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ABSTRACT
The performance of an IEEE 802.11 station heavily depends
on the selection of an AP (Access Point) that the station is
associated with to access the Internet. The conventional
approach to the AP selection is based on the received sig-
nal strength called RSSI (Received Signal Strength Indica-
tion) from APs within the transmission range. This ap-
proach however, might yield unbalanced traffic load among
APs as the station chooses an AP only based on the signal
strength, instead of considering the AP load and the level
of contention on medium access. Accordingly, the station
that is associated with the highest-RSSI AP might suffer
from poor network performance. In this paper, we propose
a new association metric, EVA (Estimated aVailable bAnd-
width) with which a station can find the AP that provides
the maximum achievable throughput among scanned APs.
EVA is designed to estimate the available bandwidth on a
channel with respect to a station that is to join a WLAN
(Wireless Local Area Network). A station equipped with
EVA observes a channel state in a per-slot basis, and yet
does not request any external information from nearby APs
or neighbor stations. Our estimation mechanism is non-
intrusive, fully distributed, and independent of the infras-
tructure. Through simulation study, we evaluate the accu-
racy of the estimation and show that EVA-based association
yields enhanced throughput performance compared with the
legacy scheme.
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1. INTRODUCTION
Today, increasing number of users access the Internet via

IEEE 802.11 WLANs (Wireless Local Area Networks). We
can easily find APs (Access Points) that are in the vicinity
at public/municipal places. The selection of the AP that a
WLAN station connects with must be done prudently as it
determines the performance of the station. In the nomen-
clature of IEEE 802.11 [1], such AP selection procedure is
referred to as association.

The most widely used metric for the association of WLAN
stations is the received signal power from an AP, known as
RSSI (Received Signal Strength Indication). After scanning
the channels, a station chooses the AP from which it receives
frames with the highest RSSI. As revealed in the literature,
however, such an RSSI-based association does not necessar-
ily provide the best throughput performance [2–4]. In addi-
tion, the RSSI-based association might result in unbalanced
throughput among BSSs (Basic Service Sets). Therefore,
a station associated with the highest-RSSI AP might suf-
fer from low throughput that results from the overloaded
bandwidth utilization in that BSS.

We propose a new association metric called EVA (Esti-
mated aVailable bAndwidth) that is designed to reflect the
available bandwidth in a BSS, i.e., the maximum achievable
throughput when associated with the target AP. In order to
accurately estimate the available bandwidth, EVA estima-
tor considers the contention level on a BSS by calculating
collision probability and channel idle ratio based on channel
state assessment.1 After searching all accessible channels
and, in turn, available APs on scanned channels, a station
with the EVA estimator chooses the AP that provides the
largest EVA.

In order to make EVA a practical solution, we set the fol-
lowing design goals. First, available bandwidth estimation
should be performed in a non-intrusive manner as resource
in WLANs is scarce. Second, to avoid the modification of
IEEE 802.11 protocol, EVA does not require any extra frame
exchanges between stations and APs. Moreover, we do not
employ a centralized solution to control a WLAN or estimate
available bandwidth. Third, our proposed approach should
provide highly accurate estimation in a timely fashion.

1For clarity, the term EVA will be used to represent the
value of available bandwidth calculated through the pro-
posed EVA estimator.



Through simulation study, we evaluate the accuracy of the
proposed EVA estimator on collision probability and avail-
able bandwidth in a BSS. We also evaluate the effectiveness
of EVA-based association in terms of individual and aggre-
gate throughput performance.

The rest of the paper is organized as follows. Section 2
reviews the related work, and the legacy 802.11 association
process is introduced in Section 3. The formulation of EVA
is presented in Section 4. Section 5 describes the algorithmic
details, and Section 6 shows the accuracy of EVA estimator
and the corresponding throughput performance. Finally, the
paper concludes with Section 7.

2. RELATED WORK
RSSI is commonly used as an association metric in WLANs.

This approach is however, well known to have poor net-
work performance when load distribution is highly unbal-
anced [2–6]. There have been proposals to solve this ineffi-
cient network resource usage.

One of these attempts is to receive information from APs.
In [2, 4–6], by collecting information such as the number
of associated stations or its transmission rate, stations can
select an AP with better link quality that is measured by
different methods. Such an approach should be accompanied
with a protocol modification in the AP side, and is not likely
to work with already-deployed WLAN devices.

There are a few centralized solutions [3,7]. A representa-
tive, usually the AP, controls the whole association process.
Particularly, the AP decides whether to grant the associa-
tion of stations. This approach also needs to modify AP’s
behavior, and brings additional overhead to let the AP be
aware of the details of the entire network.

In EVA, on the other hand, the channel state is measured
passively. The EVA estimator operates in a distributed man-
ner (working only at the station side) and does not require
any modification of a WLAN infrastructure. Furthermore,
available bandwidth is predicted when the station searches
APs in the 802.11 scanning process and hence, does not in-
cur additional probing overhead.

A similar approach to ours is presented in [8] and its al-
gorithm works as follows. A station observes a skewed time
period of beacon frame receptions to estimate how much
bandwidth is available. Although it is a purely non-intrusive
operation, it incurs large delay for channel observation and
quality estimation as multiple beacon frames must be re-
ceived – typically, beacons are transmitted every 100 mil-
liseconds.

The estimation of available bandwidth on an 802.11 link is
affected by many factors such as retransmissions due to colli-
sion or weak signal, corresponding increased backoff interval,
busy channel detection due to different system devices, etc.
VMAC [9] virtually runs MAC process at each station to
estimate collision probability and available bandwidth. As
it empirically observes the wireless channel, VMAC can es-
timate the bandwidth that is fluctuating in a time varying
manner. The convergence of VMAC estimation however,
takes relatively a long time as one estimate sample is col-
lected after finishing every backoff procedure, i.e., taking at
least CWmin

2
· tTimeslot duration to get a sample on average,

where CWmin is the minimum contention window size and
tTimeslot is the interval of a single backoff timeslot. Mean-
while, the EVA estimator observes the wireless channel in a
per-slot basis, thus ensuring to have more number of samples
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Figure 1: Frame exchange sequence in the 802.11

infrastructure mode.

and yielding faster convergence time than VMAC. There
could be a tradeoff between convergence time and accuracy.
We show that our approach gets more samples and achieves
faster estimation convergence without accuracy compromise
in Appendix A.

3. ASSOCIATION IN 802.11 WLANS
IEEE 802.11 association process is divided into three steps:

scanning, authentication, and association, as illustrated in
Fig. 1.

The objective of scanning is to select an appropriate AP
to be associated with, in all available channels. There are
two types of scanning: active and passive. As the names
imply, the station finds APs by listening to periodic bea-
con frames in the passive mode. The station using active
scanning broadcasts a probe request frame on each channel
and may receive multiple probe response frames from differ-
ent APs working on the same channel. Figure 1 shows the
frame exchange sequence in the active scanning. Typically
for most existing WLAN devices, active scanning is used by
default for association.

The criterion that specifies which channel should be scanned
is addressed in the standard [1]. MAC layer management
entity called MLME (MAC sub-Layer Management Entity),
initiates scanning channels upon receiving the corresponding
request with a list of channels to be scanned, ChannelList,
from SME (Station Management Entity). Practically, the
functional details of SME can be implemented as a form of
application software that controls the association of WLAN
client, including the ChannelList.

Based on the belief that the highest-signal-strength AP
would provide the best performance, most commercial de-
vices rely on the conventional association metric, RSSI. Al-
though the 802.11 DCF (Distributed Coordination Func-
tion) is designed to offer long-term equal medium access
opportunities to all contending stations, RSSI-based AP se-
lection might not provide the desired performance of the
station. The AP selection should consider load balancing
and fairness among stations as well as throughput.

After scanning, the station attempts to get authenticated
and associated with the selected AP by exchanging authen-
tication and association request/response frames as depicted
in Fig. 1.
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Figure 2: IEEE 802.11 DCF channel access.

4. METRIC FORMULATION
We first formulate the association metric EVA, starting

with its definition. We then describe how to decompose the
metric formulation into multiple components that can be
separately calculated and estimated.

4.1 EVA Definition
The design of EVA aims to estimate available bandwidth

on an operating channel, being aware of the contention in-
tensity around the station. We define available bandwidth
as the maximum achievable bandwidth on the target 802.11
link.

We define the concept of EVA along with the frame ex-
change sequence of the 802.11 DCF. As illustrated in Fig. 2,
after backing off, a station accesses the wireless medium
by exchanging RTS (Request-To-Send) and CTS (Clear-To-
Send) frames.2 A data frame transmission then follows and
the frame exchange completes by the ACK (Acknowledge-
ment) frame transmission. Keeping the frame exchanges in
mind, we define EVA as follows.

Definition 1. We consider two sequences of random vari-
ables, Ti and ni: the former is the time duration spent by
the station in consideration to transmit a data frame (in-
cluding both contention delay and frame transmission times
as illustrated in Fig. 2) at the station’s ith transmission at-
tempt; and the latter denotes the transmission result at the
ith attempt, i.e., 1 for success and 0 for failure. The sub-
script i indexes a set of M(t) transmission attempts of the
station by the time t. We define EVA as the frame size (F)
divided by the fraction of those random sequences:

EVA(t) ,
F

P

M(t)
i=1 Ti/

P

M(t)
i=1 ni

, (1)

where the denominator represents the time average of the
time spent by the station in order to successfully transmit a
data frame over the total observed time interval, t.

EVA(t) formulated by a function of random sequences is
not useful since its accuracy varies over the size of M(t).
Moreover, EVA(t) does not quickly react to wireless channel
variation and contention intensity. The following proposi-
tion states that EVA(t) converges to the non-random (prob-
abilistic) mean.

Proposition 1. Eqs. (1) and (2) are asymptotically equiv-
alent as t → ∞:

EVA =
F

E[T ]/E[n]
, (2)

2In this paper, we consider RTS/CTS-enabled DCF MAC
in EVA formulation. However, the usage of EVA as an as-
sociation metric is not limited to the RTS/CTS usage, thus
being able to change the formulation to be suitable for the
access without RTS/CTS exchange.

Table 1: Notations.
Notations Definitions

Ophy transmission duration for PHY header and
preamble

CWmin the minimum contention window
CWmax the maximum contention window
tFrame transmission duration for that Frame type
tDIFS time interval of DIFS (DCF Interframe

Space)
tSIFS time interval of SIFS (Short Interframe

Space)
tBO backoff interval
tBusy time interval holding medium access due to

busy channel
tTimeslot unit time interval of a single timeslot
F frame size
τ propagation delay

where E[T ] is the expected frame transmission time and
E[n] is the expected number of successfully transmitted data
frames at a unit transmission attempt.

Proof. The random sample (statistical) means of the
M(t) random variables with respect to Ti and ni are de-
fined by:

T i =

P

M(t)
i=1 Ti

M(t)
, ni =

P

M(t)
i=1 ni

M(t)
.

By the Law of Large Numbers, T i ∼ E[T ] and ni ∼ E[n] as
t → ∞. In consequence, it follows that EVA = F

E[T ]/E[n]
.

4.2 Frame Exchange Sequence Decomposition
From Proposition 1, EVA can be obtained by calculating

E[T ] and E[n]. In order to obtain E[T ], we decompose the
unit frame exchange sequence, as shown in Fig. 2, into three
temporal components:

• Oc : channel contention overhead,

• Oa : channel access overhead, and

• U : unit transmission time required for a data frame
transmission.

Therefore, we can revise Eq. (2) as follows:

EVA =
F · E[n]

Oc + Oa + U
, (3)

and the problem changes to deriving each decomposed com-
ponents: E[n],Oc,Oa, and U . Table 1 lists notations of
related parameters used in the following derivations.

4.2.1 E[n], the expected number of successfully trans-
mitted data frames

Note that E[n] is equal to Ps, the probability that a data
frame is successfully transmitted in a unit frame exchange.
Ps can be presented by:

E[n] = Ps = prts
s pdata

s , (4)

where prts
s and pdata

s denote the success probabilities of RTS/CTS
and data/ACK exchanges, respectively. Note that if we as-
sume no hidden station that is not carrier-sensed by the



transmitter, but interferes frame receptions at the desig-
nated receiver, a frame collision only happens with the si-
multaneous transmissions of RTS frames. Accordingly, the
collision probability with respect to the transmitting station
that estimates EVA can be denoted by prts

c . Therefore, prts
s

and pdata
s in Eq. (4) are presented as follows:



prts
s =

`

1 − prts
e

´ `

1 − pcts
e

´ `

1 − prts
c

´

,
pdata

s =
`

1 − pdata
e

´ `

1 − pack
e

´

,
(5)

where pFrame
e is FER (Frame Error Rate) of the specific

Frame type, such as RTS, CTS, data, and ACK frames.
As the calculation of Eqs. (4) and (5) is based on the

knowledge of FER that depends on F and the employed
modulation and coding scheme, i.e., transmission rate (r),
an FER estimation method should precede. If we have a
predetermined FER vs. SNR (Signal-to-Noise Ratio) table
in advance, the problem becomes simple. Such a table can
be obtained either from measurement, e.g., [10], or from
the vendor’s datasheet, e.g., [11]. Upon the reception of
frames from an AP, the station measures the average SNR
by measuring both RSSI and the observed background noise
level, and then FER is obtained from the table.

4.2.2 Oc, the channel contention overhead
From Fig. 2, Oc can be divided into two time intervals,

tBO and tBusy , where tDIFS is included into tBusy , i.e.,

Oc = E[tBO ] + E[tBusy ]. (6)

Let σ denote the channel idle ratio during an Oc period. σ
is then presented by:

σ =
E[tBO ]

E[tBO ] + E[tBusy ]
. (7)

By inserting Eq. (6) into Eq. (7), we have Oc = E[tBO ]/σ
and hence, the problem of Oc calculation becomes finding
σ and E[tBO ]. We will present a way to estimate σ in the
following section.

In the case of a transmission failure, the backoff procedure
updates CW (Contention Window) to [2 × (CW + 1) − 1].
Once CW reaches CWmax, it remains at this value until
finishing the transmission successfully or dropping the frame
due to the retry limit, resetting to CWmin. The backoff
interval of the ith transmission attempt can be denoted by
tBOi = rand [0, CWi ] , where CWi is the size of contention
window at the ith transmission and is written by:

CW i = min

h

2i−1 (CWmin + 1) − 1, CWmax

i

. (8)

rand[x, y] is the operator that randomly draws an integer
number from a uniform distribution over the interval [x, y].
Accordingly, we can say that tBOi ≈ CWi/2 on average.
The average backoff interval per unit transmission, E[tBO ]
is derived as follows:

E[tBO ] =

γ
X

i=1

s(i)
CWi

2
· tTimeslot , (9)

where γ is the retry limit and s(i) is the probability that
a data frame is successfully transmitted after the ith trans-
mission attempt, being presented by:

s(i) = (1 − Ps)
i−1 Ps. (10)

Accordingly, having the estimate of prts
c plays a key role in

knowing E[tBO ], which is similar to the case of E[n].
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Figure 3: An illustrative example of channel obser-

vation for prts
c , σ estimation.

4.2.3 Oa and U

As illustrated in Fig. 2, Oa and U can be written as:


Oa = 2Ophy + tRTS + tSIFS + tCTS + 2τ,
U = 2Ophy + tDATA + 2tSIFS + tACK + 2τ.

(11)

5. ESTIMATION ALGORITHM
We present how to estimate collision probability, prts

c and
channel idle ratio, σ with which we can calculate EVA as de-
scribed in Section 4. We first present an illustrative example
and then propose the EVA estimator.

5.1 An Example
Figure 3 depicts that a station is observing the wireless

channel to estimate prts
c and σ. The bold horizontal line rep-

resents the channel state: upper and lower levels mean busy
and idle states of the channel, respectively. Small rectangles
are timeslots observed by the station. Upper timeslots enu-
merated up to 9 is used for prts

c estimation. Suppose that
the channel state changes up and down due to the frame
transmissions from other stations, and the observing sta-
tion, say A, assesses that the channel becomes busy three
times (at the 2nd, 5th, and 8th timeslots). Note that a colli-
sion would happen, if A tried to transmit a frame at these
timeslots from which the channel becomes busy. Likewise,
A can estimate its collision probability by counting such
collision-induced timeslots out of all elapsed timeslots. In
this example, the estimated prts

c when the 9th timeslot ex-
pires becomes 1

3
.

Similarly, we can also estimate σ using lower indexed
timeslots as follows. A counts all idle timeslots out of the
total observed slots. In this example, the total number of
idle timeslots is 5 out of the total elapsed slots, i.e., 50. As a
result, σ becomes 6

50
when the latest timeslot expires. Note

that the estimation of prts
c and σ can be done concurrently.

5.2 EVA Estimator
In order to estimate prts

c and σ, we employ the ARMA
(Autoregressive Moving Average) estimator [12]. The typi-
cal ARMA estimator has the following form:

ŷi = αŷi−1 +
1 − α

K

K−1
X

j=0

xi−j , (12)

where ŷi is the target estimate and xi−j , with j = 0, · · · , K−
1 are the last K timeslot samples. K and α are design
parameters that determine the accuracy of the estimator.
K plays a role to smooth measurements that are fed to the
weighted average; however, as revealed in [13], the selection



of K value has little impact on the performance of ARMA
estimator, and 10 is used for K in our setting.

On the other hand, the filter memory (or autoregressive
weighting factor) α works as a tuner controlling the tradeoff
between the estimation accuracy and the response time. In
Section 6, we study the impact of α on the performance
tradeoff and choose a suitable α based on which station can
select the best AP.

At each timeslot, a station assesses the channel state whether
it becomes busy or idle. For prts

c estimation, xi, which is a
sample of collision event, is set to 1 if the channel state
changes from idle to busy in the ith timeslot, while xi is
0 for every idle timeslot. When estimating σ, xi means a
sample of an idle timeslot. Therefore, for every idle timeslot
expiration, xi becomes 1; otherwise, xi is 0. Note that for
both prts

c and σ estimation, timeslots during which the tar-
get station transmits its frames are not considered, since the
station only observes per-timeslot channel occupancy taken
by other stations, not itself.

A station, say A, which tries to find the best AP to achieve
the highest throughput using the EVA metric, runs the fol-
lowing algorithm:

Algorithm 1. EVA estimator

1. For all tTimeslots, A assesses the channel state and
determines an estimation sample, xi.

2. A runs Eq. (12) with every valid sample, xi, and up-
dates the new estimate, ŷi, i.e., p̂rts

c or σ̂.

3. Going through Eqs. (5), (4), (10), and (9) with the
estimated p̂rts

c , A obtains E[tBO ].

4. A inserts E[tBO ] and the estimated σ̂ into Eqs. (7)
and (6) to get E[tBusy ] and Oc.

5. EVA is estimated using Eq. (3).

5.3 Implementation Issues
Finding a practical estimation interval for accurate avail-

able bandwidth estimation is important. Too short of an
estimation interval would result in an inaccurate EVA es-
timation. A longer estimation interval would yield an en-
hanced accuracy on the other hand, but might make the
estimation useless for the association process because of the
long, unaffordable estimation interval.

According to [14, 15], the typical time spent on scanning
the 802.11b channels varies from 300 to 500 milliseconds
depending on WLAN client devices. Since three to four
different channels are used in the 802.11b band, i.e., 2.4
GHz, we can argue that approximately 100 milliseconds is
used to scan a single channel.

As addressed previously, the only physically required op-
eration for a station to estimate an EVA value is to ob-
serve the changes of wireless medium from busy to idle, or
vice versa. Moreover, the channel observation might not
incur much overhead and should be done along with the
normal 802.11 operations. We will study how accurately
the EVA estimator can calculate the available bandwidth
within a pragmatic time interval, i.e., 100 milliseconds per
each 802.11b channel in Section 6. We will also investigate
the appropriate α value in order to achieve an accurate EVA
estimation within that time interval.

6. PERFORMANCE EVALUATION
We present our simulation study to evaluate the effec-

tiveness of the proposed EVA association metric. We first
describe the simulation environment and identify the perfor-
mance tradeoff between accuracy and responsiveness of the
EVA estimator. Finally, we evaluate the throughput perfor-
mance based on the proposed association metric, EVA.

6.1 Simulation Setup
We enhance the 802.11 DCF module in the ns-2 simu-

lator [16] to support the proposed EVA-based association.
The 802.11b is considered as the PHY module [17], and
the highest transmission rate, i.e., 11 Mbps, is employed
by all stations. Each station transmits 1028-byte frames
with 20 dBm power and all stations are static. We use the
empirical BER (Bit Error Rate) vs. SNR curves provided
by Intersil3 to estimate the FER (Frame Error Rate) [11].
The background noise level is set to –96 dBm. We use a
log-distance path-loss model with the path-loss exponent of
four to simulate the indoor office environment [18].

As addressed in Section 5, we set the number K of samples
for moving average process to 10, and vary α, the weighting
factor for autoregressive process from 0.99 to 0.9999 to study
its impact on the estimation accuracy and responsiveness
tradeoff in the ARMA estimator.

6.2 Accuracy and Responsiveness
In order to evaluate the accuracy of the EVA estimator,

we compare the estimation results with those of simulation
and analytic models. We run the estimator by varying the
filter memory of α (0.99 6 α 6 0.9999), while observing
the performance tradeoff. The compared simulation result is
obtained based on the setting that a station in consideration
is associated and communicates with an AP in an infinite
backlogged condition. For the analytical result, we employ
the Markov chain-based analysis model proposed in [19].

We consider two different scenarios: (1) when a station
that estimates EVA tries to associate with an AP; (2) and
when a station tries to change its association to another AP
to achieve a better throughput performance, i.e., the station
is already associated with an AP. The corresponding results
are shown in Figs. 4 and 5, respectively. In both scenarios,
the number of stations is set to 10 including the station of
our interest, and each station is associated with a single AP.
Note that only the first scenario represents the case for the
initial association attempt of a station.

As shown in both Figs. 4 and 5, the target station ob-
serves the channel for ten seconds and estimates prts

c and
EVA. Both cases show the similar trends in the convergence
and fluctuation tradeoff when α varies. Larger α shows less
estimation fluctuation, but takes longer to converge.

3The BER curves in [11] were measured in an AWGN (Ad-
ditive White Gaussian Noise) environment.

Table 2: RMS error of the estimated values.
Not associated Associated

α prts
c EVA prts

c EVA

0.99 0.112 0.214 0.097 0.239
0.999 0.028 0.141 0.038 0.190
0.9999 0.144 1.109 0.146 1.275
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Figure 4: Comparison of estimated results with the simulated and analyzed when not associated.
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Figure 6: Performance comparison of EVA and RSSI-based association processes.
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To further investigate the effect of α, we calculate RMS
(Root-Mean-Square) errors of all estimates. We collect 100
random samples of prts

c and EVA at 100 milliseconds, and
derive ensemble averages to find which α value yields the
smallest estimation error for both estimates. Table 2 shows
the RMS errors calculated for all α values. For all α values
and whether associated or not, we observe that α = 0.999
shows the minimum RMS error. Therefore, we fix the value
of α and the estimation interval to 0.999 and 100 millisec-
onds, respectively, for the following simulation environment.

6.3 AP Selection by EVA
We now evaluate the effectiveness of the proposed EVA

association metric by comparing it with the legacy scheme,
RSSI-based association. The considered topology is shown
in Fig. 7, where two APs and multiple stations are deployed.
Two APs (denoted as AP1 and AP2) are separated by 30 m
from each other, and stations are randomly located in the
area of 20 × 20 m2, which is shifted toward AP2 as shown
in Fig. 7. In this topology, we expect that more stations as-
sociate with AP2 than AP1 if the RSSI metric is employed.
Meanwhile, stations working with EVA might associate with
AP1 in spite of lower RSSI value, since each station esti-
mates its maximum achievable throughput and selects the
highest-throughput AP. Different frequency channels are as-
signed to each AP thus having no inter-channel interference.
The carrier sense range is set to 80 m, so that all stations and
APs can see frame transmissions from others in this topol-
ogy. The offered load of each station is set to 1.14 Mbps
during simulation runs.

Figure 6(a) shows the per-station throughput of both EVA
and RSSI-based association. All results are averaged over
10 runs. We observe that the proposed EVA-based associa-
tion shows about 16.2 % enhanced throughput gain over the
legacy association.

We also show the standard deviation of the achieved through-
put of all contending stations in Fig. 6(b). While EVA-based
association presents smaller standard deviation (i.e., at most
0.17 Mbps when the number of stations is 9), the legacy
scheme shows larger standard deviation for all the cases,
which means that the achieved throughput among stations
is often highly unbalanced.

In the case of 10 contending stations, we present the cu-
mulative fraction of the achieved throughput of each con-
tending station in Fig. 6(c). EVA-based association (the

solid line) shows steeper slope of curve, meaning that most
stations achieve throughput evenly. We also count the num-
ber of associated stations with different APs. With RSSI,
3.125 stations (out of 10) associate with AP1 on average,
while the number of stations that are associated with AP2

is 6.875. On the other hand, stations with the EVA esti-
mator are more evenly distributed between two APs: 4.25
stations with AP1 and 5.75 with AP2. As the result in-
dicate, we can achieve better balanced throughput share as
well as higher individual/aggregate throughput performance
with the proposed EVA-based association.

7. CONCLUSION
We presented a new association metric called EVA (Esti-

mated aVailable bAndwidth) for IEEE 802.11 stations. EVA
is designed to enhance the throughput performance of an in-
dividual station by estimating the available bandwidth pro-
vided by multiple APs and selecting the best one to associate
with.

We first showed the accuracy of the proposed estimation
method by comparing our estimation of collision probabil-
ity and available bandwidth with the simulation and ana-
lytic models. We compared EVA-based association with the
legacy scheme in terms of individual and aggregate through-
put performance. We showed that EVA-based association
increases the per-station throughput, balances the load of
the APs, and consequently, enhances the aggregate network
throughput. Moreover, the EVA estimator does not require
any extra probing overhead.

As future work, we plan to extend the formulation of EVA
to incorporate the impact of hidden stations into the avail-
able bandwidth estimation. Moreover, we plan to apply the
usage of EVA to the handoff decision criterion so as to en-
hance the throughput performance of mobile stations.
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APPENDIX

A. COMPARISON OF CONVERGENCE TIME
OF EVA AND VMAC ALGORITHMS

Proposition 2. Every timeslot considered as a valid one
for the estimation of EVA has the same probability to be
sampled in the VMAC algorithm.

Proof. Let pn be the probability that the nth timeslot
is chosen by a VMAC station to get an estimation sam-
ple, ℓ be the total number of contention window stages, i.e.,
ℓ = log2(

CWmax+1
CWmin+1

) + 1, and qn,i be the probability that the

contention window size is CW i when deriving pn. The prob-
ability that an estimation sample is chosen at the (n + 1)th

timeslot is written by:

pn+1 =
ℓ

X

i=1

qn+1,i

CW i
X

j=0

Prob[BC = j|CW i] · pn−j , (13)

where BC is a backoff counter selected by the VMAC algo-
rithm out of [0, CWi ].

Suppose that each VMAC station joins a WLAN in a ran-
dom manner. At the very first sampling attempt, the prob-
ability that a VMAC station obtains an estimation sample
in an arbitrary timeslot should be the same with those for
all other timeslots to be chosen. In other words, pn−j in
Eq. (13) becomes identical for ∀j. Consequently, Eq. (13)
reduces to: pn+1 = pn, which means that any timeslot used
in the EVA estimator can be an estimation sample with the
same probability in a VMAC station.

Based on Proposition 2, both EVA and VMAC algorithms
should have the similar estimation accuracy. However, the
convergence time of EVA should be shorter than that of
VMAC as EVA collects more samples for a given time du-
ration.


