
Reliable, Low Overhead Link Quality Estimation
for 802.11 Wireless Mesh Networks

Lochan Verma, Seongkwan Kim, Sunghyun Choi
School of Electrical Engineering & INMC

Seoul National University
Seoul, 151-744, Korea

{lochan,skim}@mwnl.snu.ac.kr, schoi@snu.ac.kr

Sung-Ju Lee
Media Communications & Networking Lab

Hewlett-Packard Laboratories
Palo Alto, CA 94304

sjlee@hp.com

Abstract—We propose QUEST (QUality ESTimation), a new
method that accurately estimates IEEE 802.11 wireless link
quality with no in-band signaling overhead. Existing link quality
estimation methods either are based on hello exchanges by
fixing or varying transmission rates or rely on the history (e.g.,
delivery ratio) of previously sent data packets in a per-rate/-
neighbor manner. QUEST on the other hand, is based on a
delivery ratio vs. SNR (Signal to Noise Ratio) relation, called
profile, that is managed offline. QUEST estimates the target link
quality in terms of delivery ratio by performing profile lookup
for any incoming messages including broadcast hello, beacon,
data packets, etc. Therefore, it does not depend on a designated
protocol to obtain the delivery ratio. Instead, in QUEST, the
per-rate/-neighbor management of link quality is achieved by
profile lookup. We perform testbed experiments to achieve the
profile and also unravel two major bugs in MadWifi driver, widely
employed by many researchers to build an 802.11-based system.
Utilizing the large database of transmitter and receiver traces
with an indigenously developed tool, we study the impact of
altering the averaging time period on the profile for different
transmission rates.

I. INTRODUCTION

Wireless mesh networks aim to provide reliable high
throughput network connectivity to wireless users. Recent
research has focused on increasing the end-to-end throughput
performance of wireless mesh backhauls, where routing is one
of the most important factors in achieving higher performance
in multi-hop wireless links.

An effective route establishment heavily relies on an elabo-
rate design of link metric that represents wireless link quality.
Therefore, the precise knowledge of link quality to calculate
the routing metric of interest has become a prime aspect
in wireless mesh networking. Link quality aware metrics
proposed in [1], [2] have been shown to perform better than
the traditional hop count-based metric in the wireless mesh
settings [3]. Such mesh routing metrics can be derived using
the measured packet delivery ratio on a target wireless link.

Two popular assessment methods in obtaining the delivery
ratio are broadcast and unicast probing. Both of these schemes
have there own pros and cons. The latter scores high on
accuracy, while the former is preferred for the low overhead.
Considering a scalable mesh network, the overhead incurred

This work was supported in part by Seoul R&BD Program (10544).

in link quality measurements can tarnish the performance of
the network.

We propose a new link quality assessment method, called
QUEST (QUality ESTimation) in IEEE 802.11-based mesh
networks. QUEST targets to estimate the delivery ratio on
a mesh link without having any in-band signaling overhead,
such as periodic exchange of hello messages. Moreover, unlike
existing link quality estimation methods that either are based
on hello exchanges by fixing or varying transmission rates or
rely on the history (e.g., delivery ratio) of previously sent data
packets in a per-rate/-neighbor manner, QUEST is based on a
delivery ratio vs. SNR (Signal to Noise Ratio) mapping table
called profile that can be managed offline. QUEST estimates
the quality of a target link as the delivery ratio by performing
profile lookup for any incoming messages including broadcast
hello, beacon, data packets, etc. Therefore, no designated
protocol to achieve the delivery ratio information, with the
form of (delivery ratio, target neighbor, transmission rate)-
tuple, is required in QUEST.

The usage of channel profile has been explored in [4]–[6] for
interference estimation and link throughput prediction. They
consider only the lowest rate. In CHARM (Channel-aware
Rate Adaptation) [7] , the nodes estimate the delivery ratio
of a packet across different rates using the exchanged data
packets. However, it requires introducing a new element in
beacon, probe request and probe response structures.

QUEST is a generic method, being applicable to any
802.11-based networks with wireless LAN/ad-hoc/mesh set-
tings. We have built and evaluated QUEST in an open source
802.11 driver, MadWifi [8]. The implementations in [4]–
[6] use earlier MadWifi releases with a fixed noise floor as
−95 dBm whereas QUEST leverages the noise information
exposed by the MadWifi (version 0.9.3.3). Although the usage
of QUEST is independent of underlying PHY (Physical layer)
technologies (802.11a/b/g), QUEST has been implemented on
the 802.11a PHY as we found that there are two challenging
issues in building QUEST in the driver. Moreover, considering
the current trend that 802.11b/g PHYs are mainly used for
client access, we believe that the use of 802.11a PHY as a
backhaul channel could be a rational choice.

The contribution of this paper consists of the followings:

1) Building a wireless link profile: we design and evaluate
a low overhead, high accuracy link quality estimation method
based on a predetermined delivery ratio table, called profile.
Such an offline table-based approach has not been developed
previously for the wireless mesh network.

2) Accuracy study of the profile: through our indigenously
developed tool, we study the effect of altering the averaging
time period on profile for different transmission rates. Based
on this study, the accuracy of profile can be evaluated.

3) Debugging in MadWifi: we expose some unexplored
issues in MadWifi driver [8], and present our own solutions
to tackle such bugs. In fact, the driver problems significantly
abate the performance of MadWifi-based networks.

The rest of the paper is organized as follows. In Section II,
we propose QUEST. The experimental setup information for
profile generation is presented in Section III. Section IV
discusses the challenges in the profile generation. The paper
concludes with Section V.

II. QUEST

We present the details of QUEST, our link quality estimation
method for wireless mesh networks. We describe the motiva-
tion of QUEST design by reviewing the existing methods and
present the operation of QUEST.

A. Overhead for Link Quality Estimation

Most routing metrics in wireless mesh networks are based
on measured packet delivery ratio. We briefly review two such
metrics, namely, ETX (Expected Transmission Count) [1] and
ETT (Expected Transmission Time) [2]. ETX is the expected
number of data transmissions required to successfully send a
packet over a link, including retransmissions. The derivation of
ETX requires the measurement of forward and reverse packet
delivery ratios (i.e., df and dr) on a link, and it is given by

ETX =
1

df × dr
.

ETT, which is designed to reflect multiple transmission
rate capabilities onto the routing metric, is based on ETX as
follows.

ETT = ETX × S

R
,

where S denotes the size of the data packet and R is the raw
data transmission rate of the link. In other words, the accuracy
of ETT should also rely on the measured delivery ratio.

Two popular assessment methods to obtain the delivery ratio
are broadcast and unicast link quality probings. broadcastFR

(broadcast with Fixed Rate) measures the delivery ratio using
a fixed, lowest transmission rate. Therefore, it does not need
to send a probe packet, which is typically a hello message,
to all one-hop neighbors with different transmission rates.
However, considering the multiple transmission rates feature in
the current 802.11 devices for data communications, relying on
only the lowest transmission rate for the link quality measure-
ment is undesirable. broadcastMR (broadcast with Multiple
Rates), an improved form of broadcastFR, performs periodic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

T
im

e
(s

ec
on

ds
)

Node desnity (nodes/tx. range)

O(QUEST)
O(broadcastFR)
O(broadcastMR)
O(unicast)

Fig. 1. Time overhead with different methods for link quality estimation and
dissemination to neighbors.

hello message broadcast at different transmission rates. On
the other hand, unicast method scores high on accuracy as it
utilizes all the available transmission rates for the delivery ratio
measurement. Considering a large mesh network, however,
the overhead incurred in quality measurement can degrade
the performance of the network due to its per-neighbor/-rate
probings.

We analyze the overhead of the existing delivery ratio
measurement methods. Eqs. (1)–(3) give the time duration in
microseconds to estimate the delivery ratio with respect to a
node:

O(broadcastFR) =
[
Tdifs + Tb +

�data

r1

]
|N| , (1)

O(broadcastMR) =

(Tdifs + Tb) |R| +

|R|∑
i=1

�data

ri

 |N| , (2)

O(unicast) =[
(Tdifs + Tb + Tsifs + �ack

r1) |R| + ∑|R|
i=1

�data

ri

]
|N|2 , (3)

where Tdifs, Tsifs, and Tb represent DIFS (Distributed Inter
Frame Space), SIFS (Short Inter Frame Space), and the
average backoff time, respectively. Tb = CWmin

2 · SlotT ime,
where CWmin and SlotT ime represent the minimum con-
tention window and the backoff slot time, respectively. �data

and �ack denote the length of a data and an ACK frame,
respectively, which are fixed at 12000 and 112 bits in our
analysis. N and R are the sets of neighbor nodes in the
vicinity of the target node and transmission rates, respectively,
while |·| represents the cardinality of the set. ri represents the
transmission rate with index i. For example, r1 is the lowest
transmission rate, e.g., 6 Mbps in the case of the 802.11a PHY.
Note that the lowest transmission rate, i.e., 6 Mbps, is used
for ACK transmission in the above analysis.

The overhead for broadcastFR is the minimum since pe-
riodic hello message exchanges at only the lowest rate are
performed. broadcastMR performs periodic hello message
broadcasts at different transmission rates, and thus has an

inflated overhead cost. As seen in Fig. 1, unicast packet
probing method incurs the maximum overhead due to per-
neighbor/-rate probing.

QUEST requires no in-band signaling, and estimates the
delivery ratio by performing profile lookup for any received
management, control or data packet. Ideally, it should have
zero time duration overhead. However, in a wireless mesh
network, a node needs to disseminate the link quality estimate
for all links with other nodes in its transmission range, in
order to assist the routing protocols in route establishment
decisions. Accordingly, QUEST has the same overhead as
broadcast probing, but it provides the link quality estimate for
all transmission rates as compared with the broadcast probing,
which provides the link estimate for only the lowest rate.

B. QUEST Algorithm

Algorithm 1 QUEST algorithm.
1: RXSNR ⇐ SNR of the received frame
2: dri ⇐ Delivery ratio for rate i
3: if frame received then
4: do profile lookup with RXSNR to attain dri for all i
5: end if

Algorithm 1 estimates the link quality without incurring any
in-band signaling overhead. Profile, which is calculated offline,
forms the backbone of QUEST, and each node in the mesh
network is equipped with it. QUEST estimates the target link
quality (i.e., the delivery ratio) by performing the profile look
up for any incoming packet.

III. EXPERIMENTAL SETUP FOR PROFILE GENERATION

Profile refers to a delivery ratio vs. SNR mapping table for
all transmission rates developed through experimentation. We
focus on 802.11a PHY module and materialize profile through
elaborate calibrations using two NICs (Network Interface
Cards) for different transmission rates in the 802.11a rate
set. In fact, the profile is dependent on vendor and chipset.
We use Atheros/MadWifi NIC/driver pair as MadWifi is an
open source driver available for Atheros chipsets. We use
two IBM X40 laptops running Ubuntu linux (kernel version
2.6) [9], equipped with Cisco aironet 350 802.11 a/b/g PCM-
CIA cards [10], which are based on Atheros chipset.

A. Driver

The employed card driver is MadWifi (version 0.9.3.3). We
choose this version because it is the latest when this paper
is written, and it provides live noise floor calibrations as
opposed to a constant value of −95 dBm in older versions.
In order to support the calibration of currently prevailing
noise level on a given channel, this version uses a func-
tion, ath hal process noisefloor unused in earlier releases
of MadWifi. Atheros NICs measure RSSI (Received Signal
Strength Indicator) as a gain over noise floor in dB. Thus, the
reported RSSI is equivalent to SNR (Signal to Noise Ratio).
All experiments are carried for 802.11a, operating in the ad

TABLE I
TOTAL NUMBER OF PACKETS RECEIVED DURING ENTIRE

EXPERIMENTATION WITH BROADCAST PACKETS FOR DIFFERENT

TRANSMISSION RATES

Transmission Rate Total Packets

6 Mbps 106,876
12 Mbps 74,759
18 Mbps 94,337
24 Mbps 81,430
36 Mbps 90,145
48 Mbps 88,091
54 Mbps 87,097

hoc mode at channel 157 with the center frequency 5.785 GHz.
Since we have only two nodes, and this is a non-used channel
at our experimentation site, interference from other stations is
assumed to be absent.

During our calibrations, the noise floor actually varied
between −88 dBm and −93 dBm. We do not develop a profile
for the transmission rate of 9 Mbps as it is well known to have
a similar performance as 12 Mbps [11].

At the receiver node, there are two possible causes of
reception errors:

1. An error occurs in the PLCP (Physical Layer Conver-
gence Procedure) header. This is a PHY error and oc-
curs when the PLCP preamble synchronization or PLCP
header reception is unsuccessful. The driver does not
report statistics such as RSSI in this case.

2. The CRC-32 (Cyclic Redundancy Check) in the FCS
(Frame Check Sequence) of the MPDU (MAC Protocol
Data Unit) fails. This is a MAC error and packets affected
by this are dropped by NIC.

Only the second case can be detected by the receiver, as in
the first case no information is reported.

We customize the driver to gather statistics from packets
received correctly or with MAC error. For each received
packet, we maintain the attributes including RSSI, timestamp,
and sequence number. At the transmitter, the driver registers
such information as retry count, timestamp, and sequence
number for each transmitted packet. Table I is a reflection
of the magnitude of our database from our receiver trace.

B. Traffic Generator Tool

We use Iperf (version 1.7) [12] network traffic generator
tool. In order to end an active traffic session, Iperf inherently
generates a handshake signal between the transmitter and the
receiver. This is done to close the sockets opened for traffic
stream transfer. The transmitter will retry 10 times to establish
handshake in the case of a handshake establishment failure.
This operation causes some unwanted packet transfer between
the nodes and the time duration for active traffic session
becomes unpredictable.

Iperf is modified to meet our needs. We use UDP packet size
of 1001 bytes and generate CBR traffic at 1 Mbps. Odd packet
size of 1001 bytes is employed to avoid spurious packets from
causing ambiguity. Our database of transmitter and receiver
traces maintains the timestamp for each packet. When we

experimented with a higher traffic rate, astonishingly identical
timestamp values were recorded for many successive transmis-
sions. The reason is related to the granularity of the reported
timestamp. With MadWifi, the granularity of timestamp is
1 ms and 1 µs at the transmitter and the receiver, respectively.
Therefore, we adopted the traffic rate of 1 Mbps to avoid
identical timestamp reports. Our experimentation has been
done using both broadcast and unicast packet transmissions.
Each experiment run lasts for 200 seconds, and unless men-
tioned otherwise all calibrations are based on 5 experimental
runs, i.e., around 17 minutes of experimentation for each
transmission rate. Experimentation is carried out in evenings
with multiple receiver node locations and transmission power
control at the transmitter node.

C. Post Processing Tool

We developed the post processing tool to correlate the large
database of the receiver and the transmitter traces. The major
motivation to develop this tool is to determine the size of
time window, called Swin (Sampling window), over which the
delivery ratio and the corresponding average SNR should be
calculated. To understand the operation of this tool, X packets
are transmitted within an Swin interval. X is determined using
the transmitter trace and the knowledge of traffic generation
rate. Let Y be the total number of packets registered in the
database. The delivery ratio and the average SNR are then
computed for the Swin interval using Eqs. (4) and (5), and
Y/X (delivery ratio, average SNR) pairs are obtained:

Delivery Ratio =
rx no fault

tx total
, (4)

and

Average SNR =
∑rx total

i=1 SNR(i)
rx total

, (5)

where the following parameters are obtained for the given
Swin interval in consideration.

. SNR(i): the SNR measured during the i-th frame recep-
tion;

. rx no fault: the total number of correctly received
frames;

. rx mac fault: the total number of frames received with
MAC error;

. tx total: the total number of transmitted MPDUs;

. rx total (= rx no fault + rx mac fault): the total
number of received MPDUs.

Post processing tool provides us flexibility to generate
different profiles from the same database of the receiver and
the transmitter traces by adjusting the Swin size. As another
benefit, this tool determines PHY errors by tracking the
missing sequence number in the receiver trace and correlating
it with the transmitter trace.

When using unicast packets, the measured delivery ratio
is representative of the value at MAC SAP (Service Access
Point). However, if broadcast packets are used, it can be
associated with any layer of the ISO model since there are
no retransmissions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Average SNR (dB)

54 Mbps
48 Mbps
36 Mbps
6 Mbps

Fig. 2. Profile using 1 dB bucket along x-axis for different transmission
rates obtained with unicast packets for Swin 0.1 second.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Average SNR (dB)

200 seconds experiment run
50 seconds experiment run

Fig. 3. Profile for 6 Mbps using 1 dB bucket along x-axis obtained with
broadcast packets varying experiment time keeping Swin 0.1 second.

IV. CHALLENGES FOR PROFILE GENERATION

In Fig. 2, the curves are obtained via linear interpolation
using 1 dB bucket along the x-axis. The results are a surprise
to us because the delivery ratio curve for 6 Mbps is nearly
equivalent to that for 36 Mbps. This result was highly unrea-
sonable and intrigued us to retry the entire experimentation by
employing broadcast packets.

Fig. 3 depicts the delivery ratio vs. SNR relation obtained
for 6 Mbps using broadcast packets. 6 Mbps is a robust rate
and is expected to have high delivery ratio even for low SNR
range. However, with varying experimentation time duration,
unsatisfactory curves are materialized. Interestingly, smaller
experimentation duration generated similar delivery ratio vs.
SNR curve to that seen in Fig. 2 for 6 Mbps. With increased
experiment run time, the curve shows unpredictable trend.

Fig. 3 proved that the problem did not lay in using either
broadcast or unicast packets for making the profile. A close
evaluation of Figs. 2 and 3 reveals that:

• Delivery ratio is abnormally reduced for 6 Mbps in
both cases when using unicast and broadcast packets for
measurement.

• The receive sensitivity being followed is not in accor-
dance with the Cisco specifications as shown in Table II.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Avgerage SNR (dB)

raw data
fitted curve

(a) 6 Mbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Avgerage SNR (dB)

raw data
fitted curve

(b) 12 Mbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Avgerage SNR (dB)

raw data
fitted curve

(c) 18 Mbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Avgerage SNR (dB)

raw data
fitted curve

(d) 24 Mbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Avgerage SNR (dB)

raw data
fitted curve

(e) 36 Mbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Avgerage SNR (dB)

raw data
fitted curve

(f) 48 Mbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Avgerage SNR (dB)

raw data
fitted curve

(g) 54 Mbps.

Fig. 4. Scatter plot and fitted curves using 1 dB bucket along x-axis with broadcast packets and Swin 0.1 second.

TABLE II
TYPICAL RECEIVE SENSITIVITY FOR 802.11A WITH CISCO AIRONET 350

802.11 A/B/G CARDS

Transmission Rate RSSI

6 Mbps −87 dBm
9 Mbps −87 dBm

12 Mbps −87 dBm
18 Mbps −87 dBm
24 Mbps −84 dBm
36 Mbps −79 dBm
48 Mbps −74 dBm
54 Mbps −72 dBm

The answer to the above questions is discussed below.

A. Diversity Issue

MadWifi device driver provides transmit and receive diver-
sity control. When running multicast/broadcast traffic, after
certain time period of operation (20−30 seconds) every second
packet is lost at the receiver. Having such a deterministic loss
pattern cannot be attributed to channel characteristics. This
clearly suggests faulty handling of multicast/broadcast packets
in the driver. Looking at Fig. 2, we conclude that the unicast
packet reception does not suffer from such a flaw. The effect
of this fault becomes more severe as the experimentation time
increases as shown in Fig. 3. During the initial 20−30 seconds
of the experiment, rx no fault is not influenced by this fault.
However, after such an initial time, this irregularity reduces
rx no fault leading to inaccurate results by Eqs. 4 and 5.

The default antenna selection allows user to select the
antenna port for transmissions. However, multicast/broadcast
packets use a simple round-robin antenna port selection pro-
cess, and hence, they do not respect the default transmit
antenna setting causing half of the packets to be dropped al-

though they are reported as transmitted. Enabling the transmit
diversity did not resolve the issue, and we concluded that there
is a deep rooted bug in the driver. For our purpose, we simply
switched off both transmit and receive diversities as a fix to
the problem.

B. Receive Sensitivity Issue

From Figs. 2 and 3, we can infer that both the unicast
and the broadcast packets received at a node suffer from an
unreasonably low sensitive behavior of NIC for low transmis-
sion rates. This concern has its roots in the HAL (Hardware
Abstraction Layer) of the MadWifi driver. HAL, which acts
as a wrapper around the hardware registers is proprietary of
Atheros and is distributed in binary form.

An arriving 802.11 wireless signal is mixed with ubiquitous
interference. The received power may be increased although
the signal of interest is weak and distorted. This causes false
detects, i.e, erroneously categorizing an interfering signal as
a valid signal. There is an algorithm named ANI (Ambient
Noise Immunity) that resides in HAL. The purpose of ANI
is to reduce the false detects by maintaining certain interfer-
ence immunity parameters based on empirical measurements.
‘Noise’ in ANI does not stand for thermal noise, but represents
the ubiquitous interference.

When operating in non-station mode with OFDM PHY,
ANI operates in a faulty manner resulting in reduced receive
sensitivity for different transmission rates. We developed a
solution to tackle ANI in the driver even though HAL is
not transparent. HAL provides two powerful APIs (Applica-
tion Program Interfaces), namely, ath hal getcapability() and
ath hal setcapability(). Through ath hal getcapability(), we
can determine whether the HAL version being used supports
some specific capability, and ath hal setcapability() allows us

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Averge SNR (dB)

54 Mbps
48 Mbps
36 Mbps
24 Mbps
18 Mbps
12 Mbps
6 Mbps

Fig. 5. Profile using broadcast packets with 1 dB bucket along the x-axis
for different transmission rates and Swin 0.1 second.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

D
el

iv
er

y
R

at
io

Averge SNR (dB)

54 Mbps
48 Mbps
36 Mbps
24 Mbps
18 Mbps
12 Mbps
6 Mbps

Fig. 6. Profile using broadcast packets with 1 dB bucket along the x-axis
for different transmission rates with Swin 1 second obtained through post
processing.

to enable or disable a capability. Of our interest is the HAL
capability, called HAL CAP INTMIT. This capability deals
with the interference mitigation being performed by ANI. Our
implementation switches off this capability when operating in
ad-hoc mode with OFDM PHY.

Figs. 4 and 5 show the scatter plots and the corresponding
interpolated curves for different transmission rates drawn using
the broadcast packets. The curves are more intuitive and prove
that our fixes for the above mentioned problems work well.
In Fig. 4, each raw data point in the scatter plot represents
delivery ratio value over Swin size of 0.1 second, which
corresponds to 14 broadcast packet transmissions from a node.
The total number of received packets vary from [0,14] for Swin
0.1 second. Thus there can be 15 different delivery ratio values
for a particular average SNR value.

Fig. 6 represents the interpolated curves with Swin of 1
second, which corresponds to 125 broadcast packet transmis-
sions. Note that the scatter plots and profile curves can be
easily obtained by post processing tool for other Swin values.
The profile obtained with Swin interval of 0.1 second is more
dependable and accurate than its counter part obtained with
Swin of 1 second. If the Swin interval is comparable to co-
herence time (time duration over which channel characteristics

do not show much variation), the average SNR of packets
received in this interval is nearly similar to SNR of individual
packets, leading to accurate delivery ratio vs. SNR relation
determintation for this interval. On the other hand, a larger
Swin interval causes inaccurate delivery ratio vs. SNR relation
determination as the average SNR of packets received over
that interval can be very different from the SNR of individual
packets.

V. CONCLUSION AND FUTURE WORK

We presented a new method called QUEST that accurately
estimates IEEE 802.11 wireless link quality with no in-band
signaling overhead. We also performed the analysis for the
transmission time overhead incurred by both QUEST and
other existing schemes, for the quality estimation of channel.
QUEST depends on the delivery ratio vs. SNR relation, called
the profile. The profile, in this paper, is developed through
extensive experimentation with 802.11a PHY module, which
it can be done with any other PHY. During the course of
experimentation, we unearthed bugs in the popularly employed
MadWifi driver, which can significantly degrade the perfor-
mance of mesh networks. For future work, we plan to compare
the network performance with different routing metrics like
ETX [1] and ETT [2] when operating with broadcast/unicast
probe methods and QUEST. We are in progress of extend-
ing the use of QUEST in transmission rate adaptation, thus
achieving a true cross layer rate adaptation.

REFERENCES

[1] D. S. J. De Couto, D. Auayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-Hop Wireless Networks,” in Proc.
ACM MobiCom’03, San Diego, CA, USA, Sep. 2003, pp. 134–146.

[2] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-Radio, Multi-Hop
Wireless Mesh Networks,” in Proc. ACM MobiCom’04, Philadelphia,
PA, USA, Sep. 2004, pp. 114–128.

[3] ——, “Comparison of Routing Metrics for Static Multi-Hop Wireless
Networks,” in Proc. ACM SIGCOMM’04, Portland, OR, USA, Sep.
2004, pp. 133–144.

[4] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan,
“Measurement-Based Models of Delivery and Interference in Static
Wireless Networks,” in Proc. ACM SIGCOMM’06, Pisa, Italy, Sep. 2006,
pp. 51–62.

[5] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan, “A General
Model of Wireless Interference,” in Proc. ACM MobiCom’07, Montreal,
Quebec, Canada, Sep. 2007, pp. 171–182.

[6] A. Kashyap, S. Ganguly, and S. R.Das, “A Measurement Based Ap-
proach to Modelling Link Capacity in 802.11-Based Wireless Net-
works,” in Proc. ACM MobiCom’07, Montreal, Quebec, Canada, Sep.
2007, pp. 242–253.

[7] G. Judd, X. Wang, and P. Steenkiste, “Efficient Channel-aware Rate
Adaptation in Dynamic Enviroments,” in ACM Mobisys’08, Brecken-
ridge, Colorado, U.S.A, Jun. 2008.

[8] MadWiFi: Multiband Atheros Driver for WiFi. http://madwifi.org/.
[9] Ubuntu: A community developed, linux-based operating system. http:

//www.ubuntu.com/.
[10] Cisco Systems. http://www.cisco.com/en/US/products/hw/wireless/.
[11] D. Qiao and S. Choi, “Goodput Enhancement of IEEE 802.11a Wireless

LAN via Link Adaptation,” in Proc. IEEE ICC’01, Helsinki, Finland,
Jun. 2001, pp. 1995–2000.

[12] Iperf: The TCP/UDP Bandwidth Measurement Tool. http://dast.nlanr.
net/Projects/Iperf/.

