
An OGSA-Based Bank Service
for Grid Accounting Systems�

Erik Elmroth1, Peter Gardfjäll1, Olle Mulmo2, and Thomas Sandholm2

1 Dept. of Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth,peterg}@cs.umu.se

2 Dept. of Numerical Analysis and Computer Science and PDC, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

{mulmo,sandholm}@pdc.kth.se

Abstract. This contribution presents the design and implementation of a bank
service, constituting a key component in a recently developed Grid accounting
system. The Grid accounting system maintains a Grid-wide view of the resources
consumed by members of a virtual organization (VO). The bank is designed as
an online service, managing the accounts of VO projects. Each service request is
transparently intercepted by the accounting system, which acquires a reservation
on a portion of the project’s bank account prior to servicing the request. Upon
service completion, the account is charged for the consumed resources. We present
the overall bank design and technical details of its major components, as well as
some illustrative examples of relevant service interactions. The system, which has
been implemented using the Globus Toolkit, is based on state-of-the-art Web and
Grid services technology and complies with the Open Grid Services Architecture
(OGSA).

Keywords: Grid accounting, allocation enforcement, OGSA, SweGrid.

1 Introduction

This contribution presents the design and implementation of a bank service, constituting
a key component in the SweGrid Accounting System (SGAS) [10] – a recently developed
Grid accounting system, initially targeted for use in SweGrid [15]. A Grid accounting
system maintains a Grid-wide view of the resources consumed by members of a virtual
organization (VO) [6]. The information gathered by the system can serve several useful
purposes, such as to allow enforcement of project quotas.

The bank is designed as an online service, handling accounts that contain the resource
allocations of Grid projects. Each service request (job submission) is transparently inter-
cepted by the accounting system, which acquires a reservation on a portion of the project
account prior to job execution (cf. credit card reservations). Upon job completion, the
project account is charged for the consumed resources and the reservation is released.
The decentralized nature of Grids, assuming the absence of any central point of control,
adds complexity to the problem. The problem is further complicated by the distributed

� This work was funded by The Swedish Research Council (VR) under contracts 343-2003-953
and 343-2003-954 and The Faculty of Science and Engineering, Umeå Univ.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1051–1060, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1052 Erik Elmroth et al.

resource administration in Grids, i.e., the requirement that resource owners at all times
retain local control over their resources.

The rest of this paper is outlined as follows. Section 2 gives a brief introduction to the
accounting issues addressed, the SweGrid environment, the concept of Grid services, and
an overview of the accounting system in which the bank is a key component. The bank
design is described in Section 3, including a presentation of the services constituting the
bank and their relationships. Some implementation details, including a fine-grained and
customizable authorization framework, are summarized in Section 4. Finally, Section 5
concludes the paper.

2 Background

The accounting system is primarily targeted towards allocation enforcement in SweGrid
[15], although it has been designed to allow simple integration into different Grid en-
vironments. SweGrid is a Swedish national Grid, initially including 6 geographically
distributed Linux clusters with a total of 600 CPUs dedicated for Grid usage 24 hours a
day.

The computer time of SweGrid is controlled by the Swedish National Allocations
Committee (SNAC) [12], which issues computer time, measured in node hours per
month, to research projects. Node hours are assigned to projects based on their scientific
merits and resource requirements, after a peer-reviewed application process. The ac-
counting system must provide coordinated enforcement of these quotas across all sites.
That is, the whole allocation may be consumed at one cluster or in parts at any number
of clusters.

The design considerations for the bank service is closely related to those of the
accounting system as a whole. The design is based on the assumption that a user can be
a member of several VOs and participate in one or more projects within each VO. Each
project’s resource allocation is kept in an account, which is handled by the bank.

The information maintained by the accounting system can, e.g., form the basis for
direct economic compensation, usage quota enforcement, tracking of user jobs, resource
usage evaluation, and dynamic priority assignment of user requests based on previous
resource usage.

The system performs soft real-time allocation enforcement. The enforcement is real-
time in that resources can deny access at the time of job submission, e.g., if the allocation
has been used up, and soft in that the level of enforcement strictness is subject to local
policies.

2.1 Accounting System Overview

Figure 1 presents the main entities and interactions of SGAS. Entity interactions are
illustrated in a scenario where a job is submitted to a computer cluster, although it could
be generalized to cover a generic service request to an arbitrary Grid resource.

Each VO has an associated Bank service to manage the resource allocations of
the VO research projects. The Bank is primarily responsible for maintaining a consis-
tent view of the resources consumed by each research project, and enables coordinated

An OGSA-Based Bank Service for Grid Accounting Systems 1053

Fig. 1. Interactions among accounting system entities (shaded) during job submission

quota enforcement across the Grid sites. From a scalability perspective, a single bank
per VO might seem restrictive. However, it should be stressed that the Bank service is
not confined to a single site. It could be implemented as a virtual resource, composed of
several distributed services, to achieve load-balancing and scalability. The Job Account
Reservation Manager (JARM) is the (single) point of integration between SGAS and
the underlying Grid environment. On each Grid resource, a JARM intercepts incoming
service requests, performs account reservations prior to resource usage and charges the
requester’s account after resource usage. A Log and Usage Tracking Service (LUTS) col-
lects and publishes Usage Records [8], holding detailed information about the resources
consumed by particular service interactions.

In a typical scenario, the user, or an entity acting on behalf of the user, such as a
broker, sends a job request to a resource that has been selected to execute the job. During
the job request process, mutual authentication is performed and the user’s credentials
are delegated to the resource (1). The job request, which includes the identity of the
project account, is intercepted by the resource’s JARM (2), which contacts the VO Bank
to acquire a time-limited reservation on a portion of the project allocation (3). Such an
account reservation is referred to as a hold. If a hold can be granted, the JARM forwards
the job request to a local resource manager (4) that runs the job and gathers information
about the resources consumed by the job. At job completion, the JARM collects the
usage information (5), charges the project account utilizing the hold (6), and records
the usage information in a Usage Record which is logged in a LUTS (7). Any residual
amount of the hold is released. Notably, a user can query both the Bank and the LUTS,
e.g., for various account and job information.

2.2 The Grid Service Concept

The implementation of the accounting system, including its bank component, is based on
the concept of Grid services as defined by the Open Grid Services Architecture (OGSA)
[5]. OGSA extends the concept of Web services [17] by introducing a class of transient

1054 Erik Elmroth et al.

(bounded lifetime) and stateful (maintain state between invocations) Web services. Web
services represent an XML-based distributed computing technology that is independent
of platform, operating system and programming language. Web services are ideal for
loosely coupled systems where interoperability is a primary concern.

The transient nature of Grid services makes them suitable for representing not only
physical resources but also more lightweight entities/activities, such as a video confer-
ence session, a data transfer, or in this case, different parts of a Grid accounting system.

All services expose service data, a dynamic set of XML-encapsulated information
about service metadata and local service state. Grid services provide operations for
querying (service introspection) and updating service data.

The Open Grid Services Infrastructure (OGSI) [16] defines a core set of composable
interfaces which are used for constructing Grid services. The bank component presented
in Section 3 makes use of the OGSI interfaces for, e.g., service creation, lifetime manage-
ment, and service introspection. The interfaces are defined in Web Services Description
Language (WSDL) [18] portTypes and specify the operations as well as the service data
exposed by each service.

3 Bank Design

The Bank component of SGAS has been designed with generality and flexibility in
mind. Specifically, the bank does not assume any particular type of resources, and as
such it can be integrated into any Grid environment. For example, all bank transactions
are performed using Grid credits – an abstract, unit-less currency that can be used to
charge for arbitrary resource usage. Prior to charging an account, a resource may apply
any transformation function to map different kinds of resource usage into Grid credits.

Since SweGrid resources are currently homogeneous and node-hours is the only
resource type being accounted for, the resource-to-Grid credits mapping is trivial. In the
general case of a heterogeneous Grid environment, different types of resource usage as
well as differing resource characteristics need to be considered. For example, storage
utilization could be accounted for as well, and faster processors might be more expensive.
In case dedicated allocations need to be maintained for different types of resources,
separate accounts may be provided for each resource type.

The bank is also neutral with respect to policies. Policy decisions are left to users,
resource managers and allocation authorities. The bank provides the flexibility to ac-
commodate such policies, as well as means of enforcing them. For example, policies
dictated by the allocation authority or the resource might allow a job to run even though
the project allocation has been used up. However, if project quotas are not strictly en-
forced by a resource, the user can still decide only to perform safe withdrawals that do
not exceed the project allocation.

The SGAS bank is composed of three tightly integrated Grid services (Bank,
Account, Hold), whose relationships are illustrated in Figure 2.

Bank Service. The Bank service is responsible for creating as well as locating
Accounts. The Bank service implements the factory pattern as provided by OGSI.

An OGSA-Based Bank Service for Grid Accounting Systems 1055

Administrator

Account holder

<<interface>>

 Hold

<<interface>>

 Account

<<interface>>

 Bank

<<interface>>

 OGSI:Factory

<<interface>>

ServiceAuthorizationManagement

<<interface>>

OGSI:GridService

<<«uses»>>

<<«uses»>>

<<«creates»>>

<<«creates»>>

<<administers>>

<<uses>>

Fig. 2. Bank interface relationships

This allows the Bank to create new Account service instances. Clients can also query
the Bank to obtain a list of the Accounts they are authorized to use.

Account Service. An Account service manages the resource allocation of a research
project. A project member can request a hold on the Account, effectively reserving a
portion of the project allocation for a bounded period of time. A successful hold request
results in the creation of a Hold service, acting as a lock on the reserved account quota.
We refer to the Account service that created a Hold service as the parent account of
that hold. Account services publish transaction history and account state, which can
be queried by authorized Account members.

The set of authorized Bank and Account users, as well as their individual access
permissions, is dynamic and can be modified at run-time by setting an authorization
policy, defined using XML. To this end, the Bank and Account interfaces extend the
ServiceAuthorizationManagement (SAM) [10] service interface. SAM allows autho-
rization policies to be associated with a service. The authorization policy could, e.g.,
contain an access control list associating a set of authorized Account members with
their individual privileges. SAM is customizable, in that it allows different back-end
authorization engines, also referred to as Policy Decision Points (PDP), to be configured
with the service. Note that there is nothing Bank-specific about SAM; it can be used by
any service requiring fine-grained management of authorization policies.

Hold Service. A Hold service represents a time-limited reservation on a portion of
the parent account’s allocation. Holds are usually acquired prior to job submission
and committed after job completion to charge their parent account for the resources
consumed by the job. Hold services are created with an initial lifetime and can be

1056 Erik Elmroth et al.

destroyed either explicitly or through expired lifetime. Hold expiry is controlled using
the lifetime management facilities provided by OGSI. On commit or destruction, the
Hold service is destroyed and any residual amount is returned to the parent account. In
the case of destruction, the entire reservation is released. On commit, a specified portion
of the Hold, corresponding to the actual resource usage, is withdrawn from the parent
account, and a transaction entry is recorded in the transaction log.

Service Interfaces. The operations exposed by the bank services are presented in Table
1. Note that the service interfaces extend OGSI interfaces, which are used for such
purposes as lifetime management, service creation and service introspection. The Bank
and Account services provide batch commit operations (commitHolds), which allow
resources to perform asynchronous commits of sets of Hold services in a single service
invocation. The benefit of this approach is twofold, the perceived resource response time
decreases, allowing higher job throughput during periods of high load, and the bank
request load is reduced, improving overall system scalability. Table 2 gives an overview
of the service data exposed by the bank services. Note that the service data set of each
service also contains the service data of extended OGSI interfaces. Furthermore, note
that since Bank and Account extend the SAM interface, these services also expose
the servicePolicy service data element. Only authorized service clients are allowed to
query the service data.

Table 1. The operations exposed by the SGAS bank interfaces

portType Operation Description

SAM setPolicy Set an authorization policy to be associated
with service.

Bank getAccounts Get all accounts that caller is authorized to
use.

commitHolds Batch commit of several Holds (created by
any account in Bank).

Account requestHold Creates an account Hold if enough funds
are available.

addAllocation Add a (potentially negative) amount to the
account allocation.

commitHolds Batch commit of several Holds (created by
this account).

Hold commit Withdraws a specified amount of the hold
from the parent account.

Service Interactions. The Bank allows privileged users to create new Account ser-
vices. During the lifetime of an Account, its set of members and their access rights can
be modified by associating a new authorization policy with the Account, through the
setPolicy operation. The project’s resource allocation can be updated by an administrator
by issuing a call to the addAllocation operation of the Account.

An OGSA-Based Bank Service for Grid Accounting Systems 1057

Table 2. The service data exposed by the SGAS bank interfaces

portType serviceData Description

SAM servicePolicy The authorization policy associated with the
service.

Bank none -

Account accountData The account state: total allocation, reserved
funds and spent funds.

transactionLog Publishes all transaction log entries.

Hold holdData The reserved amount and the identity of the
parent account.

Resource Bank Account

getAccounts()

requestHold()

Hold
createService()

requestHold()
createService()

Hold

requestTerminationAfter()

commit()

termination
time

Fig. 3. Hold creation and usage

Figure 3 illustrates typical interactions between a resource and anAccount service.
A job is submitted by a user to a resource, which invokes the getAccounts operation on
the Bank to get the user Account (unless it is specified in the job request). The
resource requests a Hold on the Account, prior to job execution. The request includes
an initial Hold expiry time. The expiry time can be reset at any time using the lifetime
management operations provided by OGSI. A resource may choose to extend the Hold
lifetime, e.g., due to a long batch queue. The commit operation is invoked by the resource
after job completion to charge the Hold’s parent account for the consumed resources.
If the Hold is destroyed, either explicitly or through expired lifetime, the Hold amount
is returned to the parent Account.

4 Bank Implementation

Interoperability is a primary concern in Grid computing. Thus, rather than implementing
our own middleware with ad-hoc protocols and communication primitives, we leverage

1058 Erik Elmroth et al.

the latest Grid standardization efforts and toolkits. Current Grid standardization focuses
on Web service technologies in general and OGSA in particular.

Globus Toolkit. Our implementation is based on the Globus Toolkit (GT) [11] open-
source Java reference implementation of the OGSI specification, implemented on top of
the Axis SOAP engine [19]. GT provides a container framework to host Grid services
and a set of tools and implementations of core OGSI interfaces, allowing developers to
build and deploy custom Grid services.

By basing our solution on GT we conform to the latest standard specifications,
thereby achieving desirable interoperability. Furthermore, composing our solution of
toolkit primitives cuts down development time.

GT also provides a security framework orthogonal to application code, which in-
cludes mutual authentication, message encryption and message signing. These security
primitives are based on the WS-SecureConversation [9], XML-Signature [3] and XML-
Encryption [7] standards.

Service Implementations. All bank services are implemented using operation provi-
ders, which offer a delegation-based implementation approach where services are defined
in terms of operation providers, each implementing part of the service functionality.
Operation providers facilitate implementation reuse as well as a development model
based on composition of primitives. For example, a service can be given the capabilities
of the SAM interface simply by configuring the SAM operation provider with the service.

In order to guarantee recoverability, all services are checkpointed to a back-end
database that runs embedded in the GT container. Our implementation uses Xindice [2],
an open-source native XML database that conforms to the standards developed by the
XML:DB group [21].

In the event of a server crash the state of all services needs to be recovered from
secondary storage on server restart. The recovery is performed by means of GT service
loaders. Besides enabling state checkpointing and recovery, the database solution further
allows users to pose non-trivial queries against bank information, such as the transaction
log, by exposing database content as service data, and embedding database query expres-
sions in service data queries. The GT query evaluator framework allows us to redirect
those service data queries to the back-end database, effectively exposing a database view
through the service data framework. For example, an Accountmember can run XPath
[20] queries against the transaction log to obtain specific transaction information. The
XPath query approach further avoids the inconvenience of defining a query language by
means of different interface operations.

Authorization Framework. The GT framework provides a declarative security in-
frastructure through the use of security deployment descriptors. Authentication method
as well as handling of delegated credentials can be specified on a per-operation basis.
The available framework for authorization, on the other hand, only allows authorization
to be specified on a per-service basis.

As the current all-or-nothing access to a service is too coarse for our purposes, we
have developed a fine-grained authorization framework [10]. Through the SAM inter-

An OGSA-Based Bank Service for Grid Accounting Systems 1059

face, an authorization policy and an authorization engine (a PDP) can be associated with a
service. The SAM design is highly flexible and customizable since it allows different au-
thorization back-ends, using different policy languages, to be configured with a service.
The current implementation uses a default authorization back-end based on the eXtensi-
ble Access Control Markup Language (XACML) [1]. Specifically, Sun’s XACML PDP
implementation [14] is used as the underlying authorization engine. However, success-
ful experiments have been carried out using other authorization engines as well. Using
XACML we have also included an overdraft policy, allowing an administrator to set an
upper limit on acceptable account overdraft.

GT uses different handlers that intercept a SOAP [13] request before reaching the
target service. To incorporate our authorization framework we provide an authorization
handler that delegates the authorization decision to the target service’s PDP, if one is
available.

The authorization framework is orthogonal to the service implementation. That is, the
service implementation is not affected by customization or replacement of the security
implementation.

5 Concluding Remarks

We have presented the design and implementation of a bank service for use in a recently
developed Grid accounting system. The bank, as well as the accounting system as a
whole, is designed to be general and customizable, allowing non-intrusive integration
into different Grid environments. The system, which is standards-based and leverages
state-of-the-art Web and Grid services technology, offers user-transparent enforcement
of project allocations while providing fine-grained end-to-end security.

Our planned future work includes a transition towards the Web Services Resource
Framework (WSRF) [4]. Other areas that are subject to further investigation include
more flexible handling of project allocations and measures of improving scalability.

Acknowledgments

We acknowledge Lennart Johnsson, Royal Institute of Technology and Bo Kågström,
Umeå University, for fruitful discussions and constructive comments. We would also
like to thank Martin Folkman, Uppsala University, for his work on developing an SGAS
administration tool. We are also grateful for the constructive comments in the feedback
from the refereeing process.

References

1. A. Anderson, A. Nadalin, B. Parducci, D. Engovatov, H. Lockhart, M. Kudo, P. Humenn,
S. Godik, S.Anderson, S. Crocker, and T. Moses. eXtensible Access Control Markup Language
(XACML) Version 1.0, OASIS, 2003.

2. Apache Xindice, 2004. http://xml.apache.org/xindice/.
3. M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon. XML-Signature Syntax and Process-

ing, W3C, 2002.

1060 Erik Elmroth et al.

4. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S. Tuecke,
and W. Vambenepe. The WS-Resource Framework: Version 1.0, 2004.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

5. I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. 2002.
http://www.globus.org/research/papers/ogsa.pdf.

6. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of High Performance Computing Applications,
15(3):200 – 222, 2001.

7. T. Imamura, B. Dillaway, and E. Simon. XML Encryption Syntax and Processing, W3C,
2002.

8. S. Jackson and R. Lepro. Usage Record – XML Format, Global Grid Forum, 2003.
9. G. Della-Libera, B. Dixon, P. Garg, and S. Hada. Web Services Secure Conversation (WS-

SecureConversation), Microsoft, IBM, VeriSign, RSA Security, 2002.
10. T. Sandholm, P. Gardfjäll, E. Elmroth, L. Johnsson, and O. Mulmo. An OGSA-Based Ac-

counting System for Allocation Enforcement Across HPC Centers. Proceedings of the 2nd
International Conference on Service Oriented Computing (ICSOC’04), ACM, New York,
USA, November 15-19, 2004 (to appear).

11. T. Sandholm and J. Gawor. Globus Toolkit 3: A Grid Service Container Framework, 2003.
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/gt3 core.pdf.

12. SNAC - Swedish National Allocations Committee, 2004. http://www.snac.vr.se/.
13. SOAP Specifications, 2004. http://www.w3.org/TR/soap/.
14. Sun’s XACML Implementation, Sun Microsystems, 2004.

http://sunxacml.sourceforge.net/.
15. SweGrid, 2004. http://www.swegrid.se/.
16. S. Tuecke, K. Czajkowski, J. Frey, S. Graham, C. Kesselman, T. Maquire, T. Sandholm,

D. Snelling, and P. Vanderbilt. Open Grid Services Infrastructure: Version 1.0, Global Grid
Forum, 2003.

17. Web Services, 2004. http://www.w3.org/2002/ws/.
18. Web Services Description Language (WSDL), 2004. http://www.w3.org/TR/wsdl.
19. WebServices – AXIS, 2004. http://ws.apache.org/axis/.
20. XML Path Language (XPath), 2004. http://www.w3.org/TR/xpath.
21. XML:DB Initiative, 2004. http://xmldb-org.sourceforge.net/.

	Introduction
	Background
	Accounting System Overview
	The Grid Service Concept

	Bank Design
	Bank Implementation
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

