian Foster and Carl Kessleman, editors. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

[50] David Freedman and Persi Diaconis. On the Histogram as a Density Es-
timator: L2 Theory. Probability Theory and Related Fields, 57(4):453–476,
1981.

[51] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat.
SHARP: An Architecture for Secure Resource Peering. In ACM Symposium
on Operating Systems Principles (SOSP), October 2003.

[52] Peter Gardfjell, Erik Elmroth, Lennart Johnsson, Olle Mulmo, and Thomas
Sandholm. Scalable Grid-wide Capacity Allocation with the SweGrid Ac-
counting System (SGAS). Concurrency and Computation: Practice and Ex-
perience, 2007. To appear.

[53] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A.H.G. Rinnoody Kan. Op-
timization and Approximation in Deterministic Sequencing and Scheduling:
A Survey. Annals of Discrete Mathematics, (5):287–326, 1979.

[54] Sven Graupner, Jim Pruyne, and Singhal Sherad. Making the Utility Data
Center a Power Station for the Enterprise Grid. Technical Report HPL-2003-
53, Hewlett-Packard Laboratories, 2003.

[55] Ian Hacking. Nineteenth Century Cracks in the Concept of Determinism.
Journal of the History of Ideas , 44(3):455–475, September 1983.

68 BIBLIOGRAPHY

[56] Gerald J. Hahn and William Q. Meeker. Statistical Intervals: A Guide for
Practitioners. John Wiley & Sons, Inc, New York, NY, USA, 1991.

[57] Garrett Hardin. The Tragedy of the Commons. Science, 162:1243–1248, 1968.

[58] Joseph Hellerstein, Kaan Katricioglu, and Maheswaran Surendra. An Online,
Business-Oriented Optimization of Performance and Availability for Utility
Computing . Technical Report RC23325, IBM, December 2003.

[59] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459: Internet X.509 Public
Key Infrastructure and CRL Profile. Technical report, IETF, 1999.

[60] Bernardo A. Huberman. The Laws of the Web, Patterns in the Ecology of
Information. MIT Press, 2001.

[61] H.E. Hurst. Long Term Storage Capacity of Reservoirs. Proc. American
Society of Civil Engineers, 76(11), 1950.

[62] David Irwin, Jeff Chase, and Laura Grit. Balancing Risk and Reward in
Market-Based Task Scheduling. In International Symposium on High Perfor-
mance Distributed Computing, 2004.

[63] Laxmikant V. Kale, Sameer Kumar, Mani Potnuru, Jayant DeSouza, and
Sindhura Bandhakavi. Faucets: Efficient Resource Allocation on the Com-
putational Grid. In ICPP ’04: Proceedings of the 2004 International Con-
ference on Parallel Processing (ICPP’04), pages 396–405, Washington, DC,
USA, 2004. IEEE Computer Society. ISBN 0-7695-2197-5.

[64] Katarzyna Keahey, Karl Doering, and Ian Foster. From Sandbox to Play-
ground: Dynamic Virtual Environments in the Grid. In Grid 2004: Proceed-
ings of the 5th International Workshop in Grid Computing, Pittsburgh, PA,
USA, November 2004.

[65] Edward W. Knightly and Ness Shroff. Admission Control for Statistical QoS:
Theory and Practice. IEEE Network, 13(2):20–29, March/April 1999.

[66] James F. Kurose and Rahul Simha. A Microeconomic Approach to Optimal
Resource Allocation in Distributed Computer Systems. IEEE Transactions
on Computers, 38(5):705–717, 1989.

[67] Kevin Lai. Markets are Dead, Long Live Markets. SIGecom Exchanges, 5(4):
1–10, July 2005.

[68] Kevin Lai, Bernardo A. Huberman, and Leslie Fine. Tycoon: A Distributed
Market-based Resource Allocation System. Technical report, arXiv, 2004.

69

[69] Kevin Lai, Lars Rasmusson, Eytan Adar, Stephen Sorkin, Li Zhang, and
Bernardo A. Huberman. Tycoon: an Implemention of a Distributed Market-
Based Resource Allocation System. Multiagent and Grid Systems, 1(3):169–
182, August 2005.

[70] Kevin Lai and Thomas Sandholm. The Design, Implementation, and Eval-
uation of a Market-Based Resource Allocation System. Technical Report
Manuscript for Publication, Royal Institute of Technology and Hewlett-
Packard Labs, Stockholm, Sweden, May 2006.

[71] Spyros Lalis and Alexandros Karipidis. JaWS: An Open Market-Based
Framework for Distributed Computing over the Internet. Lecture Notes in
Computer Science, 1971:87–106, 2000.

[72] D. Lamanna, J. Skene, and W. Emmerich. SLAng: A Language for Defining
Service Level Agreements. In Proceedings of the Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS03), 2003.

[73] Sam C. M. Lee, John C. S. Lui, and David K. Y. Yau. Admission Control and
Dynamic Adaptation for a Proportional-delay Diffserv-enabled Web Server.
In SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of computer systems, pages
172–182, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-531-9.

[74] John D. C. Little. A Proof of the Queuing Formula: L=λW. Operations
Research, 9(3):383–387, 1961.

[75] Lennart Ljung. System Identification: Theory for the User. Prentice Hall,
December 1998.

[76] M. Lorch and D. Skow. Authorization Glossary. Technical report, Global
Grid Forum, 2004.

[77] Jeffrey K. MacKie-Mason, Anna Osepayshvili, Daniel M. Reeves, and
Michael P. Wellman. Price Prediction Strategies for Market-Based Schedul-
ing. In ICAPS, pages 244–252, 2004.

[78] Thomas W. Malone, Richard E. Fikes, Kenneth R. Grant, and Michael T.
Howard. Enterprise: A Market-like Task Scheduler for Distributed Comput-
ing Environments. In Bernardo A. Huberman, editor, The Ecology of Compu-
tation, number 2 in Studies in Computer Science and Artificial Intelligence,
pages 177–205. Elsevier Science Publishers B.V., 1988.

[79] Benoit Mandelbrot, Adlai Fisher, and Laurent Calvet. The Multifractal
Model of Asset Returns. In Cowles Foundation Discussion Papers: 1164.
Yale University, 1997.

70 BIBLIOGRAPHY

[80] Benoit Mandelbrot and Richard L. Hudson. The (Mis)behavior of Markets:
A Fractal View of Risk, Ruin, and Reward. Basic Books, New York, NY,
USA, 2004.

[81] Mark S. Miller and K. Eric Drexler. Comparative Ecology: A Computational
Perspective. In Bernardo A. Huberman, editor, The Ecology of Computation,
number 2 in Studies in Computer Science and Artificial Intelligence, pages
51–76. Elsevier Science Publishers B.V., 1988.

[82] J. Susan Milton and Jesse C. Arnold. Introduction to Probability Theory and
Statistics. McGraw Hill, 2003.

[83] K. Nahrstedt, H. Chu, and S. Narayan. QoS-aware Resource Management for
Distributed Multimedia Applications. Journal on High-Speed Networking ,
December 1998.

[84] Chaki Ng, Philip Buonadonna, Brent N. Chun, Alex C. Snoeren, and Amin
Vahdat. Addressing Strategic Behavior in a Deployed Microeconomic Re-
source Allocator. In Proceedings of the 3rd Workshop on Economics of Peer-
to-Peer Systems, 2005.

[85] Norman R. Nielsen. The Allocation of Computer Resources–Is Pricing the
Answer? Communications of the ACM, 13(8):467–474, 1970.

[86] David Oppenheimer, Brent Chun, David Patterson, Alex C. Snoeren, and
Amin Vahdat. Service Placements in a Shared Wide-Area Platform. In
USENIX’06: Annual Technical USENIX Conference, 2006.

[87] Martin J. Osborne. An Introduction to Game Theory. Oxford University
Press, July 2002.

[88] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The
MIT Press, 1994.

[89] Christos H. Papadimitriou. Algorithms, Games, and the Internet. In Sympo-
sium on Theory of Computing, 2001.

[90] A. Papoulis. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 1984.

[91] David Pennock. A Dynamic Pari-Mutuel Market for Hedging, Wagering, and
Information Aggregation. In Proceedings of the fifth ACM Conference on
Electronic Commerce (EC’04), 2004.

[92] Rosario M. Piro, Andrea Guarise, and Albert Werbrouck. An Economy-based
Accounting Infrastructure for the DataGrid. In Proceedings of the Fourth
IEEE International Workshop on Grid Compuiting (GRID’03), 2003.

71

[93] Florentina I. Popovici and John Wilkes. Profitable services in an uncertain
world. In SC05: Proceedings of Supercomputing, 2005.

[94] Ori Regev and Noam Nisan. The Popcorn Market: Online Markets for Com-
putational Resources. In Proceedings of 1st International Conference on In-
formation and Computation Economies, pages 148–157, 1998.

[95] Thomas Sandholm. The Philosophy of the Grid: Ontology Theory - From
Aristotle to Self-Managed IT Resources. Technical Report TRITA-NA-0532,
Royal Institute of Technology, Stockholm, Sweden, September 2005.

[96] Thomas Sandholm. Service Level Agreement Requirements of an Accounting-
Driven Computational Grid. Technical Report TRITA-NA-0533, Royal In-
stitute of Technology, Stockholm, Sweden, September 2005.

[97] Thomas Sandholm. Autoregressive Time Series Forecasting of Computational
Demand. Technical Report 0711.2062v1 [cs.DC], arXiv, 2007.

[98] Thomas Sandholm. Managing Service Levels in Grid Computing Systems.
Licentitate Thesis ISRN KTH/CSC/A–07/06–SE. Royal Institute of Tech-
nology, Stockholm, 2007.

[99] Thomas Sandholm, Peter Gardfjell, Erik Elmroth, Lennart Johnsson, and
Olle Mulmo. An OGSA-based Accounting System for Allocation Enforcement
across HPC Centers. In ICSOC ’04: Proceedings of the 2nd international
conference on Service oriented computing, pages 279–288, New York, NY,
USA, 2004. ACM Press. ISBN 1-58113-871-7.

[100] Thomas Sandholm, Peter Gardfjell, Erik Elmroth, Lennart Johnsson, and
Olle Mulmo. A Service-Oriented Approach to Enforce Grid Resource Alloca-
tions. International Journal of Cooperative Information Systems, 2006.

[101] Thomas Sandholm and Kevin Lai. Evaluating Demand Prediction Techniques
for Computational Markets. In GECON ’06: Proceedings of the 3rd Interna-
tional Workshop on Grid Economics and Business Models, May 2006.

[102] Thomas Sandholm and Kevin Lai. Prediction-Based Enforcement of Per-
formance Contracts. In GECON ’07: Proceedings of the 4th International
Workshop on Grid Economics and Business Models, 2007.

[103] Thomas Sandholm and Kevin Lai. A Statistical Approach to Risk Mitigation
in Computational Markets. In HPDC ’07: Proceedings of the 16th ACM
International Symposium on High Performance Distributed Computing, 2007.

[104] Thomas Sandholm, Kevin Lai, Jorge Andrade, and Jacob Odeberg. Market-
Based Resource Allocation using Price Prediction in a High Performance
Computing Grid for Scientific Applications. In HPDC ’06: Proceedings of
the 15th IEEE International Symposium on High Performance Distributed
Computing, June 2006.

72 BIBLIOGRAPHY

[105] Thomas Sandholm, Kevin Lai, and Scott Clearwater. Admission Control in a
Computational Market. In CCGrid ’08: Proceedings of the 8th International
Symposium on Cluster Computing and the Grid, 2008. To appear.

[106] Dave Scott. Multivariate Density Estimation: Theory, Practice and Visual-
ization. Addison Wesley, 1992.

[107] Ludwig Seitz, Erik Rissanen, Thomas Sandholm, Babak Sadighi Firoz-
abadi, and Olle Mulmo. Policy Administration Control and Delegation using
XACML and Delegent. In Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, November 2005.

[108] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its
Applications. Springer, 2000.

[109] Frank Siebenlist, Takuya Mori, Rachana Ananthakrishnan, Liang Fang, Tim
Freeman, Kate Keahey, Sam Meder, Olle Mulmo, and Thomas Sandholm.
The Globus Authorization Processing Framework. In Workshop on New Chal-
lenges for Access Control, Ottawa, Canada, April 2005.

[110] O. Smirnova, P. Erola, T. Ekelöf, M. Ellert, J.R. Hansen, A. Konsantinov,
B. Konya, J.L. Nielsen, F. Ould-Saada, and A. Wäänänen. The NorduGrid
Architecture and Middleware for Scientific Applications. Lecture Notes in
Computer Science, 267:264–273, 2003.

[111] Ion Stoica, Hussein Abdel-Wahab, and Alex Pothen. A Microeconomic Sched-
uler for Parallel Computers. In Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, pages 122–135, April 1995.

[112] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah,
Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa: a wide-area distributed
database system. The VLDB Journal, 5(1):048–063, 1996. ISSN 1066-8888.

[113] I.E. Sutherland. A Futures Market in Computer Time. Communications of
the ACM, 11(6):449–451, 1968.

[114] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. IETF
RFC 3820. Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate
Profile, 2004.

[115] Steven Tuecke, Karl Czajkowski, Ian Foster, Jeff Frey, Steven Graham, Carl
Kesselman, Tom Maquire, Thomas Sandholm, David Snelling, and Peter Van-
derbilt. Open Grid Services Infrastructure (OGSI) Version 1.0. Technical
report, Global Grid Forum, 2003.

[116] Hal R. Varian. Equity, Envy, and Efficiency. Journal of Economic Theory, 9:
63–91, 1974.

73

[117] H. Vin, P. Goyal, and A. Goyal. A Statistical Admission Control Algorithm
for Multimedia Servers. In MULTIMEDIA ’94: Proceedings of the second
ACM international conference on Multimedia, pages 33–40, New York, NY,
USA, 1994. ACM Press. ISBN 0-89791-686-7.

[118] D. F. Vysochanskij and Y. I. Petunin. Justification of the 3 sigma Rule for
Unimodal Distributions. Theory of Probability and Mathematical Statistics,
21:25–36, 1980.

[119] C. A. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-
share Resource Management. Technical Report MIT/LCS/TR-667, 1995.

[120] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. Kephart,
and W. Scott Stornetta. Spawn: A Distributed Computational Economy.
Software Engineering, 18(2):103–117, 1992.

[121] Zheng Wang. A Case for Proportional Fair Sharing. In IWQoS ’98: Proceed-
ings of the Sixth International Workshop on Quality of Service, pages 33–35.
IEEE, 1998. ISBN 0-7803-4482-0.

[122] William W. S. Wei. Time Series Analysis, Univariate and Multivariate Meth-
ods. Pearson Addison Wesley, 2006.

[123] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura Pearlman, Steven
Tuecke, Jarek Gawor, Samuel Meder, and Frank Siebenlist. X.509 Proxy
Certificates for Dynamic Delegation. In Proceedings of the 3rd Annual PKI
R&D Workshop, 2004.

[124] Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, and Yevgeniy
Vorobeychik. Price Prediction in a Trading Agent Competition. J. Artif.
Intell. Res. (JAIR), 21:19–36, 2004.

[125] Michael P. Wellman, William E. Walsh, Peter R. Wurman, and Jeffery K.
MacKie-Mason. Auction Protocols for Decentralized Scheduling. Games and
Economic Behavior, 35:271–303, 2001.

[126] W.H. Williams and M.L. Goodman. A Simple Method for the Construction of
Empirical Confidence Limits for Economic Forecasts. Journal of the American
Statistical Association, 66(336):752–754, 1971.

[127] Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, and John
Brevik. Predicting Grid Resource Performance On-Line. In Handbook of Inno-
vative Computing: Models, Enabling Technologies, and Applications. Springer
Verlag, 2005.

[128] Rich Wolski, James S. Plank, Todd Bryan, and John Brevik. G-commerce:
Market Formulations Controlling Resource Allocation on the Computational

74 BIBLIOGRAPHY

Grid. In IPDPS ’01: Proceedings of the 15th International Parallel and Dis-
tributed Processing Symposium (IPDPS’01), page 10046.2, Washington, DC,
USA, 2001. IEEE Computer Society. ISBN 0-7695-0990-8.

[129] Ximing Wu and Thanasis Stengos. Partially Adaptive Estimation via the
Maximum Entropy Densities. Econometrics Journal, 8(3):352–366, 2005.

[130] Lijuan Xiao, Yanmin Zhu, Lionel M. Ni, and Zhiwei Xu. GridIS: An Incentive-
Based Grid Scheduling. In IPDPS ’05: Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’05) - Papers,
page 65.2, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-
7695-2312-9.

[131] Chee Shin Yeo and Rajkumar Buyya. A Taxonomy of Market-based Resource
Management Systems for Utility-driven Cluster Computing.

[132] Li Zhang. The Efficiency and Fairness of a Fixed Budget Resource Allocation
Game. Lecture Notes in Computer Science, 3580:485–496, 2005. ISSN 0302-
9743.

[133] Roger Zimmermann and Kun Fu. Comprehensive Statistical Admission Con-
trol for Streaming Media Servers. In MULTIMEDIA ’03: Proceedings of
the eleventh ACM international conference on Multimedia, pages 75–85, New
York, NY, USA, 2003. ACM Press. ISBN 1-58113-722-2.

Part II

Main Contribution Papers

75

Market-Based Resource Allocation using Price Prediction in a High Performance
Computing Grid for Scientific Applications

Thomas Sandholm

KTH – Royal Institute of Technology

Center for Parallel Computers

SE-100 44 Stockholm, Sweden

sandholm@pdc.kth.se

Kevin Lai

Hewlett-Packard Laboratories

Information Dynamics Laboratory

Palo Alto, CA 94304, USA

kevin.lai@hp.com

Jorge Andrade Ortı́z and Jacob Odeberg∗

KTH – Royal Institute of Technology

Dept. of Biotechnology

SE-100 44 Stockholm, Sweden

{jacob,andrade}@biotech.kth.se

Abstract

We present the implementation and analysis of a market-
based resource allocation system for computational Grids.
Although Grids provide a way to share resources and take
advantage of statistical multiplexing, a variety of challenges
remain. One is the economically efficient allocation of re-
sources to users from disparate organizations who have
their own and sometimes conflicting requirements for both
the quantity and quality of services. Another is secure
and scalable authorization despite rapidly changing allo-
cations.

Our solution to both of these challenges is to use a
market-based resource allocation system. This system al-
lows users to express diverse quantity- and quality-of-
service requirements, yet prevents them from denying ser-
vice to other users. It does this by providing tools to the
user to predict and tradeoff risk and expected return in
the computational market. In addition, the system enables
secure and scalable authorization by using signed money-
transfer tokens instead of identity-based authorization. This
removes the overhead of maintaining and updating access
control lists, while restricting usage based on the amount
of money transferred. We examine the performance of the
system by running a bioinformatics application on a fully
operational implementation of an integrated Grid market.

∗also affiliated with Karolinska Hospital, Gustav V Research Institute,

Dept. of Medicine, Atherosclerosis Research Unit, Stockholm, Sweden

1. Introduction

The combination of decreasing cost for network band-

width and CPU performance and the availability of open-

source distributed computing middleware has led the high-

performance computing community away from monolithic

supercomputers to low-cost distributed cluster solutions.

This model of computing allows users with bursty and com-

putationally demanding tasks to share and use compute re-

sources on demand. This usage model, aka utility comput-

ing [24], Grid computing [22], peer-to-peer compute farm-

ing [28], or Global Computing [23], has been applied to

solve diverse technical computing problems in fields such

as, bioinformatics [9], high-energy physics [10], graphics

rendering [3], and economic simulation [2].

One common question remains: how to manage the

allocation of resources to users? One challenge is that

users are from disparate organizations and have their own

and sometimes conflicting requirements for both the quan-

tity and quality of services. For example, academic Grid

projects [37, 4, 38, 8, 7, 6, 5, 10] typically require resources

for throughput sensitive, long-running batch applications,

while industrial utility computing offerings [14, 24, 26] typ-

ically require response-time sensitive, interactive, and con-

tinuous application server provisioning. One common so-

lution is to have separate resource allocation mechanisms

for different applications. However, this merely shifts the

problem from reconciling the resource requirements of dif-

ferent applications to reconciling the resource requirements

of different mechanisms.

Another challenge is that users have a web of relation-

ships with regard to how they wish to share resources with

each other. For example, one site may wish to share re-

sources with a remote site, but only when demand from lo-

cal users is low. Another example is that a site may wish to

be reciprocative, where it only shares resources with sites
that share resources with it. One common solution is to

use access control lists (ACLs) to authorize access to re-

sources. The problem is that managing ACLs is difficult

because many users could potentially access a site, a site

has many different types of resources, each of which may

need a separate ACL, and the degree of access that each

user has could change with each access. For example, as a

user from site A uses host X at site B, site B would want to

decrease the ability of other site A users from being able to

consume resources at host X and possibly other hosts at the

site. The dynamic updating of this amount of data not only

increases overhead and development time, but could lead to

inconsistencies that allow exploitation of the system.

Instead, we examine a market-based approach to re-

source allocation in Grids. A number of models and mecha-

nisms for electronic markets, and computational economies

have been proposed [40, 30, 36, 35, 33, 12, 27]. In pre-

vious work we have presented and analyzed Tycoon [31],

a market-based resource allocation system for shared clus-

ters. Here we focus on how market-based techniques ad-

dress issues in a Grid environment. More specifically, our

contributions are as follows:

• A Tycoon controlled cluster scheduler for Grid
execution managers. The NorduGrid/ARC meta-
scheduler[38] used by many academic Grid projects in Eu-
rope, such as SweGrid [37], to schedule large-scale scien-

tific jobs across a collection of heterogeneous HPC sites us-

ing a uniform job submission and monitoring interface, was

integrated with Tycoon. The integration allows the large

existing user base of academic Grids to bid for and use re-

sources controlled by economic markets seamlessly. We

are also working on integrating our scheduler with Globus

Toolkit 4 [21].

• Pilot application experiments.We use a bioinformat-
ics pilot application currently deployed in an academic Grid

to verify our model and implementation. A bioinformat-

ics application scanning and analyzing the complete human

proteome using a blast-based similarity search was run on a

Tycoon cluster and evaluated.

• Price prediction models and mechanisms.We dis-
cuss, implement and analyze models and mechanisms to

predict cost of resources and give guarantees of QoS (Qual-

ity of Service) levels based on job funding. In a spot market

as implemented by Tycoon it can be hard to predict the fu-

ture price of a resource and know how much money should

be spent on funding a job with a specific set of requirements.

To that end we provide a suite of lightweight prediction ca-

pabilities that can give users guidance regarding what per-

formance levels to expect for different levels of funding of

a job.

•A security model combining identity and capability-
based access control.In academic Grid networks it is im-
portant to identify all users securely because a user’s iden-

tity, and membership in virtual organizations, can automati-

cally give access to shared resources. In electronic markets,

however, the key question is whether you can present proof

of payment for a resource. Our model allows Grid users

to make use of electronic money transfer tokens, or checks,

that can be used to pay for and gain access to resources to

be used by a compute job, as well as to specify its priority

and thereby ’buy’ a certain level of QoS.

As a result, we believe that the combination of Grid and

market mechanisms is a promising and viable approach to

sharing resources in an economically sustainable way while

ensuring fairness and overall system efficiency.

The rest of the paper is organized as follows. In Sec-

tion 2, we provide an overview of the design and discuss

how it meets our goal. In Section 3, we delve more deeply

into implementation specifics. Our price prediction analysis

is presented in Section 4. Section 5 contains experimental

results from running the bioinformatics application on our

integration testbed. We describe related work in Section 6.

We conclude by discussing some limits of our model and

future work in Section 7.

2. Architecture Overview

2.1. A Case for Grid Markets

High-end compute resources, such as Grid-enabled High

Performance Computing (HPC) clusters, are necessary for

many scientific computing applications. These applications

can use more resources to scan larger input data sets, pro-

vide a higher resolution for simulations, or simply complete

the same amount of work faster. In other words, they exhibit

a continuous utility curve where a larger resource share re-

sults in a higher utility.

Traditional queueing and batch scheduling algorithms

assume that job priorities can simply be set by administra-

tive means. In large-scale, cross-organizational, and poten-

tially untrusted Grids, this can be expensive and slow, and

allocations may not reflect the true relative priorities of jobs.

Determining the relative priorities of applications requires

a truth revelation mechanism like a market [12, 27, 41, 39].

This provides an incentive for uses to accurately prioritize

their applications.

2.2. Tycoon

In this paper, we apply a previously described market-

based resource allocation system (Tycoon) [29] in the Grid

context. In this section, we briefly review this system before

describing the security and prediction extensions that are

the focus of this paper. Please see the previous publication

for additional details.

The main characteristics of Tycoon are its decentral-

ized and continuous markets. Each host that contributes

resources to a Tycoon network runs its own market. This

reduces the dependency on centralized components, mak-

ing the system more scalable, fault-tolerant, and agile in the

allocation of resources. The continuous market allows users

to bid and receive resources at a high frequency (10 seconds

by default), which allows applications to start quickly and

react to quickly changing load. This is more important for

service-oriented applications like web servers and databases

than the typical Grid applications that runs for days. Shar-

ing the same infrastructure across these different types of

applications allows better statistical multiplexing.

Another characteristic of Tycoon is the use of virtual-

ized resources. This allows multiple applications to share

the same host, which is useful both for applications that do

not require a whole host and applications that have highly

variable demand. Tycoon currently uses the Xen para-

virtualization system [19], which imposes an overhead of

1%-5% for typical workloads.

The architecture of Tycoon is composed of the Bank,

which maintains information on users like their credit bal-

ance and public keys, the Service Location Service, which

maintains information on available resources, and Auction-

eers, which run on each host and manage the market used

to allocate resources on that host.

One of the main issues in this kind of distributed mar-

ket is the efficiency relative to an ideal centralized mar-

ket. Feldman, et al. [20] show that this market achieves

both fairness and economic efficiency in the equilibrium

when users use the Best Response optimization algorithm.

Briefly, this algorithm solves the following optimization

problem for a user:

maximize Ui =
∑n

j=1 wi,j
xij

xij+yj
subject to (1)

∑n

j=1 xij = Xi, and xij ≥ 0. (2)

where Ui is the utility of user i across a set of resources,

wi,j is the preference of machine j as perceived by user i,

for example the CPU capacity of the machine, xi,j is the bid

user i puts on host j, yj the total of all bids or the price of

host j, and finally Xi is the total budget of user i.

One contribution in this work is to expose this Best Re-

sponse algorithm to Grid HPC users, to allow them to eas-

ily use compute resources in a competitive market. Next we

describe the architecture of this integration.

2.3. Grid Market Architecture

Our solution is novel in the sense that we maintain the

overall Public Key Infrastructure (PKI) security model of

the Grid, but introduce supply and demand driven dynamic

pricing and resource share negotiation on a spot market

within a virtual Grid cluster. Differentiated services are of-

fered in an incentive compatible manner where the Grid

user can attach a check-like token to jobs to pay for the

resources to be consumed. The user needs to be fully au-

thenticated using a Grid PKI handshake, but the authoriza-

tion step is based on a capability composed of the funds

transferred to the scheduling agent. The scheduling agent

uses the Best Response algorithm described in the previ-

ous section to distribute and place bids on compute nodes.

Virtual machines are created dynamically, with the appro-

priate QoS levels automatically configured in proportion to

the bids placed. Job stage-in, execution, monitoring, perfor-

mance boosting (by adding funds) and stage-out are all han-

dled by the agent. Figure 1 depicts the overall architecture

of the system. The Tycoon infrastructure is integrated with

the Grid Job manager as a local scheduling system, fully

transparent to the end-users. The next section describes the

design and implementation in more detail.

Figure 1. Tycoon Grid Market Architecture.

3. Grid Market Implementation

This section describes our integration of Tycoon with the

Grid. Our approach is to integrate Tycoon with the infras-

tructure currently deployed in the SweGrid project, a na-

tional Grid in Sweden spanning six sites and a total of 600

compute nodes interconnected by the 10GB/s GigaSunet

network. SweGrid has been in operation for a year and a

half. The sites run the Nordugrid ARC middleware, which

is based on the Globus toolkit, and currently connects about

50 HPC sites in 12 countries. Both ARC and Globus focus

on providing an abstracted local cluster scheduler and exe-

cution manager so that the job submission mechanism and

interface is the same regardless of whether PBS, LSF, Sun

Grid Engine, etc., is used locally at the site.

As a result, to enable Tycoon for Grid users seamlessly,

our approach was to write a Tycoon scheduler plugin for

ARC to simplify the transition of SweGrid users to this new

infrastructure. Integration directly as a Globus (GT4) plugin

is work in progress. The Tycoon cluster is exposed as any

other ARC cluster both for monitoring and job submission

purposes, with the only difference being that the cluster is

virtualized and thus reports number of virtual CPUs as op-

posed to physical compute node CPUs.

In ARC, the compute job requirements are describe in an

XRSL (extended Globus Resource Specification Language)

file. The CPU or WallTime XRSL attribute is mapped to

the Tycoon resource bid deadline. The transfer token, de-

scribed in more detail in the next section, is mapped to the

total budget to be used within this deadline. Finally, the

count attribute describes how many concurrent virtual ma-

chines or (virtual CPUs) the job requires. Mechanisms are

provided to allow a job running in a virtual machine to ac-

cess its ordinal number within such a batch of sub-jobs to,

for example, process a different input data set. The bid dis-

tribution is determined by the Best Response algorithm of

Tycoon. It calculates the optimal bids to maximize the over-

all utility gained from running a job on a set of host.

The ARC runtime environment allows users to specify

what software needs to be installed in order to run the job.

This software is installed automatically in the virtual ma-

chine using Yellow dog Updater, Modified (yum)[1]. The

Tycoon ARC plugin also handles job stage-in, stage-out and

output checkpoint monitoring. Jobs that have been submit-

ted may be boosted with additional funding to complete

sooner, and if the money deposited into host accounts has

not been used (Tycoon only charges for resources actually

used not bid for) the outstanding balance will be refunded to

the user. Dynamic pricing, accounting and billing thus all

happen automatically by means of the Tycoon infrastruc-

ture. Furthermore, the QoS specified in the XRSL descrip-

tion is automatically enforced by configuring custom virtual

machines on demand when jobs require them. To limit the

overhead of virtual machine creation, a user may reuse the

same virtual machine between jobs submitted on the same

physical host. However, no application data or scratch space

is shared by different jobs.

Figure 2 shows a screenshot of the ARC Grid Monitor

monitoring the Tycoon cluster. Note that since the num-

ber of CPUs are the number of virtual machines currently

created, it can increase dynamically up to a maximum of

about 15 times the number of physical nodes. Thus, for the

current deployment of 40 hosts, a maximum of 600 virtual

single CPU compute nodes can be offered concurrently to

users by the Tycoon Grid. We could easily implement a

virtual machine purging or hibernation model that could in-

crease this number further if not all 600 machines need to

be used at the same time, with the penalty of more overhead

to setup a job on a virtual machine.

Figure 2. Screenshot of Nordugrid/ARC Tycoon monitor.

In addition to the virtualization of compute nodes, the

cluster is also virtualized, in the sense that the Tycoon ar-

chitecture is flat without hierarchies. This allows the sub-

mission agent to pick up compute nodes from any available

physical cluster. Most of the current machines are at HP

Labs in Palo Alto, California, but others are owned by In-

tel Research in Oregon, by Singapore, and by the Swedish

Institute of Computer Science in Stockholm. The current

limitation of 40 physical machines is only an artifact of the

current state of the virtual cluster, and can grow dynami-

cally as more clusters and nodes are added to the Tycoon

network. Regardless of whether the compute node is local

to the submission agent the host funding, job stage-in, job

execution, job monitoring and job-stage out will all be done

the same way. Finally, the agent itself can be replicated

and partitioned to pick up a different set of compute nodes.

The ARC meta-scheduler could then be used to load bal-

ance and do job to cluster matchmaking between the repli-

cas. We therefore believe that this model will scale well as

the number of compute nodes and virtual machines on these

compute nodes increase.

3.1. Security Design

Our goal is to make the security integration as seamless

as possible to the end-users, which means allowing Grid

users to reuse their credentials when accessing a Tycoon

cluster. To access a Tycoon cluster one needs a Tycoon bank

account. So our task became equivalent to mapping a Grid

certificate to a Tycoon bank account. Our approach is to

transfer money from the user to the resource broker and map

the proof of the transfer to a Grid identity, the Distinguished

Name (DN) of the user.

This approach requires no manual access control list

setup and it allows the user to keep both the Grid identity

private key and Tycoon bank account private key on the

local machine only. Furthermore, it does not require any

changes to the existing Tycoon services. The user trans-

fers money to the resource broker’s bank account and then

signs the receipt together with a Grid DN. The mapping can

thus be decided independent of the transfer and can there-

fore also be used by arbitrary Grid users who do not have

any Tycoon infrastructure deployed. On the resource side it

is verified that the money transfer was indeed made into the

broker account and that the transfer token has not been used

before. The signature of the DN mapping is also verified

to make sure that no middleman has added a fake mapping.

Once the transfer token has been verified a new sub-account

to the broker account is created and the money verified is

transferred into this account by the broker. The new ac-

count is then used to fund and create host accounts used to

run the job on behalf of the Grid user.

4. Price and Performance Prediction

4.1. Motivation

A challenge in any market-based resource allocation sys-

tem is providing predictable performance. A variety of so-

lutions exist, including reservations, future markets [11],

options, and SLA contracts [42, 18]. However, all of these

mechanisms require the ability to predict future demand

and supply. Prediction is particularly important in spot-

market systems like Tycoon that lack other mechanisms to

ensure predictability. The failure to predict accurately either

causes users to overspend on resources or prevents them

from achieving their required quality of service.

Demand prediction requires a history of resource usage

and a set of analysis algorithms. Our goal is to provide both

a concise representation of historical prices on the Auction-

eer and efficient client-side algorithms to analyze this data.

We represent the demand using the spot-market price on

each host. In Tycoon, this reflects both the usage of and

demand for a resource. This information is updated every

10 seconds, which is also the reallocation interval. In addi-

tion to the instantaneous demand, we also track the average,

variation, distribution symmetry, and peak behavior of the

price.

To make this information useful to a wide array of ap-

plications, periodization of the data is necessary. We imple-

ment this by presenting and scoping the statistics in moving,

customizable time windows. By looking at smaller time

windows we may be able to make simplifying assumptions

such as the assumption of a symmetric normal distribution

even though such a distribution may not be a good represen-

tation of a larger window, and vice versa. To track the price

distribution dynamically we implement a self-adjusting slot

table recording the proportion of prices that fall into certain

ranges.

We now present three high-level prediction techniques

to model our price data, (1) normal distribution prediction,

chosen because it is simple to implement and rest only on

fundamental statistical theory; (2) autoregression predic-

tion of time series, a very common system identification

approach; and (3) portfolio selection, a well-studied tech-

nique in economic theory to reduce risk. Finally, we present

the theory behind our moving window approximation and

smoothing implementation.

4.2. Lightweight Single-Host Stateless Price
Prediction

In this model we assume a normal probability distri-

bution of the spot market price and calculate the budgets

needed to get a certain performance level or higher with

a probability guarantee, which could be translated into the

probability of a job completing within a certain deadline.

Based on this information we would like to recommend a

user to spend a certain amount of money given a capacity

requirement and a deadline.

More formally, we first assume that the price y is an out-

come of the normal random variable Y

Y ∈ N(µ, σ2), y ∈ Y (3)

p is the probability given by the standard cumulative distri-

bution function Φ, with µ as the measured mean of y and

σ2 as the measured variance. In other words, p is the prob-

ability that a resource offers a price less than or equal to y

given its variance and mean.

p = P (Y ≤
y − µ

σ
) = Φ(

y − µ

σ
) (4)

The inverse cumulative distribution function, aka the

probit quantile function of the normal distribution gives us

the price y to expect with a given probability p.

y − µ

σ
≤ Φ−1(p) ⇔ y ≤ µ + σΦ−1(p) (5)

Combining (1) and (5) gives us the probability p to get

the utility U given the budget X .

Ui(Xi, p) ≥
∑n

j=1
wi,j

xi,j

xi,j + µj + σjΦ−1(p)
(6)

where xi,j is the bid picked by the best response algorithm

in (1) with budget Xi on host j for user i.

If a user knows that the deadline d can be met if a utility

greater than U is obtained, we can use (6) to recommend

what budget to spend to meet that deadline, and conversely

what completion time to expect given a budget. For exam-

ple, the budget X required to meet the deadline d with a

certainty of p can be used as a recommendation for the ex-

tra cushion of funding needed to meet the deadline with a

greater probability.

We call this model stateless, since we only need to keep

track of running sums to report the mean and standard devi-

ation of the price, and no data points need to be stored.

4.3. Single-Host Price Prediction Analyzing
Time Series History Data

An autoregressive, AR(k), [32] model based on a time
series of CPU price snapshots was implemented using the

following steps:

First, the unbiased autocorrelation with N sample snap-

shots of x and lag k is calculated as:

R(k) =
1

N − |k|

N−|k|−1
∑

n=0

xn+|k|xn

Then the following Yule-Walker linear equation system is

solved using the Levinson reformulation:

Lα = r

where

Li,j = R(i − j)

is the Toeplitz matrix with k rows and k columns, α is the

column vector of k AR coefficients to be solved, and r is a

column vector of size k where

ri = R(i + 1)

Now, future values of the time series xi can be predicted

using the coefficients in α as:

xN+1 = µ +
k

∑

j=0

αj(xi−j − µ)

where

µ =
1

N

N
∑

n=0

xn

Note that we omit the zero mean normal random white

noise parameter here for simplicity.

4.4. Risk Management based Performance
Prediction across Multiple Hosts

We now look at another prediction model for obtaining

guidance in funding resources, portfolio theory. We need

to obtain the return and plot that against the risk to cal-

culate the efficient frontier where portfolios yield the most

efficient trade-off between the two parameters. The funda-

mental rule of the frontier is that at a given risk value the

return should be maximized and conversely at a given re-

turn value the risk should be minimized. We can then ap-

ply Morkowitz’s mean-variance optimization [34]. As re-

turn we select the performance of the resource calculated

as number of CPU cycles per second that are delivered per

amount of money paid per second (inverse of spot market

price).

Given the vectors of return and risk values for the re-

sources, we used the matrix equations from [25] to calculate

the risk free portfolio as well as the efficient frontier.

By looking at the efficient frontier we can, based on our

degree of risk aversion, select a portfolio with an appro-

priate return. The advantage of the portfolio model is that

we do not have to assume a normal probability distribution

of the resource price. However, a symmetric distribution

around the mean is assumed and it is also assumed that there

is a variance in risk between resources that can be traded off

with varying mean returns.

A similar approach focusing on Value-at-Risk analysis is

presented in [16]. Their approach inherits the same strength

and weaknesses as the general portfolio theory presented

here, but extends it to give guarantees like, within a given
time horizon, the minimal performance will be a valueV

with a probabilityP . In contrast, the approach presented

here gives guidelines of the form, given a certain level of
risk aversion and expected performance, how should you
distribute your budget across a set of hosts?

4.5. Moving Window Smoothing Theory

We first look at the technique used to calculate moving

windows for the price average (mean), variation (standard

deviation), asymmetry of distribution (skewness), and peak

behavior (kurtosis). A high value of skewness reflects a

heavy-tailed (right-skewed) distribution, and a high value

of kurtosis indicates that a large portion of the standard de-

viation is due to a few very high price peaks.

In terms of state information we only need to keep track

of the previously calculated sample moments about the

mean for the first (mean), second (standard deviation), third

(skewness) and forth (kurtosis) moment about the mean.

The linear smoothing function is determined by the window

size, where a large window size results in the previously

calculated moment having a very low impact on the next

moment compared to the current snapshot, and vice versa.

For window size 1, the previously calculated moments are

ignored as expected.

µi,p is the pth sample moment about the mean at snap-

shot i, xi is the price at snapshot i, n is the number of price

samples in a window, σi is the standard deviation of price

at snapshot i (for window n), γ1,i is the price skewness at

snapshot i (for window n), and γ2,i is the price kurtosis at

snapshot i (for window n)

µ0,p = x
p
0

µi,p = αµi−1,p + (1 − α)xp
i

α = 1 −
1

n
n

∑

j=1

x
p
j = µi,pn ⇒ σi =

√

µi,2 − µ2
i,1

equivalently,

γ1,i =
(µi,3 − 3µi,1µi,2 + 2µ3

i,1)

σ3
i

and,

γ2,i =
(µi,4 − 4µi,3µi,1 + 6µi,2µ

2
i,1 − 3µ4

i,1)

σ4
i

− 3

We now look at the price distribution smoothing for mov-

ing time windows. The approach taken is to keep track of

two price distributions for each window at all times. The

distributions will contain twice as many snapshots as is re-

quired by the windows and have a time lag of the same size

as the window. The merged window distribution to be re-

trieved at an arbitrary monitoring time is then calculated

by using a share of both distributions proportional to how

closely they are to the desired window size in terms of num-

ber of snapshots collected.

n is the total number of prices in a window, i is the snap-

shot time, nk,i is the number of prices in distribution array

k at time i, (0..2n), sk,j is the proportion of prices in slot

j in distribution array k, ri,j is the proportion of prices to

report in slot j at snapshot time i, and wi,k is the proportion

of distribution array k to use in r at snapshot time i

wi,k = 1 −
|n1,i − n|

n

|n1,i − n2,i| = n

nk
∑

j=1

sk,j = 1 ⇒ ri,j = w1,ks1,j + (1 − w1,k)s2,j

5. Grid Application Results

In this section we present some experimental results us-

ing a Bioinformatics application targeted for Grid environ-

ments, which was developed at the Bioinformatics labora-

tory at the Royal Institute of Technology in Stockholm [9].

It is a trivially parallelizable bag-of-task application, which

is very typical for large-scale Grids. The experiments we

present here, do not consider applications with more com-

plicated workflow-like interactions among subtasks. How-

ever, none of the experiments depend in any way on the

application-specific node processing performed by this ap-

plication, more than the fact that it is CPU intensive.

5.1. Bioinformatics Application

The goal of the application is to identify protein regions

with high or low similarity to the rest of the human pro-

teome. A database of the complete human proteome is ana-

lyzed with a blast sequence alignment search tool perform-

ing stepwise similarity searches using a sliding window al-

gorithm running in parallel on a distributed compute cluster.

The reason for running this application in a compute farm

is twofold, the proteome database is continuously evolving

and the search is computationally hard. A search on a single

machine takes about 8 weeks on a single node, and a run in

the SweGrid compute farm utilizing 300 nodes out of 600

takes about 22 hours.

5.2. Experiment Setup

The proteome database is partitioned into chunks that

can be analyzed in parallel. One of these chunks takes ap-

proximately 212 minutes to analyze on a single node in our
cluster with a 100% share of a CPU. With 30 physical ma-
chines we can thus achieve a maximum performance of 35

hours/application run to be compared with 22 hours/run in

SweGrid with 600 machines. In our experiment we are let-

ting five competing users run the same application with dif-

ferent funding. The application makes use of a maximum

of 15 nodes out of a total of 30 physical nodes. To have the
users compete against each other but not between their own

sub-jobs we restrict the setup to one virtual machine per

user per physical machine. Hence, a maximum of 75 vir-
tual machines may be used at any point in time. It should be

noted that the physical machines have dual processors and

there may thus not be competition for a CPU on a machine

even though there are multiple users running there concur-

rently. The user jobs are launched in sequence with a slight

delay to allow the best response selection to take the pre-

vious job funding into account. This is why users 1 and 2

tend to get to run on more nodes than the other users, as the

price has not gone up as much at that point. Their shares

will, however, be recomputed automatically and continu-

ously within every 10s allocation interval.

5.3. Best Response Experiments

In this set of experiments we are interested in finding out

whether an economically driven resource allocation mech-

anism would allow us to offer differentiated QoS levels to

Table 1. Equal Distribution of Funds

Users Time(h) Cost($/h) Latency(min/job) Nodes

1 − 2 7.16 4.19 28.66 15
3 − 5 6.36 4.28 45.49 8.7

Table 2. Two-Point Distribution of Funds

Users Time(h) Cost($/h) Latency(min/job) Nodes

1 − 2 7.07 5.10 29.31 14.5
3 − 5 4.16 10.9 23.46 11

Grid application users. We measure the Time defined as
the wall-clock time as perceived by the user to complete

the task of sub-jobs, the Cost as the money spent during
this time, the Latency as the number of minutes it takes for
each sub-job to complete (again in wall-clock time), and

the number of Nodesor parallel sub-jobs used by the task.
We start by gauging the environment and running the test

with all users having the same funding for their jobs. They

should hence expect an equal share of the CPUs. We, how-

ever, note from the results summarized in Table 1 that users

3-5 received a much lower quality of service, here defined

as number of jobs that can be processed within a time unit,

because the best response algorithm found it too expensive

to fund more than a very low number of hosts. One possible

solution to this issue would be to let the user hold back on

submitting if not a threshold of minimum hosts to bid on is

met.

The results from a two-point distribution with users

funding their jobs with 100, 100, 500, 500, 500 dollars with
a deadline of 5.5 hours is summarized in Table 2.
Here we can see that the jobs with a budget of 500 dollars

caused the earlier jobs to decrease their shares to allow the

more highly funded jobs to complete within their deadline.

We again see that fewer hosts were given to user 3-5 but this

time the performance level (latency) is better. We also see

that these users pay a higher price for their resource usage,

as expected.

5.4. Price Prediction Experiments and Sim-
ulations

In this set of experiments we run the same Grid applica-

tion job load as in the previous experiments with the differ-

ence that we let the total budget of the users be random with

a normal distribution.

Using the normal distribution analysis presented in Sec-

tion 4.2, we provide a graph visualization of the price and

performance guarantees a user may expect from a host. De-

pending on what guarantee of average performance the user

wants, different curves may be followed to decide on how

much to spend. For example, looking at the graph in Fig-

ure 3 a user who wants 90% guarantee that the CPU perfor-

mance will be greater than 1.6GHz should spend $22/day

when funding the host. There is a certain point where the

curves flatten out, and that point would be the recommended

budget to spend on that host to get the best performance

per funding unit. For the given example it would not make

sense for the user to spend more than roughly $60/day. We

can also see that to get any kind of feasible performance out

of the machine with at least a 80% guarantee the user needs

to spend at least $10/day. In this example, we based our

prediction on a time window of one day.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

C
P

U
 C

ap
ac

ity
 (

M
H

z)

Budget ($/day)

Guarantee 80%
Guarantee 90%
Guarantee 99%

Figure 3. Normal distribution prediction with different
guarantee levels

The basic AR model presented in Section 4.3 had prob-

lems predicting future prices due to sharp price drops when

batch jobs completed. To overcome this issue we applied a

smoothing function (cubic smoothing spline) before calcu-

lating the AR model. To verify the quality of the prediction

we took a data sample of 40 hours of price history from our

experimental run of Grid jobs described above. The first

20 hours were used to calculate the model and the last 20

hours were used to verify the model. The prediction error

was then calculated as follows:

ε =
1

µdn

n
∑

i=1

σi

where µd is the mean of the measured prices in the vali-

dation interval, n the number of data points in the valida-

tion interval, and σi the standard deviation of the predic-

tion, measurement pair i. An AR(6) model with one hour

forecasting (See Figure 4) yielded an ε of 8.96%, whereas
a simple benchmark model always predicting the current

price to remain for the next hour resulted in an ε of 9.44%.
Now, turning to portfolio theory (Section 4.4). There

are some issues with this model concerning the definition

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003
 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

P
ric

e
($

/s
 p

er
 C

P
U

 c
yc

le
s/

s)

Time (hours)

Predicted
Smoothing
Measured

Figure 4. AR(6) prediction with a one hour forecast and
smoothing function.

of risk and asymmetry of distributions as mentioned in

Section 4.4, but we also noted in our experiments that a

portfolio-based scheduler would not do as well in load bal-

ancing batches of user jobs coming in as the best response

algorithm which bases its selection on the spot market price,

and which could immediately move users away from high-

bid machines. Portfolio theory may, however, prove useful

for long term investments in hosts, e.g. when hosts should

be bought to run a continuous application such as a web

server. Another observation is that idle hosts tend to get

100% of the share in the portfolio, to avoid this behavior

a larger time window needs to be used when collecting the

mean and variance statistics from the hosts.

To test the risk hedging properties of the portfolios re-

turned by our implementation we ran simulations where 10

hosts are picked either using the calculated risk free portfo-

lio or equal shares. The aggregate performance over time

is then measured. Individual mean host performance, per-

formance variance, and variance of performance variances

were all randomly generated with a normal distribution.

The results, depicted in Figure 5 shows that downside risk

could be improved by using the risk free portfolio.

Finally, we look at the distribution of prices over three

time windows, a week, a day, and an hour. This data can

be used to select an appropriate prediction model. For ex-

ample, if the distribution resembles a normal distribution

one could make use of the models described in Section 4.2,

if the distribution is symmetric a portfolio analysis may be

appropriate. A sample distribution graph is shown in Fig-

ure 6. It can be inferred from the graph that the prices ex-

hibit signs of a heavy-tailed distribution (left-skewed) the

last hour, mostly fall within the lowest price bracket, but are

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

P
or

tfo
lio

 P
er

fo
rm

an
ce

Time

Risk Free Portfolio
Equal Share Portfolio

Figure 5. Risk free portfolio performance vs. equal share
portfolio.

right-skewed, mostly in the most expensive bracket when

considering a week or day-long window.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0

 2
e-

00
6

 4
e-

00
6

 6
e-

00
6

 8
e-

00
6

 1
e-

00
5

 1
.2

e-
00

5

 1
.4

e-
00

5

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

P
ro

ba
bi

lit
y

D
en

si
ty

Price Bracket ($/s per CPU cycles/s)

Last Hour Last Day Last Week

Figure 6. Price distribution within three different time
windows.

To measure how accurate our window approximation is

we ran a simulation of different distributions. Normal, Ex-

ponential and Beta Distributions were given a time lag of

half the window size. At this point there is a maximum in-

fluence, or noise, from non-window data. The noise was

generated using a uniform random distribution. We noted

that normal distributions with a small standard deviation

(< 20% of mean) could result in the approximation having
its mean shifted slightly compared to the actual distribution.

However, in general the approximations followed the actual

distributions closely as seen in Figure 7 .

6. Related Work

Faucets [27] is a framework for providing market-driven

selection of compute servers. Compute servers compete

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

P
ro

ba
bi

lit
y

D
en

si
ty

Simulated Price

Norm(0.5,0.15) Window Approx.
Norm(0.5,0.15) Measured
Exp(2) Window Approx.
Exp(2) Measured
Beta(5,1) Window Approx.
Beta(5,1) Measured

Figure 7. Window approximation of Normal, Exponen-
tial and Beta distributions.

for jobs by bidding out their resources. The bids are then

matched with the requirements of the users by the Faucets

schedulers. Adaptive jobs can shrink and grow depending

on utilization and prioritization. QoS contracts decide how

much a user is willing to pay for a job. The main difference

to our work is that Faucet does not provide any mechanism

for price setting. Further, it has no banking service, use

central server based user-name password mechanisms, and

does not virtualize resources.

Xiao et al. [43] suggest a model where users prioritize

their jobs with different budgets and providers schedule

jobs based on minimizing penalties from missing promised

deadlines. It is argued that a user-initiated auction is more

appropriate for lightly loaded system. From our experience

with HPC projects like SweGrid, resources are scarce and

their is competition for time slots, hence a seller-initiated

auction is more appropriate for our work.

Chunlin and Layuan [17] propose a two-layered cen-

tral market. In the first layer the users negotiate with ser-

vices to meet deadline and budget constraints, in the second

layer services purchase resources to meet the user demand.

Service and resource prices are set by iteratively adjusting

them up and down based on the measured demand and sup-

ply, until a market equilibrium is reached. In simulations

they show that this model is more efficient in large Grids

than a round-robin approach. Our work is less centralized,

and thus more scalable and fail-safe, because all resource

providers host their own markets.

G-commerce [41] is a Grid resource allocation system

based on the commodity market model where providers de-

cide the selling price after considering long-term profit and

past performance. It is argued and shown in simulations

that this model achieves better price predictability than auc-

tions. However, the auctions used in the simulations are

quite different from the ones we use. The simulated auc-

tions are winner-takes-it-all auctions and not proportional

share, leading to reduced fairness. Furthermore, the auc-

tions are only performed locally and separately on all hosts

leading to poor efficiency across a set of host. In Tycoon

the Best Response algorithm ensures fair and efficient al-

locations across resources [20]. An interesting concept in

G-commerce is that users get periodic budget allocations

that may expire, which could be useful for controlling pe-

riodic resource allocations (as exemplified by NRAC and

SNAC [37]) and to avoid price inflation. The price-setting

and allocation model differs from our work in that resources

are divided into static slots that are sold with a price based

on expected revenue. The preemption and agile realloca-

tion properties inherit in the bid-based proportional share

allocation mechanism employed in our system to ensure

work conservation and prevent starvation is, however, miss-

ing from the G-commerce model.

Buyya et al. [13] implement a completion time minimiz-

ing resource allocation algorithm for bag-of-task applica-

tions, utilizing an auctioneer infrastructure akin to the one

deployed in Tycoon. The difference to the work presented

here is that we use fixed budgets and the best response al-

gorithm to place bids, as opposed to allowing bids to vary

between a minimum and maximum value to meet deadlines.

This allows us to make more precise statements about the

fairness and efficiency of our solution in the equilibrium

states.

Spawn [40], was one of the first implementations of a

computational market, and Tycoon is an incarnation and

evolution of many ideas presented in that work. Tycoon, in

essence, extends Spawn by providing a Best Response agent

for optimal and incentive-compatible bid distribution and

host selection, and by virtualizing resources to give more

fine-grained control over QoS enforcement. Tycoon also

offers a more extensive price prediction infrastructure as

presented in this paper. However, the general, continuous-

bid and proportional share auction architecture is largely the

same.

Other market based resource allocation systems, not fo-

cussing on Grid applications, have been presented in [39,

35, 15, 33]

7. Conclusions

We have presented an integrated Grid market of com-

putational resources based on combining a market-based

resource allocation system, Tycoon, and a Grid meta-

scheduler and job submission framework, Nordugrid ARC.

One of the most challenging integration points was to

map the Grid identity to an asserted capability. This prob-

lem was solved by introducing the concept of transfer to-

kens. This allowed both the private Grid credentials, and the

bank account keys to remain local. It also makes it easy for

resource users to give out ’gift certificates’, to allow users

without a Tycoon client installation to submit (and fund)

jobs to the Tycoon cluster.

One of the first experiences gained from user feedback of

the system was that it was hard to know how much money

to use to fund a job. To aid the users in deciding how much

funding their jobs would need to complete within a certain

deadline, or conversely when a job would be expected to

complete given a budget, we developed a suite of predic-

tion models and tools. The accuracy of these predictions

depends on the regularity of previous price snapshots and it

is therefore crucial, for the results to be good, to pick a time

window to study that exhibits these patterns. We therefore

also implement a model that allows statistical data within a

certain time window to be retrieved, using approximations

based on linear smoothing functions.

Finally, our experimental results using a Bioinformat-

ics application developed for the Grid, show that the level

of performance delivered when submitting a large batch of

jobs, can be customized by the incentive compatible use of

transfer tokens. Thus the fairness and economically effi-

ciency properties of Tycoon can be carried over to the Grid

Market users.

Future work includes extending the lightweight predic-

tion model presented here to handle arbitrary distributions

and studying how higher-level reservation mechanisms,

such as Service Level Agreements, Future Markets, Insur-

ance Systems, and Swing Options can be built on top of

the prediction infrastructure presented here to provide more

user-oriented QoS guarantees.

8. Acknowledgments

We thank Bernardo Huberman, Lars Rasmusson, Fang

Wu, Li Zhang, and Kate Keahey for fruitful discussions.

The Tycoon Grid Market work would not have been possi-

ble without the funding from the HP/Intel Joint Innovation

Program (JIP), our JIP liason, Rick McGeer, and our col-

laborators at Intel, Rob Knauerhase and Jeff Sedayao.

The work on the Bioinformatics application was funded

byWallenberg Consortium North Foundation and Vinnova.

References

[1] Yellow dog Updater, Modified. http://linux.duke.edu/projects/yum/.

[2] SUN, Queen’s Univ, First Derivatives to Speed Bank Risk

Analysis. GRID today, 3(30), July 2004.

[3] The Grid for the Video Industry. GRIDSTART Business
Newsletter, (2):4, April 2004.

[4] EGEE. Enabling Grids for ESciencE. http://egee-

intranet.web.cern.ch/egee-intranet/gateway.html, 2005.

[5] ESG. Earth System Grid. http://www.earthsystemgrid.org,

2005.

[6] NEESit. http://it.nees.org/, 2005.

[7] OSG. Open Science Grid. http://www.opensciencegrid.org,

2005.

[8] TeraGrid. http://www.teragrid.org, 2005.

[9] J. Andrade and J. Odeberg. HapGrid: a resource for haplo-

type reconstruction and analysis using the computational Grid

power in Nordugrid. HGM2004: New Technologies in Haplo-
typing and Genotyping, April 2004.

[10] D. Bosio, J. Casey, A. Frohner, L. Guy, P. Kunszt, E. Laure,

S. Lemaitre, L. Lucio, H. Stockinger, K. Stockinger, W. Bell,

D. Cameron, G. McCance, P. Millar, J. Hahkala, N. Karlsson,

V. Nenonen, M. Silander, O. Mulmo, G.-L. Volpato, G. An-

dronico, F. DiCarlo, L. Salconi, A. Domenici, R. Carvajal-

Schiaffino, and F. Zini. Next-generation eu datagrid data man-

agement services. In Proceedings of Computing in High En-
ergy and Nuclear Physics, La Jolla, CA, USA, March 2003.

[11] Brent N. Chun and Philip Buonadonna and Chaki Ng. Com-

putational Risk Management for Building Highly Reliable

Network Services. In Proceedings of the 1st Workshop on Hot
Topics in System Dependability, 2005.

[12] R. Buyya, D. Abramson, and S. Venugopal. The Grid Econ-

omy. Proceedings of the IEEE, Special Issue on Grid Comput-
ing, 93(3):479–484, March 2005.

[13] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal.

Scheduling Parameter Sweep Applications on Global Grids:

A Deadline and Budget Constrained Cost-Time Optimisation

Algorithm. Software: Practice and Experience (SPE) Journal,

35(5):491–512, April 2005.

[14] G. Caronni, T. Curry, P. S. Pierre, and G. Scott. Super-

nets and snHubs: A Foundation for Public Utility Computing.

Technical Report TR-2004-129, Sun Microsystems, 2004.

[15] A. Chavez, A. Moukas, and P. Maes. Challenger: a multi-

agent system for distributed resource allocation. In AGENTS
’97: Proceedings of the first international conference on Au-
tonomous agents, pages 323–331, New York, NY, USA, 1997.
ACM Press.

[16] B. N. Chun, P. Buonadonna, and C. Ng. Computational Risk

Management for Building Highly Reliable Network Services.

In Proceedings of the IEEE First Workshop on Hot Topics in
System Dependability, 2005.

[17] L. ChunLin and L. Layuan. A two level market model for

resource allocation optimization in computational grid. In CF
’05: Proceedings of the 2nd conference on Computing fron-
tiers, pages 66–71, New York, NY, USA, 2005. ACM Press.

[18] S. Clearwater and B. A. Huberman. Swing Options. In Pro-
ceedings of 11th International Conference on Computing in
Economics, June 2005.

[19] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,

A. Warfield, P. Barham, and R. Neugebauer. Xen and the Art

of Virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, 2003.

[20] M. Feldman, K. Lai, and L. Zhang. A Price-Anticipating Re-

source Allocation Mechanism for Distributed Shared Clusters.

In Proceedings of the ACM Conference on Electronic Com-
merce, 2005.

[21] I. Foster. Globus toolkit version 4: Software for service-

oriented systems. In IFIP’05: Proceedings of International
Conference on Network and Parallel Computing, volume
3799, pages 2–13. LNCS, Springer-Verlag GmbH, 2005.

[22] I. Foster and C. Kessleman, editors. The Grid 2: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
2003.

[23] The Future and Emerging Technologies Global Computing

Initiative. Technical report, European Commision, DG Infor-

mation Society, July 2005.

[24] S. Graupner, J. Pruyne, and S. Sherad. Making the Utility

Data Center a Power Station for the Enterprise Grid. Technical

Report HPL-2003-53, Hewlett-Packard Laboratories, 2003.

[25] L. J. Halliwell. Mean-Variance Analysis and the Diversifica-
tion of Risk. Casualty Actuarial Society, St. Louis, Missouri,
USA, May 1995.

[26] J. Hellerstein, K. Katricioglu, and M. Surendra. An Online,

Business-Oriented Optimization of Performance and Avail-

ability for Utility Computing . Technical Report RC23325,

IBM, December 2003.

[27] L. V. Kale, S. Kumar, M. Potnuru, J. DeSouza, and S. Band-

hakavi. Faucets: Efficient resource allocation on the compu-

tational grid. In ICPP ’04: Proceedings of the 2004 Inter-
national Conference on Parallel Processing (ICPP’04), pages
396–405, Washington, DC, USA, 2004. IEEE Computer Soci-

ety.

[28] G. Kan. Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, chapter Gnutella, pages 94–122. O’Reilly & As-
sociates, Inc., 1st edition, March 2001.

[29] K. Lai. Markets are Dead, Long Live Markets. SIGecom
Exchanges, 5(4):1–10, July 2005.

[30] K. Lai, B. A. Huberman, and L. Fine. Tycoon: A Distributed

Market-based Resource Allocation System. Technical report,

arXiv, 2004. http://arxiv.org/abs/cs.DC/0404013.

[31] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and

B. A. Huberman. Tycoon: an Implemention of a Distributed

Market-Based Resource Allocation System. Technical Report

arXiv:cs.DC/0412038, HP Labs, Palo Alto, CA, USA, Dec.

2004.

[32] L. Ljung. System Identification: Theory for the User. Pren-
tice Hall, December 1998.

[33] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard.

Enterprise: A Market-like Task Scheduler for Distributed

Computing Environments. In B. A. Huberman, editor, The
Ecology of Computation, number 2 in Studies in Computer
Science and Artificial Intelligence, pages 177–205. Elsevier

Science Publishers B.V., 1988.

[34] H. M. Markowitz. Portfolio Selection. Journal of Finance,
7(1), March 1952.

[35] O. Regev and N. Nisan. The Popcorn Market: Online

Markets for Computational Resources. In Proceedings of
1st International Conference on Information and Computation
Economies, pages 148–157, 1998.

[36] T. Sandholm. emediator: a next generation electronic com-

merce server. In AGENTS ’00: Proceedings of the fourth in-
ternational conference on Autonomous agents, pages 341–348,

New York, NY, USA, 2000. ACM Press.

[37] T. Sandholm, P. Gardfjell, E. Elmroth, L. Johnsson, and

O. Mulmo. An ogsa-based accounting system for allocation

enforcement across hpc centers. In ICSOC ’04: Proceedings of
the 2nd international conference on Service oriented comput-
ing, pages 279–288, New York, NY, USA, 2004. ACM Press.

[38] O. Smirnova, P. Erola, T. Ekelöf, M. Ellert, J. Hansen,

A. Konsantinov, B. Konya, J. Nielsen, F. Ould-Saada, and

A. Wäänänen. The NorduGrid Architecture and Middleware

for Scientific Applications. Lecture Notes in Computer Sci-
ence, 267:264–273, 2003.

[39] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah,

J. Sidell, C. Staelin, and A. Yu. Mariposa: a wide-area dis-

tributed database system. The VLDB Journal, 5(1):048–063,
1996.

[40] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,

and W. S. Stornetta. Spawn: A Distributed Computational

Economy. Software Engineering, 18(2):103–117, 1992.

[41] R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-commerce:

Market formulations controlling resource allocation on the

computational grid. In IPDPS ’01: Proceedings of the 15th
International Parallel and Distributed Processing Symposium
(IPDPS’01), page 10046.2, Washington, DC, USA, 2001.
IEEE Computer Society.

[42] F. Wu, L. Zhang, and B. A. Huberman. Truth-telling Reser-

vations. http://arxiv.org/abs/cs/0508028, 2005.

[43] L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu. Gridis: An incentive-

based grid scheduling. In IPDPS ’05: Proceedings of the
19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05) - Papers, page 65.2, Washington, DC,
USA, 2005. IEEE Computer Society.

EVALUATING DEMAND PREDICTION TECHNIQUES FOR

COMPUTATIONAL MARKETS

THOMAS SANDHOLM

KTH – Royal Institute of Technolog,
SE-100 44 Stockholm, Sweden,
E-mail: sandholm@pdc.kth.se

KEVIN LAI

Informations Dynamics Laboratory,
HP Labs, Palo Alto, CA 94304

E-mail: kevin.lai@hp.com

We evaluate different prediction techniques to estimate future demand of resource

usage in a computational market. Usage traces from the PlanetLab network are

used to compare the prediction accuracy of models based on histograms, normal

distribution approximation, maximum entropy, and autoregression theory. We

particularly study the ability to predict the tail of the probability distribution in

order to give guarantees of upper bounds of demand. We found that the maximum

entropy model was particularly well suited to predict these upper bounds.

1. Introduction

Large scale shared computational Grids allow more efficient usage of resources through

statistical multiplexing. Economic allocation of resources in such systems provide a variety of

benefits including allocating resources to users who benefit from them the most, encouraging

organizations to share resources, and providing accountability 12,6,1,14.

One critical issue for economic allocation systems is predictability. Users require the

ability to predict future prices for resources so that they can plan their budgets. Without

predictability, users will either over-spend, sacrificing future performance, or over-save, sac-

rificing current performance. Both lead to dissatisfaction and instability. Moreover, the lack

of accurate information precludes rational behavior, which would disrupt the operation of

the many allocation mechanisms that depend on rational behavior.

There are three parts to predictability: the predictability provided by the allocation

mechanism, the predictability of the users’ behavior, and the predictability provided by

statistical algorithms used to model the behavior. We examine the latter two. Consequently,

these results are not dependent on a specific allocation mechanism and instead apply to many

systems.

The goal of this paper is to examine the degree to which future demand can be predicted

from previous demand in a shared computing platform. Ideally, we would use the pricing

1

2

data from a heavily used economic grid system, but such systems have not yet been widely

deployed. Instead, we examine PlanetLab9, a widely-distributed, shared computing platform

with a highly flexible and fluid allocation mechanism. The PlanetLab data set has the

advantage of encompassing many users and hosts and having very little friction for allocation.

However, PlanetLab does not use economic allocation, so we substitute usage as a proxy

for pricing. Since many economic allocation mechanisms (e.g., Spawn11, Popcorn10, ICE4,

and Tycoon7) adjust prices in response to the demand, we believe that this approximation

is appropriate.

We examine this data set using four different statistical prediction algorithms: histogram

(Hist) approximation, maximum entropy (MaxEnt) density estimation, an autoregression

(AR) time series model, and a normal (Norm) distribution model. We evaluated these

algorithms by feeding them samples of usage data over a particular period of time and then

measuring the error of the generated model. We then measured the error of using these

models to predict future demand.

Our findings are as follows:

• MaxEnt and Norm were able to accurately model the data set over larger time peri-

ods. Maximum entropy estimation is approximately twice as accurate as a normal model

because of its ability to capture skewness. Both methods are an order of magnitude more

accurate than histogram approximation. The MaxEnt model is based on fitting integrals of

the distribution function to statistical moments. This fit may not yield satisfactory approx-

imations if the number of data samples in the time window investigated are too few, and

we then fall back to the normal distribution approximation.

• All of the techniques produce inaccurate predictions, when trying to predict the cu-

mulative distribution function for future demand. Autoregression has the additional dis-

advantage of requiring so much compute overhead that it was not able to complete some

predictions. Furthermore, the AR model requires more history data to be maintained in

order to retrain the prediction model to fit the current load.

• Despite inaccurate predictions of the full cumulative distribution function, MaxEnt

and Norm were able to produce accurate bounds for demand. This is important because

bounds are sufficient for users to budget. For example, if a user knows that the probability

of hosts being less than $1 per host within the next week is 99%, and he needs 10 hosts,

then he knows he should budget $10.

2. Prediction Algorithms

The goal of the prediction algorithms is to predict the demand for a resource based on

historical data. In an economic system, the demand determines the price, which allows

users to budget accurately. The general prediction model we use is summarized here.

P (Y ≤
y − µ

σ
) = Φ(

y − µ

σ
) (1)

y ≤ µ + σΦ−1(p) (2)

3

where y is the demand with mean µ and standard deviation σ, and Φ is the cumulative

probability density function (CDF) of a normal distribution. Eq. 1 gives us a way to get a

probability of a demand given its mean and standard deviation, and Eq. 2 allows us to find

the demand corresponding to level of guarantee or probability.

In this work we want to remove the assumption of a normal distribution, and instead

only assume an iid (independent identically distributed) distribution, and then compare

the results to those obtained using the normal distribution assumption. More specifically,

this means that we want to take the skewness of the distribution into consideration in our

predictions. This extension is motivated by previous work on computational markets and

usage behavior on the web 3 have shown that heavy-tailed distributions are common.

We evaluate three different approaches to tackle this generalization here, histogram

(Hist) approximation, maximum entropy (MaxEnt) density estimation, and an autoregres-

sion (AR) time series model. The results are benchmarked against approximations used

with the normal (Norm) distribution assumption, and compared to the real outcome.

The Hist approximation is based on placing sample data points in a fixed number of

bins with predetermined data ranges. It therefore assumes some a-priori knowledge of the

variance of the data. In our benchmarks we used 10 and 100 bins to approximate the

distribution of values in a range of about 5000 distinct data values.

The MaxEnt model is based on the concept of choosing a distribution function which

maximizes the entropy or randomness (or simply the unknown parameters) of a function

given some characteristics such as statistical moments. This idea was first articulated by

E.T. Jaynes in 5. Cover and Thomas 2 then proved that all functions maximizing the entropy

of a distribution are of a general form. For example, given the following constraints of the

three moments about the origin µ1, µ2, µ3

∞∫

−∞

f(x)dx = 1,

∞∫

−∞

xf(x)dx = µ1,

∞∫

−∞

x2f(x)dx = µ2,

∞∫

−∞

x3f(x)dx = µ3

then the distribution function that maximizes the entropy has the form

f(x) = eλ0+λ1x+λ2x2
+λ3x3

Now the problem of finding the distribution function f reduces to finding the λ pa-

rameters. Cover and Thomas suggests starting with the parameters known for a normal

distribution and then ”wiggle” them to find the best fit. In our implementation we per-

formed this ”wiggling” by applying the steepest descent iterative optimization algorithm

described in 13. In summary, we iteratively try to get closer to

θ = λ0, λ1, λ2, λ3

by initializing it to the values know for a normal distribution and then assigning it subsequent

values according to

θt+1 = θt − H−1B

4

where H is the Hessian matrix defined as

Hk,j =

∫
xkxjf(x, θt)dx, 0 ≤ k, j ≤ 3

and B is the difference vector

Bk =

∫
xkf(x, θt)dx − µk, 0 ≤ k ≤ 3

Note that we use the first three moments to capture the skewness of the distribution.

Using more than three moments introduces irregular fluctuations which could prevent the

algorithm from converging, and it also more easily runs into numerical limitations such us

number overflows and round off errors.

The AR model 8 is a standard time-series model of the following form

Xt = µ +
k∑

i=1

αi(Xt−1 − µ)

where µ is the measured mean in the training data, and k is the order (we used k =

2 in our benchmarks). The model parameters αi are estimated by first calculating the

autocorrelation vector for the training data and then solving the Yule-Walker equations.

Note that the white-noise parameter has been omitted for simplicity.

Four different evaluations are performed on time series data using these techniques.

First, we look at how well the summary data, such as bin density with Hist, the first three

moments about the origin with MaxEnt, and the first two moments with Norm approximate

the distribution described in the current period. If we have an iid distribution this should

also give an indication of the possible accuracy of future predictions. Second, we look at

how well predictions based on approximations of the cumulative density function in previous

intervals can predict future distributions, and compare that to AR prediction results. Third,

we look at how the actual distribution changes over time in the different intervals studied.

Finally we look at how well the 99th percentile of the cumulative distribution function can

be estimated in order to see how well guarantees can be given that the price will not exceed

a certain value.

We also look at the convergence rate of the MaxEnt estimation. If it does not converge

we, as previously mentioned, fall back to the Norm approach.

3. Results

We study usage time-series data, based on 5-minute snapshots of the aggregated number

of PlanetLab slices allocated across the whole network. Data from two months (November-

December 2005) were used. Training and future prediction horizons corresponding to pre-

dictions roughly from 2 hours to 3 days into the future were evaluated.

3.1. Modelling

In Figure 1 we can see that the MaxEnt approximation improves the accuracy of the CDF fit

substantially compared to the normal distribution technique. SSE is the sum of the squares

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

 0

 0.2

 0.4

 0.6

 0.8

 1
C

D
F

 S
S

E

C
on

ve
rg

en
ce

 R
at

e

Window

Normal Approx
MaxEnt Approx

Success Rate

Figure 1. PlanetLab Density Approximation

of the errors when plotting the CDF with a granularity of 100 data points. The windows

correspond to number of 5-minute snapshots used to predict the same number of 5-minute

snapshots into the future.

We can see that the MaxEnt approximation does not converge in the case of the window

size 50 in more than 35% of the cases. We wanted to investigate why, and performed a

correlation test on the range of the data values in the window, the standard deviation of

the data, and the likelihood of convergence. We obtained correlation coefficients 0.56, and

0.55 for data range and standard deviation respectively which are significant at the 1%-level

according to a t-Student test. Intuitively this may be caused by the integral calculations used

in the MaxEnt fit being too short to find the underlying entropy maximizing distribution.

As a clarification, convergence of the MaxEnt approximation is defined by the error when

fitting to the moments expected is less then a certain value ǫ. With the PlanetLab data

we saw that an ǫ of 100 worked best, but there is always a tradeoff between accuracy and

convergence rate.

3.2. Predicting the Cumumlative Distribution

Figure 2 shows an example of an interval estimation and how the different CDF functions

compare. The window size in this case was two hours. We can see that the entropy model

gives a much better fit to the non-normal behavior of the curve. The histogram estimation

(with 100 bins) is quite a coarse grained estimation, and requires more state to be maintained

as opposed to just three running moments as in the entropy case.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
18

00

 2
20

00

 2
22

00

 2
24

00

 2
26

00

 2
28

00

 2
30

00

 2
32

00

 2
34

00

 2
36

00

C
D

F

#Slices

Measured
MaxEnt Approx
Normal Approx

Histogram Approx

Figure 2. PlanetLab Density Approximation CDF

3.3. Predicting Bounds

A bit surprisingly we see in Figure 3 that the MaxEnt model does not produce better

prediction results over time than the normal approximation. The AR curve is provided

for reference. It does not make sense to use the AR model unless it predicts better than

predicting the outcome of the previous period since it also requires all the data points to be

kept in history. Since this is not the case for these long-interval predictions it provides no

added value in this situation. Another severe limitation of AR is that it numerically due to

large Matrix computations is not feasible to predict more than roughly 300 data points into

the future. Note that in the graph this is shown by the AR SSE being set to 0 for window

sizes greater than 300.

An explanation to why the MaxEnt model cannot benefit from its more accurate density

approximations when predicting future densities can be seen in Figure 4. Each CDF in the

Figure is taken in a subsequent interval so the t1 curve contains the distribution of all the

data points from the start of the measurement to time t1, the t2 curve has all the data

points between t1 and t2, etc. The mean point of the density moves back and forth in an

unpredictable manner. Another indicator of this is the high SSE value of the benchmark

prediction (predicting last periods CDF for the next) in Figure 3 (around 11) compare to

the values in 1 (around 0.2).

It is then more encouraging to see that the 99th percentile MaxEnt estimates in Figure

5 are more accurate than with Norm. We should also note here that the training was done

on the maximum amount of history data available and not just the previous period to do

7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

C
D

F
 S

S
E

Window

Normal Predict
MaxEnt Predict

AR Predict
Histogram Predict

Benchmark Predict

Figure 3. PlanetLab Density Prediction

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2
10

00

 2
15

00

 2
20

00

 2
25

00

 2
30

00

 2
35

00

 2
40

00

C
D

F

#Slices

t1
t2
t3
t4
t5
t6
t7

Figure 4. PlanetLab Density Variance

8

 0

 0.05

 0.1

 0.15

 0.2

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

E
rr

or
 a

nd
 O

ve
re

st
im

at
io

n
R

at
io

s

Window

MaxEnt Error
MaxEnt Overestimation

Normal Error
Normal Overestimation

Figure 5. PlanetLab Tail Prediction

more of a worst case estimation of the tail as opposed to an overall accurate one. The error

presented in Figure 5 is calculated as the difference between the measured value and the

approximation divided by the measured value.

4. Conclusions

Although the statistical prediction algorithms that we examine here were not able to accu-

rately predict future demand in the PlanetLab data set, we found that the MaxEnt algorithm

was able to accurately predict bounds on future demand.

Some areas for future work are to examine the performance of MaxEnt in a live system

and for systems with different applications and user behaviors than PlanetLab. Ultimately

we hope to examine the performance of the algorithms in a live economic Grid system.

Given the fluidity of PlanetLab usage and the lack of a pricing mechanism to moderate

usage, the accuracy of the MaxEnt algorithm gives us optimism that prediction algorithms

will be accurate in real economic systems. We believe that this will ultimately lead to more

stable, more economically efficient systems.

References

1. R. Buyya, D. Abramson, and S. Venugopal. The Grid Economy. Proceedings of the IEEE,
Special Issue on Grid Computing, 93(3):479–484, March 2005.

2. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,
1991.

9

3. C. A. Cunha, A. Bestavros, and M. E. Crovella. Characteristics of WWW client-based traces.
Technical Report TR-95-010, Boston University Department of Computer Science, Apr. 1995.
Revised July 18, 1995.

4. David C. Parkes and Ruggiero Cavallo and Nick Elprin and Adam Juda and Sebastien Lahaie
and Benjamin Lubin and Loizos Michael and Jeffrey Shneidman and Hassan Sultan. ICE:
An Iterative Combinatorial Exchange. In Proceedings of the ACM Conference on Electronic
Commerce, 2005.

5. E. Jaynes. Information Theory and Statistical Mechanisms. Physics Review, 106:620–630, 1957.
6. L. V. Kale, S. Kumar, M. Potnuru, J. DeSouza, and S. Bandhakavi. Faucets: Efficient resource

allocation on the computational grid. In ICPP ’04: Proceedings of the 2004 International
Conference on Parallel Processing (ICPP’04), pages 396–405, Washington, DC, USA, 2004.
IEEE Computer Society.

7. K. Lai. Markets are Dead, Long Live Markets. ACM SIGecom Exchanges, 5(4):1–10, July 2005.
8. L. Ljung. System Identification: Theory for the User. Prentice Hall, December 1998.
9. L. Peterson, T. Anderson, D. Culler, , and T. Roscoe. Blueprint for Introducing Disruptive

Technology into the Internet. In First Workshop on Hot Topics in Networking, 2002.
10. O. Regev and N. Nisan. The Popcorn Market: Online Markets for Computational Resources.

In Proceedings of 1st International Conference on Information and Computation Economies,
pages 148–157, 1998.

11. C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta. Spawn: A
Distributed Computational Economy. Software Engineering, 18(2):103–117, 1992.

12. R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-commerce: Market formulations controlling
resource allocation on the computational grid. In IPDPS ’01: Proceedings of the 15th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’01), page 10046.2, Washington,
DC, USA, 2001. IEEE Computer Society.

13. X. Wu and T. Stengos. Partially adaptive estimation via the maximum entropy densities.
Econometrics Journal, 8(3):352–366, 2005.

14. L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu. Gridis: An incentive-based grid scheduling. In IPDPS
’05: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Papers, page 65.2, Washington, DC, USA, 2005. IEEE Computer Society.

A Statistical Approach to Risk Mitigation in Computational
Markets

Thomas Sandholm
KTH – Royal Institute of Technology

Center for Parallel Computers
SE-100 44 Stockholm, Sweden

sandholm@pdc.kth.se

Kevin Lai
Hewlett-Packard Laboratories

Information Dynamics Laboratory
Palo Alto, California 94304

kevin.lai@hp.com

ABSTRACT

We study stochastic models to mitigate the risk of poor
Quality-of-Service (QoS) in computational markets. Con-
sumers who purchase services expect both price and per-
formance guarantees. They need to predict future demand
to budget for sustained performance despite price fluctua-
tions. Conversely, providers need to estimate demand to
price future usage. The skewed and bursty nature of de-
mand in large-scale computer networks challenges the com-
mon statistical assumptions of symmetry, independence, and
stationarity. This discrepancy leads to underestimation of
investment risk. We confirm this non-normal distribution
behavior in our study of demand in computational markets.

The high agility of a dynamic resource market requires
flexible, efficient, and adaptable predictions. Computational
needs are typically expressed using performance levels, hence
we estimate worst-case bounds of price distributions to mit-
igate the risk of missing execution deadlines.

To meet these needs, we use moving time windows of
statistics to approximate price percentile functions. We use
snapshots of summary statistics to calculate prediction in-
tervals and estimate model uncertainty. Our approach is
model-agnostic, distribution-free both in prices and predic-
tion errors, and does not require extensive sampling nor
manual parameter tuning. Our simulations and experiments
show that a Chebyshev inequality model generates accurate
predictions with minimal sample data requirements.

We also show that this approach mitigates the risk of
dropped service level performance when selecting hosts to
run a bag-of-task Grid application simulation in a live com-
putational market cluster.

Categories and Subject Descriptors

D.4.8 [Operating Systems]: Performance—Modeling and

prediction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’07, June 25–29, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-673-8/07/0006 ...$5.00.

General Terms

Management, Performance

Keywords

QoS, Service Level Management, Resource Allocation

1. INTRODUCTION
Large scale shared computational Grids allow more ef-

ficient usage of resources through statistical multiplexing.
Economic allocation of resources in such systems provide
a variety of benefits including allocating resources to users
who benefit from them the most, encouraging organizations
to share resources, and providing accountability [29, 15, 5,
31].

One critical issue for economic allocation systems is pre-
dictability. Users require the ability to predict future prices
for resources so that they can plan their budgets. With-
out predictability, users will either over-spend, sacrificing fu-
ture performance by prematurely spending the risk-hedging
buffer, or over-save, sacrificing current performance. Both
lead to dissatisfaction and instability. Moreover, the lack
of accurate information precludes rational behavior, which
would disrupt the operation of the many allocation mecha-
nisms that depend on rational behavior.

There are three parts to predictability: the predictability
provided by the allocation mechanism, the predictability of
the users’ behavior, and the predictability provided by sta-
tistical algorithms used to model the behavior. In this work
we focus on the last part. The first part was investigated
in [11] and examples of mechanisms addressing the second
part include [7, 30].

The goal of this paper is to examine the degree to which
future QoS levels, guarantees, and resource prices can be
predicted from previous demand on a shared computing
platform. Ideally, we would use the pricing data from a
heavily used economic Grid system, but such systems have
not yet been widely deployed. Instead, we examine Plan-
etLab[20], a widely-distributed, shared computing platform
with a highly flexible and fluid allocation mechanism. The
PlanetLab data set has the advantage of encompassing many
users and hosts and having very little friction for allocation.
However, PlanetLab does not use economic allocation, so
we substitute usage as a proxy for pricing. Since many eco-
nomic allocation mechanisms (e.g., Spawn[25], Popcorn[21],
ICE[9], and Tycoon[16]) adjust prices in response to the de-
mand, we believe that this approximation is appropriate.

85

We also analyze job traces from the Royal Institute of Tech-
nology in Stockholm (KTH), Ohio Supercomputing Center
(OSC), and San Diego Supercomputer Center (SDSC) to
contrast the PlanetLab load with deployments exhibiting
more traditional high performance computing user behav-
ior.

In these traces, we examine three key statistical metrics
computed on the time-varying demand: distribution skew-
ness, correlation over time, and volatility over time (het-
eroskedacity). Skewness captures whether most of the distri-
bution’s values are closer to the lower bound (right-skewed),
upper bound (left-skewed), or neither (symmetric). Correla-
tion over time measures the relative importance of old and
recent samples in predicting future samples. Finally, het-
eroskedacity measures how variance changes over time. We
find that that the traced demand distributions have signifi-
cant skewness, long-term correlation, and changes in volatil-
ity over time.

Common modelling techniques fail under these conditions.
We show using simulation that a predictor based on a Nor-
mal (Norm) Gaussian distribution model and a benchmark
(Bench) predictor using the entire sample history both per-
form poorly with highly skewed data. In addition, high het-
eroskedacity reduces the accuracy of any predictions of the
expected value of demand.

We develop a new predictor based on the Chebyshev (Cheb)
model. It is distribution-free and provides worst-case sce-
nario bounds independent of distribution symmetry. To
handle time correlations, we sample statistics in running
moments with exponential smoothing in different time win-
dows (e.g., hour, day and week). This allows us to maintain
less data as well as to adapt quickly to changing demand
behavior.

To handle heteroskedacity, the Chebyshev-based predictor
uses the running moments to predict demand bounds. We
observe that users of a market-based system can substitute
predictions of demand bounds for predictions of expected
value. Market-based systems have mechanisms for insuring
against future changes in prices (e.g., bidding more for re-
sources). Demand bound predictions are sufficient for users
to decide how much money to spend to mitigate risk. For
example, a predicted price bound of [$9, $50] per GHz with
an expected price of $10 conveys that, despite low expected
demand, there is significant risk of a high price and the user
should spend more to mitigate risk.

We use a live computational market based on the Ty-
coon[16] resource allocator to compare a strategy using the
Chebyshev-based predictor to the default strategy of using
the spot market price when scheduling jobs. Using a varying
load over time, we show that the predictor outperforms the
spot market strategy while imposing a negligible (0.001%)
computational and storage overhead.

The remainder of this paper is structured as follows. In
Section 2 we outline the requirements of the prediction prob-
lem we are addressing. We analyze the demand traces by
comparing the dynamics of the the different systems under
investigation in Section 3. In Section 4, we describe in more
detail the design and rationale of our prediction approach
and models. In Section 5, we present and discuss the setup
and results of the simulations and experiments. We review
related work in Section 6 and conclude in Section 7.

2. REQUIREMENTS

2.1 User Requirements
Consumers in a computational market need guidance re-

garding how much to spend to meet their performance re-
quirements and task deadlines. The quality of this guidance
is critical to both individual and overall system performance.
The best prediction system would recommend users to invest
as little as possible while meeting their QoS requirements
with as high a probability as possible. Robust statistical
performance guarantees are an alternative to reservations
with absolute guarantees, which are vulnerable to specula-
tion and a variety of other gaming strategies [6].

In the discussion below, the bid is the amount the con-
sumer pays a provider for a resource share over a given pe-
riod of time. A higher bid obtains a greater share, or QoS

level. The guarantee is the likelihood that the delivered QoS
is greater than the consumer’s defined value. The guarantee
is not a contract, but rather the estimated probability that
a QoS level can be delivered.

The prediction system answers the following questions for
the user:

Question 1. How much should I bid to obtain an ex-

pected QoS level with a given guarantee?

Question 2. What QoS level can I expect with a given

guarantee if I spend a given amount?

Question 3. What guarantee can I expect for a given

QoS level if I spend a given amount?

Exactly which question(s) a user asks varies from job to job
and from user to user. We assume that users can ask any
question at any time.

We further assume that providers allocate shares among
consumers using the proportional share model as follows:

Definition 1. Q = bid
bid+Y

where Y denotes the demand of the resource modeled as
a random variable with an arbitrary unknown distribution,
and Q is the random variable representing the obtained per-
formance when requesting performance qos. We define guar-
antee as the probability that the obtained performance is
greater than the requested performance:

Definition 2. g = P (Q > qos)

Proposition 1. To get performance guarantee g, we need

to spend
CDF−1(g)qos

1−qos
, where CDF−1 is the percent point

function or the inverse of the cumulative distribution func-

tion for the demand.

Proof. Substituting the share Q in Definition 2 with the
right side of the equation in Definition 1 gives

g = P

„

bid

bid + Y
> qos

«

= P

„

Y ≤
bid

qos
− bid

«

=

CDF

„

bid

qos
− bid

«

the inverse CDF of the demand distribution can then be
expressed as:

CDF−1(g) =
bid

qos
− bid

86

which after rearranging gives:

bid =
CDF−1(g)qos

1 − qos

This provides everything to answer Question 1, 2, 3. To
obtain an expected QoS level with a given guarantee, a user
should bid the following (Question 1):

bid =
CDF−1(g)q

1 − q

˛

˛

˛

˛

P (Q>q)=g

. (1)

A user who bids a given amount and expects a given guar-
antee should expect the following QoS level (Question 2):

q =
bid

bid + CDF−1(g)

˛

˛

˛

˛

P (Q>q)=g

. (2)

A user who bids a given amount and expects a given QoS
level should expect the following guarantee (Question 3):

g = CDF

„

(1 − q)bid

q

«

˛

˛

˛

˛

P (Q>q)=g

(3)

The main goal of our prediction method is to construct
estimates of the CDF and CDF−1 (a.k.a. percent point
function (PPF)) accurately and efficiently.

2.2 System Requirements
Two different approaches for estimating probability den-

sities stand out: parameter-based and parameter-free esti-
mation. In the parameter-free approach, one takes a ran-
dom sample of data points, and smooths them to calculate
the most likely real underlying distribution, e.g. using a
least-squares algorithm. In the parameter-based approach,
one assumes certain structural and behavioral characteris-
tics about the real distribution and finds the parameters
that best fit the measured data, e.g. using some maximum
likelihood algorithm. In either case, sample measurements
or data points are needed to calculate the density functions.
Recording the history of demand in time-series streams for
a large number of resources across a large number of compu-
tational nodes in real-time does not scale, in terms of state
maintenance and distribution, and prediction model con-
struction and execution. The scalability limitations force
restrictions on the length of past and future prediction hori-
zons and the number of resources that can be tracked. As a
result, our goal is to use as few distribution summary data
points as possible to make as flexible predictions as possible.

Studies of large-scale networked systems [19, 8] show that
the underlying distribution of the demand is neither normal
nor symmetric. Assuming that it is would result in under-
estimated risks, so accommodating bursty, skewed behavior
is a necessity. Furthermore, we neither want to assume sta-
tionarity nor independence of the underlying distribution
since consumers are interested in getting the most accurate
estimate based on performing a task in the near future, and
evaluate that option against waiting for better conditions.

There is a trade-off between performance and accuracy
of the predictions, but there is also a similar trade-off be-
tween flexibility and evaluation capability. We would like
to empower users to do rich customized predictions based
on minimal summary statistics. They should be able to ex-
ecute what-if scenario probes based on all three questions

mentioned in Section 2.1. Different questions incur different
prediction errors, which complicates the generic evaluation
of model uncertainty and construction of prediction inter-
vals.

3. DEMAND ANALYSIS
In this section we describe the data traces used in the sim-

ulations in Section 5. The load traces come from four shared
compute clusters. The PlanetLab trace is available on-line
at http://comon.cs.princeton.edu/. The San Diego Su-
percomputer Center, Ohio Supercomputing Center, and Stock-
holm Royal Institute of Technology traces are all available
at http://www.cs.huji.ac.il/labs/parallel/workload/.

• PlanetLab. PlanetLab (PL) is a planetary-scale, dis-
tributed computing platform comprising approximately 726
machines at 354 sites in 25 countries, all running the same
Linux based operating system and PlanetLab software stack,
including a virtual machine monitor. The user community
is predominantly computer science researchers performing
large-scale networking algorithm and system experiments.
Resources are allocated in a proportional share fashion, in
virtual machine slices. The trace is from December 2005 to
December 2006, and was obtained from PlanetLab CoMon
node-level statistics. We calculate demand by aggregating
the load value across all hosts for each 5-min snapshot inter-
val available. This load measures the number of processes
that are ready to run across all virtual machines. The load
data was filtered to remove a periodic peak caused by syn-
chronized rpm database updates across all slices appearing
over a 30-min period every night, to get a more accurate
representation of demand.

• San Diego Supercomputer Center. The San Diego
Supercomputer (SDSC) trace was obtained from Dror Frei-
telson’s parallel workloads archive [2]. It is the SDSC Blue
Horizon workload from June 2000 to June 2001 (SDSC-
BLUE-2000-3.1-cln.swf). The load is from the 144 node 8-
way SMP crossbar Blue Horizon cluster using the LoadLeveler
scheduler.

The demand is calculated in three steps. First, the CPU
usage or load for a job is obtained as: rt(te − ts), where rt

is the CPU time consumed by the job in percentage of the
total run time, and te and ts are the end time and start
time in seconds since epoch respectively–all three values are
available directly from the trace. Second, each job CPU us-
age is correlated to the time when it was submitted, thus
effectively simulating that no queuing was done but all jobs
could run with their actual load instantly. Finally, we ag-
gregate the obtained CPU load value across all jobs running
in every 5-min time interval. We did not analyze the utiliza-
tion data directly because it could mask high demand under
heavy load. The transformation also makes it comparable to
proportional share systems such as PlanetLab and Tycoon,
which are the primary focus of our work. Although this
masks the needs of users who do not submit jobs when the
queue wait-times are too long, we assume that these users
would not spend money in an expensive computational mar-
ket either. Consequently, we assume that these users do not
contribute to demand.

• Ohio Supercomputing Center. The Ohio Super-
computing Center (OSC) trace was also obtained from the
parallel workloads archive. It is the OSC Linux cluster work-
load from January 2001 to December 2001 (OSC-Clust-2000-
2.swf). The site is a Linux cluster with 32 quad nodes and

87

Table 1: Central Moments of Traces (skewness > 2 is

marked in bold to indicate a heavy tail)

µ σ
µ

γ1 γ2

PL 3433 0.37 4.06 29.45
KTH 382 0.71 1.11 0.90
OSC 66 0.72 1.53 4.35
SDSC 3249 0.51 1.02 2.07

25 dual nodes with a total of 178 processors using the Maui
scheduler. We perform the identical transformation from
job workload to demand as with the SDSC data described
above.

• Royal Institute of Technology. The Center for Par-
allel Computers at the Swedish Royal Institute of Technol-
ogy (KTH) in Stockholm, provided us with the final work-
load trace. The trace is from a 100-node IBM SP2 clus-
ter from October 1996 to September 1997 (KTH-SP2-1996-
2.swf). Because CPU time was not recorded in the logs, the
CPU load is set to the run time of the jobs. Apart from this
the demand transformation is identical to the SDSC and
OSC traces described above.

Next, we characterize the dynamics of the computational
demand traces by examining the typical properties of time
series distributions: symmetry, independence, and station-
arity.

3.1 Distribution Symmetry
The first step towards characterizing the load and detect-

ing anomalies is to look at the raw demand traces. Figure 1
shows that PlanetLab exhibits much thinner peaks that both
appear and disappear more quickly than the peaks in the
other traces. We attribute this behavior to the fact that
PlanetLab jobs tend to be distributed systems or network-
ing experiments that have lower resource requirement than
scientific computing workloads.

Next, we measure the distribution symmetry of the de-
mand for the different clusters in Figure 2. A distribution
is right-skewed if its right tail is longer than its left and its
mass leans to the left. We see that the PlanetLab load stands
out as being more right-skewed than the others. All traces,
however, show asymmetric right-skewed behavior, indicating
that low demand is the most common state of the systems.
Distribution models such as the Gaussian or Normal distri-
bution assumes symmetry and will thus be inaccurate for all
of the traces studied. The central moments are summarized
in Table 1.

3.2 Dependence and Long Memory
One of the most common assumptions when studying time

series and when sampling data to approximate distributions
and densities is that the observations are IID. I.e. the sam-
pled data points are independent and identically distributed.
This allows the models to be trained once and then reused
indefinitely when they have converged. It also simplifies the
construction of confidence and prediction intervals. Because
there is no bias in the samples they can be taken to be a
good representation of the whole data set. The simplest way
of testing dependence, seasonality and randomness of sam-
ples is to draw an auto-correlation function (ACF) plot with
a series of increasing time lags. We study the correlations

 0

 5000

 10000

 15000

 20000

 25000

1
2

/2
0

0
5

0
1

/2
0

0
6

0
2

/2
0

0
6

0
3

/2
0

0
6

0
4

/2
0

0
6

0
5

/2
0

0
6

0
6

/2
0

0
6

0
7

/2
0

0
6

0
8

/2
0

0
6

0
9

/2
0

0
6

1
0

/2
0

0
6

1
1

/2
0

0
6

1
2

/2
0

0
6

P
L

 D
e

m
a

n
d

 0

 2000

 4000

 6000

 8000

 10000

 12000

0
5

/2
0

0
0

0
6

/2
0

0
0

0
7

/2
0

0
0

0
8

/2
0

0
0

0
9

/2
0

0
0

1
0

/2
0

0
0

1
1

/2
0

0
0

1
2

/2
0

0
0

0
1

/2
0

0
1

0
2

/2
0

0
1

0
3

/2
0

0
1

0
4

/2
0

0
1

0
5

/2
0

0
1

0
6

/2
0

0
1

S
D

S
C

 D
e

m
a

n
d

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1
0
/1

9
9
6

1
1
/1

9
9
6

1
2
/1

9
9
6

0
1
/1

9
9
7

0
2
/1

9
9
7

0
3
/1

9
9
7

0
4
/1

9
9
7

0
5
/1

9
9
7

0
6
/1

9
9
7

0
7
/1

9
9
7

0
8
/1

9
9
7

0
9
/1

9
9
7

K
T

H
 D

e
m

a
n
d

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1
2
/2

0
0
0

0
1
/2

0
0
1

0
2
/2

0
0
1

0
3
/2

0
0
1

0
4
/2

0
0
1

0
5
/2

0
0
1

0
6
/2

0
0
1

0
7
/2

0
0
1

0
8
/2

0
0
1

0
9
/2

0
0
1

1
0
/2

0
0
1

1
1
/2

0
0
1

1
2
/2

0
0
1

O
S

C
 D

e
m

a
n
d

Figure 1: Demand History (Hourly)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80 90 100

P
(D

 =
 D

e
m

a
n

d
)

Demand (%)

PlanetLab
KTH

OSC
SDSC

Figure 2: Demand Density

88

for lags up to 7 days. The plots in Figure 3, clearly show
that the observations are not independent in time but rather
show a strong and slowly decaying correlation to measures
in the previous time interval. If the decay is slower than
exponential the data is said to exhibit long memory. This
is clearly the case for at least the KTH trace (within the
weekly time lag). Long memory is a feature that gives stan-
dard auto-regressive models such as GARCH problems [18].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

P
la

n
e

tL
a

b
 A

C
F

Lag (Days)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

S
D

S
C

 A
C

F

Lag (Days)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

K
T

H
-P

D
C

 A
C

F

Lag (Days)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

O
S

C
 A

C
F

Lag (Days)

Figure 3: Auto-Correlation Functions

Another popular approach used to detect long-term corre-
lations is the rescaled-range (R/S) analysis [19], which was
influenced by Hurst’s study of the Nile floods [14]. In gen-
eral it provides a way to investigate how the values in a
time series scale with time. The scaling index, known as the
Hurst exponent is 0.5 if all the increments of the time series
are independent. A series where a trend in the past makes
the same trend in the future more likely is called presistent,
and has a Hurst exponent greater than 0.5. Conversely, sys-
tems where past trends are likely to be reversed are called
anti-persistent and scale with a Hurst exponent less than
0.5. If the R/S values (increment range, standard deviation
ratio) for different time intervals are plotted against time on
a log-log scale, the Hurst exponent appears as the slope of
the fitted line. Figure 4 shows the R/S plot for the demand
traces. A Hurst exponent around 0.92 fits all the traces
under investigation, which indicates a very high correlation
between past and future demand trends.

3.3 Heteroskedacity and Fat Tails
The last property that we investigate is the general volatil-

ity of the data which is crucial for making good risk assess-

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06

R
/S

 (
s
n

a
p

s
h

o
ts

)

snapshots

PlanetLab
KTH
OSC

SDSC
Norm

H=0.92

Figure 4: Rescaled-Range Dynamics and Hurst Expo-

nent

ments. If the data is extremely skewed such as in power-law
distributed data, both the mean and the variance can be
infinite and thus some other measures of volatility need to
be used. One popular approach is to look at the (abso-
lute) log difference in the increments of the data. It turns
out that even for very risky and volatile time series with
power-law behavior like the stock-market, the absolute in-
crements are predictable since high volatility data points
tend to cluster [19]. A volatility graph showing the log-
transformed increment differences over time is also another
measurement of how Gaussian-like the data is. A Gaussian
distribution produced by a Brownian-motion process has a
near uniform distribution of increment sizes, whereas more
unpredictable and thereby riskier processes have clusters of
high volatility intermingled with lower volatility periods. In
Figure 5 all of the traces show signs of changing volatility
over time (heteroskedacity). High volatility instances also
seem to be clustered. An analysis of how they are clustered
is beyond the scope of this paper. The stock market has
been shown to exhibit power-law scaling in the distribution
of the volatility over time [19]. We therefore also look at the
distribution tail behavior for our traces. A heavy-tailed or
fat-tailed distribution will exhibit a longer tail of the comple-
ment of the cumulative distribution function (1-CDF) than
the exponential distribution. According to this definition
Figure 6 and Table 2 show that all traces are heavy-tailed
in hourly volatility. PL and SDSC are also heavy-tailed in
daily volatility.

This investigation of traces indicates that a multi-fractal
time-scaling (trading time deformation) [18, 19] model may
be appropriate. We, for example, note that the Hurst ex-
ponent obtained can be used to determine the fractal di-
mension [3], which is a typical measure of the roughness of
the system in multifractal time-series. Figure 6 also indi-
cates that a stretched exponential distribution [8] could be
a good fit. However, an analysis of these more complicated
distributional models are outside the scope of this paper.

4. PREDICTION APPROACH
In this section, we present our approach to providing ac-

curate distribution predictions with an upper prediction bound.
The method is agnostic to the model used to fit the time se-
ries data of demand, and the prediction error distribution.

89

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

1
2

/2
0

0
5

0
1

/2
0

0
6

0
2

/2
0

0
6

0
3

/2
0

0
6

0
4

/2
0

0
6

0
5

/2
0

0
6

0
6

/2
0

0
6

0
7

/2
0

0
6

0
8

/2
0

0
6

0
9

/2
0

0
6

1
0

/2
0

0
6

1
1

/2
0

0
6

1
2

/2
0

0
6

P
L

 H
o

u
rl
y
 V

o
la

ti
lit

y

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0
5

/2
0

0
0

0
6

/2
0

0
0

0
7

/2
0

0
0

0
8

/2
0

0
0

0
9

/2
0

0
0

1
0

/2
0

0
0

1
1

/2
0

0
0

1
2

/2
0

0
0

0
1

/2
0

0
1

0
2

/2
0

0
1

0
3

/2
0

0
1

0
4

/2
0

0
1

0
5

/2
0

0
1

0
6

/2
0

0
1

S
D

S
C

 H
o

u
rl
y
 V

o
la

ti
lit

y

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1
0

/1
9

9
6

1
1

/1
9

9
6

1
2

/1
9

9
6

0
1

/1
9

9
7

0
2

/1
9

9
7

0
3

/1
9

9
7

0
4

/1
9

9
7

0
5

/1
9

9
7

0
6

/1
9

9
7

0
7

/1
9

9
7

0
8

/1
9

9
7

0
9

/1
9

9
7

K
T

H
 H

o
u

rl
y
 V

o
la

ti
lit

y

-1

-0.5

 0

 0.5

 1

 1.5

 2

1
2

/2
0

0
0

0
1

/2
0

0
1

0
2

/2
0

0
1

0
3

/2
0

0
1

0
4

/2
0

0
1

0
5

/2
0

0
1

0
6

/2
0

0
1

0
7

/2
0

0
1

0
8

/2
0

0
1

0
9

/2
0

0
1

1
0

/2
0

0
1

1
1

/2
0

0
1

1
2

/2
0

0
1

O
S

C
 H

o
u

rl
y
 V

o
la

ti
lit

y

Figure 5: Hourly Demand Volatility

 1e-04

 0.001

 0.01

 0.1

 1

 0.01 0.1 1

P
(V

 >
 V

o
la

ti
lt
y
)

Volatility

PL
PL Exp

KTH
KTH Exp

 1e-04

 0.001

 0.01

 0.1

 1

 0.01 0.1 1

P
(V

 >
 V

o
la

ti
lt
y
)

Volatility

SDSC
SDSC Exp

OSC
OSC Exp

Figure 6: Heavy Tails for Hourly Demand Volatility

Table 2: Skewness of Volatility

hour day week
PL 7.45 4.55 1.45

KTH 4.40 1.87 1.13
OSC 6.41 1.82 0.53
SDSC 4.44 2.05 1.63

There are two architectural components providing predic-
tion capabilities: the statistics collector (SC), and the pre-

diction generator (PG). The SC consumes a time series of
prices and produces a statistical summary, which in turn
is consumed by the PG. The statistical summary comprises
instantaneous running (non-central) moments over config-
urable time horizons. In our case we provide hourly, daily
and weekly summaries, as they correspond best to the length
of the computational jobs run as well as the length of the
horizon that is typically predictable. In addition to the mo-
ments, the summary also has the current price, a short his-
tory of moments for the most recent time periods, and the
minimum and maximum measured price values.

The running non-central moments are calculated as fol-
lows:

µt,p = αµt−1,p + (1 − α)xp
t

where µt,p is the pth moment at time t, xt the price at time
t and α = 1− 1

n
, where n is the number of data points in the

time horizon covered by the moments, and µ0,p = xp
0. We

refer to [22] for further details on how the central moments
are calculated.

The PG component is instantiated with a predictor that
uses the moments and the extremes to construct approxima-
tions of the cumulative distribution function (CDF), percent
point function (PPF), and a function generating confidence
intervals. The history of moments is used to construct pre-
diction intervals.

Here we will describe a Gaussian (Norm), a Chebyshev
(Cheb), and a sample-based predictor (Bench) which we use
for benchmarking.

4.1 Gaussian Predictor
The Gaussian CDF (Φ) is readily available and can be

calculated directly from the first two central moments. Since
the inverse of the Gaussian CDF or PPF (Φ−1) does not
have a closed form, we use an approximation based on a
rational minimax algorithm developed by Acklam [1]. The
100p%-confidence interval is then calculated as [Φ−1(0.5 −
p

2
), Φ−1(0.5 + p

2
)]. An identical interval calculation can be

done for all other predictors using their respective percent
point functions. The prediction interval is calculated by
applying Φ and Φ−1 on the history of moments.

4.2 Chebyshev Predictor
When predicting performance guarantees we are typically

more interested in worst case scenario bounds as opposed
to perfect data density fitting across all percentiles. One of
the most prominent techniques to estimate bounds in prob-
ability theory is by means of the Chebyshev inequality [12],
which states that:

P (|Y − µ| ≥ kσ) ≤
1

k2

where µ is the first central moment (mean) and σ the sec-
ond central moment (standard deviation) of the underlying
distribution. Rewriting the inequality as a CDF we get:

CDF (y) = 1 −
1

1 + k2

where k is y−µ

σ
. For unimodal distributions we can tighten

the bound further by applying the Vysochanskij-Petunin in-

90

equality [24], which for k ≥
q

8
3

gives:

CDF (y) = 1 −
4

9k2

Taking the inverse of the CDF we get:

PPF (p) =

8

<

:

µ ± σ
q

1
1−p

− 1 , k <
q

8
3
,

µ ± σ
q

4
9−p

, k ≥
q

8
3
.

Since Chebyshev only gives us upper and lower bounds we
cannot calculate the percentiles around the mean accurately,
but this is not a great limitation in our case where we are
primarily interested in worst-case scenario (upper) bounds.

The confidence and prediction intervals are calculated in
the same way as in the Gaussian case.

4.3 Sample Bench Predictor
We use a benchmark predictor to compare our summary

statistics predictors with a sample-based predictor. This
predictor has access to the entire past history of data points
and calculates the percentile points, cumulative distribu-
tions, and prediction bounds from the raw data sampled.
The benchmark predictor could not be used in practice be-
cause of its prohibitive computational and storage require-
ments.

4.4 Multi-Host Predictions
We combine the results from Equation 1, Equation 2 and

Equation 3 with our predictors to assess risk when making
scheduling decisions across a set of hosts. For this purpose
we extend an economic scheduling algorithm previously pre-
sented in [11, 22]. The purpose of this Best Response algo-
rithm is to distribute a total budget across a set of hosts to
yield the maximum utility for the user. The optimization
problem, as seen by a user, is defined as:

maximize U =
Pn

j=1 wj
bj

bj+yj
subject to

Pn

j=1 bj = bid, and bj ≥ 0.

where wj is the preference or weight for host j specified by
the user, bj is the bid that the user puts on host j, and
bid the total budget of the user. We replace yj , the spot
price of host j, with the stochastic variable Y as modeled
above. In Equation 1, which gives an expected performance
value given a percentile and a (prediction) confidence level,
we calculate Y with the PPF of the predictor. To calculate
the bid given a performance level, a guarantee and a confi-
dence level or to calculate the guarantee given a bid and a
performance level, we numerically invert the Best Response
algorithm. This allows us to probe different bid or guarantee
levels until we get an acceptable performance match or we
encounter budget constraints.

Users can use this model in a variety of ways. They can
use the spot prices to determine whether they can meet
their deadline, guarantee, and budget constraints, or if they
should submit their job at a later time. Instead of the spot
price, users can also use the statistical guarantees and pre-
diction bounds to pick the hosts with the best sustained
low-price behavior for long running tasks. We examine the
effectiveness of the model for these use cases in the next
section.

5. SIMULATION AND EXPERIMENT

RESULTS
This section contains four different validators of our ap-

proach presented in the previous section. First, we run a
simulation with generated random distributions against our
predictors. Second, we run a prediction simulation using
the compute cluster demand traces described in Section 3.
Third, we run an experiment in our own live computational
market cluster, Tycoon, comparing spot market scheduling
with our extended risk mitigating scheduler described in the
previous section. Finally, we run an efficiency experiment
to measure the overhead incurred by the predictions.

5.1 Asymmetry Modeling Simulation
To validate the ability to approximate arbitrary skewed

distributions we developed a generator capable of produc-
ing random data with distributions in a continuum from a
right-skewed Pareto through Gaussian to a mirrored left-
skewed Pareto with the first two moments kept stable and
only the skewness varying. An example of distributions gen-
erated can be seen in the lower graph in Figure 7. The upper
graph shows the result for the Cheb and Gauss predictors.
As expected, Cheb gives better approximations for left and
right-skewed distributions, whereas the Gauss predictor per-
forms best for the near-symmetrical distributions (skewness
near 0).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

P
(X

=
x
)

x

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

-50 -40 -30 -20 -10 0 10 20 30 40 50

E
rr

o
r

Skewness

Chebychev Norm

Figure 7: Fitting Skewed Distribution

5.2 Demand Prediction Simulation
We use the compute cluster demand traces from Planet-

Lab, KTH, SDSC, and OSC to study the ability of our pre-
diction approach to give accurate risk assessments with the
Cheb, Gauss, and Bench predictors. Recall that the Bench
predictor simply uses all previous historical data to make
PPF and prediction (confidence) interval estimates, whereas
the other predictors base their estimates on the summary
statistics generated by the statistics collector (SC) compo-
nent (including running moments, and moment history).

The setup of the experiment is as follows. For each trace,
we feed the time series data into the SC component config-
ured for hourly, daily and weekly prediction horizons, and
then try to make a prediction of the 95th percentile price

91

with a 90% confidence for the subsequent interval (for which
no data is revealed) using the prediction generator (PG)
instantiated with the Cheb, Gauss and Bench predictors.
We then measure the delivered guarantee as the likelihood
that at least 95% of the demand values are less than the
predicted upper prediction confidence bound, which we de-
note the success rate (S). We also track the width of the
prediction bound (B) as the difference between the actual
95th percentile demand and the predicted demand. The PG
component is configured to track three historical running
moment snapshots into the past of the first two non-central
moments. The results are shown in Table 3. S and B are
defined as:

S = P (f̂(0.95) > f(0.95))

and

B = E

|f̂(0.95) − f(0.95)|

f(0.95)

!

where f is the actual percentile function of the price, and f̂
is the predictor estimated percentile function of the price.

The Cheb predictor generates consistent and accurate suc-
cess rates (S) for all traces across all prediction horizons. For
daily and weekly horizons the prediction bound size (B) is
in most cases very wide, which is likely to cause risk-averse
users or users with a very limited budget to delay their job
submissions. Both the Norm and the Bench predictors un-
derestimate the risk grossly as seen by very low success rates,
although the bounds are tight.

The Norm predictor would yield better success rates if we
provided additional moment history snapshots. However,
one of our requirements is to maintain system scalability
and flexibility, so we must minimize the number of statistical
summary points to reduce the size of the snapshots.

We note that using a horizon size of one and an infinite
snapshot size in the SC component would make the sum-
mary statistics results converge to the results obtained by
the Bench predictor.

5.3 Risk Mitigation Experiment
To experimentally validate our approach, we run a schedul-

ing benchmark in a live Tycoon computational market. We
submit jobs using the NorduGrid/ARC Grid meta-scheduler [23]
and schedule locally using the extended Best Response algo-
rithm described in Section 4. Tycoon uses the Xen virtual
machine monitor [10] to host running jobs. Each job is run
in a separate, dedicated, isolated machine.

The design rationale behind this experiment is to create a
changing usage pattern that could potentially be predicted,
and to study how well our approach adapts to this pattern
under heavy load. We do not claim that the traffic pattern
is representative of a real system. See the analysis in Sec-
tion 5.2 to see how the Tycoon predictors handle real-world
usage patterns.

The experiment consists of two independent runs with
720 virtual machines created on 60 physical machines dur-
ing each 6 hour run. All jobs run on dedicated virtual ma-
chines that are configured based on the current demand, and
job resource requirements. All jobs request 800MB of disk,
512MB of memory and 1 − 100% CPU, depending on de-
mand. The users are configured as shown in Figure 8. More
specifically:

• User 1 (Continuous) continuously runs 60 parallel

Table 3: Prediction Result of 95th Percentile with 90%

Upper Prediction Bound. (S is the success rate and B

the prediction bound.)

PL Hour Day Week
S B S B S B

Cheb 0.93 0.16 0.95 0.57 0.93 1.20
Norm 0.62 0.08 0.76 0.29 0.80 0.58
Bench 0.79 0.28 0.72 0.24 0.55 0.17

KTH Hour Day Week
S B S B S B

Cheb 0.96 0.38 0.95 0.92 0.97 0.91
Norm 0.87 0.22 0.87 0.47 0.76 0.44
Bench 0.98 3.25 0.98 1.97 0.97 1.40

OSC Hour Day Week
S B S B S B

Cheb 0.94 0.40 0.94 1.30 0.94 1.11
Norm 0.88 0.22 0.81 0.70 0.74 0.51
Bench 0.81 1.63 0.73 0.80 0.63 0.33

SDSC Hour Day Week
S B S B S B

Cheb 0.95 0.26 0.96 0.88 0.95 0.92
Norm 0.85 0.15 0.78 0.47 0.72 0.43
Bench 0.79 0.96 0.64 0.55 0.41 0.32

jobs with low funding on 30 physical hosts throughout the
experiment run (6 hours). The set of hosts is static and
separate from the bursty user’s hosts.

• User 2 (Bursty) sporadically runs 60 highly funded
30 minute jobs every hour on the 30 physical hosts not used
by User 1.

• User 3 (Spot Market) schedules and runs 30 jobs of
40 minutes each every hour based on spot market prices.
The spot market user selects from any of the 60 hosts in the
system.

• User 4 (Predicting) schedules and runs 30 jobs of
40 minutes each every hour based on the predicted 80th
percentile prices using the PG/Cheb predictor consuming
continuous statistical feeds from the SC component deployed
on each compute node. The predicting user selects from any
of the 60 hosts in the system.

All jobs run a CPU benchmark incrementing a counter
with a frequency based on the allocated resource share. The
value of the counter is our metrics for work completed. Both
the spot market and predicting users have the same budget
for purchasing resources.

The dynamic behavior of the system is as follows. The
continous user’s jobs run on the hosts in the left of Figure 8.
The bursty user’s jobs run on the right. The spot market
user selects the host with the lowest spot price, so that the
jobs will almost always run on one of the right hosts. On a
few rare occasions, all of the right hosts will have a higher
spot price than the left hosts. The predicting user selects
based on historical prices. These tend to be lower for the
left hosts since the bursty user avoids those hosts, so the
predicting user’s jobs will tend to use the left hosts.

The distribution of work completed by each job submit-
ted by the spot market and predicting users are graphed in
the top graph in Figure 9. The distribution for the predict-
ing user is shifted to the right compared to the spot market

92

Figure 8: Risk mitigation experimental setup

user, showing that the predicting user finishes more work.
The bottom graph shows the cumulative distribution func-
tion (CDF) of the work completed by the two users. The
area between the two plots shows that fewer predicting jobs
were impacted by the bursty user. On average, the jobs of
the predicting user performed 22.7% more work. The spot
market user’s jobs on the far right of the CDF were able (by
chance) to run on hosts at times when none of the bursty
user’s jobs were running. This is why they were able to com-
plete so much work. In contrast, the predicting user almost
never selects such hosts because it predicts (accurately in
most cases) that the bursty user will soon return. Thus, risk
mitigation both increases average performance and reduces
variability in performance, even under heavy and spiky load,
given that the spiky behavior is predictable over some time
horizon (1 hour in this case).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 150000 200000 250000 300000 350000 400000 450000 500000 550000

P
D

F

Work Completed

Prediction Spot

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 150000 200000 250000 300000 350000 400000 450000 500000 550000

C
D

F

Work Completed

Prediction Spot

Figure 9: Risk Mitigation using Percentile Predictions

5.4 Prediction Efficiency Experiment
As a final experiment, we evaluate the overhead imposed

by the prediction implementation presented in this paper
compared to the standard spot market budgeting algorithm
used in the previous experiment. The standard algorithm in-
volves the following two steps: (1) get live host spot-market
price information, (2) evaluate the bid distribution across
the hosts given a total budget to maximize the aggregate

performance. The prediction implementation extends step
1 by retrieving the summary statistics required to calculate
the prediction bounds, and then extends step 2 by calculat-
ing the optimal bid distribution given a desired guarantee
level and a given prediction confidence bound level. In the
experiment the algorithms were run against a cluster of 70
hosts, using a guarantee level of 95% and a confidence bound
of 90%. We interleave 400 runs using the two algorithms and
measure the round-trip time of each operation.

 0.44

 0.45

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0

 5
0

 1
0

0

 1
5

0

 2
0

0

 2
5

0

 3
0

0

 3
5

0

 4
0

0

R
o

u
n

d
-T

ri
p

 T
im

e
 (

s
e

c
o

n
d

s
)

Job

Predicting Algorithm
Spot Market Algorithm

Figure 10: Round-Trip Times of Spot-Market vs

Prediction-Based Host Selection and Budgeting

Figure 10 shows the results. The mean round-trip time
for spot-market budgeting is .46 seconds and the mean for
prediction is .5 seconds. The impact of this overhead on ac-
tual running time depends on how frequently the budgeting
process is run. In the experiment in Section 5.3, we budget
once an hour, so the overhead of the prediction algorithm
over the spot market one is (.5 − .46)/3600 = .001%. In
other words, the overhead for 70 hosts is negligible, indi-
cating that the algorithm will scale to tens of thousands of
hosts.

6. RELATED WORK
MacKie-Mason et. al. [17] investigate how price predictors

can improve users’ bidding strategies in a market-based re-

93

source scheduling scenario. They conclude that simple pre-
dictors, such as taking the average of the previous round of
auctions, improve expected bidder performance. Although
the goal of this work is similar to ours, they investigate a
different combinatorial allocation scenario where first price
winner-takes-it-all auctions are employed, as opposed to the
proportional share allocation in our work. Nevertheless,
their results are encouraging.

Another use of economic predictions is described by Well-
man et. al. [26], where bidding agents use the expected mar-
ket clearing price in a competitive or Walrasian equilibrium.
They employ tatonnement which involves determining users’
inclination to bid a certain value given a price-level. Well-
man et. al. compare their competitive analysis predictor
to simple historical averaging and machine learning models.
They conclude that strategies that consider both historical
data and instance-specific data provide a competitive advan-
tage. The conditional probability of price dynamics given
a price-level would be additional useful information in our
model. However, this is probably impractical in large-scale
systems with users entering and leaving the market at will,
and with large real-valued price ranges, so we assume this
behavior is incorporated in the price history itself.

Wolski et. al. [28] describe the Network Weather Service
(NWS) which has been used in large-scale Grid deployments
to monitor compute jobs. Our work differs from NWS in
both how statistics are collected and stored and how predic-
tions are computed. NWS uses a multi-service infrastructure
to track, store and distribute entire time-series feeds from
providers to consumers via sensors and memory components
(feed history databases). Our solution only maintains sum-
mary statistics and therefore is more light-weight. No per-
sistent storage or searching infrastructure is required. For
prediction, NWS uses simple moving average with static pa-
rameters. We use more general predictors that can handle
any dynamics and adapt their parameters automatically. In
addition, the focus in [28] is on predicting queue wait times,
whereas we focus on predicting actual demand.

Brevik et. al. [4] present a Binomial Method Batch Pre-
dictor (BMBP) complementing NWS [28]. The approach is
to assume that each observed value in the time-series can
be seen as an independent draw from a Bernoulli trial. The
problem is that this does not account for time correlations,
which we have found to be substantial in our analysis. Bre-
vik addresses the correlation by first detecting structural
changes in the feed when BMBP generates a sequence of
bad predictions and thereafter truncating the history which
the predictor model is fit against. Our approach is to lever-
age the correlation by using biased samples of the most re-
cent time intervals, which result in dynamic adaptation of
’structural’ changes in the feed. The problem of monitoring
and fixing prediction problems a posteriori as in BMBP is
that the detection mechanism is somewhat arbitrary and a
structural failure of the model could result in great losses,
which could defeat the purpose of providing risk mitigating
predictions [18].

Our prediction interval calculation was inspired by Haan
and Meeker [13] but they also assume that random indepen-
dent samples are drawn and that a large number of sample
data points are used to yield tight prediction bounds. Nei-
ther of these two assumptions are true in our scenario. Our
calculation of the prediction interval can be seen as more
in the spirit of the simple empirical intervals proposed by

Williams and Goodman [27]. Their empirical source is the
previous sample point, whereas, we use summary statistics
as input to the empirical predictions. This allows us to
cover larger prediction horizons with greater confidence us-
ing fewer data points.

The data analysis of the distribution characteristics in
Section 3 was inspired by the work by Mandelbrot on mod-
eling risk in volatile markets [19]. The fat-tail behavior
of the hourly volatility (not daily or weekly across all the
traces) fits well with the volatility Mandelbrot has seen in
the cotton-price, Deutschmark-Dollar exchange rate, and
the stock price market dynamics, which he calls ’wild’ ran-
domness or chance.

7. CONCLUSIONS
All of the demand traces studied show non-Gaussian prop-

erties, which called for more generic distribution-free predic-
tors. The clear correlation between subsequent hourly, daily
and weekly time intervals of the traces suggests that the typ-
ical IID assumption is not valid and would lead to risk under-
estimation. This leads us to a model based on dynamically
tracking running moments and the most recent snapshots of
these moments instantiated by a worst-case bound, Cheby-
shev inequality influenced distribution estimator. Although
this predictor does not generate tight prediction bounds for
daily and weekly predictions, it is consistent in the confi-
dence levels promised across all traces investigated, which
makes it a good general indicator of the model uncertainty
and reliability of the predictions. In highly volatile envi-
ronments, making point predictions into the future is not
possible with any level of accuracy, but high volatility pe-
riods are typically clustered. Thus, accurately estimating
model uncertainty helps users to decide 1) whether to delay
running their jobs until after the ’stormy’ period has passed,
or if they do decide to run, 2) how much insurance funding
to spend.

The Bench predictor shows how poor predictions can be
if one only relies on the available past history and ignores
time correlations. Similarly, the Norm predictor exemplifies
how inaccurate predictions can be if symmetric Gaussian
distributions are wrongly assumed. The distribution agnos-
tic Cheb predictor, on the other hand, provides superior
predictions in cases where demand was heavily skewed and
the volatility spiky, e.g. in the PlanetLab trace.

We have seen that our prediction approach can easily be
deployed in scheduling scenarios where the most reliable
hosts, delivering a good sustained performance over time,
need to be picked for long-running jobs.

This work has focused primarily on helping consumers
spend the right amount of money when purchasing resource
shares, but the prediction approach with SC/PG/Cheb is
general enough to be used by brokers pricing options or
reservations as well, which is the focus of future work.

We would also like to study the effects different mixes of
prediction, spot-market and reservation usage patterns have
on the overall system efficiency and fairness.

8. ACKNOWLEDGMENTS
We thank our colleagues Scott Clearwater, Bernardo Hu-

berman, Li Zhang, Fang Wu, and Ali Ghodsi for enlight-
ening discussions. This work would not have been possi-
ble without the funding from the HP/Intel Joint Innovation

94

Program (JIP), our JIP liason, Rick McGeer, and our col-
laborators at Intel, Rob Knauerhase and Jeff Sedayao. We
are grateful to Vivek Pai at Princeton University for mak-
ing the PL trace available and helping us interpret it; Travis
Earheart and Nancy Wilkins-Diehr at SDSC for making the
SDSC trace available; and Lars Malinowsky at PDC for pro-
viding the KTH trace.

9. REFERENCES
[1] An Algorithm for Computing the Inverse Normal Cumulative

Distribution Function.
http://home.online.no/˜ pjacklam/notes/invnorm/, 2007.

[2] Parallel Workloads Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/, 2007.

[3] M. Bodruzzaman, J. Cadzow, R. Shiavi, A. Kilroy, B. Dawant,
and M. Wilkes. Hurst’s rescaled-range (r/s) analysis and
fractal dimension of electromyographic (emg) signal. In
Proceedings of IEEE Souteastcon ’91, pages 1121–1123,
Williamsburg, VA, USA, 1991. IEEE.

[4] J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds on
queuing delay for batch-scheduled parallel machines. In PPoPP
’06: Proceedings of the 2006 ACM Principles and Practices
of Parallel Programming, New York, NY, USA, 2006. ACM.

[5] R. Buyya, D. Abramson, and S. Venugopal. The Grid
Economy. Proceedings of the IEEE, Special Issue on Grid
Computing, 93(3):479–484, March 2005.

[6] Chaki Ng and Philip Buonadonna and Brent N. Chun and
Alex C. Snoeren and Amin Vahdat. Addressing Strategic
Behavior in a Deployed Microeconomic Resource Allocator. In
Proceedings of the 3rd Workshop on Economics of
Peer-to-Peer Systems, 2005.

[7] S. Clearwater and B. A. Huberman. Swing Options. In
Proceedings of 11th International Conference on Computing
in Economics, June 2005.

[8] S. Clearwater and S. D. Kleban. Heavy-tailed distributions in
supercomputer jobs. Technical Report SAND2002-2378C,
Sandia National Labs, 2002.

[9] David C. Parkes and Ruggiero Cavallo and Nick Elprin and
Adam Juda and Sebastien Lahaie and Benjamin Lubin and
Loizos Michael and Jeffrey Shneidman and Hassan Sultan.
ICE: An Iterative Combinatorial Exchange. In Proceedings of
the ACM Conference on Electronic Commerce, 2005.

[10] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the Art
of Virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, 2003.

[11] M. Feldman, K. Lai, and L. Zhang. A Price-Anticipating
Resource Allocation Mechanism for Distributed Shared
Clusters. In Proceedings of the ACM Conference on
Electronic Commerce, 2005.

[12] W. Feller. An Introduction to Probability Theory and its
Applications, volume II. Wiley Eastern Limited, 1988.

[13] G. J. Hahn and W. Q. Meeker. Statistical Intervals: A Guide
for Practitioners. John Wiley & Sons, Inc, New York, NY,
USA, 1991.

[14] H. Hurst. Long term storage capacity of reservoirs. Proc.
American Society of Civil Engineers, 76(11), 1950.

[15] L. V. Kale, S. Kumar, M. Potnuru, J. DeSouza, and
S. Bandhakavi. Faucets: Efficient resource allocation on the
computational grid.

In ICPP ’04: Proceedings of the 2004 International
Conference on Parallel Processing (ICPP’04), pages 396–405,
Washington, DC, USA, 2004. IEEE Computer Society.

[16] K. Lai. Markets are Dead, Long Live Markets. SIGecom
Exchanges, 5(4):1–10, July 2005.

[17] J. K. MacKie-Mason, A. Osepayshvili, D. M. Reeves, and
M. P. Wellman. Price prediction strategies for market-based
scheduling. In ICAPS, pages 244–252, 2004.

[18] B. Mandelbrot, A. Fisher, and L. Calvet. The multifractal
model of asset returns. In Cowles Foundation Discussion
Papers: 1164. Yale University, 1997.

[19] B. Mandelbrot and R. L. Hudson. The (Mis)behavior of
Markets: A Fractal View of Risk, Ruin, and Reward. Basic
Books, New York, NY, USA, 2004.

[20] L. Peterson, T. Anderson, D. Culler, , and T. Roscoe.
Blueprint for Introducing Disruptive Technology into the
Internet. In First Workshop on Hot Topics in Networking,
2002.

[21] O. Regev and N. Nisan. The Popcorn Market: Online Markets
for Computational Resources. In Proceedings of 1st
International Conference on Information and Computation
Economies, pages 148–157, 1998.

[22] T. Sandholm, K. Lai, J. Andrade, and J. Odeberg.
Market-based resource allocation using price prediction in a
high performance computing grid for scientific applications. In
HPDC ’06: Proceedings of the 15th IEEE International
Symposium on High Performance Distributed Computing,
pages 132–143, June 2006. http://hpdc.lri.fr/index.php.

[23] O. Smirnova, P. Erola, T. Ekelöf, M. Ellert, J. Hansen,
A. Konsantinov, B. Konya, J. Nielsen, F. Ould-Saada, and
A. Wäänänen. The NorduGrid Architecture and Middleware
for Scientific Applications. Lecture Notes in Computer
Science, 267:264–273, 2003.

[24] D. F. Vysochanskij and Y. I. Petunin. Justification of the 3
sigma rule for unimodal distributions. Theory of Probability
and Mathematical Statistics, 21:25–36, 1980.

[25] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A Distributed Computational
Economy. Software Engineering, 18(2):103–117, 1992.

[26] M. P. Wellman, D. M. Reeves, K. M. Lochner, and
Y. Vorobeychik. Price prediction in a trading agent
competition. J. Artif. Intell. Res. (JAIR), 21:19–36, 2004.

[27] W. Williams and M. Goodman. A simple method for the
construction of empirical confidence limits for economic
forecasts. Journal of the American Statistical Association,
66(336):752–754, 1971.

[28] R. Wolski, G. Obertelli, M. Allen, D. Nurmi, and J. Brevik.
Predicting Grid Resource Performance On-Line. In Handbook
of Innovative Computing: Models, Enabling Technologies,
and Applications. Springer Verlag, 2005.

[29] R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-commerce:
Market formulations controlling resource allocation on the
computational grid. In IPDPS ’01: Proceedings of the 15th
International Parallel and Distributed Processing Symposium
(IPDPS’01), page 10046.2, Washington, DC, USA, 2001. IEEE
Computer Society.

[30] F. Wu, L. Zhang, and B. A. Huberman. Truth-telling
Reservations. http://arxiv.org/abs/cs/0508028, 2005.

[31] L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu. Gridis: An
incentive-based grid scheduling. In IPDPS ’05: Proceedings of
the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Papers, page 65.2,
Washington, DC, USA, 2005. IEEE Computer Society.

95

Prediction-Based Enforcement of Performance
Contracts

Thomas Sandholm1 and Kevin Lai2

1 KTH – Royal Institute of Technology

Center for Parallel Computers

SE-100 44 Stockholm, Sweden

sandholm@pdc.kth.se
2 Hewlett-Packard Laboratories

Information Dynamics Laboratory

Palo Alto, CA 94304, USA

kevin.lai@hp.com

Abstract. Grid computing platforms require automated and distributed resource
allocation with controllable quality-of-service (QoS). Market-based allocation

provides these features using the complementary abstractions of proportional

shares and reservations. This paper analyzes a hybrid resource allocation sys-

tem using both proportional shares and reservations. We also examine the use of

price prediction to provide statistical QoS guarantees and to set admission control

prices.

Key words: Admission Control, Proportional Share, Computational Market

1 Introduction

Grid applications traditionally run on dedicated machines, with a fixed performance

level that depends on the hardware configuration. In this model, the main source of un-

certainty in predicting job deadlines is the queue waiting time. As a solution to hetero-

geneity, and low resource utilization various virtualized platforms are emerging, such as

Xen, VMWare, and VServer. In a virtualized Grid, where the performance level is con-

figured dynamically based on job requirements and current demand, the main source

of uncertainty is the risk of not being allocated enough capacity. The allocation deci-

sions are complicated by the scale, and distribution of the Grid resources, and the vast

variability and complexity of the job requirements. Therefore, it is not feasible to make

these decisions manually using static configurations or policies.

Market-based allocation is one form of allocation that is automated, distributed,

and provides QoS. Market-based allocation supports two primary resource abstractions:

proportional shares and reservations. A pure proportional share allocator always admits

new resource requests and continuously reallocates resource shares in response to the

current load. This fully utilizes the resources and always admits well-funded resource

requests, but may cause an earlier request to fail a minimum resource requirement. In

contrast, a pure reservation allocator fixes resource shares at purchase time. Admit-

ted resource requests in a reservation system will always (modulo failure) meet their

resource requirements, but sometimes utilization is low, and sometimes well-funded

requests will be rejected admittance.

In this paper, we examine a hybrid system that mixes both proportional share and

reservation abstractions to achieve the best of both worlds: satisfying quality-of-service

requirements for some applications while maximizing utilization and providing re-

source availability for latecomers. Using simulation, we explore how such a hybrid

system performs for different workloads.

In addition, we examine how prediction algorithms affect the result. Prediction of

future load is critical to efficient resource allocation. Proportional share allocators re-

quire it so that purchasers can get statistical QoS guarantees. Reservation allocators

require it to set the prices for reservations. However, the effect of universal prediction

on a system is not obvious. For example, if low prices are predicted for a particular

hour of CPU time, then many resource consumers may try to buy it, thus ruining the

accuracy of the prediction.

We base this analysis on previous work on predicting demand in computational

markets [1, 2], where we evaluate different prediction techniques to give accurate per-

centile bounds for expected demand for arbitrary probability distributions. We assume

here that we have an approximation for the cumulative distribution function (CDF) of

the demand. Furthermore, we assume a computational market where proportional share

resource allocations are enforced (e.g., Tycoon [3])

Our contribution in this work is twofold: 1) we highlight and visualize issues with

statistical guarantees in performance contracts using simulations, and 2) we propose

and implement a solution to these issues using contract admission control.

The paper is organized as follows: Section 2 provides an overview of the mathemat-

ical models used to analyze and simulate our resource allocation scenario, Section 3

presents and discusses the design and results of our simulations, Section 4 reviews re-

lated work, and finally Section 5 sums up our findings with some concluding remarks.

2 Model

2.1 Statistical Guarantees

We are interested in analyzing what bids individually rational resource consumers should

place on their tasks, given that they need a certain performance level to finish within a

deadline. Different guarantee-levels can then be compared based on the price consumers

have to pay for obtaining a performance level.

To formalize the model we use the following standard probability theory notations:

x ∈ X,P (x) = P (X = x) (1)

D(x) =

x∫

xmin

P (ε)dε (2)

where P is the probability function (a.k.a. PDF), and D the probability distribution

function (CDF). To find performance levels based on guarantees it is also useful to look

at the inverse of the distribution function, or percent point function (PPF), defined as:

D−1(D(x)) = x (3)

The proportional share resource allocation model is defined as:

q =
b

b + c
(4)

where q is the performance level or QoS in terms of resource share (0, 1), given a
consumer’s bid, b, and a measured price, c, of a resource. The price is the sum of all

existing bids on the resource.

A rational consumer would hence bid

b =
cq

1 − q
(5)

for any measured price, c, to maintain a service level q. However, in a competitive

computational market the price adjusts dynamically to the resource demand, and can

thus be viewed as a random variable C, which changes continuously over time. Since, q

depends on c it can also be seen as a random variable, Q. The guarantee of delivering a

certain QoS level to the consumer, g, will be expressed in terms of this random variable

Q.

q ∈ Q, c ∈ C (6)

g = P (
b

b + C
> q) = P (C <

b

q
− b) = Dc(

b

q
− b) (7)

whereDc is the price distribution function. Now using the inverse of the price distribu-

tion function we can calculate the bids to place given a QoS level and a guarantee

D−1

c

(g) = b(
1

q
− 1) (8)

which gives

b =
D−1

c

(g)
1

q
− 1

=
D−1

c

(g)q

1 − q
(9)

The intuition behind this is that the probability of getting a service level greater than a

certain value is the same as the probability of the price being below a particular value,

or

P (Q > q) = P (C < c) (10)

2.2 Admission Control

Now, we would like to offer an admission control service with more than a statistical

guarantee for an additional fee. We calculate this new price as:

b′ =
D−1

c

(g + r)q

1 − q
(11)

where b′ is the price a user needs to pay to get share q with guarantee g, and r is the

fee parameter. Note that the fee is not simply added to or multiplied with the bid, but

included in the percent point calculation of the price. This ensures that the admission

control service is more expensive when there is a high price difference in offering a

higher guarantee, in order to account for the expected loss the provider makes when

refusing new consumers due to admission control.

In our model, a share of a resource can be requested with either an absolute guar-

antee paying the admission control fee, or with a statistical guarantee paying the spot

(current) market price. The admission controller makes sure that no request is accepted

that violates previously admitted requests with absolute guarantees. Whether a viola-

tion would occur as a result of admitting a new request is determined by enumerating

and evaluating bids and required shares for all active previously admitted requests for

the same resource. Consequently, all requests for the resource will need to go through

the same admission control path in order to ensure reservation-like guarantees. We note

that price volatility in this model is paid for directly by the user, and the admission

controller operates in the interest of the provider to keep the prices at a higher level to

compensate for not being able to preempt existing low-paying allocations in the event

of higher-paying requests. Alternatively, the admission controller could be separated

entirely from the resource being provisioned and operate like an insurance agent to put

in spot market bids on the resources, and then dynamically update the bids using an

insurance fund. For simplicity of evaluation and implementation we chose not to study

this more advanced form of admission control here.

If strict admission control is implemented for all users only one guarantee level

can be provided. To allow any number of guarantee levels, we strictly enforce only a

portion of the allocation request, and make the remaining portion subject to statistical

guarantees.

3 Simulations

In our simulations we study the price guarantees and dynamics, using varying levels

of statistical and admission control guarantees offering multiple competing consumers

service-level guarantees under different work-load situations.

The setup is as follows. A number of concurrent competing consumers submit jobs

with inter-arrival-times (IAT) from an exponential distribution and performance require-

ments drawn from a normal distribution. The performance requirement is obtained from

the number of work units that needs to be completed within a given deadline, and it

translates to the share, q, of a resource that the consumer will bid for.

To simulate the fact that some users do not care about guarantees, but are only

interested in best-effort service we designate a certain proportion of the work-load to

be best-effortjobs. Those jobs are submitted by calculating the bid a consumer should
spend based on the assumption that the price stays at the current mean value. This

technically gives the guarantee, g = 0.5. All other jobs try to get a guarantee g ≥ 0.6,
and we then measure the guarantees obtained and the price paid under different levels

of best-effort jobs. Each run of the simulated workload was configured with a single

guaranteed service level, i.e. all jobs competing with best-effort jobs in a simulation

run request the same guarantee level. We then measure and graph the average bid and

obtained guarantee for a group of eigth subsequent jobs (based on completion time)

requesting a certain guarantee level.

The guarantee obtained in a simulation run is calculated by measuring whether the

current share of a job is greater than the required share each second that the job runs.

The proportional share allocations are also recalculated each second. We configured the

mean of the overall required shares to be higher than the available capacity in order to

simulate resource contention and consumer competition.

The general simulation configuration is summarized in Table 1 and Table 2. #C is

the number of consumers, #J is the number of jobs per consumer, t the deadline, and

BE is the portion of best-effort jobs.

Table 1.General Configuration (All times in seconds)

#C #J q IAT g t

4 32 N(5.5/16, .25) Exp(8) (0.6, 0.9) 16

Table 2. Individual Simulation Configuration

Simulation BE Strategy

I 0.75 statistical guarantee
II 0.25 statistical guarantee
III 0.25 admission control

3.1 Simulation I: 75% Best-Effort with Statistical Guarantees

In the first simulation we look at a work-load with a high portion of best-effort jobs

(75%) that can make way for the smaller portions of jobs requiring guarantees. No

admission control is used in this simulation, just statistical guarantees. In Figure 1,

where each marked point is an average of eight subsequently completing jobs, we see

that there is a clear separation left to right and from bottom to top between the different

guarantee levels. Jobs with higher guarantee requirements were bidding more (x-axis)

and also obtained a higher guarantee (y-axis). This tells us that statistical guarantees

worked well when giving consumers their guarantees in this scenario.

We also study the price dynamics. In Figure 2 we can see that the price is stationary

although it has a high variance. Note that the first two minutes are not shown because

this time is used to bootstrap the simulations. In Figure 3 the variation is high but

stable, the skew is positive and varies between 0 and 0.5. A positive skew of the price

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
ua

ra
nt

ee

Bid

g=0.6
g=0.7
g=0.8
g=0.9

Fig. 1.Bids vs. obtained guarantees for statistical guarantees and 75% Best-Effort jobs

distribution means that more jobs pay a higher price for a guarantee level than would

normally (e.g. by Gaussian distribution models) be expected from the mean and the

variance. Skewness can thus be viewed as an indication of how risky the computational

market is[4].

3.2 Simulation II: 25% Best-Effort with Statistical Guarantees

We now decrease the portion of best-effort jobs to 25% and consequently the portion

of jobs requiring guarantees increases to 75%. In Figure 4 we can see that the guar-

antees obtained for the different guarantee-levels are seemingly randomly layered. The

higher bids and requested guarantees do not necessarily yield a higher obtained guaran-

tee as before. This can be explained by the load being too high for the provider to offer

everyone the required guarantees.

Looking at the price fluctuations in Figure 5, there is a clear trend of inflation in

particular for g = 0.9 (bottom right). Also note that simply compensating for the bid
based on expected inflation would just accelerate this trend. In Figure 6 we see that

both the variance and the skewness of the price distribution exhibit similar behavior as

in Simulation I.

3.3 Simulation III: 25% Best-Effort with Admission Control Guarantees

Finally we run a simulation with the same load configuration as in the previous simula-

tion, i.e, 25%, best-effort jobs, but now we offer admission control for all non best-effort

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

P
ric

e
(g

=
0.

6)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

P
ric

e
(g

=
0.

7)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16

P
ric

e
(g

=
0.

8)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

P
ric

e
(g

=
0.

9)

Time (minutes)

Fig. 2.Price over time for statistical guarantees and 75% Best-Effort jobs

-1

-0.5

 0

 0.5

 1

 60 65 70 75 80 85 90

S
ke

w
ne

ss

V
ar

ia
tio

n

Gurantee

Skew
Stddev/Mean

Fig. 3.Price skewness and variation for statistical guarantees and 75% Best-Effort jobs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

G
ua

ra
nt

ee

Bid

g=0.6
g=0.7
g=0.8
g=0.9

Fig. 4.Bids vs. obtained guarantees for statistical guarantees and 25% Best-Effort jobs

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

P
ric

e
(g

=
0.

6)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

P
ric

e
(g

=
0.

7)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

P
ric

e
(g

=
0.

8)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

P
ric

e
(g

=
0.

9)

Time (minutes)

Fig. 5.Price over time for statistical guarantees and 25% Best-Effort jobs

-1

-0.5

 0

 0.5

 1

 60 65 70 75 80 85 90

S
ke

w
ne

ss

V
ar

ia
tio

n

Gurantee

Skew
Stddev/Mean

Fig. 6.Price skewness and variation for statistical guarantees and 25% Best-Effort jobs

jobs. An admission control fee of r = 0.05 percent points and an enforcement portion
of 30% was used. To simulate the important task of an admission control mechanism
to allow users to defer their job submissions based on admission results, we defer and

resubmit all guarantee jobs that cannot get at least 70% of their work load guaranteed.
The time to wait before resubmission is determined randomly with a uniform distribu-

tion ranging 1 − 10 seconds. In Figure 7 it is now again apparent that higher bids also
give higher guarantees. Although the separation is not as clear as in Simulation I, it is

clearly better than in Simulation II. The separation received is related to the proportion

of the job that is strictly enforced. In the case of the entire job being strictly enforced

all requested levels result in a 100% guarantee. If the enforcement proportion is made
too low, the reulsts will converge to those of Simulation II, that is, requested guarantees

cannot be met reliably.

Figure 8 indicates that the inflation is now gone, and Figure 9 shows that the price

distribution variation and skewness are similar to the previous two simulations. The

penalty for the higher guarantees for some users rests partly on the best-effort jobs and

partly on the fact that only a portion (70%) of the entire job run is strictly reserved. We
should note that the overall load in this simulation is lower and thus the average bid for

the jobs that are let through are obviously lower due to some jobs being refused to run

by the admission control. The main point here, though, is that we can add admission

control as a compromise between reservations and best-effort allocations in scenarios

when statistical guarantees fail.

We summarize the results of the simulations in Table 3. Although the price distribu-

tion variation is the same in all the simulations, Simulation II exhibits a higher variance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

G
ua

ra
nt

ee

Bid

g=0.6
g=0.7
g=0.8
g=0.9

Fig. 7.Bids vs. obtained guarantees for admission control guarantees and 25% Best-Effort jobs

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

P
ric

e
(g

=
0.

6)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16

P
ric

e
(g

=
0.

7)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16

P
ric

e
(g

=
0.

8)

Time (minutes)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

P
ric

e
(g

=
0.

9)

Time (minutes)

Fig. 8.Price over time for admission control guarantees and 25% Best-Effort jobs

-1

-0.5

 0

 0.5

 1

 60 65 70 75 80 85 90

S
ke

w
ne

ss

V
ar

ia
tio

n

Gurantee

Skew
Stddev/Mean

Fig. 9.Price skewness and variation for admission control guarantees and 25% Best-Effort jobs

in guarantee levels delivered, in addition to not being able to deliver on the requested

guarantee level.

Table 3.Summary of mean and variation of obtained guarantee levels when requesting 60, 70,
80, and 90% guarantees. All values are in percent.

Simulation 60 70 80 90

µ σ/µ µ σ/µ µ σ/µ µ σ/µ

I 52 15 61 12 83 3 99 1

II 50 22 50 27 56 22 58 34

III 76 14 79 16 86 11 88 8

4 Related Work

There is a substantial body of work on Internet Protocol quality-of-service enforce-

ment, represented by the two IETF specifications IntServ [5], and DiffServ [6]. The

IntServ specification takes the approach of reserving paths for individual users, and

thus does not scale as well as the DiffServ approach, which is based on marking indi-

vidual packets with different per-hop behaviorsin a stateless and decentralized archi-
tecture. Wang [7] gives an overview of lessons learned and the pros and cons of the

reservation approach which can be implemented with IntServ versus the proportional

share approach which can be built on top of DiffServ. The conclusion was that fixed

allocations over a point-to-point path incur too much overhead for most of the web

traffic, it is difficult to determine the resource requirements a priori, inter-ISP relation-

ships make end-to-end reservations complicated, and traffic policing breaks down in

the event of partial allocation failures. All of these factors result in many IP reservation

providers over-provisioning their network capacity, leading to poor utilization. Wang

therefore makes a case for a proportional share model [8] where each user receives a

proportional share of the currently available bandwidth according to her contribution or

spending. We are facing the same issues and trade-offs when allocating computational

resources across large distributed systems. However, new virtualization technology and

the fact that many of the resources are localized (e.g. CPU, memory, disk) makes it

worth revisiting the reservation concepts.

One of the most critical parts of the IntServ architecture is the admission control

component, and consequently there has been an extensive effort on designing efficient

algorithms for deciding which packets are to be dropped versus served, and how routers

and switches should be configured to shape the traffic according to the QoS levels

promised to users. Knightly and Shroff provide an evaluation of the different admission

control algorithms available for IP traffic shaping in [9]. The dilemma of denying access

to flows that might have been served leading to underutilization compared to serving

requests that will break existing QoS contracts makes it hard to use coarse statistical

bounds and too simplified assumptions about traffic flow distributions. Put differently,

both accuracy maximization and risk minimization are desired. The algorithms that ac-

counted for economies of scale and not simply looked at the statistical properties of

individual flows were shown to perform much better on average. Again, our admission

control decision differs from the IP flow one, in that we can, through virtualization,

more directly enforce that an admitted request stays within its bounds. Our decision is

thus more about making sure that the provider does not lose out on utilization or profit

by admitting low priority tasks prematurely.

MacKie-Mason et. al. [10] investigate how price predictors can improve users’ bid-

ding strategies in a market-based resource scheduling scenario. Their conclusion is that

even very simple predictors, such as taking the average of the previous round of auc-

tions, help improving expected bidder performance. Another interesting result is that

the main reason the predictor strategies outperform memory-less strategies is the fact

that the binary decision of whether to participate in an auction can save the bidder more

money than accurately estimating exactly how much to bid to obtain a certain perfor-

mance level. Although, the high-level goal of this work is strikingly similar to ours they

investigate a very different allocation and auction scenario, where combinatorial prefer-

ences exist and there is a risk of only receiving subsets of the preferred resources. Fur-

thermore, first price winner-takes-it-all auctions are employed, as opposed to propor-

tional share auctions in our work. Nevertheless, their results are encouraging. Another

successful use of economic predictions to optimize bidding strategies is described by

Wellman et. al. in [11], where bidding agents determine their bids and auctions to enter

based on the expected market clearing price in a competitive or Walrasian equilibrium.

To find this price they employ the process of tatonnementwhich involves determining
users’ inclination to bid a certain value given a price-level. Wellman et. al. compare

their competitive analysis predictor to simple historical averaging and machine learn-

ing models as employed in the Trading Agent Competition (TAC) and conclude that

strategies not only considering background history data but also instance-specific data

in the predictions provided a competitive advantage. Finally, their competitive predictor

performed on-par with the best machine learning predictor. The conditional probability

of price dynamics given a certain price-level would be very useful to collect in our case

too to get a full picture of the usage pattern. However, in large-scale systems with users

entering and leaving the market at will, and large real-valued price ranges it quickly

becomes impractical for our purposes, so we assume this behavior is incorporated in

the price history itself.

5 Conclusions

We have studied the effects of bidding for virtualized resource shares using price pre-

dictions and admission control. For the predictions to be effective there must either be

a sufficiently large portion of best-effort bidders, who can decrease their shares when

there is contention, or an admission control mechanism refusing access to requests that

would break the existing QoS contracts.

Whether a consumer should spend extra money on getting a higher level of guar-

antee through an admission control contract, thus depends on the contention among

consumers requiring high guarantees. Price history and price distribution analysis serve

as good indicators for determining whether this is the case. Conversely, providers would

be interested in knowing how to partition their resources between the admission control

market versus the best effort market depending on the price fluctuation characteristics

and usage pattern.

Future work includes reproducing the simulation results in experiments in a live

Grid market deployment (presented in [2]), more in-depth analysis of how providers

can dynamically partition their resources for contract markets, and adding more so-

phisticated option and risk-hedging reservations to the admission control mechanism

presented here.

6 Acknowledgments

We thank our colleagues Bernardo Huberman, Li Zhang, Fang Wu, Ali Ghodsi and

Scott Clearwater for fruitful discussions. This work would not have been possible with-

out the funding from the HP/Intel Joint Innovation Program (JIP), our JIP liason, Rick

McGeer, and our collaborators at Intel, Rob Knauerhase and Jeff Sedayao.

References

1. Sandholm, T., Lai, K.: Evaluating Demand Prediction Techniques for Computational Mar-

kets. In: Proceedings of the InternationalWorkshop on Grid Economics and Business Models

(GECON), Singapore (2006)

2. Sandholm, T., Lai, K., Andrade, J., Odeberg, J.: Market-Based Resource Allocation using

Price Prediction in a High Performance Computing Grid for Scientific Applications. In: Pro-

ceedings of the IEEE International Symposium on High Performance Distributed Computing

(HPDC). (2006)

3. Lai, K., Rasmusson, L., Adar, E., Sorkin, S., Zhang, L., Huberman, B.A.: Tycoon: an Im-

plemention of a Distributed Market-Based Resource Allocation System. Technical Report

arXiv:cs.DC/0412038, HP Labs, Palo Alto, CA, USA (2004)

4. Mandelbrot, B., Hudson, R.L.: The (Mis)behavior of Markets: A Fractal View of Risk, Ruin,

and Reward. Basic Books, New York, NY, USA (2004)

5. Braden, R., Clark, S., Shenker, S.: Integrated services in the internet architecture. RFC 1633,

IETF (1994)

6. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An architecture for

differentiated services. RFC 2475, IETF (1998)

7. Wang, Z.: A case for proportional fair sharing. In: IWQoS ’98: Proceedings of the Sixth

International Workshop on Quality of Service, IEEE (1998) 33–35

8. Wang, Z.: Usd: Scalable bandwidth allocation for the internet. In: HPN. (1998) 351–361

9. Knightly, E.W., Shroff, N.: Admission control for statistical qos: Theory and practice. ieeenet

13(2) (1999) 20–29
10. MacKie-Mason, J.K., Osepayshvili, A., Reeves, D.M., Wellman, M.P.: Price prediction

strategies for market-based scheduling. In: ICAPS. (2004) 244–252

11. Wellman, M.P., Reeves, D.M., Lochner, K.M., Vorobeychik, Y.: Price prediction in a trading

agent competition. J. Artif. Intell. Res. (JAIR) 21 (2004) 19–36

Autoregressive Time Series Forecasting of Computational Demand

Thomas Sandholm
KTH – Royal Institute of Technology

School of Information and Communication Technology
SE-16440 Kista, Sweden

sandholm@kth.se

Abstract

We study the predictive power of autoregressive moving
average models when forecasting demand in two shared
computational networks, PlanetLab and Tycoon. Demand
in these networks is very volatile, and predictive techniques
to plan usage in advance can improve the performance ob-
tained drastically.

Our key finding is that a random walk predictor performs
best for one-step-ahead forecasts, whereas ARIMA(1,1,0)
and adaptive exponential smoothing models perform bet-
ter for two and three-step-ahead forecasts. A Monte Carlo
bootstrap test is proposed to evaluate the continuous pre-
diction performance of different models with arbitrary con-
fidence and statistical significance levels. Although the pre-
diction results differ between the Tycoon and PlanetLab net-
works, we observe very similar overall statistical proper-
ties, such as volatility dynamics.

1 Introduction

Shared computational resources are gaining popularity
as a result of innovations in network connectivity, dis-
tributed security, virtualization and standard communica-
tion protocols. The vision is to use computational power
in the same way as electrical power in the future, i.e. as a
utility. The main obstacle for delivering on that vision is
reliable and predictable performance. Demand can be very
bursty and random, which makes it hard to plan usage to
optimize future performance. Forecasting methods for aid-
ing usage planning are therefore of paramount importance
for offering reliable service in these networks.

In this paper we study the demand dynamics of two time
series from computational markets, PlanetLab1 and Ty-
coon2. Our main objective is to study the prediction abilities

1http://www.planet-lab.org
2http://tycoon.hpl.hp.com

and limitations of time series regression techniques when
forecasting averages over different time periods. Here we
focus on hourly forecasts that could be applied for schedul-
ing jobs with run times in the order of a few hours, which
is a very common scenario in these systems. The main mo-
tivation for this study was that an exponential smoothing
technique used in previous work [12], was found to perform
unreliably in a live deployment.

The general evaluation approach is to model the structure
of a small sample of the available time series, and assume
the structure is fixed over the sample set. Then perform
predictions with regularly updated model parameters and
benchmark those predictions against a simple strategy using
the current value as the one-step-ahead forecast (assuming
a random walk).

We focus our study on the following questions.

• Can a regression model perform better than a strategy
assuming a random walk with no correlations in the
distant past?

• How much data into the past are needed to perform
optimal forecasts?

• How often do we need to update the model parame-
ters?

The answers to these questions depend on both the size of
the sliding window used for the forecast and on the length
of the forecast horizon. Our goal is to give general guide-
lines as to how forecasts should be performed in this envi-
ronment.

When predicting demand in computational networks in-
stantaneous, adaptive, flexible, and light-weight predictors
are required to accurately estimate the risk of service degra-
dation and to quickly take preemptive actions. With the
increased popularity of virtualized computational markets
such as Tycoon, this need for prediction takes a new di-
mension. Successful forecasts can now reduce the cost
of computations more directly and explicitly. However,

high volatility and non-stationarity of demand complicates
model building and reduces prediction reliability.

The main objective of this study is to investigate which
time series models can be used when predicting demand in
computational markets, and how they compare in terms of
predictive accuracy to simpler random walk and exponen-
tial smoothing models. Since modeling and parameter es-
timations need to adapt quickly to regime shifts, a simple
fixed static model of the entire series is not likely to pro-
duce any good results. In this work we make a compromise
and fix the structure of the model but update the parameter
estimates continuously.

The contribution of this work is threefold:

• we perform ARIMA modeling and prediction of Ty-
coon and PlanetLab demand,

about predictor model performance,

• and we identify common statistical properties of Plan-
etLab and Tycoon demand.

The paper is structured as follows. In Section 2 our eval-
uation approach is discussed, and in Section 3 we model
and predict the PlanetLab series. In Section 4 we perform
the same analysis for the Tycoon series. Then we compare
the analyses in Section 5 and discuss related work in Sec-
tion 6 before concluding in Section 7.

2 Evaluation Method

In this section, we describe the method used to construct
models and to evaluate the forecasting performance of mod-
els of the time series studied.

2.1 Modeling

We first construct an autoregressive integrated moving
average (ARIMA) model of a small sample of the time se-
ries in order to determine the general regression structure
of the data. The rationale behind this approach is that the
majority of the data should be used to evaluate the forecast-
ing performance. During forecasting the model parameters
are refit, and to compensate for possible changes in struc-
ture we evaluate a number of similar benchmark models.
Furthermore, in a real deployment, we ideally want to re-
evaluate the regression structure infrequently compared to
the number of times the structure can be used for predictions
to make it viable. The sample used for determining the re-
gression structure is discarded in the forecasting evaluation
to keep the predictions unbiased. Conversely, no measured
properties of the time series outside of the sample window
are used when building the models of the predictors.

The general model and the benchmark models are then
fit to partitions of the data in subsequent time windows. In

each time window the model parameters are re-evaluated.
The fitted model then produces one, two, and three-step-
ahead forecasts. The forecasts are thus conditioned on the
assumption of a specific structure of the model. The size of
the time windows are made small enough to allow a large
number of partitions and thus also independent predictions,
and kept big enough for the ARIMA maximum likelihood
fits to converge.

2.2 Forecast

The fitted ARIMA model structure is compared to
two standard specialized ARIMA processes. The first
benchmark model used is the random walk model (RW),
ARIMA(0,1,0), which always produces the last observed
value as the forecast. The second model is the Expo-
nentially Weighted Moving Average (EWMA), a.k.a. the
exponential smoothing model, which can be represented
as an ARIMA(0,1,1) or IMA(1,1) process producing fore-
casts with an exponential decay of contributions from val-
ues in the past. This representation is due to Box et al. [2]
who showed that the optimal one-step-ahead forecast of the
IMA(1,1) model with parameterθ is the same as the expo-
nential smoothing value with factorλ = 1 − θ.

For each set of time-window predictions performed, the
mean square error (MSE) is computed. To facilitate com-
parison, the MSEs are normalized against the random walk
model as follows

ǫ̂ = ln(em/eb) (1)

whereem is the MSE of the model studied, andeb is the
MSE of the benchmark. Thus an̂ǫ > 0 means that the
model generated more accurate forecasts than the bench-
mark. Hence, we have

Fm,b = Pr(em ≤ eb) =

∫
0

−∞

fǫ̂ (2)

wherefǫ̂ is the probability density function (PDF) of̂ǫ.
Thus we have constructed a statistic for evaluating the mod-
els based on the cumulative distribution function (CDF) of
the log ratio of the model and the RW benchmark MSEs,
which we callnormalized distribution erroror NDE. This
statistic is similar in spirit to the MSE measurement itself,
but to avoid a bias towards symmetric error distributions,
we base our statistic on the median as opposed to the mean.
One might argue that highly incorrect predictions, therefore,
are not penalized strongly enough, but we are more inter-
ested in the reliability aspect of predictions here, i.e., which
model can be trusted to perform better in most cases. If the
error distribution has many outliers it should be reflected in
the width of the confidence bound instead. We thus focus
next on building such unbiased confidence bounds.

2.3 Statistical Test

With the NDE statistic we have a metric to decide when
a model performs better than a benchmark, but in order to
render claims of statistical significance and prediction con-
fidence bounds, a measure of error variance is needed. Due
to a limited set of original data points (one MSE for each
sample window size), the approach is to use bootstrap sam-
pling based on the empirical distribution ofǫ̂. Using (2)
the null hypothesis isH0 : Fm,b > .5, that is, the stud-
ied model predicts more accurately than the benchmark in
a majority of the cases. The alternative hypothesisHa is
then obviously that the studied model performs worse than
the benchmark in a majority of the cases. The bootstrap
algorithm is as follows

1. Calculate thêǫ values for thenw different sample win-
dows

2. Pickns samples of sizenw from theǫ̂ valueswith re-
placement

3. Calculate theα/2 and the1−α/2 per cent points from
the empirical distribution function of the selected sam-
ples, as the lower and upper confidence bounds respec-
tively

4. Reject the null hypothesis and accept the alternative
hypothesis if the upper bound is< .5, and accept the
null hypothesis and reject the alternative hypothesis if
the lower bound is> .5 at the 100α per cent signifi-
cance level. If the bound overlaps with.5 we say that
the model performson parwith the benchmark.

R code which implements this test is available in Ap-
pendix A. This Monte Carlo bootstrap algorithm is used for
two reasons, first to avoid making any assumptions about
the distribution of the normalized MSEs in the test, and
second to easily map MSE uncertainty to bounds on our
NDE statistic. The NDE bound[lower, upper] can be in-
terpreted as there being a 100(1− α) per cent likelihood of
the model performing better than the random walk model in
100·lower per cent to 100·upper per cent of the cases.

In the following sections we apply this evaluation
method to the PlanetLab and Tycoon series.

3 PlanetLab Analysis

PlanetLab (PL) is aplanetary-scale, distributed com-
puting platform comprising approximately 726 machines at
354 sites in 25 countries, all running the same Linux based
operating system and PlanetLab software. The user com-
munity is predominantly computer science researchers per-
forming large-scale networking algorithm and system ex-
periments. The time series is from December 2005 to De-
cember 2006. We calculate demand by aggregating the load

value across all hosts and averaging in hourly intervals with
a 5-min sample granularity. This load measures the number
of processes that are ready to run on machine.

3.1 Model

We select the first month of the trace (707 values out
of 8485) as our sample to construct the general ARIMA
model. The sample series is shown in Figure 1. There is
one big spike in the sample, and we might be tempted to
treat it as an outlier, but as seen from the full trace these
spikes are quite common and thus need to be accounted for
in our model. We instead perform a Box-Cox [1] transform
to address non-stationarity in variance. The Box-Cox plot
for the sample is shown in Figure 1(c). Aλ value of0.8 is
thus used to transform the series prior to the ARIMA anal-
ysis. Thisλ value is somewhere between a

√
Zt and aZt

(no) transform. From Figure 2 we note that the ACF has a
slow decline in correlation, and that the PACF is near unit
root in lag 1. Now to formally test for unit root we perform
the augmented Dickey-Fuller test [5], and obtain a t-statistic
of −2.0294 which has an absolute value less than the5 per
cent critical value−3.41, so we cannot reject the null hy-
pothesis of a unit root.

Therefore, we difference the series and then see that the
differenced ACF in Figure 2(c), does not exhibit any clearly
significant correlations. Hence, we model the series as as
an ARIMA(0,1,0) process or random walk. We note that
there appears to be small significant seasonal correlations
around lags 6,8,10,14 and 16. But we decide to ignore those
because of our small sample size, and to keep the predictor
simple. To summarize, the entertained model is

(1 − B)Zt = at (3)

whereB is the backshift operator andat is the residual
white noise process. A Box-Ljung test [8] of serial cor-
relations of the residuals of this model gives aχ2 value of
228.297 and a p-value of4.974 · 10−12 for 100 degrees of
freedom, so there is still structure unaccounted for. Our tests
showed that at least an ARIMA(16,1,0) model was needed
before the Box-Ljung test succeeded, which is not practical
for our purposes, so we stick to our ARIMA(0,1,0) model.
Because this model is one of our standard benchmarks (RW)
we also add an ARIMA(1,1,0) model to our evaluation to
simplify comparison.

3.2 Forecast

We now compare the MSE of the one-, two- and
three-step-ahead forecasts of the RW, EWMA, and
ARIMA(1,1,0) models. The time windows used for pre-
dictions range from100 to 150 hours. Each empirical nor-
malized MSE distribution thus has50 measurements. The

evaluation of the forecasts of the ARIMA(1,1,0), and the ex-
ponential smoothing models against the random walk model
can be seen in Figure 3. We note that a value less than0 in
the plot means that the model predictor performed better
than the random walk predictor. We observe that both the
ARIMA(1,1,0) and the exponential smoothing model pre-
dictors seem to perform better than the random walk predic-
tor for the two and three-step ahead predictions. We further
note that there are more high peaks than deep valleys both
for ARIMA(1,1,0) and EWMA, and that the EWMA peaks
are lower. This pattern indicates that the RW model is more
immune to extreme level shifts, and that EWMA handles
these shifts better than ARIMA(1,1,0).

Next, we use the statistical test constructed in the previ-
ous section to verify the significance of the differences.

3.3 Statistical Test

Table 1 shows the NDE bound results for the PlanetLab
models at significance level 5% wherens was set to1000.
The random walk row displays the errors in proportion to
the true value observed, calculated as

ǭ =
1

T

T∑
t=1

|ŷt − yt|
yt

(4)

whereŷt is the predicted value at timet andyt is the ac-
tual value; andT is the number of time windows used in
the test (50). We see that the errors ranged from4.07% to
6.98% with the longer horizon forecasts performing worse.
From the NDE statistic bounds for the ARIMA(1,1,0)
and EWMA rows in Table 1 we can conclude that the
ARIMA(1,1,0) model generates predictions on par with the
random walk model, for one and two-step-ahead predic-
tions, and better at significance level5 per cent for three-
step-ahead forecasts. The EWMA model performs better
for longer forecasts but not at a significant enough level to
pass our test. To summarize, the only strong conclusion we
can draw from these simulations is that the ARIMA(1,1,0)
predictor performed better than a random walk predictor for
three-hour ahead forecasts, but in general the RW model se-
lected performs relatively well.

4 Tycoon Analysis

Tycoon is a computational market where resources, such
as CPU, disk, memory, and bandwidth can be purchased
on demand to construct ad-hoc virtual machines. The price
of the resources is in direct proportion to the demand, in
that the cost of a resource share is dynamically calculated
as the ratio between the bid a user places on the resource
and the bids all other users of that resource place. The Ty-
coon network currently comprises about 70 hosts. Usage

Table 1. PlanetLab Model NDE Bounds at5% Sig-
nificance Level with Random Walk (RW), Exponentional
Smoothing (EWMA) and ARIMA(1,1,0) models, using 1,2
and 3-step ahead (SE) Forecasts.

1 SE 2 SE 3 SE

RW .0407 .0554 .0698
ARIMA(1,1,0) [.353, .627] [.471, .725] [.540, .800]
EWMA [.314, .588] [.373, .647] [.392, .667]

is sparse and spiky, and is mostly generated from different
test suites that are designed to evaluate the system. A trace
was recorded of the aggregated CPU price in hourly inter-
vals with a 10-min granularity during a period of 17 days in
July-August 2007.

4.1 Model

We select the first five days of the trace (119 values out of
404) as our sample to construct the general ARIMA model.
The sample and the full series are shown in Figure 4. Due to
suspected non-stationarity in variance a Box-Cox transform
is again performed. As seen in Figure 4(c), theλ value ob-
tained was−3. We note that the ACF decays slowly and the
PACF has a high first lag in Figure 5. So we again difference
the series. Now the ACF shows only one significant lag, so
we can model it as an IMA(1,1) process. The correlations
of the residuals of this model can be seen in Figure 5(d). To
summarize, the entertained model is

(1 − B)Zt = (1 − θB)at (5)

whereB is the backshift operator andat is the residual
white noise process. Theθ coefficient was found to be sta-
tistically significant at a5 per cent significance level, and
was fit to .511. A Box-Ljung test of serial correlations of
the residuals of this model gives aχ2 value of87.758 and a
p-value of.804 for 100 degrees of freedom, hence we con-
clude that the model does not have any serial correlations
and is accurate. Because this model is one of our standard
benchmarks (EWMA) we also add an ARIMA(1,1,0) model
to our evaluation to simplify comparison.

4.2 Forecast

We now compare the MSE of the forecasts of the RW,
EWMA, and ARIMA(1,1,0) models. The model parameters
are evaluated before each forecast. The time-window used
for model fitting ranged from 50 hours to 100 hours into
the past, and thus again50 measurements were generated.

Time (days)

Lo
ad

0 5 10 15 20 25 30

20
00

40
00

60
00

80
00

10
00

0
12

00
0

(a) Sample Series

Time (days)

Lo
ad

0 50 100 150 200 250 300 350

50
00

10
00

0
15

00
0

20
00

0

(b) Full Series

−2 −1 0 1 2

−
70

00
−

68
00

−
66

00
−

64
00

−
62

00

λ

lo
g−

Li
ke

lih
oo

d

 95%

(c) Box-Cox Transform

Figure 1. PlanetLab Series

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (hours)

A
C

F

(a) Autocorrelation Function

0 5 10 15 20 25

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag (hours)

P
ar

tia
l A

C
F

(b) Partial Autocorrelation Function

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (hours)

A
C

F

(c) Differenced Autocorrelation Function

Figure 2. PlanetLab Autocorrelation Functions

Time

M
S

E

100 110 120 130 140 150

−
1

0
1

2

(a) one-step

Time

M
S

E

100 110 120 130 140 150

−
1

0
1

2

(b) two-step

Time

M
S

E

100 110 120 130 140 150

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

(c) three-step

Figure 3. PlanetLab ARIMA(1,1,0) and Exponential Smoothing (dottedline) vs. Random Walk Model Forecast Errors

Table 2. Tycoon Model NDE Bounds at5% Signifi-
cance Level with Random Walk (RW) and Exponentional
Smoothing (Exp) Benchmarks, using 1,2 and 3-step ahead
Forecasts.

1 SE 2 SE 3 SE

RW .144 .199 .243
ARIMA(1,1,0) [.333, .588] [.392, .647] [.431, .706]
EWMA [.255, .510] [.353, .627] [.412, .686]

The evaluation of the ARIMA(1,1,0), and the exponential
smoothing models against the random walk model is shown
in Figure 6. We recall that a value less than0 in the plot
means that the model predictor performed better than the
random walk predictor. It is not as clear as in the Planet-
Lab series that RW has fewer extremes of bad predictions.
However the ARIMA(1,1,0) model does seem to produce
less extreme peaks and valleys than EWMA, i.e. the oppo-
site of what was observed for the PlanetLab data. Due to
high volatility it is difficult to draw any conclusions about
which model performs best from these plots, so we again
have to resort to our statistical test.

4.3 Statistical Test

Table 2 shows the NDE bound results for the Tycoon
models at significance level 5 per cent wherens was set to
1000. We see that the RW model performed much worse for
this time series compared to in the PlanetLab series. Aver-
age errors range from14.4 per cent to24.3 per cent. This
apparent difficulty in predicting the series also reflects the
results. We see that both the ARIMA(1,1,0) and EWMA
models performed on par with RW for all forecasts. So at
the5 per cent significance level no strong conclusions can
be drawn about which model performed best. We however
note, for the three step-ahead forecasts, that ARIMA(1,1,0)
is close to being significantly better than RW, and for one
step-ahead forecast, EWMA is close to being significantly
worse than RW. The same pattern is apparent here, as in the
PlanetLab data; the higher order ARIMA models perform
better for longer forecasts.

5 Series Comparison

In this section we compare the dynamics of the Planet-
Lab series to the Tycoon series using the full traces, and give
both quantitative and qualitative explanations to the differ-
ences.

Table 3. Mean Normalized Quartiles and Range
Min Q1 Median Q3 Max

PlanetLab .494 .811 .936 1.12 6.55
Tycoon .452 .763 .860 1.10 5.70

Table 4. Volatility Characteristics
Coef of Variation Skewness Kurtosis

PlanetLab .362 4.03 28.29
Tycoon .511 3.67 24.38

Table 3 shows the range and the quartiles of the series,
normalized by the series mean. The Tycoon series has a me-
dian which is further away from the mean, and the range of
values is slightly tighter. The narrower range is expected
because of the time horizon difference in the two series.
However, overall the statistics for PlanetLab and Tycoon
are strikingly similar. This is a bit surprising since Tycoon
is just in an early test phase with very limited usage and de-
mand, whereas PlanetLab is a mature system that has been
in operation for several years.

The volatility statistics of the two series are compared
in Table 4. We conclude that the variance is higher in Ty-
coon, but the right tail of the PlanetLab series distribution
is longer, and the PlanetLab series is also more prone to
outliers. Again it is remarkable how closely the tail and
outlier behavior of the much smaller Tycoon sample fol-
lows the PlanetLab statistics. To determine whether any of
these series exhibit heteroskedasticity, we take the squared
residuals from an ARIMA model of the full series and fit an
AR model. Then according to Engle [7] heteroskedasticity
exists if

1 − χ2

s((n − s)R2) < α (6)

wheren is the number of values in the series,s the order
of the AR model fit to the squared residuals,χ2

df is theχ2

density function withdf degrees of freedom, andα is the
significance level. The complete PlanetLab series follows
an ARIMA(3,1,0) model and the complete Tycoon series
follows an IMA(1,2) model. The residuals and their squares
of these models can be seen in Figure 7.

We find that both the PlanetLab and Tycoon series pass
the significance test at the5 per cent significance level.
Furthermore, both the Tycoon and the PlanetLab squared
residuals follow AR(3) models, i.e., they have very similar
volatility dynamics structure.

It is easy to see that this heteroskedasticity could cause
more outliers and higher kurtosis in a static model. Intu-
itively, if the first moment fluctuates, the second moment
increases, and similarly if the second moment fluctuates
there is a greater likelihood of more spikes or AR model

Time (days)

P
ric

e

1 2 3 4 5 6

0.
00

1
0.

00
2

0.
00

3
0.

00
4

(a) Sample Series

Time (days)

P
ric

e

5 10 15

0.
00

1
0.

00
2

0.
00

3
0.

00
4

(b) Full Series

−4 −2 0 2 4

0
20

0
40

0
60

0
80

0

λ

lo
g−

Li
ke

lih
oo

d

 95%

(c) Box-Cox Transform

Figure 4. Tycoon Series

0 5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag (hours)

A
C

F

(a) Autocorrelation Function

5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag (hours)

P
ar

tia
l A

C
F

(b) Partial Autocorrelation Function

0 5 10 15 20

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (hours)

A
C

F

(c) Differenced Autocorrelation Function

0 5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag (hours)

A
C

F

(d) ARIMA(1,1,0) Residuals Autocorrelation Function

Figure 5. Tycoon Autocorrelation Functions

Time

M
S

E

100 110 120 130 140 150

−
4

−
2

0
2

(a) one-step

Time

M
S

E

100 110 120 130 140 150

−
2

0
2

4

(b) two-step

Time

M
S

E

100 110 120 130 140 150

−
4

−
2

0
2

(c) three-step

Figure 6. Tycoon IMA and Exponential Smoothing (dotted line) vs. Random Walk Model Forecast Errors

outliers, which would increase the kurtosis. High volatility
and dynamics in structure could also explain why ARIMA
predictions assuming static volatility and regression struc-
ture perform so poorly compared to a simple random walk
predictor. However, we note that a random walk predictor
does not accurately estimate risk of high demand, which is
more apparent for forecasts with a longer future time hori-
zon. An alternative approach to studying volatility and risk
over time is the approach of measuring long term mem-
ory or dependence. This was done in [11], and we found
that non-Gaussian long term dependencies did exist, which
could cause so called workload flurries with abnormally
high demand.

The ARIMA(1,1,0) model performs better in PlanetLab
than in Tycoon, which may indicate that PlanetLab has
longer memory of past values than Tycoon. This may be
attributed to the shorter sample period and the nature of the
applications currently running on Tycoon; mostly short in-
tense test applications.

6 Related Work

The algorithm used for the statistical test of significant
differences in predictor performance was inspired by the
Monte Carlo bootstrap method introduced by Efron in [6]
and popularized by Diaconis and Efron in [4]. The boot-
strap method is typically used as a non-parametric approach
to making confidence claims. We, use it to expand a short
sample into a bigger one without any distributional assump-
tions about the MSE terms. A more typical usage is to
shrink a large sample into multiple smaller random samples
that are easier to make statistical claims about collectively.

Tycoon usage has not been statistically investigated be-
fore. Previous work on the computational market character-
istics of Tycoon has used PlanetLab and other super com-
puting center job traces as a proxy for expected market de-
mand [12] or made simple Gaussian distribition, and Pois-
son arrival process assumptions [11].

In this work we support the study of PlanetLab as a proxy
for Tycoon demand, by verifying a large number of sta-
tistical commonalities, both in terms of structure of series
and in terms of optimal predictor strategies. Chun and Vah-
dat [3] have analyzed PlanetLab usage data but not from a
predictability viewpoint. Their results include observations
of highly bursty and order of magnitude differences in uti-
lization over time, which we also provide evidence for. We
note that the PlanetLab trace that Chun and Vahdat studied
was from 2003.

Oppenheimer et al. [10] also analyze PlanetLab resource
usage and further evaluate usage predictors and conclude
that mean reverting processes such as exponential smooth-
ing, median, adaptive median, sliding window average,
adaptive average and running average all perform worse

than simple random walk predictors and, what they call,
tendency predictorswhich assume that the trend in the re-
cent past continues into the near future. They further no-
tice no seasonal correlations over time due to PlanetLab’s
global deployment. We do see some seasonal correlations
in our initial time series analysis but not significant enough
to take advantage of in predictions. Further, our evaluation
approach follows the traditional ARIMA model evaluation
method, and we provide a statistical test to verify and com-
pare prediction efficiency. One major difference between
our studies and thus also the conclusions is that Oppen-
heimer et al. only considered one-step ahead predictions
whereas we also consider two, and three-step ahead pre-
dictors to do justice to the models considering correlations
beyond the last observed step. We finally note that they
studied PlanetLab data from August 2004 to January 2005,
whereas we studied more recent data from December 2005
to December 2006.

7 Conclusions

This work set out to study the predictive power of re-
gression models in shared computational networks such as
PlanetLab and Tycoon. The main result is that no signifi-
cant evidence was found that higher order regression mod-
els performed better than random walk predictions. The ex-
ception was for three-step ahead predictions in PlanetLab
where an ARIMA(1,1,0) model outperformed the random
walk model.

The study also shows the difficulty in composing a model
from a sample and then using this model in predictions if the
structure of the series is changing over time as in the Tycoon
case.

Our study highlighted a number of statistical similarities
between Tycoon and PlanetLab, such as volatility structure,
outlier likelihood, and heavy right tails of density functions,
which motivates further studies and comparisons of work-
loads to improve forecasting.

The ARIMA models were refitted for every 50 to 150
hours to provide as accurate models of the recent past as
possible, but the overall structure of the model was fixed as
the one obtained from the fit of the sample series. Larger
fitting windows were tested for the PlanetLab data without
any effect in the results, but larger windows could not be
tested for the Tycoon series due to the limited trace time
frame (17 days). There was however a clear pattern that
the higher order ARIMA models performed better in the
two and three-step ahead forecasts compared to the random
walk model.

To summarize, we have exemplified the difficulties in
modeling significant regressional parameters for computa-
tional demand dynamics, even if the model is very generic
and the model parameters are re-estimated frequently. It

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (hours)

A
C

F

(a) PlanetLab Residual Autocorrelation Function

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

Lag (hours)

P
ar

tia
l A

C
F

(b) PlanetLab Squared Residual Partial Autocorrelation Function

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (hours)

A
C

F

(c) Tycoon Residual Autocorrelation Function

0 5 10 15 20 25

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Lag (hours)

P
ar

tia
l A

C
F

(d) Tycoon Squared Residual Partial Autocorrelation Function

Figure 7. PlanetLab and Tycoon Volatility Analysis

was found difficult to improve on the random walk process
model for one-step-ahead forecasts, which is a bit surpris-
ing (and contradictory to the main hypothesis in [9]) given
that RW processes, in theory, should generate a normal dis-
tribution of demand whereas the actual measured demand
distribution was very right skewed and heavy tailed, both in
the PlanetLab and the Tycoon series.

We do however see that higher order regressional param-
eters can improve the two-step and three-step ahead fore-
casts. More work is needed to determine how these models
should be discovered and dynamically updated. One pos-
sible extension is to see if there is an improvement in pre-
dictor performance if the model is allowed to changed dy-
namically as well as the parameters based on observed ACF
and PACF behavior. More work is also needed to determine
the computational overhead of the more complicated regres-
sional models and the calculations of fits and predictions.
Accurate random walk predictors can be built very easily
with virtually no overhead, so the improvement in accuracy
needs to be significant to be worthwhile. This work does
however show that there is a potential for improvement of
longer forecasts.

Acknowledgments

I would like to thank Professor Magnus Boman for his
detailed comments on earlier versions of this paper; and
Professor Raja Velu and Kevin Lai for providing the inspi-
rational ideas underlying this study.

References

[1] G. Box and D. R. Cox. An analysis of transformations.Jour-
nal of the Royal Statistical Society, B(26):211–252, 1964.

[2] G. Box, G. M. Jenkins, and G. Reinsel.Time Series Analy-
sis, Forecasting and Control (3rd ed.). Prentice-Hall, Engle-
wood Cliffs, NJ, 1994.

[3] B. N. Chun and A. Vahdat. Workload and failure character-
ization on a large-scale federated testbed. Technical report,
Intel Research Berkley Technical Report IRB-TR-03-040,
2003.

[4] P. Diaconis and B. Efron. Computer-intensive methods in
statistics.Scientific American, (6):116–130, 1983.

[5] D. A. Dickey and W. A. Fuller. Likelihood ratio statistics for
autoregressive time series with a unit root.Econometrica,
(49):1057–1072, 1981.

[6] B. Efron. Bootstrap methods: Another look at the jackknife.
The Annals of Statistics, 7(1):1–26, 1979.

[7] R. Engle. Autoregressive conditional heteroscedasticity
with estimates of the variance of united kingdom inflation.
Econometrica, 50:987–1007, 1982.

[8] G. M. Ljung and G. E. P. Box. On a measure of lack of fit in
time series models.Biometrica, (65):553–564, 1978.

[9] B. Mandelbrot and R. L. Hudson.The (Mis)behavior of
Markets: A Fractal View of Risk, Ruin, and Reward. Ba-
sic Books, New York, NY, USA, 2004.

[10] D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren, and
A. Vahdat. Service placements in a shared wide-area plat-
form. In USENIX’06: Annual Technical USENIX Confer-
ence, 2006.

[11] T. Sandholm and K. Lai. Prediction-based enforcement of
performance contracts. InGECON ’07: Proceedings of the
4th International Workshop on Grid Economics and Busi-
ness Models, 2007.

[12] T. Sandholm and K. Lai. A statistical approach to risk mit-
igation in computational markets. InHPDC ’07: Proceed-
ings of the 16th ACM International Symposium on High Per-
formance Distributed Computing, 2007.

A Bootstrap Test R-Code

predict_arima <- function(x,ord, window, horizon, mse, la mbda) {
n = (length(x)-window-2)/window
errors=c()
for (i in 0:n) {

start_index = i * window
stop_index = start_index + window -1
outcome_index = start_index + window
model = arima(boxcox_transform(x[start_index:stop_ind ex],lambda), \

order=ord,method="ML")
pred = predict(model, n.ahead=horizon)
if (mse) {

errors = c(errors, (x[outcome_index+horizon-1] - \
boxcox_inverse(pred$pred[horizon],lambda))ˆ2)

} else {
errors = c(errors, abs((x[outcome_index+horizon-1] - \

boxcox_inverse(pred$pred[horizon],lambda))/x[outcom e_index+horizon-1]))
}

}
mean(errors)

}
evaluate_arima <- function(x,ord,from,stop,step,walk, horizon,mse,lambda) {
arima_mse = c()
walk_ind = 1
to = round((stop - from)/step) + from

for (i in from:to) {
window = from + ((i-from) * step)
pred = predict_arima(x,ord,window,horizon,mse,lambda)
if (length(walk) > 0) {

pred = pred / walk[walk_ind]
walk_ind = walk_ind + 1

}
arima_mse=c(arima_mse,pred)

}
arima_mse

}
bootstrap_test <- function(x,sample_size,alpha) {

n=length(x)
x_sample = c()
for (i in 1:sample_size) {

x_sample=c(x_sample,ecdf(sample(x,n,replace=T))(0))
}
sort_sample = sort(x_sample)
c(sort_sample[round(sample_size * alpha/2)], \

sort_sample[round(sample_size * (1-alpha/2))])
}
evaluate_walk_exp <- function(x,ord,horizons,from,to, step,alpha,samples,lambda)
{

exp_errors = c()
arima_errors = c()
walk_errors = c()
x_evals = c()
x_exps = c()
for (i in 1:horizons) {

walk_error = evaluate_arima(x,c(0,1,0),from,to,step,c (),i,mse=F,lambda)
walk_errors = c(walk_errors, mean(walk_error), mean(wal k_error))
x_walk = evaluate_arima(x,c(0,1,0),from,to,step,c(),i ,mse=T,lambda)
x_eval = evaluate_arima(x,ord,from,to,step,x_walk,i,m se=T,lambda)
x_exp = evaluate_arima(x,c(0,1,1),from,to,step,x_walk ,i,mse=T,lambda)
x_evals = cbind(x_evals, x_eval)
x_exps = cbind(x_exps, x_exp)
Pr(EXP < RW)
exp_errors = c(exp_errors,bootstrap_test(log(x_exp),s amples,alpha))
Pr(ARIMA < RW)
arima_errors = c(arima_errors,bootstrap_test(log(x_ev al),samples,alpha))

}
errors = cbind(walk_errors,arima_errors,exp_errors)
attr(errors,’arima’) = x_evals
attr(errors,’exp’) = x_exps
errors

}

Admission Control in a Computational Market

Thomas Sandholm
School of Information and Communication Technology

KTH – Royal Institute of Technology
SE-16440 Kista, Sweden

sandholm@kth.se

Kevin Lai
Information Dynamics Laboratory

Hewlett-Packard Laboratories
Palo Alto, CA 94304, USA

kevin.lai@hp.com

Scott Clearwater
P.O. Box 1252

Los Altos, CA 94023, USA
clearway@comcast.net

Abstract

We propose, implement and evaluate three admission

models for computational Grids. The models take the ex-

pected demand into account and offer a specific perfor-

mance guarantee. The main issue addressed is how users

and providers should make the tradeoff between a best effort

(low guarantee) spot market and an admission controlled

(high guarantee) reservation market. Using a realistically

modeled high performance computing workload and utility

models of user preferences, we run experiments highlight-

ing the conditions under which different markets and ad-

mission models are efficient. The experimental results show

that providers can make large efficiency gains if the admis-

sion model is chosen dynamically based on the current load,

likewise we show that users have an opportunity to optimize

their job performance by carefully picking the right market

based on the state of the system, and the characteristics of

the application to be run. Finally, we provide simple func-

tional expressions that can guide both users and providers

when making decisions about guarantee levels to request or

offer.

1. Introduction

In large-scale shared systems, such as cross-

organizational Grids, the best-effort provisioning model

has dominated because of its scalability, high utilization,

and high availability. Elastic applications that can tolerate

variability in performance thrive in this model. Examples

include batch-processing applications like data mining, and

data warehousing. Other, inelastic applications require

more stringent quality-of-service (QoS) assurances for their

users. Examples of these are interactive applications like

web applications, and media servers. These applications

require an admission control mechanism to prevent high

load from violating QoS assurances. However, admission

control reduces scalability, reliability, and utilization and

introduces the risk of being rejected admittance.

The key difference between best-effort and admission

control is that best-effort imposes more costs (in the elas-

ticity requirement) on applications whereas admission con-

trol imposes more costs (in scalability, reliability, utiliza-

tion, and rejections) on the system provider. Nonetheless,

for many applications, the cost to implement elasticity is

high. As a result, maximizing system efficiency requires

both models, but also incentives for applications to use the

best-effort model. Economic systems (e.g., [12], [27], [23],

[8], [18]) use payment as the incentive. This encourages

applications that can implement elasticity to use best-effort

while also accommodating those that cannot. In addition,

admission control in a priced system provides an opportu-

nity for the provider to do price discrimination and thereby

sustain its profitability.

We examine such a hybrid system (based on the

Tycoon[18] market-based resource allocator) in this paper.

Having two resource models in a system introduces several

questions:

What service model should an application use? Most

applications are neither purely elastic nor purely inelastic.

Instead, a typical application has a specific tolerance for de-

lay. How easily the system can meet delay requirements

varies over time as the system load changes. Moreover, an

application must balance its delay tolerance with its will-

ingness to pay for performance and the current cost of re-

sources, which constantly changes in a market-based sys-

tem.

How much of a resource should a service provider al-

locate to each model? The goal of the service provider is

to maximize its profits. It does this by packaging its limited

resources in a ratio of best-effort and admission control at

prices that are desirable to applications. The ratio and the

prices change over time as applications come and go. The

provider must also increase the price of admission control

resources to include the expected opportunity cost of future

rejected admissions.

Previous studies of admission control have been in non-

economic systems, been tied to a specific scheduling dis-

cipline, and focused on simulations driven by simplified

distributional models. Instead, we focus on the admission

control problem in an economic system and our work is in-

dependent of scheduling. Moreover, we construct and use

workload models derived from a HPC production cluster

and we evaluate an admission control broker in a live com-

putational market cluster, using all the components of the

production system.

Our key contribution is a set of admission control mod-

els based on statistical properties of the demand. Admis-

sion decisions rely both on expected risk of future rejec-

tions, and existing commitments. The risk estimator uses

recent price history to calculate a statistical bound (Cheby-

chev upper bound) on the likelihood of a certain deviation

from the average demand. The price for a reservation is

thus fully dynamic and correlated with the demand, while

inelastic applications still obtain high guarantees.

In our experiments, we measure economic efficiency,

which is the ratio of the utility obtained to the optimal util-

ity (with a theoretical admission model that has full knowl-

edge of future jobs). We show that the economic efficiency

of a system that only provides best-effort is 80 per cent at

low load, but only 55 per cent at high load. In the high

load scenario, inelastic applications have only 35 per cent

efficiency, while elastic applications have 90 per cent effi-

ciency. In contrast, an admission control model offering ab-

solute guarantees is 75 per cent efficient, regardless of load

and application elasticity. Hence, providers have an incen-

tive to choose and partition the admission model based on

resource contention, and users have an incentive to pick an

admission model that fits their job preferences. The results

presented in this paper aid both the provider and the user in

making these decisions dynamically.

The rest of the paper is structured as follows. In Sec-

tion 2 we describe the workload model used in the exper-

iments. The admission models are presented in Section 3.

Section 4 discusses the experiments, Section 5 analyzes the

experiment results, Section 6 compares our approach to re-

lated research, and finally Section 7 provides concluding

remarks.

2. Workload Model

The goal of the workload model is twofold. It should

be representative of workloads observed in a shared clus-

ter production system, and it should enable efficient study

of parameter spaces in our system. All jobs are allocated

and consume real system resources in a full deployment of

a computational market. Therefore, the workloads must be

short enough to make the results easily reproducible while

capturing as much of the statistical traits of the original trace

as possible. Pure simulations 1 are easier to evaluate statis-

tically, but our main contribution in this work is the evalua-

tion of a real, distributed deployment.

Instead of using over-simplified assumptions and gener-

alizing behavior across different clusters and sites, we chose

to capture individual traces in more precise models. Here

we present the results from using the SDSC (San Diego Su-

percomputer Center) Blue Horizon cluster trace from April

2000 to January 2003, containing 223402 jobs [11].

Distributional models for job inter-arrival time (IAT),

runtime (RUN), and number of CPUs used per job (CPU)

were constructed directly from the trace. The techniques

used to model distributions are very generic and can be ap-

plied to a wide range of workload traces. We chose to fo-

cus solely on the SDSC trace for three reasons. First, the

trace is the longest one available from the parallel work-

loads archive, and thus gives us the best statistical stabil-

ity. Second, our main interest is in studying the parameter

space of different admission policies under varying load,

and hence utilizing a single workload model simplifies the

matrix of configurations to be investigated. Third, the trace

showcases characteristics that have been observed in many

other HPC traces [11].

To synthesize workloads with the same statistical proper-

ties as the original trace, we construct a functional represen-

tation of the inverse of the cumulative distribution function

(CDF), sometimes called the percent point function (PPF)

or the quantile function. Many distributions, such as the

Normal or Gaussian distribution do not have simple analyti-

cal representations of the PPF, which also effects our choice

of model. To generate the desired workload the PPF is ap-

plied to a series of uniformly distributed random variables

in the interval (0, 1).
Inter-Arrival Time. The inter-arrival times were found

to follow two different regimes. This bimodality was also

found by just studying the last 1/10 of the trace as well as

in parallel archive workload traces from KTH and OSC, not

presented here. The pattern found was that jobs submitted

within about 10 seconds of each other were overrepresented

and followed a separate distribution compared to all other

jobs. Standard distributional models do not handle multi-

modality and we therefore had to represent this distribution

1see [25] for a similar simulation-based evaluation

with a mixture model. Each distribution in the mixture was

fit to the data using a standard maximum-likelihood estima-

tion (MLE) algorithm. The resulting model, which we call

hyper log-weibull (HypWeib), is represented as follows:

Z = αX + (1 − α)eY (1)

where Z is the random variable of the IAT dis-

tribution, and α was found to be 0.29. Fur-

thermore, if X ∼ Weibull(16.1489, 1.3462) and

Y ∼ Weibull(5.93123, 4.95969) then Z ∼ HypWeib.

The Weibull CDF is easy to invert arithmetically into a PPF,

and therefore our HypWeib distribution is also easily repre-

sentable as a PPF, which can be used to generate a synthetic

IAT workload.

Runtime. The runtime data was also found to be bimodal.

Jobs with runtimes less than 30 seconds followed a differ-

ent distribution than the rest. Since these jobs are unlikely

to have produced any useful work and constitute less than

7 per cent of the data, we do not represent them in our run-

time model. No standard distribution was found with the

maximum-likelihood algorithm that approximated the em-

pirical CDF satisfactorily, therefore we used a polynomial

linear least-squares fit of the CDF. To simplify the arith-

metic inversion into a PPF we used a 2nd order polynomial

as follows:

CDF (x) = −0.0125x2 + 0.3018x− 0.8184. (2)

We call this fit the PolyLin distribution in the discussion be-

low.

Job Size. From the density function of number of CPUs

per job (CPU) it was apparent that values with base 2 were

overrepresented. Only about 1 per cent of the jobs did not

follow this pattern. We therefore neglect these jobs in our

model for simplicity. Again the log base 2 transformed val-

ues do not follow a standard CDF well, but since it is a dis-

crete variable and the number of different values with more

than 3 per cent density are only six, the distribution which

we call Binary Bin (BinBin) can be easily and accurately

represented as a histogram as follows:

Z = 2X+2 (3)

where Z is the random variable in the CPU distribu-

tion, X is distributed as the histogram density function

p(xi) = vi, where x is the vector {1..6} and v is the

vector {0.508, 0.144, 0.126, 0.137, 0.048, 0.035}. Alterna-

tively, this decline in binary exponents can be modeled as a

Zipf(1.4), with a slightly worse fit but with one instead of

six parameters.

Model Evaluation. To obtain quantitative statistics for

how well the models fit the data we utilize the Two-sided

Kolmogorov-Smirnov (KS) test. A bootstrap technique [9]

is used to mimic the experiment setup of small representa-

tive sample runs. We draw 100 random samples from the

empirical and our synthesized workloads, before compari-

son. For each pair of samples we calculate the KS value

(max absolute difference between CDFs), and test the null

hypothesis that the two samples are drawn from the same

distribution at a 5 per cent significance level. We then

record the success-rate, where the null hypothesis could not

be rejected, and the average KS values for the sample tests

as well as a KS test performed on the entire data sets. As a

benchmark we also perform the hypothesis test on the trace

with itself. It is commonly assumed that the job submis-

sions follow a Poisson process (submissions are spread uni-

formly and independently over some time interval), which

results in the IAT being exponentially distributed. As an ad-

ditional comparison we therefore also model the IAT with

an MLE fitted Exponential (Exp) distribution with mean

378.648. Similarly power-law distributions have been ob-

served for process runtimes so we also fit the runtime data to

a Pareto (Par) distribution with location parameter 1.77332,

scale parameter 213.171 and threshold parameter 0, again

obtained using MLE. Table 1 summarizes the goodness-of-

fit results. From these results we can conclude that our three

models, HypWeib, PolyLin, and BinBin, all provide accu-

rate fits to the SDSC trace data. The KS test clearly rejects

the Exp model as a good representation of the IAT distribu-

tion. Furthermore, we calculate the coefficient of variance

(CV = σ/µ) of the IAT data to be 3.86, which also rules

out a Poisson process, which has an expected CV of 1. The

Par model is a good fit to the runtime data, but not as good

as the PolyLin fit. PolyLin provides a slightly worse fit than

HypWeib and BinBin most likely due to the fact that we ig-

nored 7 per cent of the shortest running jobs for simplicity

reasons. To summarize, when taking 1000 samples (with

replacement) of 100 values each from the synthesized dis-

tribution we can get representative values, according to the

KS statistic at a 5 per cent significance level, in 87 per cent

of the samples or more for all of our models.

Job Value. No information about user-specified job valua-

tions are available in the trace that we study. Therefore, a

set of standard distribution models are used. Three distri-

butions, equal importance (Equal), normal (Norm), pareto

power-law (Pareto) are modeled. Equal importance distri-

butions occur when all jobs and all users have the same im-

portance. This model is exemplified in the PlanetLab net-

work. A normal distribution is the most common assump-

tion as it can represent all populations produced by aggre-

gating individually independent random variables with fi-

nite mean and variance, in accordance with the central limit

theorem. Finally, the Pareto distribution was originally used

to model the distribution of incomes, and similar power-law

relationships have been observed in various large-scale net-

work metrics, such as popularity of web sites.

Correlations. Supercomputer jobs are known to exhibit

long-term correlations (or long memory) over time that

Table 1. Goodness-of-fit Results using Kolmogorov-Smirnov tests against the Trace data.

KS Data 1 KS Data 2 KS success-rate KS complete data KS sample mean

Trace IAT Trace IAT 0.948 0 0.1161
HypWeib Trace IAT 0.897 0.0557 0.1337

Exp Trace IAT 0.034 0.2406 0.2901
Trace RUN Trace RUN 0.944 0 0.1174

PolyLin Trace RUN 0.869 0.0718 0.1371
Par Trace RUN 0.818 0.1075 0.1565

Trace CPU Trace CPU 0.989 0 0.0861
BinBin Trace CPU 0.982 0.0165 0.0880

Zipf Trace CPU 0.974 0.0644 0.1040

could lead to periods of anomalously high load [16]. A met-

ric often used to quantify the correlation is the Hurst [13]

and Mandelbrot [20] R/S statistic or Hurst exponent. A

memoryless process (such as white noise) would have a

Hurst exponent of 0.5 whereas processes exhibiting long

memory would have exponents close to 1. Exponents less

than 0.5 indicate anti-correlation, i.e. a past trend is likely

to be reversed. We measured a Hurst exponent of 0.735
for the IAT series in the SDSC data, indicating moderate

long term correlations, which corresponds well to previous

work [16]. To adequately represent a given Hurst exponent

in synthesized data, a very large number of data points need

to be generated, which makes it impractical for our exper-

iments. Instead we run our experiments under a couple of

different load and IAT configurations to represent both reg-

ular operation periods and high load periods. We also ran

some experiments where we induced short-term time corre-

lations in the IAT value series with a simple sort and per-

mute algorithm, and found that the results were largely the

same, with the exception that a purely statistical admission

model performed slightly better, as expected. We further

note that no significant cross-correlations were found be-

tween the inter-arrival time, runtime and job size properties.

Due to space limitations and the complexity of a thorough

treatment, the correlation issue is left out-of scope and as

the focus of future work.

3. Admission Models

In this section three different admission models are

described, best effort (BE), statistical admission control

(SAC), and capacity admission control (CAC). All of these

models take a contract request and produce either an ac-

cepted or a rejected contract. The contract request has two

parts, service level requirements and resource requirements.

The service level requirements contain the budget a con-

sumer is willing to pay for the resources, as well as to-

tal number of work units (CPU cycles in our experiment)

needed per node, parallelism (number of nodes), deadline

and type of contract (BE, SAC or CAC). The resource re-

quirements specify detailed min and max bound preferences

for resources such as CPU, memory, disk, and bandwidth.

The resource requirements are enforced and continuously

evaluated by the market-based resource allocator (Tycoon’s

Xen virtualization layer), and the service level requirements

are enforced at submission time and evaluated at completion

time by the admission model implementation. An approved

contract contains a list of nodes selected to run the job and

their individual funding levels.

Best Effort. In the best effort model the contract is only

rejected if the current spot market price is too high to get

the resources specified in the resource requirements part of

the contract. The service level part is only used to validate

the contract a posteriori. Existing jobs can be preempted

by new arrivals that pay more. Note that preemption here

refers to performance or resource share degradation only,

not necessarily that the preempted job is stopped. The re-

source share obtained is:

q =
b

b + c
(4)

where b is the spending rate (e.g. $/s) derived from the bud-

get and the deadline, and c is the current cost or price of

the resource defined as: c =
∑

i bi where bi is the current

spending rate of consumer i.
Statistical Admission Control. In the statistical admission

control model the contract is rejected if the budget is less

than an estimated future percentile of the price, or if the

current spot market price is too high to get the required

resources. Existing jobs can be preempted. The resource

share obtained with this model will not drop below qmin

with a statistical guarantee g where

qmin =
b

b + F−1(g)
(5)

and F−1(g) is an estimate of the inverse of the cumula-

tive price distribution function for a guarantee in the interval

(0..1). As an approximation of F−1 we use the Chebychev

bound for a given mean and standard deviation of the price.

More details on this technique can be found in [24].

Capacity Admission Control. The capacity admission

control model performs the same statistical check as in the

SAC model to ensure that a minimum price which is higher

than the spot market price is paid for a capacity controlled

contract. If the statistical check succeeds, an additional

check is made to ensure that no currently active contracts

are violated. A contract violation is detected by checking

the resource shares obtained for all running jobs if the new

job were to be admitted. If the share is below what is re-

quired to process the total number of work units for any

job, the contract of that job is violated. Existing jobs can

thus not be preempted in this model. The admission test

(which must be true for a contract request to be accepted)

is:

∀s ∈ S :

n
∑

h

bh(s)

bh(s) + bh(r) + c
≥ qs (6)

where S is the set of all existing contracts including the re-

quested contract, n is the number of hosts, bh(s) is the bid

on host h in contract s, bh(r) is the bid on host h in the

requested contract r, and qs is the minimum performance

share promised in contract s. Enforcement may be done

on a host by host basis or across all hosts in the contract.

We chose the latter in our experiments to allow hosts with a

higher than promised performance to compensate for slower

hosts in the same contract, and thereby cause fewer rejec-

tions.

4. Experiments

4.1. Configuration and Setup

Each job runs a CPU intensive benchmark application

until the runtime has expired or the job has completed. Each

user gets a budget of $100 to split among its jobs, accord-

ing to relative value, runtime, and size (CPUs). After the job

has finished we record the number of work units completed,

which is directly proportional to total number of CPU cy-

cles consumed. The SAC and CAC admission controllers

both use the 60 per cent Chebychev bound as price rejec-

tion threshold (users who are not willing to pay more are

rejected).

A work plan generated using the workload model de-

scribed in Section 2 serves as input to each experiment run.

The work plan contains parameters for each job to be run

including: job id, IAT, runtime, CPUs, value, model, and

user id. The model parameter is best effort (BE), statisti-

cal admission control (SAC), or capacity admission control

(CAC).

An experiment run comprises a 2 hour trace of 50 jobs

executed on a market-based cluster of 15 hosts and 30

CPUs. 10 users submit 5 jobs each with 4-10 CPUs/job,

2-16min runtime/job, and 30s-8min IAT/job. An identical

trace is run with the BE, SAC, and CAC admission models.

In order to make statistical claims about differences among

the admission policies, each experiment run is repeated with

five random traces generated with the same workload model

configuration. The rationale behind this setup is to capture

both aleatory (randomness within a distributional model)

and epistemic (variations due to external factors, in our case

live system behavior not captured in our model) uncertainty

common in risk modeling [21].

The results from five different workload model configu-

rations are presented below: Pareto job value distribution

under low load, Pareto job value distribution under high

load, equal job values under high load, Normal job value

distribution under high load, and finally a random admis-

sion benchmark configuration under high load. A single run

of all the experiments including epistemic repetitions, thus

took about 150 hours (6 days and 6 hours), which explains

why we limited the repetitions to five.

The different load levels were obtained by generating

traces with minimum/mean IAT 90/153.66, and 30/92.36
seconds for low, and high load respectively. The load lev-

els were set to result in moderate and extensive contention

for resources. As the moderate contention workload is less

sensitive to the job characteristics in general and the job

valuation in particular, we only present the results from the

Pareto distribution under low load here.

4.2. Metrics

We are mainly interested in the economic efficiency and

fairness of the system, but some basic properties of the ad-

mission controller must be met. In particular an admission

controller which rejects too many requests will cause under-

utilization of resources. Similarly, an admission controller

that does not decrease the number of contract violations is

of little value. We therefore compare contract violations, re-

source utilization and contract rejections as system metrics

independent of the economic metrics.

Violations. This metric measures the ratio between the jobs

that have been admitted to those that meet their deadlines.

Violations = js

ja

, where js is the number of jobs that suc-

cessfully meet their deadlines, and ja is the number of jobs

that are admitted.

Utilization. Utilization is calculated as the average work

units processed per second, compared to a theoretical maxi-

mum utilization if no resources were idle at any point during

the experiment run. Utilization = w
w∗

, where w is the num-

ber of work units completed in the experiment, and w∗ is

the theoretical maximum.

Rejections The rejection metric is calculated as the ratio of

jobs in the experiment to jobs being rejected at admission

time. Rejections = jr

jt

, where jr is the number of jobs be-

ing rejected, and jt is the total number of jobs.

Demand Correlation. As a measure of global fairness, we

consider the correlation of the demand and the price, seen as

cost by the user and profit by the provider. Because the best

effort model does not reject jobs at admission time with our

experimental workloads, it is used as as an approximation

for demand. Demand Correlation = ρX,Y , where ρX,Y is

the Pearson correlation coefficient of the random variables

X and Y , X is the time series of 5min averages of the price

in the best effort run, and Y is the corresponding time se-

ries of the admission mechanism being measured (SAC, or

CAC).

Efficiency. As an aid to measuring economic efficiency, the

utility function quantifies the payoff a user gets from run-

ning a job. The first part of the utility function represents

users who do not get any payoff unless the job is fully com-

pleted. We call this the inelastic utility.

Ui(wd, p, v) =

{

v − p if wd ≥ w

−p if wd < w
(7)

where, wd is the amount of work completed at the deadline,

p is the price paid for running the job, v is the valuation of

the job (money bid on job), and w is the work requested

in the performance contract. The second part of the util-

ity function represents users who get an incremental payoff

based on how much work they completed. We call this the

elastic utility.

Ue(wd, p, v) = min(wd/w, 1)v − p (8)

A weighted linear combination of (7) and (8) is then the

final utility function

U = αUi + (1 − α)Ue (9)

Taking the sum of all utilities across all jobs, j, gives us

a metric of the social welfare, which compared to the opti-

mal utility (with off-line knowledge) can be seen as the eco-

nomic efficiency of the system. Efficiency = 1
J

∑J

j
U(j)
U∗(j) ,

where U∗ is a theoretical optimal utility obtained from an

off-line admission control strategy with no charges applied

to (9). More elaborate utility functions could have been

used, such as time-decaying utility, or any other quasi-linear

utility transformation. We did run some experiments with

time-decaying utility as well but found that it complicated

the model without providing additional qualitative results.

Our main point is to show the difference between elastic

and inelastic applications with different market models, and

we found the above functions to capture this aspect in the

simplest and most accurate way.

To determine the reliability of the results, we perform a

statistical test based on the mean and the standard deviation

of the metrics. Since only 5 repetitions (experiment sam-

ples) can be used because of time constraints the standard

z-test (e.g [µ − 1.96σ, µ + 1.96σ] as the 5 per cent signifi-

cance confidence bound) cannot be performed and we have

to resort to the pairwise t-student test with sampled standard

deviation.

4.3. Results

All the graphs presented in this section show the average

across the five experiment repetitions, with one standard de-

viation marked with error bars. Non-overlapping error bars

thus give a visual indication of a significant result.

System Metrics. Figure 1 shows that the BE model violates

a large portion of the contracts as a result of heavy load.

SAC addresses this problem but still causes a sizeable por-

tion of violations, whereas CAC has virtually no violations

(a small portion of violations may still occur because of our

choice to base the admission test on the overall performance

of a job as opposed to on a per node basis). The Pareto and

Normal value distributions cause more violations for both

BE and SAC compared to when all jobs are valued equally.

CAC on the other hand is less sensitive to value distribution.

Contrasting this result with Figure 1(b), we cannot see any

clear evidence that the utilization is significantly effected

neither by the value distributions, the load, nor the admis-

sion model used. However, the variation in utilization is

higher with a Pareto value distribution under high load than

with other experiment setups. Further, the rejection ratios

in Figure 1(c) cannot fully explain the significant difference

in contract violations. For example, in the high-load Pareto

value distribution experiment 37 per cent of the jobs were

rejected with CAC, compared to none for BE, but 61 per

cent of the contracts were violated with BE, compared to 1
per cent with CAC. It is also important to point out that both

CAC and SAC reject fewer contracts under low load, which

proves that the admission decisions adapt to the current de-

mand.

A quantitative summary of the significance of these re-

sults is presented in Table 2. It shows a pairwise t-student

test at a 5 per cent significant level, and four degrees of

freedom (critical t-value 2.1318) with the null hypothesis

that the mean value of the metrics (violations and utiliza-

tion) are the same. A rejection of the null hypothesis (a

significant difference exists) is marked in bold.

Based on these results the main conclusion is that SAC

and CAC improved contract fulfillment significantly with-

out causing significant underutilization.

Economic Metrics. Turning to the economic metrics of

fairness and efficiency, we can see in Figure 1(d) that the

demand correlation coefficient is high for both the SAC and

CAC models (about 0.6− 0.8 for all experiments). This re-

sult indicates that the admission control models are not bi-

ased towards the consumer nor the provider, in their pricing

structure, and can thus be considered globally fair. The effi-

ciency graphs in Figure 2 show the sensitivity to the elastic

versus inelastic utility models. Typically a consumer with

a completely inelastic (α = 1) utility would choose the

CAC or possibly the SAC model. We see that the admis-

sion models showed no significant difference in efficiency

under low load. However, when there is high contention for

the resources and there is high variability in the valuation of

jobs (Pareto or Norm), the BE model efficiency deteriorates

significantly with an increasing portion of inelastic utility.

SAC does not suffer as much from efficiency loss as BE,

but it has the same decreasing trend, whereas CAC is com-

pletely independent of the utility model chosen (As seen by

the straight lines in the graphs). We further note that the ef-

ficiency of the SAC and BE models do not decline as much

when all jobs have equal value, compared to when they have

Pareto or Normal value distributions.

The utility function used to calculate efficiency benefits

high-valued jobs with low cost. Comparing Figure 2(a) with

Figure 2(b), we can see that the CAC model and to some ex-

tent also the SAC model maintained a high level of service

for high-valued jobs when the system went from low to high

resource contention, a typical trait of a good admission con-

trol model.

As previously mentioned, lower utilization and fewer

contract violations may be explained as an inherent result

of more rejections, as opposed to a feature of the admis-

sion control model. To study to what extent the behavior of

the SAC and CAC models can be explained by this inherent

effect, we modify the SAC model to just randomly reject

as many requests as in the Pareto high-load CAC scenario

(about 37 per cent). If we first compare the CAC model

to the random admission control model (RAC) in Figure 3,

we see that the contract violations are considerably higher

with the random model although the number of rejections

are the same. This shows that the CAC model makes bet-

ter decisions regarding which jobs to reject. The utilization

and the demand correlation (market fairness) are however

similar. Looking at the efficiency it is clear that the ran-

dom model, which does not consider the valuation of jobs,

performs worse both than the original SAC implementation

and CAC, for both elastic and inelastic jobs. We thus con-

clude that the inherent effect of rejections cannot explain the

contract violation or efficiency properties of the admission

control models that we have implemented. We note that

it is customary to investigate equilibria of the system when

making claims about efficiency in economics. In an exper-

iment which mimics real usage, with randomly configured

batch jobs entering and leaving the system continuously, it

is very hard to observe and reproduce such stable states. As

an alternative we derived our claims from statistically sta-

ble states using techniques such as the t-student test. In the

following section we will complement the statistical verifi-

cation with an analytical verification of the results.

 0

 0.2

 0.4

 0.6

 0.8

 1

CACSACBE

V
io

la
ti
o

n
s

Par(L)
Par(H)
Eq(H)

Norm(H)

(a) Violations

 0

 0.2

 0.4

 0.6

 0.8

 1

CACSACBE

U
ti
liz

a
ti
o

n

Par(L)
Par(H)
Eq(H)

Norm(H)

(b) Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

CACSACBE

R
e

je
c
ti
o

n
s

Par(L)
Par(H)
Eq(H)

Norm(H)

(c) Rejections

 0

 0.2

 0.4

 0.6

 0.8

 1

CACSACBE

D
e

m
a

n
d

 C
o

rr
e

la
ti
o

n

Par(L)
Par(H)
Eq(H)

Norm(H)

(d) Demand Correlation

Figure 1. Violations, Utilization, Rejections and

Demand Correlation with different Value Distributions

(Pareto/Equal/Normal) and Load (High/Low)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
c
y

Proportion of Inelastic Utility (alpha)

BE SAC CAC

(a) Pareto (Low Load)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
c
y

Proportion of Inelastic Utility (alpha)

BE SAC CAC

(b) Pareto (High Load)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
c
y

Proportion of Inelastic Utility (alpha)

BE SAC CAC

(c) Equal (High Load)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
c
y

Proportion of Inelastic Utility (alpha)

BE SAC CAC

(d) Normal (High Load)

Figure 2. Efficiency with different Value Distributions

and Load

Table 2. T-student test (t-values) of mean-value difference

for contract violations and utilization. Significant differ-

ences (at a 5% level) are marked in bold. Positive values

indicate that the mean of the first series compared is higher.

BE/SAC Par(L) Par(H) Equal Norm

Violations 2.48 2.08 2.82 3.94

Utilization 4.52 1.67 2.06 1.79

BE/CAC Par(L) Par(H) Equal Norm

Violations 2.99 4.90 4.39 7.09

Utilization 6.30 2.05 3.33 3.74

SAC/CAC Par(L) Par(H) Equal Norm

Violations 1.71 3.25 2.20 5.91

Utilization 2.35 0.72 1.89 2.60

 0

 0.2

 0.4

 0.6

 0.8

 1

CACRACBE

V
io

la
ti
o

n
s

(a) Violations

 0

 0.2

 0.4

 0.6

 0.8

 1

CACRACBE

U
ti
liz

a
ti
o

n

(b) Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

CACRACBE

D
e

m
a

n
d

 C
o

rr
e

la
ti
o

n

(c) Demand Correlation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
c
y

Proportion of Inelastic Utility (alpha)

BE RAC CAC

(d) Efficiency

Figure 3. Random Admission Control compared to Best

Effort and Capacity Admission Control

5. Results Analysis

First, we explain the difference in efficiency between ad-

mission control and best effort with inelastic utility analyti-

cally. Let pw ∈ [0, 1], pa ∈ [0, 1], be the probability of ful-

filling the contract, and the probability of admitting a job,

respectively. Using the inelastic utility function in (7) we

obtain U = pa(pw(v − c) − (1 − pw)c). We now study

two cases, Ub where all requests are admitted at the expense

of some not fulfilling their contracts (e.g. best effort), i.e.

pa = 1, and Ug where all jobs fulfill their contract at the

expense of some being rejected (e.g. capacity admission

control) , i.e. pw = 1. Now by comparing

U(pa = 1) = Ub = pw(v−c)−c(1−pw) = pwv−c (10)

and

U(pw = 1) = Ug = pa(v − c) (11)

we get

Ug > Ub ⇔ pav − pac − pwv + c > 0 (12)

Setting q = c/v we have

Ug > Ub ⇔ pa >
pw − q

(1 − q)
. (13)

Using the experimental values of the runs from Figure 2 we

for instance have for

(a):

0.80 <
0.90 − 0.10

1 − 0.10
≈ 0.89 ⇒ Ub > Ug (14)

(b):

0.63 >
0.39 − 0.14

1 − 0.14
≈ 0.29 ⇒ Ug > Ub (15)

(c):

0.71 >
0.56 − 0.12

1 − 0.12
= 0.5 ⇒ Ug > Ub (16)

and (d):

0.60 >
0.33 − 0.10

1 − 0.10
≈ 0.26 ⇒ Ug > Ub. (17)

This analytical result explains and mimics the relative

positions of the CAC and BE curves in Figure 2 very well

for high values of α (inelastic utility). With a similar line of

reasoning and setting pd = wd/w (work completion ratio),

we can show that

Ug > Ub ⇔ pa >
pd − q

(1 − q)
(18)

when using the elastic utility function in (8).

To summarize the analytical and experimental results,

poor work completion (low values of pw and pd) and high

cost (high values of q) contribute to a higher efficiency of

the admission control strategies compared to the best effort

strategy if the number of rejections are kept low (high pa),

which corresponds well to intuition.

Based on these results a user with an inelastic job could

compare the cost for a resource on a reservation market

(SAC or CAC) and on a spot market (BE) to the valuation

of the job to get q, and calculate or estimate the likelihood

of fulfilling the contract on the spot market (pw) versus the

likelihood of getting rejected on the reservation market (pa).

The two probabilities may be measured by the user, made

available by a 3rd party monitoring service or the provider

itself. Now if pa > pw−q
(1−q) submitting the job to the reserva-

tion market is more efficient.

Conversely, based on historical data, the provider could

map the current demand, approximated by the measured

IAT, to values of pa and pw. A provider that would like

to optimize the efficiency without any bias towards elastic

or inelastic utility users could evaluate: pa > pw+pd−2q

2(1−q) . If

it evaluates to false, the provider might want to increase the

spot-market partition compared to the reservation partition.

Whether to use SAC or CAC guarantees largely depends

on the level of control the admission broker has over the

resource allocator, but also on the frequency of high con-

tention periods (when CAC tends to outperform SAC). Fur-

thermore, the provider could evaluate how much should be

charged (q or c/v) for the capacity admission control ser-

vice given a certain system state (represented by pw, pa and

pd).

6. Related Work

Related work fall into three broad categories, each dis-

cussed in turn below, market-based resource scheduling and

allocation, IP traffic engineering, and QoS enabled web

servers.

Chun and Culler [4] present a performance analysis of

three different scheduling algorithms, FirstPrice (priorities

paid for on centralized auction market), SJF (short jobs have

priority), and PrioFIFO (three priority queues with different

prices set statically) based on aggregate user utility. First-

Price outperforms both SJF and PrioFIFO significantly for

highly parallel jobs. PrioFIFO was sensitive to changes in

demand and deteriorated in performance if the wait time

in the most expensive queue was long. Our work differs

from this work in that our results are independent of which

scheduling algorithm is used, our workload is constructed

by carefully modeling real traces, and our underlying al-

location mechanism is a continuously cleared decentral-

ized spot market auction. These differences are also ap-

parent in extensions of Chun’s and Culler’s work [14, 22, 1]

that study more elaborate scheduling algorithms and util-

ity functions that take resource price and provider profit

into account. The combination of reservation and spot mar-

ket pricing with statistical guarantees is novel and sets this

work apart from other microeconomic systems that control

job performance in shared clusters for parallel jobs, such

as [27, 26, 29, 6, 28, 15, 5].

There is a substantial body of work on Internet Protocol

quality-of-service enforcement or traffic engineering, rep-

resented by the two IETF specifications IntServ [3], and

DiffServ [2]. The IntServ specification takes the approach

of reserving paths for individual users, and thus does not

scale as well as the DiffServ approach, which is based on

marking individual packets with different per-hop behav-

iors in a stateless and decentralized architecture. We are

facing the same issues and tradeoffs when allocating com-

putational resources across large distributed systems. How-

ever, new virtualization technology and the fact that many

of the resources are localized (e.g. CPU, memory, disk)

makes it worth revisiting the reservation concepts. Knightly

and Shroff [17] provide an evaluation of the different ad-

mission control algorithms available for IP traffic shaping.

The dilemma of choosing between denying access to flows

that might have been served and thereby cause underuti-

lization and serving requests that might break existing QoS

contracts makes it hard to use coarse statistical bounds and

too simplified assumptions about traffic flow distributions.

Put differently, both accuracy maximization and risk mini-

mization are desired. Again, our admission control decision

differs from the IP flow one, in that we can, through virtual-

ization, more directly enforce that an admitted request stays

within its bounds. Our decision is thus more about mak-

ing sure that the provider does not lose out on utilization or

profit by admitting low priority tasks prematurely.

Admission control as a means to avoid service degra-

dation of high priority tasks during overload has also been

extensively studied in the context of Web servers, as exem-

plified in [10, 7, 19]. Priorities of individual requests are

either set explicitly in the server configuration or inferred

implicitly by the admission algorithm. Our admission con-

troller, on the other hand, gives users an incentive to specify

the priority truthfully themselves. Another key difference

is that, in a Web server context, the focus is on optimizing

throughput and response time by applying queuing and con-

trol theory, and estimating expected service time. Our sys-

tem does not use centralized queues and the service times

are not estimated but explicitly requested by the users, as

they can vary greatly. In general, our approach of enforc-

ing contracts by means of resource virtualization provides

much finer-grained control over service-levels than purely

statistical load estimates.

7. Conclusions

Using a statistically accurate, representative and realis-

tic workload model, we have experimentally shown how

a simple statistical admission control mechanism can im-

prove contract fulfillment without causing underutilizition

during times with high resource contention. Based on two

intuitive utility functions, elastic and inelastic, we have also

shown that the system remains efficient, i.e. exhibits high

social welfare or aggregate utility, even under heavy con-

tention and with various job valuation distributions, such

as Equal, Pareto and Normal. The efficiency results were

analytically verified and constraints on resource cost, ad-

mission ratio, and contract violation ratio were derived to

inform which admission policy is best for different utility

functions given a certain system state.

Acknowledgments

We would like to thank our colleagues and collaborators,

Bernardo Huberman, Tad Hogg, Li Zhang, Lars Rasmusson

and John Wilkes for lucid discussions. Thanks also to Cyn-

thia Bailey Lee for clarifying and explaining patterns seen

in the SDSC workload trace.

References

[1] A. AuYoung, L. Grit, J. Wiener, and J. Wilkes. Service con-

tracts and aggregate utility functions. In Proceedings of the

IEEE International Symposium on High Performance Dis-

tributed Computing (HPDC), June 2006.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and

W. Weiss. An architecture for differentiated services. RFC

2475, IETF, December 1998.

[3] R. Braden, S. Clark, and S. Shenker. Integrated services in

the internet architecture. RFC 1633, IETF, June 1994.

[4] Brent N. Chun and David E. Culler. User-centric Perfor-

mance Analysis of Market-based Cluster Batch Schedulers.

In Proceedings of the 2nd IEEE International Symposium on

Cluster Computing and the Grid, 2002.

[5] Brent N. Chun and Philip Buonadonna and Alvin AuYoung

and Chaki Ng and David C. Parkes and Jeffrey Shneid-

man and Alex C. Snoeren and Amin Vahdat. Mirage: A

Microeconomic Resource Allocation System for SensorNet

Testbeds. In Proceedings of the 2nd IEEE Workshop on Em-

bedded Networked Sensors, 2005.

[6] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal.

Scheduling Parameter Sweep Applications on Global Grids:

A Deadline and Budget Constrained Cost-Time Optimisa-

tion Algorithm. Software: Practice and Experience (SPE)

Journal, 35(5):491–512, April 2005.

[7] X. Chen, P. Mohapatra, and H. Chen. An admission con-

trol scheme for predictable server response time for web ac-

cesses. In WWW ’01: Proceedings of the 10th international

conference on World Wide Web, pages 545–554, New York,

NY, USA, 2001. ACM Press.

[8] David C. Parkes and Ruggiero Cavallo and Nick Elprin and

Adam Juda and Sebastien Lahaie and Benjamin Lubin and

Loizos Michael and Jeffrey Shneidman and Hassan Sultan.

ICE: An Iterative Combinatorial Exchange. In Proceedings

of the ACM Conference on Electronic Commerce, 2005.

[9] B. Efron and R. J. Tibshirani. An Introductin to the Boot-

strap. Chapman and Hall, 1993.

[10] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.

A method for transparent admission control and request

scheduling in e-commerce web sites. In WWW ’04: Pro-

ceedings of the 13th international conference on World Wide

Web, pages 276–286, New York, NY, USA, 2004. ACM

Press.

[11] D. G. Feitelson. Parallel Workloads Archive.

http://www.cs.huji.ac.il/labs/parallel/workload/, 2007.

[12] D. Ferguson, Y. Yemimi, and C. Nikolaou. Microeconomic

Algorithms for Load Balancing in Distributed Computer

Systems. In International Conference on Distributed Com-

puter Systems, pages 491–499, 1988.

[13] H. Hurst. Long term storage capacity of reservoirs. Proc.

American Society of Civil Engineers, 76(11), 1950.

[14] D. Irwin, J. Chase, and L. Grit. Balancing Risk and Reward

in Market-Based Task Scheduling. In International Sympo-

sium on High Performance Distributed Computing, 2004.

[15] L. V. Kale, S. Kumar, M. Potnuru, J. DeSouza, and S. Band-

hakavi. Faucets: Efficient resource allocation on the compu-

tational grid. In ICPP ’04: Proceedings of the 2004 Interna-

tional Conference on Parallel Processing (ICPP’04), pages

396–405, Washington, DC, USA, 2004. IEEE Computer So-

ciety.

[16] S. D. Kleban and S. H. Clearwater. Quelling queue storms.

In HPDC ’03: Proceedings of the 12th IEEE International

Symposium on High Performance Distributed Computing,

page 162, Washington, DC, USA, 2003. IEEE Computer So-

ciety.

[17] E. W. Knightly and N. Shroff. Admission control for sta-

tistical qos: Theory and practice. ieeenet, 13(2):20–29,

March/April 1999.

[18] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and

B. A. Huberman. Tycoon: an Implemention of a Distributed

Market-Based Resource Allocation System. Multiagent and

Grid Systems, 1(3):169–182, Aug. 2005.
[19] S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau. Admis-

sion control and dynamic adaptation for a proportional-delay

diffserv-enabled web server. In SIGMETRICS ’02: Proceed-

ings of the 2002 ACM SIGMETRICS international confer-

ence on Measurement and modeling of computer systems,

pages 172–182, New York, NY, USA, 2002. ACM Press.
[20] B. Mandelbrot and R. L. Hudson. The (Mis)behavior of

Markets: A Fractal View of Risk, Ruin, and Reward. Ba-

sic Books, New York, NY, USA, 2004.
[21] M. E. Paté-Cornell. Uncertainties in risk analysis: Six lev-

els of treatment. Reliability Engineering and System Safety,

54(2):95–111, 1996.
[22] F. I. Popovici and J. Wilkes. Profitable services in an uncer-

tain world. In SC05: Proceedings of Supercomputing, 2005.
[23] O. Regev and N. Nisan. The Popcorn Market: Online Mar-

kets for Computational Resources. In Proceedings of 1st

International Conference on Information and Computation

Economies, pages 148–157, 1998.
[24] T. Sandholm and K. Lai. A Statistical Approach to Risk

Mitigation in Computational Markets. In Proceedings of the

ACM International Symposium on High Performance Dis-

tributed Computing (HPDC), June 2007.
[25] T. Sandholm and K. Lai. Prediction-based enforcement of

performance contracts. In GECON ’07: Proceedings of the

4th International Workshop on Grid Economics and Busi-

ness Models, 2007.
[26] I. Stoica, H. Abdel-Wahab, and A. Pothen. A Microeco-

nomic Scheduler for Parallel Computers. In Proceedings of

the Workshop on Job Scheduling Strategies for Parallel Pro-

cessing, pages 122–135, April 1995.
[27] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,

and W. S. Stornetta. Spawn: A Distributed Computational

Economy. Software Engineering, 18(2):103–117, 1992.
[28] M. P. Wellman, D. M. Reeves, K. M. Lochner, and Y. Vorob-

eychik. Price prediction in a trading agent competition. J.

Artif. Intell. Res. (JAIR), 21:19–36, 2004.
[29] R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-commerce:

Market formulations controlling resource allocation on the

computational grid. In IPDPS ’01: Proceedings of the 15th

International Parallel and Distributed Processing Sympo-

sium (IPDPS’01), page 10046.2, Washington, DC, USA,

2001. IEEE Computer Society.

DEPARTMENT OF COMPUTER AND SYSTEMS SCIENCES

Stockholm University/KTH

www.dsv.su.se/eng/publikationer/index.html
Ph.D. theses:

No 91-004 Olsson, Jan
An Architecture for Diagnostic Reasoning Based on Causal Models
No 93-008 Orci, Terttu
Temporal Reasoning and Data Bases

No 93-009 Eriksson, Lars-Henrik
Finitary Partial Definitions and General Logic

No 93-010 Johannesson, Paul
Schema Integration Schema Translation, and Interoperability in Federated Information Systems

No 93-018 Wangler, Benkt
Contributions to Functional Requirements Modelling

No 93-019 Boman, Magnus
A Logical Specification for Federated Information Systems

No 93-024 Rayner, Manny
Abductive Equivalential Translation and its Application to Natural-Language Database Interfacing
No 93-025 Idestam-Almquist, Peter
Generalization of Clauses

No 93-026 Aronsson, Martin
GCLA: The Design, Use, and Implementation of a Program Development

No 93-029 Boström, Henrik
Explanation-Based Transformation of Logic programs

No 94-001 Samuelsson, Christer
Fast Natural Language Parsing Using Explanation-Based Learning

No 94-003 Ekenberg, Love
Decision Support in Numerically Imprecise Domains

No 94-004 Kowalski, Stewart
IT Insecurity: A Multi-disciplinary Inquiry

No 94-007 Asker, Lars
Partial Explanations as a Basis for Learning

No 94-009 Kjellin, Harald
A Method for Acquiring and Refining Knowledge in Weak Theory Domains

No 94-011 Britts, Stefan
Object Database Design

No 94-014 Kilander, Fredrik
Incremental Conceptual Clustering in an On-Line Application

No 95-019 Song, Wei
Schema Integration: - Principles, Methods and Applications

No 95-050 Johansson, Anna-Lena
Logic Program Synthesis Using Schema Instantiation in an Interactive Environment

No 95-054 Stensmo, Magnus
Adaptive Automated Diagnosis

No 96-004 Wærn, Annika
Recognising Human Plans: Issues for Plan Recognition in Human - Computer Interaction

No 96-006 Orsvärn, Klas
Knowledge Modelling with Libraries of Task Decomposition Methods

No 96-008 Dalianis, Hercules
Concise Natural Language Generation from Formal Specifications

No 96-009 Holm, Peter
On the Design and Usage of Information Technology and the Structuring of Communication and Work
No 96-018 Höök, Kristina
A Glass Box Approach to Adaptive Hypermedia

No 96-021 Yngström, Louise
A Systemic-Holistic Approach to Academic Programmes in IT Security

No 97-005 Wohed, Rolf
A Language for Enterprise and Information System Modelling

No 97-008 Gambäck, Björn
Processing Swedish Sentences: A Unification-Based Grammar and Some Applications

No 97-010 Kapidzic Cicovic, Nada
Extended Certificate Management System: Design and Protocols

No 97-011 Danielson, Mats
Computational Decision Analysis

No 97-012 Wijkman, Pierre
Contributions to Evolutionary Computation

No 97-017 Zhang, Ying
Multi-Temporal Database Management with a Visual Query Interface

No 98-001 Essler, Ulf
Analyzing Groupware Adoption: A Framework and Three Case Studies in Lotus Notes Deployment

No 98-008 Koistinen, Jari
Contributions in Distributed Object Systems Engineering

No 99-009 Hakkarainen, Sari
Dynamic Aspects and Semantic Enrichment in Schema Comparison

No 99-015 Magnusson, Christer
Hedging Shareholder Value in an IT dependent Business society - the Framework BRITS
No 00-004 Verhagen, Henricus
Norm Autonomous Agents

No 00-006 Wohed, Petia
Schema Quality, Schema Enrichment, and Reuse in Information Systems Analysis

No 01-001 Hökenhammar, Peter
Integrerad Beställningsprocess vid Datasystemutveckling

No 01-008 von Schéele, Fabian
Controlling Time and Communication in Service Economy

No 01-015 Kajko-Mattsson, Mira
Corrective Maintenance Maturity Model: Problem Management

No 01-019 Stirna, Janis
The Influence of Intentional and Situational Factors on Enterprise Modelling Tool Acquisition in Organisations

No 01-020 Persson, Anne
Enterprise Modelling in Practice: Situational Factors and their Influence on Adopting a Participative Approach

No 02-003 Sneiders, Eriks
Automated Question Answering: Template-Based Approach

No 02-005 Eineborg, Martin
Inductive Logic Programming for Part-of-Speech Tagging

No 02-006 Bider, Ilia
State-Oriented Business Process Modelling: Principles, Theory and Practice

No 02-007 Malmberg, Åke
Notations Supporting Knowledge Acquisition from Multiple Sources

No 02-012 Männikkö-Barbutiu, Sirkku
SENIOR CYBORGS- About Appropriation of Personal Computers Among Some Swedish Elderly

People

No 02-028 Brash, Danny
Reuse in Information Systems Development: A Qualitative Inquiry

No 03-001 Svensson, Martin
Designing, Defining and Evaluating Social Navigation

No 03-002 Espinoza, Fredrik
Individual Service Provisioning

No 03-004 Eriksson-Granskog, Agneta
General Metarules for Interactive Modular Construction of Natural Deduction Proofs

No 03-005 De Zoysa, T. Nandika Kasun
A Model of Security Architecture for Multi-Party Transactions

No 03-008 Tholander, Jakob
Constructing to Learn, Learning to Construct - Studies on Computational Tools for Learning

No 03-009 Karlgren, Klas
Mastering the Use of Gobbledygook - Studies on the Development of Expertise Through Exposure to

Experienced Practitioners' Deliberation on Authentic Problems

No 03-014 Kjellman, Arne
Constructive Systems Science - The Only Remaining Alternative?

No 03-015 Rydberg Fåhræus, Eva
A Triple Helix of Learning Processes - How to cultivate learning, communication and collaboration among

distance-education learners

No 03-016 Zemke, Stefan
Data Mining for Prediction - Financial Series Case

No 04-002 Hulth, Anette
Combining Machine Learning and Natural Language Processing for Automatic Keyword Extraction

No 04-011 Jayaweera, Prasad M.

A Unified Framework for e-Commerce Systems Development: Business Process Patterns Perspective

No 04-013 Söderström, Eva
B2B Standards Implementation: Issues and Solutions

No 04-014 Backlund, Per
Development Process Knowledge Transfer through Method Adaptation, Implementation, and Use

No 05-003 Davies, Guy
Mapping and Integration of Schema Representations of Component Specifications
No 05-004 Jansson, Eva
Working Together when Being Apart – An Analysis of Distributed Collaborative Work through ICT from an

Organizational and Psychosocial Perspective

No 05-007 Cöster, Rickard
Algorithms and Representations for Personalised Information Access

No 05-009 Ciobanu Morogan, Matei
Security System for Ad-hoc Wireless Networks based on Generic Secure Objects

No 05-010 Björck, Fredrik
Discovering Information Security Management

No 05-012 Brouwers, Lisa
Microsimulation Models for Disaster Policy Making
No 05-014 Näckros, Kjell
Visualising Security through Computer Games

Investigating Game-Based Instruction in ICT Security: an Experimental approach

No 05-015 Bylund, Markus
A Design Rationale for Pervasive Computing

No 05-016 Strand, Mattias
External Data Incorporation into Data Warehouses

No 05-020 Casmir, Respickius
A Dynamic and Adaptive Information Security Awareness (DAISA) approach

No 05-021 Svensson, Harald
Developing Support for Agile and Plan-Driven Methods

No 05-022 Rudström, Åsa
Co-Construction of Hybrid Spaces

No 06-005 Lindgren, Tony
Methods of Solving Conflicts among Induced Rules

No 06-009 Wrigstad, Tobias
Owner-Based Alias Management

No 06-011 Skoglund, Mats
Curbing Dependencies in Software Evolution

No 06-012 Zdravkovic, Jelena
Process Integration for the Extended Enterprise

No 06-013 Olsson Neve, Theresia
Capturing and Analysing Emotions to Support Organisational Learning:
The Affect Based Learning Matrix

No 06-016 Chaula, Job Asheri
A Socio-Technical Analysis of Information Systems Security Assurance

A Case Study for Effective Assurance

No 06-017 Tarimo, Charles N.
ICT Security Readiness Checklist for Developing Countries:

A Social-Technical Approach
No 06-020 Kifle Gelan, Mengistu
A Theoretical Model for Telemedicine

- Social and Value Outcomes in Sub-Saharan Africa

No 07-001 Fernaeus, Ylva
Let’s Make a Digital Patchwork

Designing for Children’s Creative Play with Programming Materials
No 07-003 Bakari, Jabiri Kuwe
A Holistic Approach for Managing ICT Security in Non-Commercial Organisations

A Case Study in a Developing Country

No 07-004 Sundholm, Hillevi
Spaces within Spaces: The Construction of a Collaborative Reality

No 07-005 Hansson, Karin
A Framework for Evaluation of Flood Management Strategies

No 07-007 Aidemark, Jan
Strategic Planning of Knowledge Management Systems

- A Problem Exploration Approach

No 07-009 Jonsson, Martin
Sensing and Making Sense

Designing Middleware for Context Aware Computing

No 07-013 Kabilan, Vandana
Ontology for Information Systems (O4IS) Design Methodology:

Conceptualizing, Designing and Representing Domain Ontologies

No 07-014 Mattsson, Johan
Pointing, Placing, Touching

- Physical Manipulation and Coordination Techniques for Interactive Meeting Spaces

No 07-015 Kessler, Anna-Maria
A Systemic Approach Framework for Operational Risk

- SAFOR
No 08-001 Laaksolahti, Jarmo
Plot, Spectacle and Experience: Contributions to the design and evaluation of Interactive Storytelling

No 08-002 Van Nguyen Hong
Mobile Agent Approach to Congestion Control in Heterogeneous Networks

No 08-003 Rose-Mharie Åhlfeldt
Information Security in Distributed Healthcare

- Exploring the Needs for Achieving Patient Safety and Patient Privacy

No 08-004 Sara Ljungblad
Beyond users:

Grounding technology in experience

No 08-005 Eva Sjöqvist
Electronic Mail and its Possible Negative Aspects in Organizational Contexts

