
RITA: Receiver Initiated Just-in-Time Tree Adaptation for
Rich Media Distribution

Zhichen Xu, Chunqiang Tang∗, Sujata Banerjee, and Sung-Ju Lee
Internet Systems & Storage Lab
Hewlett-Packard Laboratories

Palo Alto, CA 94304

{zhichen,sujata,sjlee}@hpl.hp.com, sarrmor@cs.rochester.edu

ABSTRACT
Application-level multicast networks overlaid on unicast IP
networks are increasingly gaining in importance. While there
have been several proposals for overlay multicast networks,
very few of them focus on the stringent requirements of
real-time applications such as streaming media. We pro-
pose RITA (Receiver Initiated Timely Adaptation) frame-
work for an efficient overlay multicast infrastructure. RITA
is based on a combination of landmark clustering and RTT
measurements, and is particularly suitable for multimedia
real-time applications. Our goal is to balance the network-
oriented goals of building an efficient multicast tree with the
application-oriented goals of providing good QoS with min-
imal disruptions. Using accurate global soft state informa-
tion tables, our approach promptly constructs and recon-
figures high quality trees. A distinguishing feature of our
approach is that the tree reconfiguration is initiated just-
in-time by the application client at the receiver when the
media quality falls below a specific threshold. The goal is to
achieve dynamic tree reconfiguration with very low switch-
ing delay such that end users do not perceive any application
performance degradation.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
streaming media, overlay networks, multicast, DHT

∗Chunqiang Tang is with Department of Computer Science,
University of Rochester, Rochester, NY.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’03, June 1–3, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-694-3/03/0006 ...$5.00.

1. INTRODUCTION
We envision a future where a large fraction of applications

use multimedia objects and streams. The significant drivers
for this trend are the widespread proliferation of high qual-
ity digital cameras and multimedia authoring tools as well
as the availability of the necessary computing, storage and
networking resources to create and deliver rich-media con-
tent. Internet users today can host web content (primarily
text and small images) from their home. In the future, it
will be just as easy for anyone with a PC and a digital cam-
era to be a cinematographer, editor and director of his or
her own movie and then disseminate a high quality media
stream to a very large remote audience over the high speed
Internet. An alternative futuristic scenario may be for fam-
ily members to “join” a Thanksgiving gathering in real time
from remote locations using similar media and networking
technologies. This vision is articulated in [3] with descrip-
tions of several other scenarios. An attractive possibility is
for these applications to function by setting up peer-to-peer
(P2P) communities, requiring minimal support from the un-
derlying infrastructure and thus quickly deployed.

Scalable and efficient multicasting is essential to enable
the above vision. Multicasting provides significant band-
width savings and is particularly crucial for the dissem-
ination of live as well as stored high fidelity multimedia
content because of the sheer size of the content, the rela-
tively long duration of the session, and the correspondingly
high bandwidth requirements. Moreover, multimedia appli-
cations have very stringent delivery requirements without
which the user perceived quality will suffer. Thus, in addi-
tion to scalable multicasting, supporting some level of end-
to-end quality of service (QoS) is also a key requirement in
realizing this vision.

Due to a variety of deployment issues, including high man-
agement complexity and cost, either IP multicast or Inter-
net QoS are not widely supported today in the Internet in-
frastructure. However, spurred by the demand for excit-
ing multimedia applications, several application level over-
lay schemes have been recently proposed. Most schemes
primarily deal with overlay multicasting [7] while some con-
sider overlay QoS [25]. Some schemes such as Host Multicast
Tree Protocol (HMTP) [29] leverage IP multicast if avail-
able. Very few overlay schemes consider both multicasting
and end-to-end multimedia QoS issues, which is the subject
of this work.

We propose an efficient application layer multicast in-
frastructure for multimedia real-time applications, which

greatly benefits from a global view of the system stored in
a distributed hash table (DHT). DHT systems such as Con-
tent Addressable Network (CAN) [19], Pastry [22], Chord [24],
and Tapestry [30] offer an administration-free and fault-
tolerant storage utility. Nodes in these systems collectively
contribute towards a storage space in a self-organizing fash-
ion. In these systems, there is a consistent binding between
objects and nodes. Locating an object is reduced to the
problem of routing to the destination node that stores the
object. The logical structure of these systems provides some
guarantee with respect to the number of logical hops that
need to traverse to locate an object. Various techniques
have been proposed to map the logical structure to fit the
topology of the underlying physical network [6, 21, 27, 28].

In this paper, we propose RITA (Receiver Initiated Timely
Adaptation) framework for an efficient overlay application
layer multicast infrastructure. The global view is generated
from landmark clustering [16]. Combining the landmark
information with a small number of round-trip time (RTT)
measurements to locate physically close-by neighbors, RITA
provides very fast, high quality tree construction and adap-
tation. There are three key differences between RITA and
that of prior work.

• None of the existing schemes addresses the problem of
media quality disruption during the tree reconfiguration.
Our goal is to develop mechanisms that transparently re-
configure the overlay tree in very short timescales such
that the user’s perceptual quality does not suffer during
the reconfiguration process. We focus on perceptual qual-
ity because not all fluctuations in network quality nega-
tively affect the application perceived QoS.

• Unlike other schemes which advocate periodic tree recon-
figuration or event-triggered reconfiguration (e.g., when
RTT increases), RITA performs just-in-time reconfigura-
tions driven by application/user perceived QoS. This ap-
proach provides a natural reconfiguration timescale and
avoids the overhead of unnecessary changes to the tree
that do not affect the end client’s perceived quality.

• Most of the schemes require several seconds to reconfig-
ure or complete a join to the tree. Utilizing the landmark
information stored in the DHT, RITA requires far fewer
network measurements with an aim to perform tree recon-
figurations under a second, while producing a tree that is
reasonably close to the optimal in terms of bandwidth ef-
ficiency. Compared with an HMTP like, our algorithm
speeds up the tree construction by a factor of up to 16,
while often producing highly efficient trees.

The rest of the paper is organized as follows. We describe
the RITA approach in Section 2. An evaluation of RITA
using simulations is presented in Section 3. An overview of
the related work is presented in Section 4. We conclude the
paper with a discussion on open issues and future directions
in Section 5.

2. RECEIVER INITIATED TIMELY ADAP-
TATION FRAMEWORK

The quality of a multicast tree, to a great extent, depends
on how close its structure approximates to that of the under-
lying physical network. One simple way to construct efficient
trees is to measure the end-to-end latency between each pair
of the nodes and run a shortest path tree algorithm over the

resulted graph. This approach however, is not practical for
large trees due to the excessive measurements required. In
this section, we present the approach taken by the RITA
(Receiver Initiated Timely Adaptation) framework.

The fundamental idea of utilizing global information to
create an efficient tree is crucial. To maintain global state,
we propose to select nodes to form a DHT to serve as a
rendezvous plane to store information of nodes in the tree.
DHT systems such as CAN [19], Pastry [22], Chord [24], and
Tapestry [30] provide a hash table abstraction that allows
efficient storage and retrieval of (key, object) pairs. In
such systems, each node only need to know the addresses
of logarithmic number of other nodes in the system and
a node can be reached in logarithmic number of routing
steps. Nodes in these system collectively contribute towards
an administration-free and fault-tolerant storage space in a
self-organizing manner.

We use the landmark vectors [16] of nodes as keys to store
their information in the DHT such that information of nodes
that are physically close to each other are stored near each
other in the DHT [28]. As a result, a node finds information
of close-by nodes in an efficient and scalable way. Note that
there are many Internet host distance measurement schemes
(e.g., IDMaps [11], King [12]) in addition to the landmarks
technique, and it is possible for RITA to work in conjunction
with these schemes as well.

Our experiments show that if a new node finds the closest
node in the tree and attaches to it, the tree cost (defined
as the aggregated weight of tree edges) is comparable to
that of a shortest path tree with less than 30% overhead
for trees with up to 2,048 nodes. To find the closest node,
we propose a technique that combines landmark clustering
and actual RTT measurements [28]. In our model, a new
node always attaches to the identified closest node using the
above technique.

Next we provide the details involved in locating the clos-
est node to any given node, followed by a description of the
tree construction algorithm. Then a tree adaptation algo-
rithm that quickly responds to changing network conditions
is described. The goal of this algorithm is to minimize the
disruption to the end users.

2.1 Locating the Closest Node
We use landmark clustering as a pre-selection process to

identify nodes that are possibly close, and use RTT mea-
surements to locate the actual closest node. The intuition
behind landmark clustering is that if two nodes have similar
latencies to a common set of landmark nodes, they are likely
to be close to each other. In particular, we adopt the tech-
nique proposed in [16]. Landmark nodes measure the RTTs
among themselves and use this information to compute co-
ordinates in a Cartesian space for each of them. These co-
ordinates are then distributed to the clients, which measure
RTTs to the landmark nodes and compute their own coor-
dinates. We call these coordinates landmark vectors. The
Euclidean distance between nodes in the Cartesian space is
directly used as an estimation of the network distance.

Each node uses its landmark vector as the key to store
its profile in the DHT.1 This controlled placement of node
profiles has the effect that information of nodes that are

1We use CAN to store the landmark information. CAN
provides a DHT over a Cartesian space and therefore, we
use the landmark vectors as the DHT keys.

roota

b

c

d

e x

n

Y

Figure 1: Tree construction.

physically close are stored nearby in the DHT. To find a
set of physically close-by nodes, a node uses its landmark
vector as the key to look up the DHT. The node ranks the
identified neighbors according to the similarity in landmark
vector, and measures RTTs to top candidates to locate the
closest one. Our experiments show that for a typical topol-
ogy with 10,000 nodes, using 15 landmarks and 20∼40 RTT
measurements accurately locates a close-by node [28].

In reality, finding the right node to attach to in the tree
is a multi-faceted problem that is more complex than just
finding the closest node, especially when nodes are heteroge-
neous. For example, the network access link speed of a node
is one of the deciding factors for the maximum media stream-
ing rate to that node. If the source streaming rate is higher
than the network access speed of a node, this node needs to
attach to a tree node that can transcode the media down to
the desired rate. To address this issue, each node includes
rich information about itself in the profile and periodically
updates the profile with its current state. The profile for
a node may include its landmark vector, its network access
type and speed (e.g., 56kb/s dialup line, 1.5Mb/s DSL or
100Mb/s LAN), current and maximum fan out in the multi-
cast tree, processing power, current load, special capabilities
such as transcoding, and so forth. When searching for can-
didate nodes to attach to, a node that is joining the tree
considers not only network proximity but also its special
QoS requirements.

2.2 Basic Tree Construction Algorithm
We illustrate our tree construction algorithm in Figure 1.

We select nodes that have good capacity and network con-
nectivity in the tree to form a DHT and store node profiles
in the DHT. When a new node n wants to join the multicast
tree, it computes its own landmark vector and carries out
the following steps:

1. Uses its own landmark vector as the key to look up the
DHT, obtaining information about a set of nodes X whose
landmark vectors are similar to its own. Based on this in-
formation, it eliminates the nodes in X that do not satisfy
the QoS requirements (bandwidth, CPU load, etc.). The
remaining nodes form a set Y , which includes nodes d, e

and x in Figure 1.

2. Performs concurrent RTT measurements to each node in
Y and identifies the node that is the closest. Let us denote
the closest node as x.

3. Attaches to x as its child.

b

n

p

R (Rendezvous point on DHT)

a

p’

n

p

R (Rendezvous point on DHT)

a

p’

(a) (b)

good link bad link message

1

2

3 1

2

3

4
b

Figure 2: Tree adaptation.

This simple algorithm offers the following advantages: (i)
Because RTT measurements to each node in Y are per-
formed concurrently, a new node quickly locates the poten-
tially closest node without level-by-level tree traversal. (ii)
We have a global view of the system that enables us to find
a good neighboring node that satisfies the QoS constraints
without having to contact a significant number of nodes.

2.3 Tree Adaptation Algorithm
Driven by the inherent dynamics in the underlying infras-

tructure, we propose two kinds of tree adaptations—a just-
in-time adaptation to address application quality issues, and
a long-term adaptation to address tree efficiency issues. The
long term adaptation has a relatively large period in the or-
der of several minutes or even hours, and it is actually car-
ried out only if doing so can result in significant bandwidth
savings.

The just-in-time adaptation is driven by application per-
ceived QoS that is impacted by the fluctuations in the qual-
ity of the links. To provide the end users with reasonable
QoS, the tree must continuously adapt to these changing
conditions and minimize any service disruption to the end
users. This translates into finding the best location to per-
form the adaptation and minimizing the delay for each re-
pair. We assume that all tree nodes can monitor its end
application QoS or the quality of the end-to-end path and
translate this to user-perceived QoS.

We demonstrate our tree adaptation algorithm using Fig-
ure 2. When a node n perceives a QoS degradation over
its tolerance threshold, it sends a complaint to its parent p

in the tree along with its own landmark vector. If p is not
responsive, n switches to a new parent by performing a new
join process initiated at the root. If p responds, we have two
cases as shown in Figure 2 (a) and 2 (b), respectively.

1. p is happy with its QoS, which indicates that the bot-
tleneck link lies on the path (p, n). p forwards the com-
plaint initiated by n directly to the DHT infrastructure
(depicted as a rendezvous node R on the DHT), which
will provide n with a new set of candidate parent nodes
that are close to n judging from the landmark vectors. In
Figure 2 (a), this candidate set includes p′ and b. Similar
to the tree construction process, n chooses its new par-
ent, e.g., p′, based on the measured RTTs to candidates
and the QoS they can provide. n then carries out the
switching with the handoff process we describe later.

2. p is also unhappy with its QoS, which indicates that
the bottleneck link exists on the upstream path, e.g., path

n

p

root

a

p’

n

p

root

a

p’

n

p

root

a

p’

Figure 3: Multi-homed handoff process.

(a, p). In this case, p starts its own complaint process by
sending a message containing its own landmark vector to
its parent a. Note that by the time that the complaint
from n arrives at p, p may already have sent a complaint
to a based on its perceived QoS. In this case, p will sup-
press n’s complaint. These concurrent complaints may
save significant time in adaptation.

In Figure 2 (b), because a is happy with the QoS it per-
ceives, it directs the complaint to the DHT node R, which
will instruct p to switch to a new parent with the candidate
set including p′ and b. p then measures the RTTs to these
nodes and switches to p′. During this process, n waits for
the QoS to improve, or an instruction from R to switch to a
new parent. If it is still unhappy after a timeout, i.e., there
are multiple bottleneck links on its upstream path, it starts
the complaint process again.

To prevent routing loops, each node records the path from
the root to itself. If a node searching for a new parent finds
that it is on the path from the tree root to a candidate
parent node, then this candidate node is not selected as the
new parent. Tree adaptation could also cause oscillations
where a node keeps switching back and forth among a set of
candidate parent nodes. To avoid this problem, each node
caches the parent nodes of the recent past and does not
choose a node in the cache as the new parent.

Our tree-adaptation algorithm minimizes the overall dis-
ruption by locating the problematic link and having the node
incident to that link to adapt. For instance, when the qual-
ity of a link close to the root degrades, instead of asking
every downstream node of that link to find a new parent,
our local repair algorithm requires only the node incident to
that link to attach to a new parent.

It typically takes three steps to obtain a set of parent
candidates. Assume that the (n, p) and (n, p′) distances are
20ms since n is close to p and p′, and (p, R) and (n, R) are
100ms. Considering that routing in the DHT typically takes
double the latency of IP routing [28], it takes approximately
320ms to obtain the candidate sets. Assume that we do
three rounds of concurrent RTT measurements to all can-
didates and select the candidate that has the lowest RTT.
This will take additional 120ms. This leaves us with 560ms
to complete the entire switching under one second.

2.4 Smooth Application Handoff
One of our goals is to develop methods to ensure that

the application performance suffers minimally and the tree
reconfiguration is conducted transparently. Because switch-
ing to a new parent may incur some delay, it is essential to
maintain the performance levels during the parent handoff
process. For media applications, this is crucial as the user
perceived media quality may suffer significantly, if there is

a sudden high loss or delay inflicted by the handoff. To
minimize disruption, we use multi-homing at the multicast
overlay layer during the handoff period, similar to [23]. The
idea is to have a child connected to both the new and the
old parents, and receive application packets from both until
the handoff is complete.

We illustrate the handoff process in Figure 3. When a
node n needs to switch from its current parent p to a new
parent p′, it contacts p′ for connection establishment. The
connection between n and p will be torn down after the two
flows from p and p′ are synchronized. It is possible to design
more sophisticated algorithms that reduce the amount of
duplicate traffic sent to n. It should be noted that during
a short period, certain links that lead to node n now may
have to carry traffic from both parents. If one of the links is
a bottleneck link, this can temporarily worsen the situation.
If the QoS degradation is caused by a bottleneck link that is
on the paths from all potential new parents, then no repair
is possible. The challenge is to promptly detect this scenario
so that unnecessary repair is halted.

3. PERFORMANCE RESULTS
To evaluate the effectiveness and efficiency of RITA, we

compare the quality of the trees constructed by RITA with
that of trees produced by protocols that probe the tree level-
by-level (e.g., HMTP). In HMTP-like protocols, a new node
wishing to join the multicast traverses down the tree from
the root to search for the closest node to itself at each level
until it reaches a leaf. This process finds a shortest delay
path starting from the root. Among all nodes on this path,
the new node attaches to the closest one.

We use two 10,000-node topologies produced by GT-ITM [5].
Topology A has 25 transit domains, five transit nodes per
transit domain, four stub domains attached to each transit
node, and 20 nodes in each stub domain, with a maximum
end-to-end one-way latency of 31.96ms. Topology B has a
larger transit domain. It has 228 transit domains, two nodes
in each stub domain, and a maximum latency of 34.53ms.
We randomly select 100 nodes and use the k-mean method
(described in [16]) to select 15 landmarks out of the 100
randomly selected nodes.

Two tree quality metrics - stretch and stress are used in
the evaluation. Stretch is the ratio of the tree cost (the sum
of delays of the links in the overlay tree) to that of a shortest
path tree. The stress of an overlay multicast tree is the aver-
age number of overlay links over a given physical link in the
underlying topology. The goal is to create trees with both
stretch and stress as close to 1.0 as possible, which would
be the case if IP multicast were used. We also compare the
time that it takes to construct the trees and define speedup
as the ratio of time taken by HMTP to that taken by RITA.

Note that the performance of RITA depends on the num-
ber of C closest candidates that the DHT presents to the
node x wishing to join the tree. Node x performs concur-
rent RTT measurements to the C nodes and picks the one
that has the lowest RTT. As an extreme case, we consider
C = N − 1, where N is the number of overlay nodes in the
tree. When C = N − 1, the actual closest candidate node
is found and this case is labeled RITA++ in the results. As
C is increased, the tree quality of RITA improves, and ap-
proaches that of RITA++, at the expense of the large tree
construction latency.

1

1.2

1.4

1.6

1.8

2

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

HMTP
RITA, C=10
RITA, C=20
RITA, C=30

RITA++

(a) Stretch.

1

2

3

4

5

6

7

0 400 800 1200 1600 2000

S
tr

e
ss

Number of Nodes

HMTP
RITA, C=10
RITA, C=20
RITA, C=30

RITA++

(b) Stress.

0

4

8

12

16

20

0 400 800 1200 1600 2000

S
p

e
e

d
u

p
 w

.r
.t

.
H

M
T

P

Number of Nodes

C=10
C=20
C=30

(c) Construction speedup.

Figure 4: Topology A: stretch, stress and speedup of RITA, HMTP and RITA++.

1

1.2

1.4

1.6

1.8

2

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

HMTP
RITA, C=10
RITA, C=20
RITA, C=30

RITA++

(a) Stretch.

1

2

3

4

5

6

7

0 400 800 1200 1600 2000

S
tr

e
ss

Number of Nodes

HMTP
RITA, C=10
RITA, C=20
RITA, C=30

RITA++

(b) Stress.

0

4

8

12

16

20

0 400 800 1200 1600 2000

S
p

e
e

d
u

p
 w

.r
.t

.
H

M
T

P

Number of Nodes

C=10
C=20
C=30

(c) Construction speedup.

Figure 5: Topology B: stretch, stress and speedup of RITA, HMTP and RITA++.

3.1 Tree Quality and Construction Speedup
In Figures 4 and 5, we present stretch and stress for RITA

(with C = 10, 20, 30), HMTP and RITA++ for topologies A

and B, as the number of overlay nodes is increased from 8 to
2,048 nodes. We also present the tree construction speedup
of RITA as compared to HMTP. The results presented are
averaged over 20 runs for each data point. We observe the
following from these figures.

• As expected, all protocols produce lower quality trees as
the number of overlay nodes increases.

• RITA++ produces trees with very low stretch, thus vali-
dating the basic approach of attaching to the closest node.
Any further improvement in the accuracy of techniques to
identify the close by nodes will have direct positive impact
on the performance of RITA.

• An HMTP-like protocol produces very high quality trees,
though RITA with C = 20 and C = 30 outperform
HMTP, particularly in topology B with a large number
of transit domains.

• There are some differences in the results for the two topolo-
gies. Both the stretch and stress in topology A are worse
than in topology B. This is due to two reasons: (i) The
landmark clustering and RTT scheme is not as effective

for a topology with a small transit than for a network
with a large transit. Increasing the number of candidate
nodes (C) in RITA has a larger effect in the large-transit
network. (ii) Even for RITA++, the stretch in the small
transit graph is still worse than in the large-transit graph.
Note that for the small transit network, although the rel-
ative overhead (i.e., stretch) seems large, the absolute
overhead is small, because the latencies are short and the
penalty for not finding the closest node is small.

• The stress for the three protocols are similar to each other
at about 3.5 for the large-transit topology and do not vary
much as the number of nodes is increased. Note that a
stress of 3.5 is considered reasonable and better than what
most other overlay multicast protocols provide. However,
in the small-transit topology, the stress increases as the
number of tree nodes increases, and is as large as 6.5 when
there are 2,048 nodes in the tree. This is because with a
small-transit, there are more nodes in the stub domains
and nodes are more likely to share the shortest path links.

• The tree construction speedup results show that as the
tree size grows, the cost of constructing the tree using
a HMTP-like protocol increases more rapidly than that
using RITA. As a result, the tree construction speedup
enjoyed by RITA over HMTP is near 20 for the small

1

1.2

1.4

1.6

1.8

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

HMTP
RITA, C=10
RITA, C=20
RITA, C=30

RITA++

(a) Stretch.

1

2

3

4

5

0 400 800 1200 1600 2000

S
tr

e
ss

Number of Nodes

HMTP
RITA, C=10
RITA, C=20
RITA, C=30

RITA++

(b) Stress.

0

10

20

30

40

50

60

70

0 400 800 1200 1600 2000

S
p

e
e

d
u

p
 w

.r
.t

.
H

M
T

P

Number of Nodes

C=10
C=20
C=30

(c) Construction speedup.

Figure 6: Topology A: stretch, stress and speedup with optimal joining order.

1

1.2

1.4

1.6

1.8

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

HMTP
RITA, C=10
RITA, C=20
RITA, C=30

RITA++

(a) Stretch.

1

2

3

4

5

0 400 800 1200 1600 2000

S
tr

e
ss

Number of Nodes

HMTP
RITA, C=10
RITA, C=20
RITA, C=30

RITA++

(b) Stress.

0

10

20

30

40

50

60

70

0 400 800 1200 1600 2000

S
p

e
e

d
u

p
 w

.r
.t

.
H

M
T

P

Number of Nodes

C=10
C=20
C=30

(c) Construction speedup.

Figure 7: Topology B: stretch, stress and speedup with optimal joining order.

transit network, and can be as large as 6.4 for the large
transit network. As the number of nodes in the tree in-
crease, the speedup does not decrease much as we can
identify the closest node as soon as the closest node (in
the set of C candidates) responds to the measurements.

3.2 Benefits of Periodic Reconfiguration
In practice, overlay nodes join a multicast session at dif-

ferent times and in a random order. The results described
so far mimic this reality and the nodes join in a random or-
der. Here we study the effect of the joining order on the tree
structure and quality. If the join order has a large impact,
we can periodically reconfigure the tree in addition to the
just-in-time adaptation to construct a more efficient tree.
Intuitively, a near optimal tree is built if the nodes join in
the order of the shortest distance to the multicast source;
when a node joins the system, the most suitable parent for
this new node is most likely already in the tree. By com-
paring the evaluation metrics (stretch, stress and speedup)
when nodes join in this near optimal joining order versus a
random order, we obtain insights into the benefits of peri-
odic tree reconfiguration.

Figures 6 and 7 show the stretch and stress for RITA,
HMTP, and RITA++ assuming a (near) optimal joining or-

der of overlay nodes for topologies A and B, respectively.
The resulting speedups of RITA over HMTP are also given.
We compare these results with the results presented ear-
lier in Figures 4 and 5. Figures 8 and 9 take a closer
look and provide a more detailed comparison of the stretch
metric for the random and optimal tree join orders for the
two topologies. These figures show that the stretch of the
trees produced by RITA, HMTP and RITA++ reduces when
nodes join in the optimal order. For RITA++ and HMTP,
the improvement is more dramatic than RITA (with C =
10, 20, 30). Particularly RITA++ now produces trees with
a stretch very close to 1.0, the optimal case for both topolo-
gies. For the small transit network, HMTP also produces
close to optimal stretch. The stress metric is unchanged
when nodes join in the optimal order for the large transit
network and decreases slightly for the other topology. The
speedup on the other hand of RITA over HMTP increases
to near 70 in the small transit network and near 10 for the
other topology. This is mainly due to the fact that now the
trees produced tend to be deeper rather than broader trees
and this increases the HMTP costs more than that of RITA.

3.3 Tree Adaptation
The just-in-time tree adaptation in RITA addresses ap-

1

1.2

1.4

1.6

1.8

2

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

RITA, C=10
HMTP

RITA++
RITA, C=10 (optimal order)

HMTP (optimal order)
RITA++(optimal order)

(a) C = 10.

1

1.2

1.4

1.6

1.8

2

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

RITA, C=20
HMTP

RITA++
RITA, C=20 (optimal order)

HMTP (optimal order)
RITA++(optimal order)

(b) C = 20.

1

1.2

1.4

1.6

1.8

2

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

RITA, C=30
HMTP

RITA++
RITA, C=30 (optimal order)

HMTP (optimal order)
RITA++(optimal order)

(c) C = 30.

Figure 8: Topology A: stretch comparison with random and optimal joining orders.

1

1.2

1.4

1.6

1.8

2

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

RITA, C=10
HMTP

RITA++
RITA, C=10 (optimal order)

HMTP (optimal order)
RITA++(optimal order)

(a) C = 10.

1

1.2

1.4

1.6

1.8

2

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

RITA, C=20
HMTP

RITA++
RITA, C=20 (optimal order)

HMTP (optimal order)
RITA++(optimal order)

(b) C = 20.

1

1.2

1.4

1.6

1.8

2

0 400 800 1200 1600 2000

S
tr

e
tc

h

Number of Nodes

RITA, C=30
HMTP

RITA++
RITA, C=30 (optimal order)

HMTP (optimal order)
RITA++(optimal order)

(c) C = 30.

Figure 9: Topology B: stretch comparison with random and optimal joining orders.

plication quality issues, and hence the time to complete the
adaptation must be as little as possible. There are two com-
ponents to the just-in-time adaptation. The first is the la-
tency of the quality degradation complaints to propagate
to the problem link and identify the node that needs to
switch to a new parent. The second component is the re-
attachment process to a new parent. It is the second compo-
nent that is of greater interest and the delay to accomplish
this task is computed in this section.

Intuitively, the overlay nodes at the same depth or level of
the overlay multicast tree are expected to experience similar
re-attachment delays. Thus our experiments were designed
to take this into account by computing the average time
to re-join the tree at each level for both topologies and at
different tree sizes. Figures 10 and 11 plots the average
re-joining delay versus the level of the multicast tree for
topologies A and B, respectively and for C = 10, 20, 30.

These figures depict that the average re-joining latency for
RITA increases as the number of overlay nodes increases. As
expected, the maximum time to rejoin the tree is shorter for
the small transit network at about 300ms, while for the large
transit network, 720ms. We make two important observa-
tions:

• As the number of candidates C increases, it is more likely

to find an alternate parent that is close by, and hence
reducing the overall re-joining latency.

• The average re-joining delay decreases as node level in-
creases, i.e., as the node gets further away from the source.
This result may seem unintuitive but since nodes cannot
re-attach to children nodes, the choice set is larger for the
nodes deeper in the tree.

4. RELATED WORK
Several application-level multicast schemes achieve data

distribution by implicitly building a multicast structure. For
instance, Scribe [7] is a multicast infrastructure built on top
of Pastry [22]. In Scribe, the multicast tree is formed by the
union of the Pastry routes from multicast members to the
rendezvous point (RP). The Content-Addressable Network
(CAN) framework [19] is extended for multicast in [20]. In
this work, the multicast group members establish a mini-
CAN and multicast data is distributed by flooding over the
mini-CAN, without explicitly building a tree. Bayeux [31]
is an architecture built on top of Tapestry [30] and supports
source-specific multicast. The NICE is the Internet Coop-
erative Environment (NICE) protocol [2] builds and main-
tains hierarchical topology of multicast members. The mul-
ticast routes are implicitly defined by the hierarchy struc-

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30

A
ve

ra
g

e
 a

d
a

p
ta

tio
n

 d
e

la
y

(m
s)

Level

tree_size=1024
tree_size=512
tree_size=256
tree_size=128

tree_size=64
tree_size=32

(a) C = 10.

0

10000

20000

30000

40000

50000

60000

70000

80000

5 10 15 20 25 30

A
ve

ra
g

e
 a

d
a

p
ta

tio
n

 d
e

la
y

(m
s)

Level

tree_size=1024
tree_size=512
tree_size=256
tree_size=128

tree_size=64
tree_size=32

(b) C = 20.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30

A
ve

ra
g

e
 a

d
a

p
ta

tio
n

 d
e

la
y

(m
s)

Level

tree_size=1024
tree_size=512
tree_size=256
tree_size=128

tree_size=64
tree_size=32

(c) C = 30.

Figure 10: Topology A: RITA’s average adaptation delay.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30

A
ve

ra
g

e
 a

d
a

p
ta

tio
n

 d
e

la
y

(m
s)

Level

tree_size=1024
tree_size=512
tree_size=256
tree_size=128

tree_size=64
tree_size=32

(a) C = 10.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30

A
ve

ra
g

e
 a

d
a

p
ta

tio
n

 d
e

la
y

(m
s)

Level

tree_size=1024
tree_size=512
tree_size=256
tree_size=128

tree_size=64
tree_size=32

(b) C = 20.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30

A
ve

ra
g

e
 a

d
a

p
ta

tio
n

 d
e

la
y

(m
s)

Level

tree_size=1024
tree_size=512
tree_size=256
tree_size=128

tree_size=64
tree_size=32

(c) C = 30.

Figure 11: Topology B: RITA’s average adaptation delay.

ture. A protocol that uses a Delaunay triangulation as an
overlay network topology is proposed in [15]. With the dis-
tributed construction of a Delaunay triangulation, multicast
paths are embedded in the overlay without a routing proto-
col. Overlay Multicast Network Infrastructure (OMNI) [4]
proposes a two-tier architecture and builds a multicast tree
consisting of multicast service nodes (MSN) which in turn
connect to clients. This distributed scheme is adaptive with
changes in the client distribution and network conditions.

The following protocols explicitly form the multicast tree.
Targeting at content distribution applications, Overcast [13]
builds a single source multicast tree rooted at the source.
The optimization goal of its “up/down” protocol is to pro-
vide each node in the tree with a high bandwidth path to the
root. Yoid [10] forms a shared multicast spanning tree across
the end hosts. Yoid also builds a mesh structure among
members for routing stability. Similar to Yoid, Host Multi-
cast Tree Protocol (HMTP) [29] builds a shared tree. When
a new node joins, it probes the tree at each level, starting
from the root, to find the nearest member node as a parent.
CoopNet [17] focuses on using multiple description coding to
handle flash crowd while reducing disruption. They rely on
a centralized server for tree construction and maintenance.
Application Level Multicast Infrastructure (ALMI) [18] uses

a centralized approach to construct shared minimum span-
ning tree based on network measurements.

Narada [9] and Scattercast [8] build a mesh topology of all
multicast members, and then compute a multicast spanning
tree for each source. Both protocols periodically refresh the
mesh to maintain the multicast topology.

ZIGZAG [26] proposes a peer-to-peer multicast for stream-
ing media based on an administrative organization in which
peers are organized in a multi-layer hierarchy of clusters.
Given the administrative logical organization, the multicast
tree is built using three given rules. The tree is periodically
reconfigured to balance the load based on the node degree
and capacity.

The Scalable Adaptive Randomized Overlay (SARO) pro-
tocol [14] has been recently proposed, built on top of a Ran-
dom Subsets (RanSub) utility. The RanSub utility is used
to deliver state information about a random subset of global
nodes with each node selected in a subset with equal prob-
ability.

The RITA scheme differs from existing approaches in that
previous P2P multicast systems embed the multicast trees
in the overlay, and therefore are constrained by the logi-
cal structure of the overlay networks. In this aspect, RITA
is similar to the ZIGZAG approach which decouples the

administrative organization and the multicast data deliv-
ery paths. In addition, with the exception of OMNI, and
ZIGZAG, none of the existing approaches take QoS into ac-
count in tree construction and maintenance for streaming
media distribution. Unlike OMNI and ZIGZAG, the tree re-
configuration in our scheme is initiated by the receiver based
on the application perceived QoS. The objectives of SARO
are similar to that of RITA in terms of adapting quickly to
network changes. However, RITA advocates the use of appli-
cation QoS feedback to trigger tree transformations rather
than use the periodic random subset distribution approach
of SARO.

5. CONCLUDING REMARKS
This paper describes the RITA scheme for building an ef-

ficient overlay infrastructure for real-time multimedia appli-
cations, including live media distribution. Our goal is to bal-
ance the network-oriented goals of building an efficient mul-
ticast tree very quickly with the application-oriented goals
of providing good QoS with minimal disruptions. Our initial
results presented in this paper are encouraging. The qual-
ity of trees constructed using RITA are comparable (and
often better than) to those constructed by a protocol like
HMTP. Further, the tree construction latency is an order
of magnitude lower. From the experiments conducted, the
node switching times are under a second, making it possible
to minimize application disruption. There are several open
issues that need further investigation, which are briefly de-
scribed below.

In our tree construction algorithm, a new node simply
attaches to the closest node in the tree. The results in
Section 3 show the importance of locating the closest node
in multicast tree construction, and the effectiveness of our
“landmark clustering + RTT measurement” scheme in find-
ing the closest node. Our study shows that the performance
of landmark clustering varies with topologies [28]. Conse-
quently, we suggest several techniques to improve the ac-
curacy of landmark clustering. The effectiveness of these
schemes in the real Internet remains to be seen, and their
ultimate limits due to the incomplete proximity information
in landmark vectors need to be explored. Further, there
are multiple approaches (e.g., IDMaps [11], King [12]) that
could be used in estimating node proximity in the context
of RITA and we plan to evaluate these in the future.

A cornerstone of our approach is that the tree reconfigu-
ration is primarily initiated by the application client at the
receiver when the perceptual application QoS (e.g., percep-
tual media quality) falls below a specific threshold. We re-
alize that the translation between network QoS metrics and
subjective perceptual media quality is non-trivial. We plan
to leverage ongoing work in this regard [1]. Another alter-
native albeit intrusive method is for users to indicate their
dissatisfaction with the deteriorating audio/video quality by
pressing a button on the keyboard, which would then initi-
ate the overlay reconfiguration.

Delivering real-time multimedia to clients is a complex
process involving many factors such as caching, buffering,
and transcoding. We are building a media service delivery
infrastructure and will use real media applications to study
the interplay of these factors. For instance, depending on the
network dynamics, we may avoid frequent short-term over-
lay adaptation by a small increase of the client buffer and
startup delay. When the network condition is degraded to

the extent that adaptation is futile, degrading the quality by
including a transcoding process (transparently) is perhaps
the only option.

We intend to extend the performance evaluation in a num-
ber of directions. In the evaluation presented in this paper,
node degree constraints are not considered. In reality, most
nodes will allow only a limited number of nodes to attach
to it in the multicast tree. The implication of this is that
the constructed trees are deeper, causing end-to-end quality
problems. As the size of the overlay multicast tree is in-
creased, increasing the number of close by candidate nodes
(C) to choose from produces more accurate node proximity
results, which in turn improves the tree efficiency. Thus,
automatically scaling the parameter C with the size of the
overlay is one of our future work items.

6. ACKNOWLEDGMENTS
We thank Zhiheng Wang of the University of Michigan for

his valuable contributions to this research, while he was an
intern at HP Laboratories.

7. REFERENCES
[1] W. Ashmawi, R. Guerin, S. Wolf, and M. H. Pinson.

On the impact of policing and rate guarantees in
Diff-Serv networks: A video streaming application
perspective. In Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communications
(SIGCOMM), pages 83–95, San Diego, CA, August
2001.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.
Scalable application layer multicast. In Proceedings of
the ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications (SIGCOMM), pages 205–220,
Pittsburgh, PA, August 2002.

[3] S. Banerjee, J. Brassil, A. Dalal, S.-J. Lee, E. Perry,
P. Sharma, and A. Thomas. CDNs for personal
broadcasting and individualized reception. In
Proceedings of 7th International Workshop on Web
Content Caching and Distribution (WCW), pages
279–284, Boulder, CO, August 2002.

[4] S. Banerjee, C. Kommareddy, K. Kar,
B. Bhattacharjee, and S. Khuller. Construction of an
efficient overlay multicast infrastructure for real-time
applications. In Proceedings of the IEEE Conference
on Computer Communications (INFOCOM), San
Francisco, CA, April 2003.

[5] K. Calvert, M. Doar, and E. W. Zegura. Modeling
internet topology. IEEE Communications Magazine,
35(6):160–163, June 1997.

[6] M. Castro, P. Druschel, Y. Hu, and A. Rowstron.
Exploiting network proximity in distributed hash
tables. In Proceedings of the International Workshop
on Future Directions in Distributed Computing
(FuDiCo), Bertinoro, Italy, June 2002.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. T.
Rowstron. SCRIBE: A large-scale and decentralized
application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications,
20(8):1489–1499, October 2002.

[8] Y. Chawathe. Scattercast: An adaptive broadcast
distribution framework. ACM Multimedia Systems
Journal, 2003.

[9] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case
for end system multicast. IEEE Journal on Selected
Areas in Communications, 20(8):1456–1471, October
2002.

[10] P. Francis. Yoid: Your Own Internet Distribution,
March 2001. http://www.isi.edi/div7/yoid/.

[11] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz,
Y. Shavitt, and L. Zhang. IDMaps: A global internet
host distance estimation service. IEEE/ACM
Transactions on Networking, 9(5):525–540, October
2001.

[12] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
Estimating latency between arbitrary internet end
hosts. In Proceedings of the Second ACM SIGCOMM
Internet Measurement Workshop (IMW), pages 5–18,
Marseille, France, November 2002.

[13] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F.
Kaashoek, and J. W. O’Toole, Jr. Overcast: Reliable
multicasting with an overlay network. In Proceedings
of the 4th USENIX Symposium on Operating System
Design and Implementation (OSDI), San Diego, CA,
October 2000.

[14] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and
A. M. Vahdat. Using random subsets to build scalable
network services. In Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems,
Seattle, WA, March 2003.

[15] J. Liebeherr, M. Nahas, and W. Si. Application-layer
multicasting with delaunay triangulation overlays.
IEEE Journal on Selected Areas in Communications,
20(8):1472–1488, October 2002.

[16] T. S. E. Ng and H. Zhang. Predicting internet
network distance with coordinates-based approaches.
In Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), New York, NY, June
2002.

[17] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and
K. Sripanidkulchai. Distributing streaming media
content using cooperative networking. In Proceedings
of 12th International Workshop on Network and
Operating Systems Support for Digital Audio and
Video (NOSSDAV), Miami, FL, May 2002.

[18] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel.
ALMI: An application level multicast infrastructure.
In Proceedings of the 3rd USENIX Symposium on
Internet Technologies and Systems, San Francisco,
CA, March 2001.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In
Proceedings of the ACM Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), pages
161–172, San Diego, CA, August 2001.

[20] S. Ratnaswamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable
networks. In Proceedings of the Third International
Workshop on Networked Group Communication
(NGC), pages 14–29, London, UK, November 2001.

[21] S. Ratnaswamy, M. Handley, R. Karp, and S. Shenker.

Topologically-aware overlay construction and server
selection. In Proceedings of the IEEE Conference on
Computer Communications (INFOCOM), New York,
NY, June 2002.

[22] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer sysstems. In Proceedings of IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany,
November 2001.

[23] S. Roy, B. Shen, V. Sundaram, and R. Kumar.
Application level hand-off support for mobile media
transcoding sessions. In Proceedings of 12th
International Workshop on Network and Operating
Systems Support for Digital Audio and Video
(NOSSDAV), Miami, FL, May 2002.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of the ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications (SIGCOMM), pages 149–160, San
Diego, CA, August 2001.

[25] L. Subramanian, I. Stoica, H. Balakrishnan, and
R. Katz. OverQoS: Offering QoS using Overlays. In
Proceedings of the ACM SIGCOMM First Workshop
on Hot Topics in Networks (HotNets-I), Princeton,
NJ, October 2002.

[26] D. A. Tran, K. A. Hua, and T. Do. ZIGZAG: An
efficient peer-to-peer scheme for media streaming. In
Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), San Francisco, CA,
April 2003.

[27] Z. Xu, M. Mahalingam, and M. Karlsson. Turning
heterogeneity into an advantage in overlay routing. In
Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), San Francisco, CA,
April 2003.

[28] Z. Xu, C. Tang, and Z. Zhang. Building
topology-aware overlays using global soft-state. In
Proceedings of the 23rd IEEE International
Conference on Distributed Computing Systems
(ICDCS), Providence, RI, May 2003.

[29] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A
framework for delivering multicast to end users. In
Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), New York, NY, June
2002.

[30] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A
global-scale overlay for rapid service deployment.
IEEE Journal on Selected Areas in Communications,
2003, to appear.

[31] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz,
and J. D. Kubiatowicz. Bayeux: An architecture for
scalable and fault-tolerant wide-area data
dissemination. In Proceedings of the 11th International
Workshop on Network and Operating Systems Support
for Digital Audio and Video, Port Jefferson, NY, June
2001.

