
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2006; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Scalable Grid-wide capacity
allocation with the SweGrid
Accounting System (SGAS)

Peter Gardfjäll‡, Erik Elmroth‡, Lennart Johnsson§, Olle
Mulmo§, and Thomas Sandholm§

‡ Dept. of Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
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SUMMARY

The SweGrid Accounting System (SGAS) allocates capacity in collaborative Grid environments by
coordinating enforcement of Grid-wide usage limits as a means to offer usage guarantees and prevent
overuse. SGAS employs a credit-based allocation model where Grid capacity is granted to projects via
Grid-wide quota allowances that can be spent across the Grid resources. The resources collectively enforce
these allowances in a soft, real-time manner.

SGAS is built on service-oriented principles with a strong focus on interoperability and Web services
standards. This article covers the SGAS design and implementation, which besides addressing inherent
Grid challenges (scale, security, heterogeneity, decentralization) emphasizes generality and flexibility to
produce a customizable system with lightweight integration into different middleware and scheduling
system combinations.

We focus the discussion around the system design; a flexible allocation model; middleware integration
experiences; scalability improvements via a distributed virtual banking system; and, finally, an extensive
set of testbed experiments. The experiments evaluate the performance of SGAS in terms of response times,
request throughput, overall system scalability, and its performance impact on the Globus Toolkit 4 job
submission software. We conclude that, for all practical purposes, the quota enforcement overhead incurred
by SGAS on job submissions is not a limiting factor for the job handling capacity of the job submission
software.
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1. INTRODUCTION

As an enabler of large-scale resource sharing, Grid technology promises access to unprecedented
amounts of computing capacity by integrating pools of computational resources across organizational
boundaries, presenting them to users as a single virtual system (a Grid). An important objective for
the Virtual Organization (VO) [20] that shares this computing infrastructure is to make efficient use of
the provisioned resource capacity to maintain a high degree of overall system utilization and satisfy
individual projects’ service needs.

Lacking capacity allocation mechanisms that operate across the Grid, the capacity of most Grid
systems to date have been completely unregulated, essentially making the Grid a “source of free CPU
cycles” for authorized users. When unrestricted access is admitted to a shared resource, the pursuit
of the individual good eventually causes over-exploitation and degradation of the common resource
– a phenomenon often referred to as the “tragedy of the commons” [31]. Apart from preventing such
overuse, it is important to be able to offer differentiated usage guarantees to accommodate the differing
needs and importance of projects. We address both of these issues with the SweGrid Accounting
System (SGAS) [49], a Grid accounting system that tracks usage and enforces Grid-wide usage limits.
As such, SGAS serves as a capacity allocation mechanism that coordinates usage across the Grid by
logically dividing the aggregate capacity of the VO-provisioned resources between user groups.

For capacity allocation, SGAS employs a credit-based model, expressed in terms of Grid-wide quota
allowances that are granted to user groups by an allocation authority. These Grid credit allowances
represent an entitled share of the Grid capacity and can be spent across the Grid resources by users,
who pay for the resources they consume. Allocations are enforced in a decentralized manner by the
Grid resources which, at the time of job submission, may reject job requests from users that have
exceeded their quota. SGAS consists of three main components: a bank service that manages quota
accounts, a logging service that publishes Grid usage in a uniform format, and a resource-side job
interceptor that reserves quota prior to job execution and charges and logs job usage when the job
completes.

Early prototype work on SGAS was presented in [15] and [46], and a revised version of [46] was
later published in [47]. The main contributions of this article include detailed component descriptions
and design rationale; a flexible allocation model based on the notion of time-stamped allocations;
experiences from middleware integration with Globus Toolkit 4 (GT4) and the Advanced Resource
Connector (ARC) [51]; improved scalability via a banking system that is virtualized across several
servers; and, finally, an extensive performance and scalability evaluation.

Section 2 provides some historical background on SGAS. The requirements and design
considerations that underlie the SGAS design are covered in Section 3 and the SGAS architecture, and
how it addresses these requirements, is presented in Section 4. A more technical description of SGAS
is given in Section 5. The performance of SGAS is analyzed in Section 6 and, finally, we present related
work in Section 7 and some concluding remarks in Section 8.
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2. BACKGROUND

The Swedish National Allocation Committee (SNAC) [52] is an allocation authority that controls
access to computer clusters at six Swedish HPC centers. SNAC grants computer time to research groups
with substantial computational needs after a peer-reviewed application process∗.

Traditionally, researchers would apply for computer time on individual machines. Besides the
administrative overhead of managing separate usage limits on each machine, this approach also limited
users’ freedom of choice, and caused imbalanced machine load and poor overall utilization of the total
capacity.

The emergence of Grid technology provided the technical foundation for interconnecting the HPC
centers into a Grid (SweGrid), which allowed all clusters to be treated as a single virtual machine.
This not only enabled more flexible resource sharing and load balancing across the machines, but
also allowed SweGrid to be treated as a single computational resource with common usage limit
management. Hence, the previous machine-targeted usage limits were abandoned in favor of Grid-
wide allocations that counted towards the Grid as a whole.

SGAS has been developed in response to the need for coordinated enforcement of usage limits
across all SweGrid HPC centers. In essence, SGAS extends single-machine quota enforcement (which
has been common practice for a long time at HPC centers) to apply to the Grid as a whole. Although
extending this concept to Grids may seem simple from a conceptual perspective (i) the move from
local to distributed quota enforcement; (ii) the inherent challenges of Grid environments; and (iii) the
conflicts of interest between the three parties that the system serves (user, resource owner, allocation
authority); make it a far from trivial exercise. These issues, and how they are addressed, are described
in greater detail in the coming sections.

Although SGAS was initially targeted towards allocation enforcement within SweGrid, it is designed
to be applicable in a wide variety of Grid settings.

3. REQUIREMENTS AND DESIGN CONSIDERATIONS

This section sets out the requirements that underlie the SGAS design. To put these requirements in
context we start by describing a conceptual model for the operation context.

3.1. Operation Context

Although we do not exclude use in commercial pay-per-use/utility computing environments, where
Grid credits would be traded for real money, we have mainly focused our efforts towards collaborative
Grid environments, such as SweGrid and TeraGrid, where research institutes pool their computational
resources. In this operation context we distinguish three main stakeholders that our system serves, as
illustrated in Figure 1:

∗A similar allocation model is used within the TeraGrid computing facility by the National Resource Allocation Committee
(NRAC) – the TeraGrid counterpart of SNAC.
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Figure 1. SGAS as the mediator between the parties of the stakeholder triangle.

• Resource owners, such as the SweGrid HPC centers, who contribute resources to the VO.
• Allocation authority, such as SNAC, which divides the aggregate VO capacity between user

groups.
• Users, who consume Grid resources (subject to the restrictions imposed by the allocation

authority).

These stakeholders have differing, and to some extent conflicting, interests. The allocation authority
wants to make optimal use of VO capacity and to that end grants capacity allotments to projects on
the basis of their computational needs and research contribution. These capacity allocations need to
be enforced collectively by the resources. However, with the decentralized management structure of
Grids, where owners always retain ultimate control over their resources, such coordination cannot be
forced upon resource owners. Strict enforcement of quotas may conflict with resource owners’ ambition
to achieve high utilization, which typically requires usage limits to be relaxed, thereby improving
utilization at the expense of fairness. This may also conflict with users, to whom fairness and quality
of service (QoS) guarantees are primary concerns.

In summary, there is a conflict between global and local resource control and there is a trade-off
between resource utilization and allocation enforcement strictness (fairness). SGAS must join these
conflicting interests to allow allocation authorities to coordinate usage limit enforcement without
sacrificing resource owner autonomy.

3.2. Functional Requirements

This section presents the main functional requirements for SGAS. A more detailed description of the
system and how it addresses these requirements follows in Section 4 and Section 5.

1. Quota/account management. A key requirement is to manage quota accounts for user groups,
which includes managing account membership, controlling allowances, reserving quota and
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charging jobs for their resource consumption. Furthermore, administrators and authorized
account members must be given access to the account credit balance as well as the transaction
history.

2. Consistent quota enforcement. Project allocations must be enforced to prevent users from
exceeding their quota allowances. Although different forms of relaxed quota enforcement models
are conceivable, where job payment is deferred, such models would only provide a coarse-
grained usage regulation mechanism and would only admit a weak form of overuse protection.
The need for strict overuse protection requires a real-time enforcement model where payment is
guaranteed for each job prior to execution to prevent users from running jobs without coverage.

3. VO-wide usage tracking. Resource usage must be collected for each job execution in order to
determine the cost of the consumed resources. Furthermore, resources should be able to publish
local usage to a VO-wide logging facility that can be queried to present an aggregate view of Grid
usage. The logged usage data establishes an audit trail and the possibility to correlate account
withdrawals with detailed information about the corresponding job. Since sites may use different
internal formats for reporting usage data, usage must to be translated into a uniform usage data
format before being published.

4. Flexibility. Given the diversity of Grid resources, the differing needs of VOs, and the conflicts
of interest between the system stakeholders (see Section 3.1) SGAS must be extensible and
customizable along several dimensions. To this end, SGAS must allow enforcement policy
customization to address the need for different degrees of enforcement strictness. For example,
it should allow for softer modes of usage limit enforcement to improve local (and Grid-wide)
utilization at times of light load. As another example, an allocation authority may wish to
introduce a credit limit to allow more flexibility in project spendings (for instance, to account for
unpredictable computational needs). Additionally, SGAS must be capable of charging different
types of resource usage.

5. Transparency. The system should have minimal impact on client side components, such as
job submission software and resource brokers. SGAS should effectively be “invisible” to these
components to minimize interference with the existing infrastructure. Furthermore, the system
must only place a marginal additional burden on end-users who, ideally, should be able to remain
unaware of that the Grid is “accounting-enabled”.

3.3. Non-functional Requirements

The loosely coupled and dynamic nature of Grid environments impose additional requirements on
Grid software, as compared to software written for more tightly coupled cluster computing systems
and traditional (single-organization) distributed computing systems [54]. These inherent challenges of
Grid environments also need to be addressed by the SGAS design:

I. Scale. Grid systems are typically large-scale systems that integrate widely distributed
computational resources that belong to different administrative (and security) domains. Thus,
a key requirement for the accounting system is to scale up with large Grid user populations and
resource collections, and the request traffic they produce.

II. Site autonomy. Management in Grids is decentralized in nature, with a core principle being that
resource owners always should retain ultimate control over their resources. Therefore, all job
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admission decisions must be made subject to local resource owner policies, allowing resource
owners to overrule global allocation policies (decided by the allocation authority) in order to
honor the site autonomy of resource contributors.

III. Heterogeneity. The computational resources that are shared by VO participants can be, and
often are, heterogeneous in terms of hardware, platform, software stacks and data formats. Since
SGAS is intended to be a generic tool it must be carefully designed to take the diversity of
Grid environments into account. Therefore, SGAS must not target any specific combination of
platform, middleware, and scheduling systems, but rather aim to be simple to integrate into
existing infrastructure and be non-intrusive on the underlying system. Furthermore, the inherent
heterogeneity of Grid environments makes interoperability a critical concern. To this end, SGAS
must rely heavily on Grid and Web services standards.

IV. Cross-organizational security. Since VO members constitute a wider and less trusted user
community, as compared to tightly coupled systems, security becomes a central issue.
Furthermore, the exchange of funding tokens and potentially sensitive data makes it even more
important that accounting information only be exchanged between trusted entities so as to
prevent abusive/malicious usage and privacy violations.

4. ARCHITECTURE

This section presents an overview of the SGAS architecture, which addresses the requirements
presented in the previous section.

SGAS is composed of three main components which operate together across the Grid sites to enforce
capacity allocations: a bank service, a logging service (the Logging and Usage Tracking Service –
LUTS), and a resource integrator (the Job Account Reservation Manager – JARM).

The bank service is a key component that manages project quotas (Req. 1), allocated by the allocation
authority, and maintains a consistent view of the resources consumed by each project in order to
coordinate quota enforcement across the Grid sites. The credit allocations are hosted by the bank as a
set of independently administered accounts, whose quotas count towards the Grid as a whole (not to
individual machines).

The LUTS tracks usage across the Grid (Req. 3), by allowing Grid sites to publish detailed
information about completed jobs in a uniform XML-based format, as prescribed by the Usage Record
standard [55]. These usage records can be queried to give an aggregate view of Grid usage.

JARM integrates local resources into the Grid-wide accounting context of SGAS. It enforces quotas
and protects against overuse at job submission time (Req. 2) by intercepting each job request and
performing admission control based on the credit balance of the job submitter. JARM enforces quotas
strictly by guaranteeing funding availability for each job by prior to execution via a pre-acceptance
quota reservation against the job submitter’s bank account. Failure to make a reservation would indicate
overuse and the job can be denied access. Hence resources enforce allocations in a collective effort,
coordinated by the bank. However, all job admission decisions are subject to local resource owner
policies, which allows bank decisions to be overruled by JARM (Req. II). We characterize the SGAS
enforcement mechanism as being “real-time”, since enforcement is carried out at the time of job
submission, and “soft” since the degree of enforcement strictness is subject to stakeholder policies
(Req. 4). The rationale behind this is that the resource owner always retains ultimate control over the
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degree of usage limit enforcement applied to local resources. Under a strict enforcement policy, all
quota-exceeding jobs are disallowed. Under a softer enforcement mode resource owners may allow
quota-exceeding jobs to improve local utilization at times of light load. As discussed in Section 3.1,
the degree of enforcement strictness represents a trade-off between the degree of overuse protection
(fairness) and utilization.

Furthermore, by reserving and charging usage on behalf of users (using job submitters’ delegated
credentials) JARM also acts as an enabler of client-side transparency (Req. 5), since the client is never
directly involved in accounting system interactions.

The modular structure of JARM, which provides plugin points for customizations and middleware-
specific adapter code, simplifies JARM integration with different combinations of middleware
platforms, scheduling systems and usage data formats, thereby addressing Req. III. To date, JARM has
been integrated with two middlewares: Globus Toolkit 4 (GT4) and the Advanced Resource Connector
(ARC), both of which may run on top of different scheduling systems with different usage data formats.

The allocation credits are unit-less, and can hence be used to charge for arbitrary resource usage
(only CPU-time is currently charged in SweGrid). In fact, the bank is completely unaware of the
meaning of the credits. The resources, however, need to translate the resources consumed by the
job into credits before charging the account. This is done by applying a transformation (according
to some pricing scheme) to the job usage, which would allow resources to charge for different
combinations of resource usage. JARM provides plugin-points for incorporating different pricing
models and calculating usage cost. Accounting for multiple resource types (Req. 4) can either be
accomplished by maintaining separate quota accounts for each resource type or by charging a single
account for combinations of different resource types (via a type-aware pricing scheme). The preferable
solution depends on the accounting needs of the organization.

The decentralized enforcement model of SGAS (with resources cooperating to enforce quotas)
together with the ability to distribute the bank component across several branch servers to balance
load (see Section 5.5) addresses the issue of scalability (Req. I).

There are several reasons why the bank and the logging service are kept separated. This
approach follows the “separation of concerns” design principle. This design principle improves
system modularity, simplifies reuse and also helps distributing load in the system (hence addressing
the scalability requirement). Furthermore, it enables SGAS to operate in logging-only mode (only
employing the logging service), which is useful in environments where usage only needs to be logged
and not charged.

Since both the Bank and the LUTS operate as remote services, they are completely independent of
the middleware being deployed in the targeted Grid environment, whereas a small piece of adapter
code is needed to integrate JARM with new Grid software (Req. III).

Finally, the security/trust issue (Req. IV) is addressed by an interoperable end-to-end security
infrastructure, which makes heavy use of security standards for authentication and authorization (see
Section 5.4).

4.1. SGAS Operation

This section presents an overview of the system operation, including how allocation policies are set up
and how components interact to enforce usage limits. These interactions are illustrated in Figure 2. A
more technical description of these components is given in Section 5.
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Figure 2. SGAS system overview.

Before allocations can be enforced the allocation authority needs to decide upon an allocation policy
that divides capacity between projects (1). These capacity allotments, which are granted to users as
credit allowances that, for instance, may represent computer time entitlements, are deposited to the
bank accounts by a bank administrator (2).

When a job request arrives at a resource (3) it is intercepted by JARM via a middleware call-out (4).
Before allowing the job to execute, JARM makes a quota reservation on the job submitters bank account
(5) to guarantee job funding prior to execution, thereby enforcing the project allocation and preventing
overuse. This quota reservation is made on behalf of the user with the job submitter’s delegated
credentials and is therefore transparent to client-side components. If the reservation is successful the
job is allowed to execute (6). Otherwise the job may be refused, depending on the resource’s degree of
enforcement strictness. After the job has finished executing another call-out is made to JARM (7) which
collects usage data for the job, calculates the cost of the job, charges the account with the previously
acquired reservation (8), and logs a usage record in the logging service (9). JARM needs to transform
usage from the local format used by the resource to the uniform usage record format before logging to
the LUTS.
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4.2. The SGAS Allocation Model

SGAS employs an allocation model where users pay for resource usage in (virtual currency) credits
granted by an allocation authority. Typically, these allocations represent CPU time entitlements,
although they really model time-limited shares of Grid capacity. Given that resources collectively
enforce these allocations in a fairly strict manner, users are prevented from overdrawing their accounts.
However, the volatile nature of CPU time causes a subtle problem with the credit-based allocation
model, which may lead to situations where users are unable to spend their entire allocations.

Part of the problem is that CPU time is a non-storable resource (unused CPU cycles are lost). In
combination with the credit model, this can lead to situations where there is an imbalance between the
actual available capacity and the modeled capacity (represented by the credits in circulation). That is,
inactive projects save credits that, eventually, will not have any correlation to actual CPU time, since
the CPU cycles that they represent have already been lost. This may cause contention problems at
allocation period borders, when all projects attempt to spend any remaining quota, since the credits-
capacity imbalance makes it impossible for the resources to deliver all project allocations. We end up
in a situation where some projects are unable to spend their quotas.

SGAS partially solves, or at least reduces, this “inflation” problem through the use of time-stamped
allocations. Each account has a set of allocations, each with a limited validity period during which it
is chargeable. Hence, unused project allocations eventually perish, thereby mitigating the saved quota
problem. This mechanism reduces the credits-capacity imbalance by continuously revoking surplus
credits to better match the actual remaining capacity of the allocation period.

The time-stamped allocation model is flexible as it offers fine-grained control and allows allocation
strategies along different dimensions to be implemented. First, quota can be distributed over time. Thus,
instead of issuing a single allocation for an entire allocation period, the allocation is broken up into
smaller allocations with different (perhaps overlapping) validity periods. This helps prevent contention
on allocation period ends and encourages projects to spread their workload in time, potentially resulting
in better (more even) resource usage. The model also supports customizing “allocation density” over
time according to project needs so that a project allocation can be concentrated to a narrow time-frame,
e.g. close to a publication deadline, while less quota is spread over the remaining time to allow for
shorter test-runs and simulation tuning.

Second, the time-stamped allocation model permits validity periods of arbitrary duration. The choice
of validity period length represents a trade-off between flexible utilization and close credit-capacity
correlation. Although long validity periods allows more flexibility in quota spending (over time) and
hence may improve overall utilization, they increase the risk for quota accumulation and period-end
contention. Short allocation periods, on the other hand, facilitate closer credit-capacity correlation
(reducing accumulation effects) at the expense of flexible utilization, which potentially may lead to
inefficient resource usage.

Third, different approaches to capacity planning are conceivable. Yet again facing a trade-off, this
time between fairness and utilization, an allocation authority may choose either an under- or over-
provisioning strategy when issuing resource grants. The under-provisioning approach (less issued
credits than actual capacity) may lead to poor utilization since not all users may consume their full
share, while contract/quota fulfillment and fairness becomes easier to deliver. In the overbooked case
(more issued credits than actual capacity), overall utilization may be improved, although full quota
utilization can no longer be guaranteed to all projects.
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There are additional situations that may prevent projects from spending their allocations, such
as adding projects to an already fully booked environment or resource down-time/outage. Different
dynamic pricing models† could potentially be used to resolve such situations. For example, a dynamic
pricing scheme could be employed where resources cooperate to balance the actual capacity with
the circulating credits by adjusting the exchange rate. Although the challenge lies in designing such
a credit-capacity balancing price scheme, it would be straight-forward to plug into JARM (which
supports custom pricing schemes, see Section 5.3) once it is available.

Competitive, market-based pricing schemes have been proposed in the literature [43, 57, 5, 7, 34, 35]
as a means to balance load between resources (by attracting users to lightly loaded resources with
low prices and vice versa) and achieve service differentiation (users pay more to receive better QoS).
One such approach was demonstrated in [48], with minimal impact on the middleware but with
a completely different resource provisioning model (based on virtualization). See Section 7 for a
continued discussion on market-based resource allocation.

5. DESIGN AND IMPLEMENTATION

This section covers the SGAS components in greater technical detail.
Since interoperability is a critical concern in Grid environments (as an enabler of seamless operation

across the heterogeneous resource base), we have adopted the standard service-oriented system
principles proposed by the Global Grid Forum (GGF) [22] through the Open Grid Service Architecture
(OGSA) [41]. OGSA describes a core Grid computing architecture defined in terms of service
interfaces that provide Grid access through Web services, or equivalently, deliver the Grid as service. In
particular, SGAS has been built around the Web Services Resource Framework (WSRF) [23] family of
specifications. WSRF complements “vanilla” Web services with support for management of application
state and mechanisms for handling frequently recurring tasks in stateful interaction contexts, such as
state introspection and soft-state handling of system resources.

The SGAS software package, which is available under an open-source license, can be downloaded
from the SGAS web site [49]. SGAS has been developed using GT4 (Java WS Core) [18], a Web
service development framework that adds WSRF primitives to the Axis Web service engine [1]. These
primitives can be combined to build OGSA-compliant Web services. The implementation is entirely
Java-based, which results in portable code that runs on any platform with Java support. SGAS is
currently included as a technology preview in GT4.

The sequence diagram in Figure 3, which shows the typical interactions involved in a job request,
may be useful as a reference while reading the design section.

†SweGrid uses a static pricing scheme with a fixed exchange rate of one credit per wall-clock CPU second.
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Figure 3. Accounting interactions.

5.1. Bank

The bank is composed of three WSRF-compliant Web services (Bank, Account, Hold), whose
relationships are shown in Figure 4. In this diagram, shaded components are WSRF-defined
components, resource properties are shown as attributes, and operations are shown as methods.

New accounts are created through the Bank service, which implements the WS-Resource factory
pattern, as described in [19]. The creation of an account produces an Account WS-Resource
representing the project allocation. Since a VO participant may belong to several VO projects, a user
may be a member of several bank accounts. Therefore, the Bank service provides account searches
based on the identity of the caller. These searches return endpoint references (EPRs) [29] for all user
accounts and can be used by resources to find a chargeable account for a job request that lacks an
explicit account reference.

The Account service interface contains operations for managing the project allocation (adding and
removing timestamped allocations) and setting up fine-grained access permissions for the account,
for instance, determining who may charge the account, update allocations and modify access rights.
This is built around the same general authorization framework (described in Section 5.4) upon which
all SGAS services rely (the ServiceAuthzManagement interface). Account members reserve a portion
of the account allocation for each job request. This is performed at job submission time by the Grid
resource, which makes a reservation on behalf of the user (using delegated credentials) to guarantee
that the job can be charged when finished. This is referred to as requesting a hold on the allocation.

A successful reservation results in the creation of a Hold WS-Resource. A Hold provides a commit
operation, which may only be invoked by the hold owner (the resource that acquired the hold) to
charge for the resources consumed by the job. This results in a withdrawal from the hold account and
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BankService

+allAccounts: wsa:EndpointReference

+activeAccounts: wsa:EndpointReference

+retiredAccounts: wsa:EndpointReference

+GetAccounts(): wsa:EndpointReferenceType[]

+CreateAccount(): wsa:EndpointReference
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+Requestor: xsd:string

+Owner: xsd:string

+Commit()

<<creates>>

<<creates>>

ServiceAuthzManagement

Figure 4. Bank services.

the addition of a transaction entry to the account transaction log. The debited amount may differ from
the reserved amount, since they represent actual and approximated usage, respectively. A resource may
use a slight overbooking strategy when requesting the hold. The transaction entry contains an EPR to
correlate the transaction with its corresponding logging service usage record.

The Account service provides a batch-mode commit operation that charges several holds in a single
invocation. This reduces bank traffic and improves overall scalability by allowing resources to defer
job charging and spool commits to perform them periodically in batches. The authorization framework
also allows overdraft policies to be established, allowing temporary negative account balance and some
additional flexibility in quota spending. The account refuses any reservation attempts that violates the
credit limit. However, the bank decision can be overruled by JARM, which depending on local site
policies, may still allow the job to execute, for example, to improve local utilization.

All services publish their state via the get/query operations provided by the WS-ResourceProperties
specification [27]. For example, the account transaction log can be queried by account members
through these operations. Holds are created with a (renewable) lifetime, using the soft-state approach
of WS-ResourceLifetime [53], as a safety measure to assure that a reservation is released even if the
resource fails after being granted a hold.

As we shall see in Section 5.5, the bank is not necessarily confined to a single site. It can
be virtualized across several distributed servers to balance load and scale up with larger Grid
environments. Furthermore, the distribution reduces the risk of total bank “outage”.
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WS-ResourceProperties

LUTS

ServiceAuthzManagement

Figure 5. Logging and Usage Tracking Service (LUTS) interface.

5.2. Logging and Usage Tracking Service (LUTS)

The Logging and Usage Tracking Service (LUTS) provides a Web service interface for publishing
usage data in the uniform format prescribed by GGF-UR [55], and for query-based retrieval of usage
data using the XPath query language [8].

The service interface, shown in Figure 5, is simple and defines no operations of its own. Instead it
relies on the document-centric operations provided by the WS-ResourceProperties portTypes. LUTS
employs the same security infrastructure as the rest of SGAS, including the ServiceAuthzManagement
rights administration interface, allowing differentiated publish (more restricted) and query (more
generous) access rights.

SGAS uses a native XML database (eXist [17]) for persistent storage and recoverability of usage
records. We provide a query dialect, implemented as a custom query expression evaluator [21],
allowing XPath database queries to be executed through the Web service interface. The expression
evaluator redirects the embedded XPath query to the back-end XML database, effectively exposing a
database view through the service interface. The same mechanism is used to query account transaction
logs.

The extension-points defined in the usage record specification in concert with the schema-agnostic
LUTS storage of usage records (usage record XML documents are stored “as is” in the database)
facilitate extensibility, which allows sites to publish custom usage record elements, without modifying
the LUTS.

5.3. Job Account Reservation Manager (JARM)

JARM is a piece of integration software that is plugged into existing middleware stacks to enforce
quotas on the resources by reserving and charging allocations on behalf of job submitters.

An overview of the JARM’s job submission handling is illustrated in Figure 2. An incoming job
request to a Grid resource is intercepted by JARM through a pre-execution call-out from the Grid job
submission software, in this case the GRAM component of Globus Toolkit 4. The call-out is handled
by the reservation manager component of JARM, which:

• Finds an account for the job submitter. The account may be explicitly specified in the job request.
Otherwise, JARM must search for an account in the Bank.
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• Estimates the job cost, typically based on the requested wall clock time, but it may use any
function incorporating different resource types.

• Acquires a reservation on the project account, corresponding to the estimated job cost. A
soft-state approach is used for the reservation, which is time-limited and will be released on
expiration.

• Depending on reservation outcome and local site policy, decides if the job should be allowed to
execute.

In essence, the pre-execution call-out to JARM is an authorization decision based on the job submitter’s
credit balance. Assuming that the job was granted access, the workload manager then executes the job,
typically queuing the job in the local scheduling system. When the job finishes, the workload manager
makes a post-execution call-out to JARM, which notifies the commit manager of job completion. The
commit manager then:

• Collects usage data for the job in the environment-specific format.
• Transforms it into a standard usage record and reports it to the LUTS.
• Based on the job’s resource usage, calculates the actual job cost (which may differ from the

estimated cost) and charges the project account with the previously acquired reservation. Any
residual reservation amount is released.

As mentioned previously, SGAS performs soft enforcement of allocations in the sense that allocations
are not necessarily enforced in a strict manner. Rather, local site policies may allow quota-exceeding
jobs to run since resources can overrule the bank’s (deny) decision. Permitting jobs to run in spite of
account overdraft represents a trade-off where utilization is increased at the expense of fairness. In case
fairness is the sole objective, enforcement should strictly disallow all quota-exceeding jobs. Too strict
enforcement of quotas may, however, lead to poor utilization where the unused capacity of inactive
projects could have been used by other projects.

As a fault tolerance measure, to guarantee operation in the event of bank failures, JARM policies on
the resource may allow jobs to run even though the bank is unreachable. In such cases, no reservation is
acquired and the job is only logged in the LUTS on completion. An administrator can make corrective
job debits when bank contact has been reestablished.

5.3.1. Integration Overview

Figure 6 illustrates the JARM’s components (in terms of Java interfaces). The figure also shows
the JARM’s integration with the underlying workload manager, which has two distinct parts – a
pre-execution and a post-execution call-out, corresponding to the reservation and charging activities
respectively. The pre-execution call-out, which finds the project account, determines the job cost and
requests an account reservation, may refuse a job, in order to prevent overdrafts and enforce usage
limits. The post-execution call-out collects usage data from the underlying scheduling system, charges
the reservation and logs usage with the LUTS.

These call-outs use two pre-defined classes (JobReserve and JobRelease) to take care of all bank
and logging service interactions. The behavior of JobReserve and JobRelease can be customized by
a configurable SitePolicyManager (Java interface) implementation, which acts as a plug-in point for
site-specific behavior. The workload manager call-outs must provide sufficient runtime context (such
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Figure 6. JARM components.

as credentials, job description, local user id, etc) to enable the site policy manager decisions. Custom
site policy managers typically need to be provided for each underlying middleware. The site policy
manager has two components: a reservation manager which takes care of job cost calculation (that
is, the reservation amount), can provide custom mechanisms for finding a chargeable account, and
may implement specialized failure handling (for example, to log faults); and a commit manager which
collects usage data, builds a usage record, and provides hold and logging service references to the
JobRelease class, which is responsible for committing (charging and logging) a job.

5.3.2. Integration approaches

Different approaches are conceivable for the pre-/post-execution call-outs. The NorduGrid/ARC [51]
and GT4 GRAM integration uses two different approaches. These can be categorized as plug-in script
and interceptor approaches, respectively.

SGAS integration with ARC is performed via a mechanism that allows configuration of authorization
scripts that are to be executed by the ARC job submission software at state transitions during the job
life-cycle. ARC can thus be configured to execute a reservation script when the job is accepted and a
charging script when the job reaches its finished state.

The GRAM integration is performed by means of SOAP message interception. As shown in Figure 7,
JARM is integrated using one interceptor for request messages and one for response messages. The first
handler, which is the pre-execution reservation call-out, transparently intercepts inbound job requests to
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Figure 7. WS-GRAM integration.

the createManagedJob operation of the ManagedJobFactoryService (MJFS). This is done by inspecting
all incoming messages. Depending on the bank response and local JARM policy configuration, the
handler may choose to refuse the job request, by raising an authorization exception. If the reservation
is successful the request is passed along to the MJFS which creates a WS-Resource representing the
job.

A second message handler then intercepts the outbound response messages from MJFS. This
message handler digs out the job WS-Resource EPR from the response SOAP body, and then
establishes a subscription (using the WS-Notification [26] specification) with the resulting job, before
the response message is transmitted. Later, when the job finishes, a notification is sent, and the post-
execution call-out can be invoked to charge the job. Since GRAM does not provide a uniform usage
format for the different scheduler adapters, usage data needs to be collected from scheduler logs.
Therefore, the GRAM integration provides plug-in support for adding scheduler-specific usage data
collectors. The implementation provides two built-in usage data collectors for the Fork and PBS
scheduler adapters. The GRAM interception approach to integration is actually quite generic and could
be used to charge for arbitrary service invocations (where MJFS is replaced by any other service).

Although quite different, both of these integration approaches share a common characteristic: they
are non-intrusive in the sense that no workload manager code needs to be modified for the integration.

5.4. Security

Since SGAS security is extensively covered in [47], and remains essentially unchanged, this section
only provides cursory coverage of the SGAS security solution.

SGAS offers flexible and interoperable end-to-end security through the use of standard security
mechanisms and a fine-grained, highly customizable authorization framework. All SGAS components
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WS-ResourceProperties

Figure 8. ServiceAuthzManagement (SAM) service interface.

share the same security infrastructure, based on standard privacy and integrity message protection
supporting both message-level security (via WS-Security [38], WS-SecureConversation [30]) and
transport-level security (via TLS [9]), as provided by GT4.

Another part of the SGAS security solution is a service-orthogonal authorization framework that
allows run-time administration of XML-based authorization policies through a Web service interface
(ServiceAuthzManagement), shown in Figure 8. This authorization interface provides plug-in support
for different back-end authorization engines. The current back-end is based on the eXtensible Access
Control Markup Language (XACML) [24] and allows fine-grained access policies to be set up for
services and WS-Resources.

Finally, SGAS uses credential delegation and single sign-on to allow JARM to transparently reserve
allocation and charge usage on behalf of the user. This leads to an “in-blanco” trust model where
users must trust that the resource targeted for job submission is well-behaved (and does not abuse the
account). Resource owners may configure a set of trusted banks with JARM in order to prevent users
from circumventing allocation enforcement by supplying a bogus account in a fake bank (through the
job description). The bank does not need to be configured to explicitly trust resources, since resources
always act on behalf of users (using delegated credentials).

5.5. Service Distribution and the Virtual Bank

As discussed in Section 3.3, scalability is a key challenge in Grid environments. Being the central
coordinator of quota enforcement, the bank could quickly become a performance bottleneck in large-
scale Grid settings, as the user and resource populations grow with an accompanying increase in job
submission and account request rate. The bank’s load capacity can be improved by distributing the
bank accounts across several bank branch servers. However, a distributed bank needs to be carefully
designed. Simply deploying a set of bank servers that manage separate subsets of accounts has several
drawbacks.

• Bank administrators would need to manage each branch separately, including keeping track of
the server addresses as well as which accounts are hosted on what servers.

• Users that are members of several accounts would need to keep track of the physical addresses
of their account branch servers, in order to target a specific account for job payment (in the job
request).

• Resource owners would need to reconfigure their resource to explicitly maintain lists of trusted
bank servers (and their host certificates), as well as user-to-branch mappings for all users,
directing each user to its (set of) branch(es). This task quickly becomes tedious, especially
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considering a large and constantly changing user base and that such settings would need to be
reconfigured whenever a branch server is relocated.

To prevent such an administration nightmare a more dynamic and elegant solution is required that
allows the bank to be partitioned across several servers, while preserving the illusion of a single virtual
bank service. Such a solution would allow dynamic (and transparent) provisioning of more branch
servers to adapt to VO growth.

The key enabler of the virtual bank is an abstract naming scheme, which introduces an extra level
of naming indirection where accounts are referred to via logical (location-independent) names, which
are resolved by a naming service to the physical address prior to invocation (akin to URL to IP address
translation in the DNS). This naming scheme adds value in several respects:

• It produces scaling transparency, which allows additional branch servers to be introduced, while
still presenting a single logical service to clients.
• It produces location transparency, which allows users to disregard from the physical locations of

branches/accounts. This facilitates server relocations, which for example may be necessitated by
machine park maintenance or upgrades.
• It simplifies the lives of end-users, who can refer to accounts via abstract names like sgas://atlas-

account instead of physical addresses in their job requests.
• It allows automatic trust establishment with new branches without requiring resource owner

intervention.

The naming scheme is supported through a service infrastructure for registration and resolution of
name-to-address mappings. These services, which we collectively refer to as the name service, are not
SGAS-specific, and could thus be useful outside the SGAS context as well.

5.5.1. Name Service

The name service stores logical references, which map location-independent names (Uniform Resource
Identifiers, URIs) to network endpoints, and translates the logical references into their physical
endpoint addresses. The name service is a logical service that is composed of two separate sets of
Web services: one for name registration, and one for name resolution.

The name registration solution is inspired by the Resource Namespace Service (RNS) specification
[42]. We chose not to implement RNS as is, in part since the specification was in a state of flux at the
time, and in part since it did not exactly match our needs.

For resolution, the Resolver portType of the OGSA-defined WS-Naming [28] specification has
been implemented. Resolution produces WS-Names, an EPR that has been augmented with abstract
name and resolver fields (exploiting the extensibility points in WS-Addressing [29]). The WSRF-based
service interfaces that constitute the name service are shown in Figure 9.

Name registration. The registration part of the name service manages hierarchically arranged
collections of many-to-many name-to-address mappings. It consists of three separate Web service
interfaces. Each logical reference is represented by a WS-Resource that can be accessed via the
LogicalReference Web service. Each mapping, associating a logical reference with an endpoint, is
modeled via a Mapping WS-Resource. The LogicalReferenceFactory implements the WS-Resource
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Figure 9. The Name Service service interfaces.

factory pattern, allowing new logical references to be created and existing logical references to be
rebound to new endpoints, to allow for transparent server migrations.

Mappings are short-lived resources (based on WS-ResourceLifetime [53]), and their lifetime needs
to be renewed to prevent removal. Besides facilitating “self-cleaning” registry behavior, this soft-
state approach also simplifies client-side invalidation of resolution caches by providing an explicit
validity time for each mapping. The notion of parent mapping introduces an additional mechanism for
controlling mapping lifetimes. A mapping may live within the context of a parent mapping, meaning
that the child mapping only exists as long as its parent mapping is “alive”. Thus, mappings can be
organized into parent-child hierarchies. Together, lifetime and parent referencing allow joint lifetime
handling for several mappings through a common parent mapping, which improves overall scalability
by reducing the number of mapping renewal invocations. For example, this approach is used in the
virtual bank to renew the lifetimes of all branch account mappings via a single renewal of the branch
mapping, which is the parent of all account mappings.

Mappings may be annotated with an extensible set of properties, allowing them to carry additional
data besides pure addressing information. A mapping may, for example, contain the X.509 identity of
the server hosting the mapped endpoint, which provides a mechanism for dynamic trust establishment.
Given that a client trusts the resolver to supply valid mappings, trust can be dynamically established
with the resolved endpoint prior to invocation (the client adds the identity of the resolved endpoint to
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its set of trusted subjects). This simplifies client security configuration which only needs to recognize
the name service as the single point of trust in the system.

Name Resolution. The OGSA-Naming Resolver service provides two operations: one for translating
abstract names (URI) into a WS-Name, and one for renewing an invalid WS-Name (supporting fail-
over from obsolete mappings). Although the WS-Naming specification prescribes the use of universally
unique identifiers (for example, UUIDs) for WS-Name abstract names, this requirement is relaxed in
the SGAS environment, where abstract names only need to be unique within the context of a single
virtual bank, hence facilitating user-friendly names.

SGAS provides a client-side abstraction layer that performs automatic name resolution (and EPR
renewal if necessary), hiding all resolution interactions from the developer, allowing clients to use
abstract names, such as sgas://account, as regular service addresses and transparently have endpoint
resolution and trust establishment carried out by client-side SOAP message handlers.

Scalability. Several measures have been taken to ensure scalability. First, client-side caching of
resolution results may be used quite aggressively. Second, mapping registration renewals may be
performed on a per-server basis (rather than on a per-mapping basis) through the combination of
mapping lifetime and parent-child mapping relationships. Third, the solution lends itself to the creation
of (“DNS-style”) hierarchies of resolution services, that when combined with caching schemes off-load
“top-level” name services. Fourth, the amount of update traffic is reduced by the use of batch operations
(e.g. rebindMappings) that group together several actions in a single operation.

5.5.2. Virtualizing the Bank

With the name service infrastructure in place, implementing the virtual bank becomes straightforward.
In the distributed virtual bank configuration, each bank becomes a bank branch responsible for

a separate subset of accounts. This is illustrated in Figure 10, which shows a virtual bank that is
distributed over three distinct branch servers. The figure also shows how a bank administrator creates
a new branch account (named sgas:account1) which results in a name to physical endpoint reference
mapping being added to the virtual bank name service. The account can then be contacted through its
abstract name, which is resolved to its physical address through the name service prior to invocation.

The name service, being the abstraction layer that hides the internal details of the virtual bank,
manages name-to-address mappings for the branch servers. When an account is created, the branch
will register a mapping between the logical account name and its physical address in the name service.
The name service enforces a name uniqueness constraint across the branches to prevent duplicate
account names.

All branches register their presence in the virtual bank by adding a branch mapping to the “root
logical reference” of the virtual bank. This root reference is resolved into the set of branch servers by
JARM to perform bank-wide (branch-crossing) searches for accounts when left unspecified by the job
submitter.

Whenever a branch is (re)started, it will register a branch mapping with the root reference and rebind
all account mappings (through a batch-mode registration operation). The accounts are rebound to
overwrite obsolete bindings in case the branch has migrated. Each account mapping is created as a
child of the branch mapping. This allows the branch to periodically renew all account mappings by
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Figure 10. A virtual bank distributed across several hosts.

extending the lifetime of the branch mapping only. Unavailable branches will eventually disappear
from the virtual bank when their branch mapping times out.

Adding a new branch server to the bank places no additional burden on resource owners.
The resource (JARM) administrators simply configure the virtual bank name service as a trusted
(authorized) target. Trust with new branches will then be automatically established at resolution time,
by dynamically adding the identity of the resolved endpoint to the set of trusted identities for the
invocation.

Although it has not yet been attempted, a service distribution approach, similar to that of the virtual
bank, could also be applied to distribute the LUTS, thereby supporting heavier traffic and handling of
larger data volumes. However, to support the full range of possible queries, such a solution requires
distributed query processing as well.

6. PERFORMANCE EVALUATION

This section presents a performance evaluation of the SGAS software, based on a number of real-world
tests performed against different configurations of a local Grid testbed. The tests measure the overall
system performance of SGAS, reveal scalability limits, and assess the performance impact of SGAS
on the underlying job submission software. The tests have been performed on a Grid with GT4 as the
underlying middleware (with the Web services-based GRAM workload manager).
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6.1. Testbed

During the tests two separate sets of computers were used, both connected through a 100 Mbit/s campus
network. The first set of computers were used exclusively for server-side components (to host SGAS
services and the GRAM service container) and consisted of four computers, each equipped with a 2.0
GHz AMD Opteron processor, 1 MB cache memory, 2 GB internal memory and running the Ubuntu
5.10 Linux distribution. The second set of computers were used to launch test clients that issued bank
requests or submitted jobs to the GT4 server. These computers all ran under the Debian Linux operating
system and sixteen of them were equipped with Intel Pentium 2.8 GHz processors and 1 GB memory,
while the other sixteen had AMD Athlon 64 2.0 GHz dual core processors with 2 GB memory.

The DiPerf performance testing framework [13] was used to drive and coordinate the test clients,
collect time measurements, and compile the results into a single (global) time-line. Since all system
clocks were synchronized via NTP and all hosts connected to the same network, clock synchronization
was kept tight (roughly within 1 ms) between the computers, and the impact on time measurements is
therefore negligible.

Two slightly different versions of SGAS were used in order to investigate what performance gains
could be achieved by reusing secure network connections. The “regular” SGAS-version is based on
Java WS Core of GT4.0.2, and the other, which we refer to as the “connection reuse” version, is built
with a CVS snapshot of Java WS Core dated 9/15/2005 that supports persistent HTTPS connections‡.
The connection reuse SGAS version features an improved JARM that caches recently used account
stubs and reuses previously established HTTPS-connections, thereby avoiding the multi-roundtrip
performance penalty involved in the initial TLS connection establishment handshake. Unless stated
otherwise, the tests use the regular SGAS version.

Since GT contained some code that seriously hampered throughput in our multi-client tests, we
rewrote GT4.0.2 by introducing a small piece of GRAM code that caches user home directories,
rather than having a perl script re-evaluate it on every use (which is expensive in Java). This change
significantly cut the time spent by threads in a critical section of the GRAM code, resulting in almost
a factor six throughput increase (in “streamlined” submission mode). The patch has also been applied
to the GRAM code in the Globus CVS.

6.2. Experiments and Performance Results

There are several aspects of performance that deserve an in-depth study, however, we have narrowed it
down to three test cases. First, we have tested account reservations against the bank. This is the single
most important bank interaction, as it lies on the job submission critical path. Second, we illustrate
the scalability improvements achievable with the virtual bank solution. Third, we have investigated the
SGAS performance impact on the underlying workload manager (GRAM). In these experiments, we
focus on three metrics:

• Response time: the client perceived (end-to-end) request time. That is, the time (in ms) from
sending a request until receiving the result.

‡This functionality is provided as part of the GT4.1.0 development release.
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Figure 11. Reservation requests against the bank.

• Throughput: the rate of handled requests, measured in the amount of completed requests per
minute.

• Load: the number of active (request-issuing) test clients at any instant, measured in number of
clients.

6.2.1. Account Reservation Test

The account reservation test shows the delivered bank performance under heavy load. It simulates the
scenario of an escalating “job storm”, where the job submission rate (and hence, reservation request
rate) steadily rises, reaches a peak and finally starts to drop. In this test, all client machines are launched
against the bank. A new test client is started every 60 seconds, and each client issues requests for 40
minutes. The target account is chosen at random from the accounts hosted by the bank.

The results are shown in Figure 11, where response times, throughput and load curves are
superimposed in the same diagram, to allow for easy correlation. The (stair-shaped) load curve values
are read from the right axis, whereas response times and throughput values are read from the left axis.

As the figure shows, new clients are continuously started for 30 minutes. By that time all 30 clients
are active and the job storm reaches its climax. As concurrency increases, throughput grows as long
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as there is spare server capacity to handle the additional load. However, after roughly 16 minutes a
throughput limit is reached (about 1400 requests/min). After that limit has been reached the throughput
remains unchanged as further clients are added, while individual clients start experiencing a significant
increase and variation in response times. The opposite effect can be observed after peak load has been
reached. As load decreases, response time fluctuation and average response time are reduced, and with
approximately 15 minutes left of the test, load has been sufficiently reduced to bring throughput down
from the upper limit and start falling towards zero as more and more clients complete.

Under light load, response times are roughly 200 ms whereas extreme response times of several
seconds can be observed during peak load. From this test, we can conclude that in the given
environment, the bank is able to handle a peak load of approximately 1400 reservation requests per
minute.

During the test a total of 86584 reservation requests were issued. Given the test duration of 70
minutes this yields an average request handling time of about 49 ms, which is a factor four improvement
over the 200 ms taken to execute a single serial request. The reason is that much of the response
time can be attributed to message transmission (client-side message processing and secure connection
establishment) allowing for a rather high degree of request concurrency. To sum up, the bank reaches
its throughput limit at 1400 requests per minute, or about 23 requests per second. Such load would
correspond to a Grid environment where 23 new jobs are submitted every second. A Grid with that
kind of job turnover must either be large, or serve users with extraordinarily short jobs. To scale with
even larger environments a virtual bank can be deployed, as illustrated in the next test.

6.2.2. Virtual Bank Test

The test setup for the virtual bank is similar to that of the account reservation test, apart from that twice
as many clients are launched (two from each client machine) with twice as high rate (a new tester is
introduced every 30 seconds). The bank is configured as a virtual bank with a name server and two
branch servers. The accounts are evenly divided between the two branches.

During the test, each tester makes a reservation against a randomly chosen account. This includes
resolving the account name with the name service to translate the abstract account name into its
physical address. The collected results are shown in Figure 12, with axes as described in Section 6.2.1.

We can see that the maximum throughput in the virtual bank case is reached after about 20 minutes
(40 clients). The throughput limit in this case is roughly 2700 requests/min, which is close to a doubling
of throughput from the single branch case (1400 requests/min). The fact that we do not achieve a
throughput doubling, is most likely an effect of imperfect load balance between the two branch servers.
Clients pick a target account at random, which makes a certain degree of load imbalance at any instant
quite likely. A closer inspection of the figure shows that some of the initial requests take about twice
the time of others. This is caused by the name lookup, which requires an extra roundtrip in order
to contact the resolution service, and this invocation roughly doubles the response time. Client-side
caching of name resolution results allows subsequent resolutions to be made against the local cache.
Since branches operate completely independently from each other, the two branches are capable of
handling twice the load of a single bank, with twice as high throughput. Similar improvements should
be observed for each added branch, given that load is sufficiently well balanced between the branches.
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Figure 12. Reservation requests against a virtual bank with two branches.

6.2.3. SGAS Performance Impact Tests

The following tests measure the performance impact of SGAS (or rather the account reservations) on
job submission throughput in the GRAM workload manager. The tests all follow the same general
pattern: eight simultaneously started tester clients submit jobs to a GRAM container for a 20 minute
period. Hence, the load is kept constant throughout the test. Each tester submits /bin/true Fork job
requests to the GRAM container, one at a time, always waiting for an operation to complete before
starting the next. We have deliberately chosen a minimalistic job (quick turnaround, no file staging, no
batch system access, etc.) in an attempt to isolate those parts of GRAM that are affected by JARM. For
more advanced job submissions, the relative performance impact of JARM is greatly reduced.

Three different GRAM configurations and four different submission modes were used to compare
different setups and cover the different job submission styles that end-users may prefer. For the
GRAM configurations an unaltered “accounting-disabled” container was tested for reference, while
two “accounting-enabled” containers (with JARM intercepting jobs) were tested: one with the regular
SGAS version and one with the connection reuse version. The four tested submission modes result
from combining either interactive or batch mode submissions with either per-job or shared credential
delegation. These job submission options are explained in Table I, which also shows the abbreviation
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Table I. The submission options.

Submission Option Description

Batch mode (B) Waits for job to be accepted.
Interactive mode (I) Waits for job to complete.
Per-job delegation (P) Delegates a separate proxy for each job.
Shared delegation (S) Delegates a single proxy shared by all jobs.

Table II. GRAM protocol steps.

Protocol step B/S B/P I/S I/P

Delegate proxy
√ √

Submit job
√ √ √ √

Execute job
√ √

State notifications
√ √

Job cleanup
√ √

Proxy cleanup
√

used for each option (B,I,P,S). For the accounting-enabled tests, a bank was located on a separate
machine, hosting accounts that were chosen at random by clients to charge jobs.

A summary of the protocol steps involved in each of the job submission modes is shown in Table
II. The delegate proxy step involves delegating a user proxy to the Delegation Service of the targeted
GRAM server. The submit job step only requests the execution of a job, it does not wait for execution
to finish. In interactive mode, clients wait for jobs to complete by subscribing to state notifications
which are sent to the client on job state transitions, typically when the job reaches the active, cleanup
and done state. Job cleanup and proxy cleanup refers to a destroy invocation against the WS-Resource
representing the job or proxy in question. Note that in batch mode tests, a completed request only
means that GRAM has accepted the job. Hence, at the end of the test there may be several jobs that are
still awaiting execution. Also note that the shared delegation submission mode delegates a proxy prior
to submitting the first job.

Figure 13 shows the “streamlined” job submission mode test case for our three GRAM
configurations. Streamlined in this case refers to the minimal sequence of GRAM protocol steps that
this submission mode uses. Each client delegates a single proxy credential that is shared by all jobs
(shared mode) and no job state change subscriptions are established (batch mode). As can be seen from
the other GRAM figures (14, 15, 16), this test case clearly shows the highest throughput numbers (it
outperforms the other tests by a factor six). As a consequence, this is the test case where SGAS incurs
the largest overhead on GRAM submissions. The unaltered GRAM amounts to 590 requests per minute
on average, whereas the regular SGAS integration reduces the throughput to half (320 requests per
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Figure 13. Streamlined (batch mode, shared delegation) job submissions.

minute). The connection reuse SGAS version offers a significant improvement in this case, handling
on average 430 requests per minute. The main source of SGAS overhead is the account reservation
invocation performed prior to accepting each job submission.

Note that, although the throughput drop with SGAS is quite significant, this test case puts extreme
pressure on the GRAM server. A job submission rate of ten arriving jobs per second is unlikely to be
observed on a real production environment Grid resource, and hence the main merit of these throughput
numbers lies in establishing an upper throughput limit for GRAM (with and without SGAS). We
conclude that neither the unaltered GRAM nor the “accounting-enabled” GRAM container is likely
to become a bottleneck in realistic job submission scenarios. Note also that the bank only is lightly
loaded in this test with a few hundred reservations per minute, which is far from overloading the bank,
which does not reach its peak throughput until 1400 requests per minute.

Figure 14 illustrates the throughput numbers when per-job delegation has been added to the
streamlined job submissions of Figure 13. As can be seen by comparing the figures, the additional
protocol step introduced by delegating a proxy credential with each job seriously hampers throughput
which is down to 78 jobs/min without SGAS, 65 jobs/min with SGAS and 70 jobs/min with
the connection reuse SGAS version. As expected, the relative throughput difference between the
accounting-enabled and accounting-disabled GRAM is reduced as a result of the SGAS performance
impact becoming a smaller relative factor as additional protocol steps are added.

Results for the “all-inclusive” submission mode are shown in Figure 15. Here, clients delegate
separate proxy credentials for each job (per-job delegation) and also awaits completion (interactive
mode) for each job. It is the test case that includes most protocol steps and, consequently, shows the
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Figure 14. Batch mode, per-job delegation job submissions.

lowest throughput numbers with 56 jobs/min in the pure GRAM case, 50 jobs/min for SGAS-enabled
GRAM and 53 jobs/min for SGAS with connection reuse.

The steadily decreasing throughput curves that can be observed in the per-job delegation test cases
(Figure 14 and 15), may indicate scalability issues in handling of large amounts of job submissions
with per-job credential delegation. Furthermore, the similarity of the curves in all test configurations
indicates that SGAS is not the cause of the problem. Rather, the problem is likely to be found within
the GRAM or the Delegation Service code.

The throughput numbers when interactive submission mode is added to the streamlined case are
shown in Figure 16. In these tests, where clients wait for each job to complete and cleans up the job, the
SGAS-disabled GRAM manages to handle 95 jobs/min, whereas the SGAS-enabled GRAM manages
84 jobs/min. In this case, the connection reuse SGAS version case is very close to the unaltered
GRAM with 93 jobs/min. Judging by the sheer number of message exchanges involved in the different
submission modes, one would assume that the B/P mode (Figure 14) would allow higher throughput
than I/S mode (Figure 16). As our results show this is not the case. From this observation, we conclude
that proxy delegation is a heavyweight operation, which should be avoided whenever possible (for
instance, by using the shared delegation approach).

From the figures we can see that as more GRAM protocol steps are added to the job submissions
(interactive and/or per-job delegation) the relative impact of SGAS on overall throughput becomes
smaller (the SGAS throughput is closer to that of the unaltered GRAM), as a result of the SGAS
overhead being shadowed by additional sources of overhead. For the same reason, the relative effect
of connection reuse becomes less dramatic. Table III illustrates the overhead incurred by SGAS on
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Table III. Delivered throughput in percent of normal GRAM throughput.

SGAS version B/S B/P I/S I/P

Regular 55 % 84 % 88 % 89 %
Connection reuse 72 % 90 % 97 % 94 %

GRAM, by showing the delivered throughput in percent of the unaltered GRAM throughput, for the
different SGAS versions and job submission modes. For these numbers, aggregate throughput values
were calculated over the entire duration of the test.

In summary, SGAS incurs around 10–15% overhead on GRAM job submissions. The exception is
the batch-mode, shared delegation test case where the throughput reduction is quite significant (45%
with regular SGAS and 28% with the connection reuse version). It should be noted, however, that all
these tests put the system under extreme stress, especially considering that all load is put on a single
Grid resource with the lightest load being one new job per second. Even this job arrival rate is not
likely to be seen on Grid resources within a foreseeable future. In particular the batch/shared test case
represents an extreme scenario that pushes the limits of the system with a job arrival rate of ten jobs
per second, which is highly unlikely to be observed on a real-world Grid resource. Hence, we conclude
that, for all practical purposes, neither GRAM nor SGAS threatens to become a limiting factor on the
job submission handling capability of a Grid resource.

7. RELATED WORK

Compared to the widely distributed and heterogeneous nature of Grid environments, resource allocation
and usage tracking in HPC/cluster computing environments is typically simplified by only accounting
for local site usage on a set of homogeneous resources that run on a single platform, with a common
security solution and that share a common data format for usage logging.

There are several resource allocation systems that target Grid environments. Some of these divide
Grid capacity between users via a priori allocations in a manner similar to the way project allowances
are awarded in SweGrid, while other systems let market forces allocate capacity via supply and demand
driven interactions.

Gold [33] is a feature-rich, open-source accounting and allocation manager system that is similar to
SGAS in operation and enforcement mechanism. It has a bank that manages project accounts with time-
stamped allocations (implementing a “use-it-or-lose-it” policy), and also supports additional features
such as nested accounts and user/machine-specific allocations. Gold is tightly integrated with the Maui
scheduler and, in contrast with SGAS, not targeted towards simple middleware integration, which could
be a barrier for adoption. Gold is the successor of QBank [32], which was aimed at single institution
accounting.

The Distributed Grid Accounting System (DGAS) [11] is an accounting system developed within
the context of the EGEE project [16], which besides pure usage tracking (metering and logging)
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functionality provides an optional layer of functionality for implementing economic models, which can
be used to establish a resource market, driven by supply and demand, where provider organizations earn
credits from users by executing user jobs. Earned credits may be redistributed over the organization
users, leading to a zero-sum exchange of resources where total contribution is balanced between sites.
For “economic mode” operation, DGAS is integrated with the Workload Manager resource broker of
the LCG middleware [36], thus limiting its scope of applicability.

GridBank [3] is a bank service, developed within the GRid Architecture for Computational Economy
(GRACE) architecture, to support economy-driven Grid interactions between resource consumers and
providers. The GridBank service manages consumer and provider accounts, stores usage records, and
handles payments between accounts. GridBank is targeted towards GT2 and provider-side deployment
is quite intrusive, requiring modifications to GT2 job manager code. On the consumer-side, a GridBank
payment module needs to be integrated with the resource broker (Nimrod/G) to forward a payment
cheque to the resource that covers the job cost.

We note that SGAS distinguishes itself from the other accounting-related efforts, with its emphasis
on middleware and scheduler independence and strong focus on interoperability, Web services and
Grid standardization work.

APEL [6] is a usage tracking system that collects usage from Grid resources, much like the JARM
and LUTS components do for SGAS. APEL parses batch logs to gather usage data and publishes it in a
(non-standard) relational data format as prescribed by the R-GMA information system [44]. A similar
approach is taken by MOGAS [37], which collects usage data and stores it in a relational database for
publishing of different kinds of Grid usage statistics on the web.

A share-based approach to allocate Grid capacity has been proposed by [12] and [14]. These
solutions allocate resources by means of share policies that divide aggregate VO capacity between user
groups, which are granted target shares of the total Grid capacity. These target shares are delivered
using scheduling-based mechanisms. In [14] enforcement is carried out in a collective manner by the
Grid resources via local (batch system) job scheduling with a global view on usage. A combination of
global (resource broker) and local job scheduling is used in [12].

Economic approaches to resource allocation have received a lot of attention in Grid research. A
common point in these approaches is the establishment of a Grid resource market, often referred to as
a computational economy. When it comes to computational economies, we can distinguish utility and
pay-per-use computing (which is part of the “real” economy) from market-based resource allocation
within a Grid (which establishes an “artificial” market). We focus on the latter category, where market
economic principles have been applied in a number of projects [43, 57, 5, 7, 34, 35, 2].

Some of the most common arguments for market-based resource allocation are that (1) dynamic
pricing schemes can balance load across both resources (by attracting users to lightly loaded resources
with low prices and vice versa) and time (encouraging users to use more resources during off-peak
hours) to improve overall utilization [5, 43, 34, 7], (2) it promotes user-centric scheduling with per-
task QoS differentiation [34, 5, 7], (3) market prices regulate resource supply and demand towards
a state of market equilibrium where supply and demand is at balance [43, 57, 5, 2], and (4) markets
operate in a decentralized§ and efficient manner, without need for centralized control [5, 2].

§Agents acting in self-interest achieve global “welfare”.
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To date, most work concerning Grid economy has either focused on simulating computational
markets or developing architectural frameworks that support the establishment of an economy [56].
However, research has mostly been silent or provided little guidance on automated pricing mechanisms
to create stable and self-sustainable markets (where supply and demand are in equilibrium). In fact,
Nakai and Van Der Wijngaart [39] conducted a thorough analysis of General Equilibrium (GE) theory,
a theoretical foundation for claims (3) and (4) and they argue that such claims are not supported by
the theory. They reach the conclusion that the GE theory fails to explain actual economies, let alone
a compute resource economy. Market economy is not dismissed as a global scheduling solution but
they remark that widely held beliefs, such as (3) and (4), of market efficiency are not warranted. Such
beliefs are merely a product of everyday life observations of (real) markets and the perceived ease and
efficiency by which they allocate resources.

We believe that the main appeal of market-based solutions is not the promise of reaching theoretical
equilibrium states of high efficiency, but the focus on designing incentives into the software to avoid
misuse and overuse by strategic users affecting the stability and health of the overall system. In short
they provide an answer to the “tragedy of the commons” effect apparent in many of today’s Grids. Such
incentives are not at odds with the SGAS model, on the contrary the static pricing model currently
employed in SGAS could easily be replaced by an incentive compatible pricing scheme according to
market principles.

Still, many open questions remain within the area of market-based resource allocation. Some of these
challenges are outlined in [50]. Although we believe that computational markets hold a lot of promise,
we call for further investigation and comparison between market-based approaches and other Grid
resource allocation mechanisms, both in terms of computational efficiency and allocation efficiency.

Finally, related work also includes two recent investigations and comparisons of existing Grid
accounting systems. In [45], SGAS fulfilled 14 out of 15 evaluation criteria and was deemed superior to
the six other systems investigated (APEL, DGAS, GridBank, GRASP [10], GSAX [4], and Nimrod/G
[40]). According to a second accounting system survey [25], comparing the same seven accounting
systems, SGAS was found to fulfill the largest number of requirements.

8. CONCLUDING REMARKS

Without usage regulation a Grid threatens to fall victim to the “tragedy of the commons”. We address
this problem with a Grid accounting system that offers overuse protection and differentiated usage
guarantees in collaborative Grid environments by coordinating enforcement of Grid-wide usage limits.
We have presented the operation context and role of the SweGrid Accounting System (SGAS) as a
capacity allocation mechanism that mediates the conflicting needs of the system stakeholders. SGAS
allows allocation authorities to divide the aggregate VO capacity between users in a fair manner and
coordinate allocation enforcement across the Grid without sacrificing resource owner autonomy.

SGAS employs a credit-based model where Grid capacity is granted to projects via Grid-wide quota
allowances that can be spent across the Grid resources, which collectively enforce these allocations
in a soft, real-time manner. The use of time-stamped credit allowances, with a limited validity period,
reduces the risk of imbalance between modeled capacity (credits) and actual capacity by continuously
revoking surplus credits. At the same time, it constitutes a flexible tool that, e.g., allows allocation
authorities to distribute quota over time to prevent contention on allocation period borders, and supports
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various allocation strategies that can trade off flexibility in utilization for fairness or closer credits-
capacity correlation.

The SGAS design addresses key challenges of Grid environments (heterogeneity, scale,
decentralized management, security) and is flexible with respect to the types of usage that is accounted
for. To cope with the inherent heterogeneity of Grid environments, SGAS is agnostic to the underlying
middleware and scheduling systems. To date, it has been integrated with GT4 and ARC, but we
hope that the JARM description and our integration experiences may serve as a reference for future
integration into other middlewares. The SGAS software package, which is currently included as a
technology preview in GT4, can be downloaded from the SGAS web site [49].

Measures to achieve system scalability include incremental handling of large data sets and
virtualizing the bank service across several servers to balance load. The key enabler of the virtual
bank is an abstract naming scheme, which adds an extra level of name indirection by introducing a
generic name service that manages name-to-address mappings. Branch servers register an abstract,
location-independent name for each account, which is resolved by clients into the physical network
address of the account prior to invocation. Besides facilitating the virtual bank, the abstract naming
scheme also produces scaling-, migration- and location-transparency.

We have evaluated the performance and scalability of SGAS by conducting an extensive set of
experiments on a Grid testbed. These experiments reveal that the bank is able to handle a peak load of
1400 reservation requests per minute, which would correspond to a Grid scenario where 23 new jobs
are submitted every second. Furthermore, the bank capacity can be scaled up even further by adding
bank branches to the virtual bank which can offer a linear improvement in throughput and load handling
capacity. Finally, we conclude that the overhead incurred by account reservations on job submissions
is marginal and, in any realistic scenarios, not a limiting factor to the job throughput capacity of the
job submission software.
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