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Abstract Large scale grid computing systems may pro-
vide multitudinous services, from different providers,
whose quality of service will vary. Moreover, services
are deployed and undeployed in the grid with no central
coordination. Thus, to find out the most suitable service
to fulfill their needs, or to find the most suitable set
of resources on which to deploy their services, grid
users must resort to a Grid Information Service (GIS).
This service allows users to submit rich queries that
are normally composed of multiple attributes and range
operations. The ability to efficiently execute complex
searches in a scalable and reliable way is a key challenge
for current GIS designs. Scalability issues are normally
dealt with by using peer-to-peer technologies. How-
ever, the more reliable peer-to-peer approaches do not
cater for rich queries in a natural way. On the other
hand, approaches that can easily support these rich
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queries are less robust in the presence of failures. In this
paper we present the design of NodeWiz, a GIS that
allows multi-attribute range queries to be performed
efficiently in a distributed manner, while maintaining
load balance and resilience to failures.
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1 Introduction

Efficient discovery of resources and services is a crucial
problem in the deployment of computational grids, es-
pecially as these evolve to support diverse applications
including interactive applications with real-time QoS
requirements (e.g., multi-player networked games).
Within such an environment multitudinous services
made available by different providers co-exist. Once
services are deployed and properly advertised, users
can search for the available services and select the most
suitable ones to cater for their needs. It is anticipated
that clients will search for raw computing and storage
resources (e.g., machine with Pentium 1.8 GHz CPU
and at least 512 MB memory) as well as services (e.g.,
lightly loaded Everquest game server). Furthermore,
the attributes may be dynamically changing (e.g., avail-
able bandwidth between two nodes) rather than static
(e.g., OS version). Finally, services may appear and
disappear in the grid, and the quality of service deliv-
ered by the more stable services may vary widely over
time. Thus, providers should be constantly renewing
their advertisement, while users should be constantly
querying for the availability of better services. These
trends make the resource or service discovery problem
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challenging. The information service must be archi-
tected to support multi-attribute range queries in an
efficient manner in this environment.

Grid Information Service (GIS) has been proposed
to help users in the task of choosing which service to
use to better fulfil their needs [7]. The GIS can be seen
as a directory in which providers publish the static and
dynamic attributes of their resources and services, and
to which the consumers of these services submit their
queries. Obviously, to be useful for large grids, a GIS
implementation must be scalable. Moreover, in a sys-
tem with potentially many thousands of components,
failures are the norm and not the exception. Therefore,
fault-tolerance of the GIS is another requirement.

Early implementations of the GIS were either cen-
tralized or distributed over a static hierarchy of infor-
mation severs. Centralized solutions do not scale well
in large systems or with dynamic attributes that change
rapidly. Many centralized solutions can be augmented
by replication, but then managing consistent replicas
can incur significant overhead. Hierarchical distributed
systems alleviate some of the issues with the central-
ized systems. However, most of these are inefficient
in retrieving the answers to a multi-attribute range
query; the dynamic nature of the attributes queried
implies that the query has to be forwarded inefficiently
to the hierarchy of information servers. Further, there
is limited recourse available if due to the query load
patterns, some information servers get heavily loaded
while others are essentially unloaded.

More recent approaches rely on some scalable struc-
tured peer-to-peer (P2P) substrate on top of which the
directory service is built [1, 4, 13, 19, 21, 27, 28]. Most of
these systems rely on Distributed Hash Tables (DHTs)
to implement structured P2P directories. DHTs are
scalable and very robust to failures. On the other hand,
the only search operation that is efficiently supported
by DHTs is exact match. These systems do not provide
a natural way to perform complex multi-attribute range
queries while maintaining load balance.

Our goal is to design a GIS that allows multi-
attribute range queries to be performed efficiently
in a distributed manner. We emphasize this class of
queries because these are among the more useful and
common types of queries that a client of the GIS
would need to execute to identify services or resources
that meet its requirements. In this paper, we present
NodeWiz, a GIS that is organized as a P2P system.
The multi-attribute search space is distributed among
the NodeWiz peers according to a distributed tree
structure. NodeWiz is self-organizing such that loaded
peers can dynamically offload some of their load onto
other peers. Further, as described later, the information

storage and organization is driven by query workloads,
thereby providing a very natural way, not only to
balance the query workload but also to optimize the
performance for more common multi-attribute range
queries. However, systems based on distributed tree
structures are in general less resilient to failures than
DHT-based ones. In this paper we analyze the im-
pact of failures in such systems and propose mecha-
nisms for dealing with these failures. They have been
implemented in NodeWiz and evaluated in this paper.

The next section provides the background and re-
lated work. Section 3 describes the NodeWiz architec-
ture in detail and presents the associated algorithms.
Next, in Section 4, we analyze the impact of failures.
Then in Section 5, we describe the fault-tolerance
mechanisms that have been implemented in NodeWiz.
Implementation issues are discussed in Section 6. This
is followed by an evaluation of our NodeWiz imple-
mentation in Section 7. Finally, our conclusions are
presented in Section 8.

2 Related work

A GIS is a key component of any large grid installa-
tion. It addresses the important problem of resource
and service discovery which enables such large-scale,
geographically-distributed, general-purpose resource
sharing environments. Deployed grids based on first
version of the Globus Toolkit [10] employed the Meta-
computing Directory Service (MDS) [16]. The initial
architecture was centralized. Subsequently, MDS-2 [7]
was implemented with a decentralized architecture.
The X.500 data model used by LDAP [25] is em-
ployed in MDS-2 to organize objects in a hierarchi-
cal namespace. Each entry has one or more object
classes, and must have values assigned to the manda-
tory attributes for these classes. Values for optional
attributes may also be present. The query language,
also borrowed from LDAP, allows search based on
attribute values, as well as on the position of ob-
jects in the hierarchical namespace. The MDS-2 system
architecture consists of directory servers and other in-
formation providers maintained by the different orga-
nizations participating in a grid. They use soft-state
registration to join aggregate directory servers, which
in turn can query them to get details of their content.
More recently, MDS-4 [23] has been released as part
of Globus Toolkit version 4. The interfaces of MDS-4
have been standardized using web services. The infor-
mation providers can be infrastructure monitoring tools
like Ganglia [9] or any service that is provided by the
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grid and needs to be monitored, such as a job queueing
service.

NodeWiz can be viewed as a self-organizing, dis-
tributed directory that specializes in multi-attribute
range queries. It treats attribute values advertised by
resources and services, and the queries on them in
a symmetric fashion. We view the query process as
distributed matchmaking in which the advertisements
and queries are routed through the NodeWiz structured
P2P network until they reach the node where a match
is found. Thus the matchmaking is done by NodeWiz
peers in a wide-area distributed system, as opposed to
Condor [24], which has used a centralized matchmaker.

There are several works that support multi-attribute
and range queries on DHT-based overlays (e.g. [5, 19]).
Fault tolerance is provided by the underlying P2P
substrate. However, to allow operations on multiple
attributes, several DHTs—one per attribute—need to
be maintained. Maintaining multiple overlays involves
either updating each of them whenever a new advert is
made or sending queries to all of them. As the num-
ber of attributes increase, this implies a proportional
increase in the update or query traffic. PHT [21] uses
a single DHT but requires linearization of the attribute
space. Thus, queries return a superset of the matching
data, demanding a filtering procedure to be applied.
DST [28] also uses a single DHT, but requires main-
taining one segment tree for each attribute.

Mercury [4] is another information service that sup-
ports range queries over multi-attributes. Like [19]
and [5], Mercury maintains a separate logical overlay
for each attribute, however, it does not use DHTs as
overlay substrate. Mercury peers maintain a range for a
given attribute and pointers to peers that keep different
ranges of the same attribute (including the previous and
next ranges). Adverts are sent to every overlay (one
for each attribute), while queries are sent to the most
selective attribute overlay. When a peer leaves, the
pointers are broken and, periodically, a peer replaces
pointers to failed peers by new ones. In the meantime,
queries may be unsuccessful.

There have been other proposals for supporting
multi-attribute range queries in distributed environ-
ments without utilizing DHT. In [8], two spatial-
database approaches are compared for supporting
multi-dimensional range queries in P2P systems. The
first approach uses space-filling curves to map multi-
dimensional data to a single dimension. The latter is
then partitioned by ranges among the available nodes.
The second approach uses k-d-trees to partition the
multi-dimensional space into hypercuboids, each of
which is assigned to a node. In both cases, skip graphs
are used to increase routing efficiency. SkipNet [12]

enables range-queries on a single attribute by using
the skip list data structure and ordering nodes in the
overlay using string names, instead of hashed identi-
fiers. Hence, explicit load balancing is required. Dis-
tributed Index for Multi-dimensional data (DIM) [17]
is a data structure designed for multi-attribute range
queries in sensor networks. It uses a geographic hash
function to map the multi-dimensional space into a
two-dimensional geographic space, and then uses a
geographic routing algorithm. If instantiated as a k-d-
tree, BrushWood [27] is very similar to NodeWiz. How-
ever, BrushWood has no fault tolerance mechanism for
routing.

There are many distributed information services,
built on a P2P substrate, that have not been designed
for multi-attribute range queries. PIER [13] is a distrib-
uted query engine performing database queries over a
DHT. INS/Twine [2] also describes a P2P information
service. However, the focus is on semi-structured data
(e.g., in XML syntax) containing only attribute and
values that may be matched. Range queries are not
supported. A DHT-based grid information service is
presented in [1], supporting range queries on a single
attribute; this work presents the study of various query
request routing and update strategies.

Another P2P solution for discovering resources in
grid environments was described in [14, 15]. Their ap-
proach differs from ours and others surveyed above
in that they use an unstructured P2P system. They do
not maintain a distributed index that can efficiently
lead to the nodes that can answer the query. Instead,
they use heuristics such as random walks, learning-
based strategy (best neighbors that answered similar
query) and best-neighbor rule (one that answered most
queries, irrespective of type) to contact neighbors and
propagate the search through the P2P network.

The way we divide the attribute space among the
NodeWiz nodes has some resemblance to various data
structures studied in computational geometry, if we
consider the attribute space as a multi-dimensional
space. k-d-trees recursively divide a multi-dimensional
space, but at each level of the tree, one of the dimen-
sions is used. Interval trees organize line intervals in
tree data structures, so that the intervals intersecting a
query range can be efficiently found. Multi-dimensional
range trees are recursive binary search trees. First, a
balanced binary search tree is built on the first attribute,
and for each subtree, all the points contained in it are
used to build a balanced binary search tree on the
next attribute. Since we are building a P2P distributed
system, a data structure that allows efficient search in
a centralized environment is not enough. We need to
have efficient ways of mapping the structure among
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the nodes. k-d-trees provide the most obvious mapping.
However, using a k-d-tree strictly would imply that
all nodes at the same level would split on the same
attribute, using the median value of the local data.
In NodeWiz, nodes at the same level of the k-d-tree
decide independently which attribute to split on, and
the splitting value is not necessarily the median value.
Hence the term k-d-tree is used in this paper without
adhering strictly to its definition.

3 NodeWiz architecture

NodeWiz is a scalable P2P GIS whose main goal is
to allow multi-attribute range queries to be performed
efficiently and reliably in a distributed environment. In
this section, we present the most fundamental aspects
of the NodeWiz P2P architecture, namely the mecha-
nisms for routing the queries and advertisements. This
is closely related to the distribution of the attribute
space among the peers, which changes as peers join
or leave. NodeWiz adopts a soft-state approach for
storing resource information for dynamic attributes.
Resources update their information by periodically ad-
vertising their current attribute values. Therefore the
workload of a peer consists of routing advertisements
and queries, storing advertisements and responding to
queries that overlap the attribute subspace assigned
to it.

When NodeWiz is bootstrapped with one node, the
situation is similar to the centralized matchmaker in
Condor [22]. As the number of nodes grow, each new
node that joins NodeWiz does that in a way that seeks
to distribute the workload between itself and an ex-
isting node that was identified previously as having
maximum workload. The algorithm used to identify the
existing node with the highest workload is described in
Section 6.1. The next step is to identify the attribute
based on which the identified node will split its at-
tribute subspace with the new node, and the splitting
value of that attribute. This algorithm is described in
Section 6.2. The motivation for choosing an attribute

and dividing its range of values among the existing and
new node comes from the observation that temporal
and spatial distributions in attribute values can be ex-
ploited to maintain the load balanced among the peers
and localize traffic.

The attribute space is divided among the peers
according to a tree structure. This structure will be
referred to as a k-d-tree, as explained in Section 2.
Figure 1 shows an example where A bootstraps the
system, then, B joins the system and splits the attribute
subspace of peer A based on the attribute Load at the
value 0.6. All advertisements and queries associated
with load less than 0.6 are now routed to A, while those
associated with load greater than or equal to 0.6 are
routed to B. After that, A splits its attribute subspace
first with C, using Mem as the splitting attribute, and
later with E, again using Load as the splitting attribute.
The other splits can be easily identified from Fig. 1.
Since the node selected for splitting is chosen with
the goal of distributing the workload evenly among
all nodes, the tree will grow in a balanced fashion,
provided the workload does not show a sudden change
in characteristics. In practice, the workload pattern can
change, and so subtrees can receive unbalanced work-
loads. When the traffic received by a node falls below
a predetermined threshold, it can leave and rejoin by
splitting with the currently overloaded nodes. We will
explain such voluntary leaves in Section 5.

In order to efficiently route operations, each
NodeWiz peer maintains a routing table that keeps
track of some of the peers responsible for other parts
of the attribute space. An advertisement or query may
specify values for some or all attributes, and the values
in a query can be specified as a range. If an attribute
is not specified, it can match any value. Each entry of
the routing table contains one attribute, a range for this
attribute, and the identification of the peer that should
be forwarded any advertisement or query that matches
or overlaps the range for this attribute. The routing
operation at a peer involves lookup of entries in this
table starting at level 1, and progressing to the max-
imum level as follows. If the range or value specified

Fig. 1 NodeWiz’s tree
structure
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Table 1 Peer A’s routing table

Level Attribute Min Max Peer in charge

1 Load 0.6 +∞ B
2 Mem 0 2 C
3 Load 0 0.3 E

in the query or advertisement has no intersection with
the range in the routing table entry, the comparison is
repeated with the entry at the next level. When there is
an intersection, two situations are possible. If the range
or value specified lies within the range in the routing
table entry, the query or advertisement is forwarded to
the peer identified in the entry. The routing operation
is over in this case. When there is an overlap that
spans beyond the range in the routing table entry, the
query1 is split into 2. One is forwarded to the peer
identified in the entry, after its range is set to the over-
lapping range. The other query keeps the remaining
range, and the routing operation progresses to the next
level in the table with it. By excluding all attributes
and corresponding ranges present in its routing table,
a peer obtains the attribute subspace for which it is
responsible. Thus, if the peer is still left with a query or
advertisement at the end of the routing operation, there
is a match in the attribute subspace. Therefore, the peer
must either respond to the originator of the query with
matching advertisements from its repository or add the
advertisement received to the repository, superseding
any older advertisement for the same resource.

As discussed before, when a new peer J joins the
system, it must contact an existent peer E whose at-
tribute subspace is going to be divided with J. At this
point, J gets a copy of E’s routing table. Then, both
peers add an entry in their routing tables that points to
each other and record the corresponding attribute and
ranges defined by the splitting algorithm. Table 1 is the
routing table for peer A in Fig. 1 (routing tables for the
other peers can be easily derived from Fig. 1).

Now, consider a query “Load < 0.2 ∧ Mem > 3”
that is sent to peer G (see Fig. 1). In level 1, peer G’s
routing table indicates that peer G should forward the
operation to peer A. Then, after receiving the opera-
tion, peer A scans its routing table and finds out that
it should forward the operation to peer E (according
to the entry at level 3). According to peer E’s routing
table, peer E should not forward the operation to any
other peer, since it is the only peer whose attribute
subspace matches the operation values. Note, however,
that the less selective the operation is, the more peers

1This situation cannot occur for advertisements, since these
specify a value instead of a range.

may receive the same operation. For instance, a query
“Load < 0.5” will be routed to peers A, C, E, and F.

4 On the consequences of failures

In some environments, NodeWiz peers can be expected
to fail. These peers may take a long time to recover if
human intervention is required. Moreover, peers may
voluntarily or involuntarily leave the system forever. In
all these cases the routing tables of the remaining peers
must be appropriately updated so that operations are
successfully executed. In this section, we quantify the
impact of failures in NodeWiz

4.1 System model and definitions

For the sake of simplicity, we will analyze the impact of
failures by calculating the probability of having unsuc-
cessful operations on a well-formed system subjected
to a well-balanced workload. A well-formed system is
characterized by a perfectly balanced k-d-tree. On the
other hand, a well-balanced workload has the following
characteristics: i) all operations match the attribute
subspace of a single peer; ii) peers have the same
probability of being the target of an operation; and, iii)
peers have the same probability of being the recipient
of the operation. Although a NodeWiz system does not
need to be either well-formed or well-balanced, the way
nodes are joined to the system and attribute subspaces
are split naturally drive the system to these states. Thus,
they constitute an interesting scenario for analysis.

More formally, consider that a GIS is a set of peers
G, |G| = N , that together store a global attribute space
S. A system is well-formed iff: i) the routing table of
every peer has L entries; and, ii) N = 2L.

Let S(op) ∈ S be the subspace that matches opera-
tion op (a query or an advertisement); T (op) ∈ G be
the set of peers whose attribute subspaces intersect with
S(op); and, P(op, recipient) represent the probability
that the operation op sent to peer recipient be issued.
In a well-balanced workload: i) all operations op issued
are such that |T (op)| = 1; and, ii) P(op, recipient) =
cte, for all operations op issued and all recipient ∈ G,
where cte is a constant.

As discussed in the previous section, peers use their
routing tables to route operations on the k-d-tree
formed by them. The routing tables allow any peer to
route an operation to any other peer in the system. We
name the routing tree of a peer P the tree that indicates
the path that any operation received by P follows in the
way to any other peer in the system. This tree is built
in the following way. The root of P’s routing tree is P
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Fig. 2 Peer A’s routing tree

itself. All peers that appear in P’s routing table are then
attached to P’s routing tree at the next level. Then, for
every new peer Q attached to P’s routing tree, every
peer that appears in Q’s routing table and that is not yet
present in P’s routing tree is attached below Q in P’s
routing tree. This procedure continues until all peers in
the system appear in the routing tree. Figure 2 shows
the routing tree for peer A in the k-d-tree presented in
Fig. 1.

In a well-formed system, the maximum number of
hops in a route is L = log2N , while the minimum num-
ber of hops is zero, corresponding to the route the peer
has to itself. Let Ri(P) be the number of i-hop routes
peer P has, then Ri(P) is given by Eq. 1:

Ri(P) = CL,i = L!
(L − i)!i! (1)

4.2 Evaluating the impact of failures

Let us assume that at any given time t, the system
has a fraction ft of peers that are faulty. Thus, in a
well-formed system N · ft peers are faulty at time t.
Since we are assuming that all operations have the same
probability of being issued, this implies that all routes
have the same probability of being used to execute an
operation. For an operation op issued to a peer P to
be successful, the route from P to T (op) must be com-
posed exclusively of non-faulty peers. The probability
of an i-hop route to contain at least one faulty peer is
given by:2

PF Ri = 1 − (1 − ft)
i+1 (2)

The probability of having an unsuccessful operation
issued to peer P, named PUO(P), is given by the sum
on all possible sizes of routes of the probability of an
i-hop route to have at least one faulty peer (PF Ri)

2The exponent (i + 1) means the number of hops in the route
added to 1, which represents the recipient peer itself.

times the probability of an operation to be routed
though an i-hop route. This is expressed by Eq. 3:

PUO(P) =
L∑

i=0

Ri(P)

N · [
1 − (1 − ft)

i+1
]

(3)

Figure 3 plots Eq. 3 for ft = 10%, ft = 2.5% and
ft = 1%. As expected, as the fraction of faulty peers in-
creases, the ratio of unsuccessful operations gets worse.
Furthermore, as the size of the system increases, the
amount of unsuccessful operations also increases. This
is because as N increases, so does the size of the routes,
which reduces the probability of having only correct
peers in a route. Moreover, even low fractions of fail-
ures cause many unsuccessful operations. For example,
when ft = 1% in a system with 128 peers, a mean of
4% of the operations are not successful due to failures
in routing or in peers that keep the target attribute
subspace. For ft = 10% the ratio of unsuccessful oper-
ations increases quickly, achieving values greater than
35% for systems with as little as 128 peers.

If peers are not able to autonomously recover from
failures, then it is mandatory to take recovery actions
so that the system will not collapse. In the next section
we show how failures and voluntary leaves in NodeWiz
are dealt with.

5 Dealing with voluntary and involuntary leaves

For the sake of clarity, before discussing the approach
that we propose to deal with involuntary leaves, i.e.
failures, we will first explain in details how voluntary
leaves can be treated, assuming a failure-free scenario.

5.1 Voluntary leaves in a failure-free system

When a peer leaves the system, the attribute subspace
that it stores must be reclaimed by another peer in the
system. The simplest choice is to make this peer the last
peer with whom the leaving peer has split its attribute
subspace (or its replacement, if that peer has already
left the system). Moreover, the system must ensure that
every routing table that contains a reference to the
leaving peer will be updated, by either removing this
entry from the routing table or replacing the reference
to the leaving peer by a reference to the peer that is
reclaiming its subspace.

When the leave is voluntary, the leaving peer
(say, L) contacts the peer which will be its replacement
(say, R), informing that it wants to leave the system. R
is the peer that appears in the last entry of L’s routing
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Fig. 3 Probability of
unsuccessful operations
in a system with ft · N
faulty peers
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table. At this point, L also sends to R its local state,
i.e. all adverts it has locally stored. Then, R takes the
necessary actions so that the appropriate routing tables
in the system are updated, reflecting L’s departure.
During the execution of the leaving procedure, routing
tables will become temporarily inconsistent, and if no
precautions are taken, some operations may fail. To
account for that, L only leaves the system after re-
ceiving an authorization from R. In the meantime, any
operation that is routed through L is forwarded by L
to R, so that R can process it appropriately. This ap-
proach guarantees that no operation is ever routed to a
non-existent peer.

There are two different types of updates that may
be necessary to maintain routing tables consistent. Re-
garding these updates, the peers in the system are
divided in two classes. The first class is formed by R
itself and the peers that have inherited from R an entry
for L in their routing tables (if any), i.e. those peers
that are in the branches of R’s routing tree whose roots
are any of the peers that appear in R’s routing table
below L. The second class is formed by all other peers.
To update their routing tables, peers in the first class
must remove the entry they have associated to L. On
the other hand, all peers in the second class that have L
in their routing tables should replace the reference to
L by a reference to R. Identifying which routing tables
should be changed when a peer leaves the system is not
difficult. A simple recursion approach can be taken to
implement the required updates.

After receiving the leave notification from L, R
performs the following steps. It removes the entry it
has associated with L in its routing table and asks all

peers with which it has split the attribute subspace after
its split with L (if any) to do the same. If there are
such peers, they will appear in the entries of R’s routing
table below L’s entry. Recursively, the request is sent
down in the branches of R’s routing tree whose roots
are these peers. Acknowledgments are recursively sent
in the reverse direction to inform the requester that
the update has been performed in all peers in that
branch of the routing tree. Thus, when R receives these
acknowledgments it knows that the replacement has
been completed by all peers that had inherited from R
an entry for L in their routing tables.

R also begins the propagation of the departure of
L to the other peers that may have L in their routing
tables. To do so, it asks the peer that is one level above
L in R’s routing table (if any) to replace the reference
to L by a reference to R in its routing table. This peer
(say, U) starts a recursive update until all references to
L are replaced by references to R. When this happens,
U sends an acknowledgment to R.

The update initiated by U works as follows. U asks
all peers that appear in its routing table at levels below
the level U is in the system3 (if any) to replace refer-
ences to L by references to R. Also, if the peer that
has asked U to do the update is not at a level above U
in the system, then U asks the peer that appears in its
routing table that is one level above the level it is in the
system (if any) to replace references to L by references

3This will usually be the level at which U joined the system, but
can be another if U has replaced a peer that has joined the system
earlier than it did.
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to R. U then waits for acknowledgments from the peers
that it has asked to perform updates. This procedure
is executed recursively until all references are updated.
To avoid unnecessary message exchanges, peers should
only keep propagating the information about L’s
departure if they have L in their routing tables.

When R receives acknowledgments from the peers
below L (if any) and from the peer immediately above
L (if any) in its routing table, it knows that there are no
more references to L in the system and it can authorize
L to leave the system.

Based on the example in Fig. 1, the departure of B is
performed as follows:

1. B asks G to leave the system and sends G its local
state; from this point on, B forwards to G any
operation that is routed through B;

2. G removes the entry in its routing table that refers
to B; since G’s routing table has no entries below
B, there are no peers that have inherited entries
to B from G and that should be informed about
B’s departure; thus, G simply asks D to replace
references to B by references to G and keeps
waiting for an acknowledgment from D;

3. D replaces the reference to B by a reference to
G in its routing table and asks H and A to do
the same; D then keeps waiting from acknowledg-
ments from both A and H;

4. H replaces the reference to B by a reference to G
and sends an acknowledgment to D;

5. A performs the replacement and asks C and E to
do the update;

6. E performs the update and sends an acknowledg-
ment to A;

7. C performs the replacement, asks F to do the
update, and waits for an acknowledgment from F;

8. F performs the replacement and sends an
acknowledgment to C;

9. C receives the acknowledgment from F and sends
an acknowledgment to A;

10. A receives acknowledgments from both C and E
and sends an acknowledgment to D;

11. D receives acknowledgments from both H and A
and sends an acknowledgment to G;

12. G receives an acknowledgment from D and in-
forms B that it can leave, completing the leaving
procedure. Figure 4 shows the resulting k-d-tree.

Note that when the leaving peer is a “hub” (for
example, B was the second peer to join the system),
the leave operation is very costly, since every peer in
the system, except B itself, has an entry that references
B. However, for peers that are fresher in the system,
the overhead of leaving is much lower. In particular, in
a well-formed system, half of the peers are in the Lth

level and will require a single update operation to leave
the system. In general, the number of updates in routing
tables when a peer that is at level i in the system leaves
a well-formed system with N peers is N

2i−1 − 1, while
the number of messages exchanges is twice as much.
In average, the number of updates required is less than
log2N + 1 and the number of message exchanges is less
than 2 · (log2N + 1).

5.2 Dealing with involuntary leaves

It is important to point out that we are not concerned
with preserving the state of faulty peers. That is to say,
adverts that were stored in faulty peers will be lost.
The fault tolerance mechanism proposed aims only to
recover the consistency of the routing tables, therefore,
preventing operations from failing. Given that adverts
are constantly renewed, if the routing tables are kept
consistent, then the loss of state is not permanent. On
the other hand, if an effort is not made to keep the
routing tables consistent, then a substantial number of
operations will fail, as we have shown in Section 4.

For the sake of clarity, we first describe the rationale
of a fault tolerance mechanism for the simpler case in
which only one peer may fail. Then, we present how this
mechanism can be enhanced to cope with the general
case in which multiple peers may fail.

5.2.1 The single failure case

Failure detection is at the heart of any fault tolerance
mechanism, thus, we first discuss how failure detection
can be added to the NodeWiz design presented so far.

Fig. 4 NodeWiz k-d-tree
after B’s departure Load<0.6 Load>=0.6

Mem>2 Mem<=2

C,FA,E

A E C F
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D
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Mem<1 Mem>=1Clock<2 Clock>=2

G
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Failure detection Failure detection is performed via
a simple pull mechanism. If peer P is responsible for
monitoring peer Q, then P periodically issues “Are you
alive?” requests to Q. Q must reply to them with “I am
alive!” responses. If a timeout expires, then P suspects
that Q has failed and signals a failure detection. Ini-
tially, we consider that failure detection is perfect, i.e.
if P signals that Q has failed, then Q has indeed failed.
In Section 5.3 we discuss the effects of imperfect failure
detection.

For now, let the monitor of any peer in the system
be the peer that appears in the last entry of its routing
table. We name M(P) the peer that monitors a peer P.
Note that if P wanted to voluntarily leave the system, it
would ask M(P) to execute the appropriate procedure.

Although it is easy for a peer to identify who is its
monitor, it is not straightforward for a peer to iden-
tify which peers (if any) it should monitor. For that,
each peer must maintain extra information. When a
new peer P joins the system, then it selects a peer Q
whose attribute subspace will be divided with P. At this
point, Q should start monitoring P, and P should start
monitoring Q. Moreover, the peer that was previously
monitoring Q—if there is such a peer it will be the one
with whom Q had split its attribute subspace before
splitting with P—should be informed that it is P that
is performing this task from that point on. Similarly,
when a peer P leaves the system, M(P) should stop
monitoring P, and another monitor must be assigned
to all peers S, such that M(S) = P (if any). The first
requirement is trivially met, since M(P) is the peer
that P contacts to leave the system. To perform the
second update, P must inform all peers S that it is
monitoring that they should be monitored by another
peer. Each peer S then contacts the peer above P in
S’s routing table and ask it to start monitoring S. (Note
that these actions can be easily embedded in the leave
procedure described earlier, obviating the need for any
extra exchange of messages.)

Involuntary leaves for the single failure case When
there is only one faulty peer and no other peer
fails while recovery is taking place, fault tolerance is
achieved in a very simple way. When a peer P fails,
M(P) detects P’s failure and creates a virtual peer that
assumes P’s identity. We name the virtual peer that
impersonates P its shadow, and refer to it as S(P). At
this point the node that executes M(P) is also executing
the virtual peer S(P). When S(P) starts to execute it
asks M(P) to leave the system and waits for the corre-
sponding authorization. This mimics a voluntary leave
operation issued by P. Upon receiving such request,
M(P) proceeds as if P had asked to leave the system,

with the only difference that P’s local state is empty—
P’s state was lost when P failed. When S(P) receives
the authorization to leave the system, it is guaranteed
that all references to P in the routing tables of the
other peers have been either removed or replaced by
references to M(P). S(P) then terminates its execution
and the system is consistent again.

Recall that the entries in the routing table store not
only the identity of a peer, but also the information
required to access this peer (e.g. IP address and port
number). Thus, unlike the case for voluntary leaves,
when the leave is involuntary some operations issued
while the system is not consistent will fail. Peers that
still have a reference to P do not know how to con-
tact S(P), thus, operations that are routed through the
faulty peer will fail. However, this can be circumvented
with a simple retry mechanism and the support of a
name service.

In the more dynamic setting we target, one could
have the access information for a peer stored on a name
service, and when necessary, the information could be
looked up, using the peer’s identity as the key. The
information would be cached by the peers, and when
contacting a peer resulted in a failure, the information
could be refreshed from the name service. Assuming
the existence of this name service, when S(P) starts
executing, it replaces the access information for P in
the name service by the information necessary to access
S(P). When a peer Q tries to access the faulty P using
stale information it may have in cache, the operation
will fail. Q refreshes the information from the name
service and will then contact S(P) as if it were P. Like
in the voluntary leave case, S(P) forwards to M(P) any
operation that is routed through S(P).

Impact of a failure during the execution of a voluntary
leave Another concern is the impact that a failure may
have on the execution of a voluntary leave. The state of
a peer comprises not only the adverts it stores, but also
information related to the execution of on-going leave
operations. As described in the previous subsection, a
peer that is engaged in the execution of the leaving
procedure of another peer may block waiting for an
acknowledgment sent by another peer. If the latter fails
before sending this acknowledgment the former will
block forever and the system will enter a deadlock.

Fortunately, this problem can be easily fixed. When-
ever the routing table of a peer engaged in the execu-
tion of a leaving procedure needs to be updated, the
peer checks if there are new peers that need to be
asked to update their routing tables; these peers are
asked to do so, and acknowledgments from them are
awaited. Also, any peer engaged in the execution of
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the leaving procedure updates its routing table after
it receives acknowledgments for the updates requested
by it. Moreover, any pending acknowledgment from a
peer that is no longer in the routing table is marked as
received.

Dealing with multiple failures The simple approach
presented so far was possible because we did not con-
sider that other peers could fail while the failure of
a peer was being dealt with. The possibility of simul-
taneous failures complicates matters. This is because
multiple failures may lead to undetected failures, in
the case that a set of peers monitor each other and all
of them fail before being able to act on the failure of
the peer they monitor. For instance, in a well-formed
system, pairs of peers monitor each other (e.g. A and E,
C and F, B and G, and D and H in Fig. 1); if both peers
in any of these pairs fail simultaneously, their failures
will not be detected, and the routing tables will remain
inconsistent.

To solve this problem, one must appropriately in-
crease the number of monitors that a peer has. We do
that by requiring that every peer in the system monitors
particular sets of peers. Let n be the number of levels in
which a peer appears in the k-d-tree (for instance, in
the example of Fig. 1, A and B appear in three levels,
while E, F, G and H appear only in one). A peer P
will monitor n sets of peers, each of them associated to
a corresponding set leader that the peer may replace.
The set leaders are the peers that appear in P’s routing
table at or below the entry associated to the level at
which P is in the system (in the example of Fig. 1,
A and B are at level 1, while E, F, G and H are at
level 3). Each of these sets contain all peers that belong
to the branch of P’s routing tree whose root is the
corresponding set leader. P will replace a set leader
only in the event that all peers in the corresponding
set (including the set leader) have failed. Notice that
if failures were sequential, i.e. if during the recovery of
a faulty peer the system remained fault-free, then, P
would only replace a set leader L if L had failed and all
other peers in L’s set (if any) had also failed.

5.3 On the impact of wrong suspicions

Wrong suspicions may lead to correct peers being re-
moved from the system. When this occurs, two prob-
lems arise. Firstly, the adverts stored by the removed
peer, say R, will not be considered when operations
are issued to recipients other than R. Secondly, until R
realizes that it has been removed, it will perform busi-
ness as usual. This, in turn, may lead to either partial
or total failures in operations. If R does not belong to

the target of the operations it receives, then a failure
will only happen if the information in R’s routing table
gets out-of-date (for instance, because of failures and
departures of peers that appear in its routing table). On
the other hand, if R belongs to the target of the queries
it receives, then adverts that have been published after
R’s departure may not be returned to the user; also, if
R belongs to the target of the adverts it receives, then
these adverts will not be seen by the other peers in the
system.

However, peers that are wrongly suspected may
eventually detect that have been expelled from the
system—for instance, by inquiring its monitor when it
has not received “Are you alive?” messages for a long
enough period of time—and may re-join the system.
Therefore, it is important that the failure detector de-
livers good quality of service to avoid frequent wrong
suspicions.

6 Implementation issues

In this section we discuss some issues that should be
carefully addressed to render the implementation of
NodeWiz scalable and efficient in dynamically balanc-
ing the load of the operations among all peers.

6.1 Load balancing

When a new node joins NodeWiz, it needs to identify
one of the most overloaded nodes, which will split
its attribute space with the joining node. We employ
a distributed algorithm, henceforth referred to as the
Top-K Algorithm, which orders the nodes in NodeWiz
according to their workloads and identifies the most
overloaded one. Depending on how frequently nodes
join, this algorithm could run periodically or on de-
mand. If another join request had already reached the
identified node, resulting in it undergoing a split since
the top-K workload information was disseminated, the
request is forwarded to the node with the next high-
est workload identified during the run of the Top-K
Algorithm.

The Top-K Algorithm is distributed and runs in two
phases. Each node maintains a counter which repre-
sents its workload. The counter is incremented for each
advertisement or query received by the node. Period-
ically, it is divided by 2 to give more weight to recent
workload. In the first phase, each node sends a message
to another node selected from its routing table accord-
ing to a criterion to be explained soon. The recipient is
selected such that these messages travel along the links
of a tree composed of all the nodes in NodeWiz. Each
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non-leaf node waits during a timeout period for its chil-
dren to send their messages to it. After receiving their
messages, the node includes its own workload, sorts and
retains the Top-K workloads along with identities of the
corresponding nodes. It sends out the retained Top-K
workloads to its selected recipient. After the root of the
tree builds the list of Top-K workloads among all nodes,
the list is disseminated in the second phase to all nodes
in NodeWiz. This is simply achieved by relaying the list
to all nodes from which a node receives a message in
the first phase. Thus the list travels back along the links
of the tree to all the children. This algorithm may run
once for the on-demand case, or it may run periodically,
as mentioned earlier. In the second case, there is an
epoch counter tagged to each message, so that messages
delayed from one epoch, do not get processed by a node
in the next epoch.

We have mentioned that each node sends a mes-
sage in the first phase to one of the nodes selected
from its routing table. The selection of the recipient
node is based on the routing table. The recipient se-
lection process retraces the order by which nodes join
NodeWiz. Recall that each join results in the splitting of
the range of one attribute remaining in the possession
of the splitting node. To retrace the order of these
joins, each node looks at the most recent join event it
participated in, either as the splitting node or as the
joining node. This will be the most recent (highest level)
entry in its routing table. Recall that each entry in the
routing table indicates a range of values for a single
attribute, and a corresponding node to which advertise-
ments or queries overlapping that range should be sent.
By excluding all ranges present in the routing table for
this attribute, the node obtains the range of values of
this attribute for which it is responsible. If the values in
its own range are greater than the values in the range of
the routing table entry, the node will wait for the recipi-
ent node in that routing table entry to send a message to
it. Otherwise, the node will send its own message to the
recipient node. In case the node waits for the recipient’s
message, it checks the next most recent entry in its
routing table. This might be for the same or different
attribute. In any case, a comparison is again done for
the values in the range of the corresponding attribute
owned by this node and the recipient of this entry. If
the node has to wait for the recipient’s message, it adds
this recipient to the list of nodes for whose message it is
waiting. This list grows until the node reaches a routing
table entry, while scanning back from the most recent
entry, for which the comparison indicates that it should
send the message. The node does not scan the routing
table beyond this point. After it waits for the messages
from all the nodes in its list of nodes to wait on, it

includes its own workload, retains the Top-K values,
and sends the resulting message to the recipient of the
entry where it stopped scanning the routing table. Thus
each node in NodeWiz will wait for zero or more nodes
to send their message to it, and will send out exactly
one message. The exception is the one node that will
scan its entire routing table and add all nodes to its list
of nodes to wait on. This is the node whose attribute
subspace includes the maximum value of each attribute.
This node is the root of the dissemination tree, and will
start the dissemination of the list of Top-K values in the
second phase.

6.2 Splitting the attribute space

The Splitting Algorithm has to identify an attribute,
for which the range of values owned by the splitting
node can be divided into two ranges of values. Two
conditions have to be satisfied. Firstly, the values of
the selected attribute in the advertisements and queries
seen by the splitting node should show high probability
of falling in clusters that are within the two ranges se-
lected. This is based on the underlying assumption that
an attribute which shows strong clusters will continue
to do so, and has the better chance of maintaining even
distribution of load between the splitting and joining
nodes. For example, there might be a cluster of work-
stations which are kept busy by jobs submitted through
a batch queuing system. There might be another cluster
of desktop machines that are idle most of the time.
If the splitting node finds the load averages of both
sets of machines in the advertisements received by it, a
clustering algorithm could easily select the load average
attribute and a splitting value so that the advertise-
ments from the two sets of machines are assigned to
the two nodes. This brings us to the second condition
that needs to be satisfied. Consider the case where the
clustering algorithm finds two clusters for an attribute.
However one cluster is very small is size compared
to the other. This can clearly lead to load imbalance
between the splitting and joining node. Hence we select
among all the attributes the one for which our cluster-
ing algorithm leads to most even-sized clusters.

The input to the splitting algorithm in each node is
the histogram of values, one for each attribute, accumu-
lated from advertisements and queries received by that
node since the last time the algorithm was run. First,
the splitting algorithm invokes the k-means clustering
algorithm [11], with k = 2, individually on each of the
attribute histograms, with a limit on the number of
iterations. The boundary between the last histogram
bucket assigned to the first centroid and the first bucket
assigned to the second centroid is the splitting value for
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that attribute. Then we select the attribute for which
this division is the most balanced in size, so that the
workload gets distributed evenly between the existing
and the new peer. Although we depict only binary splits
in this paper, the scheme can be generalized to splitting
the attribute space into more than two partitions at a
given time.

6.3 Routing diversity optimization

Although NodeWiz allows for the attribute subspace
to be distributed equally among the peers, the routing
load is not balanced. The hubs, i.e. the peers that appear
at the first levels of the tree, such as A and B in Fig. 1,
are found in the routing table entries of several peers.
As a result, they forward more messages than the peers
that only appear at the levels closer to the bottom of
the tree.

We have tried a simple solution for this problem.
When a query or advertisement reaches its destina-
tion, the query results or an acknowledgment for the
advertisement is sent back to the NodeWiz node that
initiated the query or advertisement. When the routing
diversity optimization is turned on, the destination peer
piggybacks its routing table in the message that it sends
to the initiator. The latter caches the routing table
received in correlation with the routing table entry that
was used to send the query or advertisement out. This
ensures that another query or advertisement destined
for the same sub-tree of the decision tree can be sent
there with fewer overlay hops.

This routing diversity optimization has been evalu-
ated, and the results are presented in Section 7. We
also observe that the caching of multiple entries has the
added benefit of increasing the fault resilience of the
system.

6.4 Scalable and fault-tolerant name server

To avoid any operation from failing while an update
is on-going, the fault tolerance mechanism requires a
name service. Obviously, the name service also needs
to be scalable and fault-tolerant, so that it will not
constitute a bottleneck or a single point of failure in the
system.

A simple way to implement a scalable and reliable
distributed name service is to use a DHT, with the iden-
tities of peers as the search key. This gives scalability.
Fault-tolerance is attained by replicating the informa-
tion about each peer in the DHT. Note that although
DHTs are not suitable for range queries over multiple
attributes, they are very efficient for implementing the
operations issued to this name service. Moreover, the

DHT can be easily implemented by the same peers that
implement NodeWiz.

6.5 Scalable monitoring

Although voluntary and involuntary leave procedures
require a number of updates, with message exchanges
and local storage capacity O(log2N ) on average, these
are not evenly distributed among the peers. As for
the routing load previously discussed, the hubs have
normally a higher overhead than the peers that are in
lower levels of the tree.

This is not a big issue for algorithms that are exe-
cuted sporadically, such as voluntary and involuntary
leaves. On the other hand, failure detection is con-
tinuously executed. In particular, hubs should monitor
N − 1 peers. Nevertheless, there are several practical
solutions to this problem. The simplest one would be
for a peer to monitor only the set leader instead of
monitoring all peers in a given set. When the failure
of the set leader is detected, then the peer starts mon-
itoring one of the peers in the next level of the branch
of the peer’s routing tree whose root is the set leader.
This procedure would be carried on recursively, until
all peers in the set failed, when the peer would take
the necessary actions to replace the set leader. In this
way, any peer would be monitoring only one other
peer per set at a time. We note that even without this
optimization, half of the peers in the system already
monitor just one other peer.

The failure detection poses a second scalability chal-
lenge. As the algorithm was described, hubs must store
the whole routing tree, which may not be feasible in
some settings. One possibility to circumvent this prob-
lem, if it exists, is to construct the required parts of
the routing tree on demand. The problem is that the
information stored by faulty peers would be required
to allow that. An alternative would be for peers to use
the DHT that implements the name service to reliably
store their routing tables. Then, parts of the routing
tree could be reliably built on demand. Again, the
operations that are required to build the routing tree
are exactly the type of operation (exact match on the
identity of a peer) for which a DHT is most suitable.

7 Evaluation

Our evaluation is based on both simulations and
experiments with a NodeWiz implementation. In
Subsection 7.1 we use simulations to evaluate the
efficiency of the top-K and splitting algorithms in
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maintaining balanced both the tree data structure, as
well as the load among the peers. In Subsection 7.2 we
use experiments with an implementation of NodeWiz
to evaluate the response time of the query and ad-
vertisement operations, as well as how fast the system
recovers from failures.

7.1 Evaluation of the top-K and splitting algorithms

We have built an event-driven simulation framework
for NodeWiz. Our experiments use both synthetic and
real datasets. For both of them, we have six attributes.
In the synthetic dataset, each attribute is generated
from a Pareto distribution which has been observed
by other researchers to have good correlation to the
attributes in a data-center trace [1]. For the real dataset,
we used the measurements reported by the ganglia
distributed monitoring system for PlanetLab nodes [9].
We selected six attributes from the dataset, namely the
system load averages measured at 1, 5 and 15 minute
intervals, and the amount of available disk, memory
and swap space. Our discrete-event simulator reads
one query and one advertisement at each clock cycle
until all events in the input files have been consumed.
The NodeWiz node which a client would contact with
this query or advertisement is chosen randomly. Each
simulation must specify the number of NodeWiz nodes.
When all of them have joined NodeWiz, we reset the
statistics and report only the values obtained at the at
the end of the simulation. The number of events simu-
lated in the synthetic dataset is 100 times the number of
nodes, and usually a third of the events are simulated
by the time all nodes have joined. However, due to the
small size of the PlanetLab archive available, this is not
always true in the PlanetLab dataset.

Figure 5 shows the variation in average number of
hops for a query or advertisement as the network size
increases exponentially from 10 to 10, 000 nodes. We
observe that the average number of hops increases
very slowly. The queries in this experiment are for
specific values of each attribute. The plots for queries
and advertisements look similar. This is to be expected,
since NodeWiz will treat a query and an advertisement
with the same attribute values identically as long as we
are not querying for a range. Both will be routed to the
node with ownership of the attribute subspace in which
these attribute values fall. If we were querying for a
range, each query would visit all nodes overlapping the
query range, and so the average number of hops will
increase. This is explored in our technical report [3].

For this particular experiment, we have also run
simulations with a DHT-based GIS for a system with
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Fig. 5 Average number of hops for a query or advertisement as
the network size increases

10, 000 nodes. We have used PeerSim,4 an event-based
P2P simulator, and measured the number of hops re-
quired to store adverts in the GIS and to query them.
As previously discussed, for a DHT-based GIS one
needs to maintain as many DHTs as attributes. The
accumulated average number of hops for updating all
6 DHTs was 28.83, which means that the number of
hops increases linearly with the number of attributes,
when compared to the number of hops required for
NodeWiz. For the queries, the average number of hops
will depend on the DHT that is used. The strategy to
select the most appropriate attribute is not trivial. In
our simulations, we have used all possibilities for all
queries processed, so that we can bind the best and
worst values that any strategy could achieve for the data
we have simulated. Our results show that in the best
case, the average number of hops is 3.24. On the other
hand, it can be as high as 4.75. These values are not
significantly different from those attained by NodeWiz.
In summary, to avoid a much higher latency cost when
storing adverts, updates need to be executed in parallel
in all DHTs. The extra traffic generated for updating
the DHTs, as well as the overhead required to manage
these parallel updates, may turn out to be too high as
the number of attributes (and DHTs) increases.

Figure 6 shows the increase in number of entries in
the routing table, both maximum and averaged over all
nodes, as the network size increases. From this figure,
we conclude that the routing table size increases very
slowly compared to the rate at which the network size
increases. Moreover, the maximum number of entries

4http://peersim.sourceforge.net/.

http://peersim.sourceforge.net/
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Fig. 6 Average and maximum number of entries in the routing
table as the network size increases

is always very close to the average number of entries
in the tables. Recall that the number of entries in the
routing table of a node equals the number of times
the attribute space has been split to obtain the node’s
attribute subspace. Since our joining algorithm limits
the imbalance in the number of entries of different
nodes, it is expected that this growth will be logarithmic
in the number of nodes.

Figure 7 shows the standard deviation of the work-
load, as a measure of load imbalance, versus number of
nodes. The workload is the number of advertisements
and queries received by a node until the end of the
simulation, from the steady state when all nodes have
joined. Recall that we reset statistics at that point. For
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Fig. 7 Standard deviation of workload as a measure of load
imbalance versus number of nodes

each dataset, we show 2 plots, one marked ‘Cluster-
ing’ which uses the clustering algorithm described in
Section 6.2 to identify the attribute and the splitting
value. To measure how well this is doing, we compare
against the plot marked ‘K-d tree’. Here the idea is
to divide the attribute space as a k-d tree. So, at level
i in the tree, attribute i is used, with a wraparound
when maximum number of attributes is reached. Also,
the splitting value is the median of all data points for
that attribute that the node received in advertisements.
Notice that our clustering technique is doing better than
a k-d tree. Also, we do better usually on PlanetLab
dataset compared to the synthetic dataset. This could
be attributed to the fact that the synthetic data will not
have clusters as much as the real PlanetLab data. We
must also note that we are not comparing to other P2P
schemes that use k-d trees. In particular, the NodeWiz
techniques of maintaining routing tables, and the top-K
workload vector remain invariant.

Figure 8 shows the variation in the number of at-
tributes used by NodeWiz for the PlanetLab dataset.
When we reduce the number of attributes from 6, the
baseline in our experiments, to 3 and then to 1, the
average number of hops taken by a query increases.
This is to be expected, since each query specifies a range
for each attribute. As the number of available attributes
decreases, the range owned by a single node decreases
for fixed number of nodes. As a result, the query gets
flooded to more nodes. The advertisements specify
a single value, rather than a range. Hence they are
insensitive to the number of attributes. Furthermore,
we did not find any sensitivity of the routing table size
to the number of attributes. Hence, that data has not
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been plotted. From Fig. 8, we may also conclude that
NodeWiz has an advantage over systems that support
range queries using a single attribute. Unless the query
has an extremely selective attribute, and a distributed
index, such as a DHT, is available for that attribute,
these systems will result in the query being flooded
to a large number of nodes. On the other hand, our
system can result in the query being flooded to a large
number of nodes, only if a very large range or wildcard
(any value acceptable) is specified for an attribute. This
problem exists in DHT-based systems also. We can
address this problem by limiting the query to some
reasonable range on any attribute where a wildcard or
very large range is specified.

7.2 Evaluation of response time and recovery time

We have developed a Java implementation of
NodeWiz. In our implementation peers use a commu-
nication layer provided by the JIC (Java Internet
Communication) [18] library. JIC is an asynchronous,
Internet and NAT friendly communication infrastruc-
ture built on top of an XMPP (eXtensible Messaging
and Presence Protocol) stack [26]. The NodeWiz pro-
totype is currently being used as the GIS of the
OurGrid middleware [6, 20]. It incorporates all the
optimizations discussed in Section 6, except the imple-
mentation of the DHT-based name server.

We have run three different types of experiments.
In the first one we evaluate the performance of the
routing diversity optimization described in Section 6.3.
The second type of experiment evaluates the response
time of queries submitted to the system. Finally, we
conducted experiments to measure the recovery time
of the system after a failure.

In all experiments the system was set up in the
following way. The system was started with a single
peer and before a new peer could join the system, some
adverts were added. After the system reached the de-
sired size, the actual experiment was started and its
associated metrics begun to be collected. Each system
mounted received 10 times more adverts5 than the
number of peers. Peers joined the system every 400 ms
and a new advert was issued every 40 ms. We set the
Top-K algorithm to run periodically every 1, 500 ms. To
speed up the execution of the experiments we check-
pointed the initial states of the systems with different
sizes, i.e. the state when the system reached the desired
size. This way, the collection of the metrics for each

5These adverts were those describing PlanetLab nodes, cited in
Section 7.1.

Table 2 Average number of hops and effect of routing diversity
optimization in the experiments with the prototype

Number of peers Average number of hops

Without optimization With optimization

10 2.23 0.97
100 2.76 1.21

run and each particular system size started with the
system in the same initial state. We set the ‘time-to-
live’ associated to the adverts to infinity, so that it was
guaranteed that they would remain in the system during
the whole experiment. Furthermore, after the system
reached its final size, no other advert operations were
issued.

We first conducted experiments for systems with size
up to 100 peers. In all scenarios, the peers were evenly
distributed in a 14-processor cluster. The processors
in the cluster were Pentium 4 Xeon 2.4 GHz, running
Debian Linux and connected through a 100 Mbps net-
work. All peers that ran in a given machine executed
in a separate process. Moreover, each machine ran an
XMPP server. When a peer sent a message to another
peer, the message passed though at least one XMPP
server, even when both peers ran at the same machine.

The following results were obtained from several
runs of each scenario, which were enough to yield
a confidence interval of 95% with a maximum error
of 5%.

In the first set of experiments we submitted a number
of query operations to the system. These operations are
crafted in such a way that there is always a single peer
that holds the target attribute subset. Table 2 shows the
effect of the routing diversity optimization mechanism.

As expected, the average number of hops decreases
significantly when the routing diversity mechanism is
in use. The reduction is by a factor of approximately
56% in both cases. By using the routing table of the
last recipient recorded in the routing table entry, we
increase the probability that the message will be sent
closer to its destination on the first overlay hop, as long
as there is some locality in the traffic.

Next we evaluated the mean response time of
queries. The mean response time for systems with 10
and 100 peers are presented in Table 3, while Fig. 9
shows the response time of the query operations for

Table 3 Effect of routing diversity optimization on the response
time for systems with different sizes

Number Mean response Mean response time
of peers time (ms) with optimization (ms)

10 249.95 287.07
100 535.67 326.67
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Fig. 9 Effect of routing diversity optimization on the response
time for 100-peer systems

the same runs of the experiment previously discussed,
considering the systems with 100 peers.

As expected, results for the optimization mechanism
present a smaller mean response time and a smaller
maximum number of hops. Moreover, the mean re-
sponse time for queries with the same number of hops
also varies. Results for systems with 100 peers show
how routing load impacts the system. Routing diversity
prevents operations from passing via peers in higher
levels of the routing tree (see Section 6). It alleviates
the number of operations needed to be routed in the
whole system and, thus, the reduced load of the ma-
chines improves responsiveness. As a consequence,
queries that had to pass though a path with the
same length show better results in the system with
optimization.

The next experiment focused on the performance of
NodeWiz’s fault tolerance mechanism. We measured
the time required to fully recover the system after a
crash. After setting up the system we randomly selected
a peer and forced its crash. We then measured the time
elapsed between the failure detection and the instant
when all impacted tables had been updated. Recalling
NodeWiz’s failure detection procedure, a peer period-
ically sends heartbeats to its monitored peers asking if
they are alive. If the peer does not receive a response
after the amount of time set as the detection timeout,
it considers that the monitored peer is faulty. Our

Table 4 Recovery time for systems of different sizes subjected to
a single failure

Number of peers Mean recovery Median of the
time (ms) recovery time (ms)

10 87.10 18.70
100 4, 150.46 22.50

Table 5 Results for the experiments for 1, 000-peer emulated
systems

Metric Value measured

Average number of hops without optimization 5.93
Average number of hops with optimization 4.15
Average response time without optimization 170.00 ms
Average response time with optimization 149.57 ms

prototype relies on the JIC built-in failure detection
mechanism, and we have set the heartbeat interval to
10 s and detection timeout to 50 s. For a system with
N peers, we repeated such procedure enough times to
get results with the required confidence level. Table 4
shows the mean and median recovery time for systems
with 10 and 100 peers.

We measured both the mean and the median be-
cause the distribution of recovery times exhibits a long
tail. Such behavior occurs because the departures of
peers at higher levels yields more routing table updates
and, therefore, the system takes longer to recover in
these cases. Nevertheless, in most cases the time re-
quired to fully recover the system from a single failure
is very small.

We have also conducted the experiments running
in an emulated system with 1, 000 peers. We used the
Emulab testbed to execute these experiments. In this
case, the peers were evenly distributed over 50-nodes.
Each node used had a 3.0 GHz 64-bit Xeon processor,
with 2 GB RAM, running Red Hat Linux (Emulab
pc3000 type). The experiments were configured so that
the nodes were connected by a 1 Gbps network. Again,
each node ran an XMPP server and each peer ran in
a separate process. Table 5 shows the results for these
experiments.

For a larger system, the routing diversity optimiza-
tion still yields improvements on both the average num-
ber of hops and in the average response time. However,
the improvement is less important in this case, when
compared to that achieved for systems with smaller
sizes. This is because for a larger tree, there is a higher
probability of forwarding an operation to a node that
will have to route the operation through a larger sub-
branch of the tree, increasing the number of hops. Still,
the routing diversity optimization is very important
to reduce the number of operations that are routed
through the hubs, no matter the size of the system.

8 Conclusion

In this paper, we presented NodeWiz, a distributed and
self-organizing information system for grid infrastruc-
tures. Our focus is to enable efficient execution of
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multi-attribute range queries, which are expected to be
an important and common class of queries. NodeWiz
allows for information service nodes to be dynamically
added and removed from the information system, ad-
dressing scalability and performance concerns. More
specifically, the algorithms described as part of the
NodeWiz system have the capability to balance the
load across multiple information service nodes while
optimizing the performance for popular multi-attribute
range queries in a distributed manner. The prior work
on this problem does not provide a natural way to deal
with these kind of queries.

In NodeWiz, advertisements from service providers
are placed strategically into the information system
such that queries from the service consumers are routed
efficiently (with minimum number of hops) to the nodes
where the matching advertisements reside. We eval-
uated our algorithms using simulations on synthetic
and real data extracted from PlanetLab. We presented
results on the average number of hops for a query or
advertisement as the network size (number of nodes),
number of attributes and query selectivity are varied.
We also evaluated load imbalance and a routing opti-
mization. The results obtained indicate that NodeWiz
has an advantage over systems that consider single
attributes in isolation.

We have evaluated response time and the impact
of failures in NodeWiz using our implementation. Our
analysis shows that, if not treated, failures can sub-
stantially increase the probability of an operation not
being appropriately executed. We proposed a simple
fault tolerance mechanism that significantly decreases
NodeWiz’s unavailability due to failures.

We have a working implementation of NodeWiz
which is being incorporated into the OurGrid middle-
ware to enhance its matchmaking mechanism. OurGrid
is a P2P, free-to-join grid for bag-of-tasks applications.
It has been in production since December 2004 [6].
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