
Scalable Grid Service Discovery Based on UDDI*

* Authors are listed in alphabetical order.

Sujata Banerjee$, Sujoy Basu$, Shishir Garg�, Sukesh Garg�, Sung-Ju Lee$, Pramila Mullan�, Puneet Sharma$

$HP Labs
1501 Page Mill Road

Palo Alto, CA, 94304 USA
+1-650-857-2137

{sujata.banerjee,sujoy.basu,sungju.lee,puneet.sharma}@hp.com

�France Telecom R&D Division
801 Gateway Blvd, # 500

South San Francisco, CA, 94080 USA
+1 650 -875-1500

{shishir.garg,sukesh.garg,pramila.mullan}@francetelecom.com

ABSTRACT
Efficient discovery of grid services is essential for the success of
grid computing. The standardization of grids based on web
services has resulted in the need for scalable web service
discovery mechanisms to be deployed in grids Even though UDDI
has been the de facto industry standard for web-services
discovery, imposed requirements of tight-replication among
registries and lack of autonomous control has severely hindered
its widespread deployment and usage. With the advent of grid
computing the scalability issue of UDDI will become a roadblock
that will prevent its deployment in grids. In this paper we present
our distributed web-service discovery architecture, called DUDE
(Distributed UDDI Deployment Engine). DUDE leverages DHT
(Distributed Hash Tables) as a rendezvous mechanism between
multiple UDDI registries. DUDE enables consumers to query
multiple registries, still at the same time allowing organizations to
have autonomous control over their registries.. Based on
preliminary prototype on PlanetLab, we believe that DUDE
architecture can support effective distribution of UDDI registries
thereby making UDDI more robust and also addressing its scaling
issues. Furthermore, The DUDE architecture for scalable
distribution can be applied beyond UDDI to any Grid Service
Discovery mechanism.

Categories and Subject Descriptors
C2.4 [Distributed Systems]

General Terms
Design, Experimentation, Standardization.

Keywords
UDDI, DHT, Web services, Grid computing, MDS, discovery.

1. INTRODUCTION
Efficient discovery of grid services is essential for the success of
grid computing. The standardization of grids based on web
services has resulted in the need for scalable web service

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise,to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MGC '05, November 28- December 2, 2005 Grenoble , France
Copyright 2005 ACM 1-59593-269- 0/05/11... $5.00

discovery mechanisms to be deployed in grids. Grid discovery
services provide the ability to monitor and discover resources and
services on grids. They provide the ability to query and subscribe
to resource/service information. In addition, threshold traps might
be required to indicate specific change in existing conditions. The
state of the data needs to be maintained in a soft state so that the
most recent information is always available. The information
gathered needs to be provided to variety of systems for the
purpose of either utilizing the grid or proving summary
information. However, the fundamental problem is the need to be
scalable to handle huge amounts of data from multiple sources.

The web services community has addressed the need for service
discovery, before grids were anticipated, via an industry standard
called UDDI. However, even though UDDI has been the de facto
industry standard for web-services discovery, imposed
requirements of tight-replication among registries and lack of
autonomous control, among other things has severely hindered its
widespread deployment and usage [7]. With the advent of grid
computing the scalability issue with UDDI will become a
roadblock that will prevent its deployment in grids.

This paper tackles the scalability issue and a way to find services
across multiple registries in UDDI by developing a distributed
web services discovery architecture. Distributing UDDI
functionality can be achieved in multiple ways and perhaps using
different distributed computing infrastructure/platforms (e.g.,
CORBA, DCE, etc.). In this paper we explore how Distributed
Hash Table (DHT) technology can be leveraged to develop a
scalable distributed web services discovery architecture. A DHT is
a peer-to-peer (P2P) distributed system that forms a structured
overlay allowing more efficient routing than the underlying
network. This crucial design choice is motivated by two factors.
The first motivating factor is the inherent simplicity of the put/get
abstraction that DHTs provide, which makes it easy to rapidly
build applications on top of DHTs. We recognize that having just
this abstraction may not suffice for all distributed applications, but
for the objective at hand, works very well as will become clear
later. Other distributed computing platforms/middleware while
providing more functionality have much higher overhead and
complexity. The second motivating factor stems from the fact that
DHTs are relatively new tool for building distributed applications
and we would like to test its potential by applying it to the
problem of distributing UDDI.

In the next section, we provide a brief overview of grid
information services, UDDI and its limitations, which is followed
by an overview of DHTs in Section 3. Section 4 describes our
proposed architecture with details on use cases. In Section 5, we

describe our current implementation, followed by our findings in
Section 6. Section 7 discusses the related work in this area and
Section 8 contains our concluding remarks.

2. BACKGROUND
2.1 Grid Service Discovery
Grid computing is based on standards which use web services
technology. In the architecture presented in [6], the service
discovery function is assigned to a specialized Grid service called
Registry. The implementation of the web service version of the
Monitoring and Discovery Service (WS MDS), also known as the
MDS4 component of the Globus Toolkit version 4 (GT4),
includes such a registry in the form of the Index service Resource
and service properties are collected and indexed by this service.
Its basic function makes it similar to UDDI registry. To attain
scalability, Index services from different Globus containers can
register with each other in a hierarchical fashion to aggregate data.
This approach for attaining scalability works best in hierarchical
Virtual Organizations (VO), and expanding a search to find
sufficient number of matches involves traversing the hierarchy.
Specifically, this approach is not a good match for systems that try
to exploit the convergence of grid and peer-to-peer computing [5].

2.2 UDDI
Beyond grid computing, the problem of service discovery needs to
be addressed more generally in the web services community.
Again, scalability is a major concern since millions of buyers
looking for specific services need to find all the potential sellers
of the service who can meet their needs. Although there are
different ways of doing this, the web services standards
committees address this requirement through a specification
called UDDI (Universal Description, Discovery, and Integration).
A UDDI registry enables a business to enter three types of
information in a UDDI registry – white pages, yellow pages and
green pages. UDDI’s intent is to function as a registry for services
just as the yellow pages is a registry for businesses. Just like in
Yellow pages, companies register themselves and their services
under different categories. In UDDI, White Pages are a listing of
the business entities. Green pages represent the technical
information that is necessary to invoke a given service. Thus, by
browsing a UDDI registry, a developer should be able to locate a
service and a company and find out how to invoke the service.

When UDDI was initially offered, it provided a lot of potential.
However, today we find that UDDI has not been widely deployed
in the Internet. In fact, the only known uses of UDDI are what are
known as private UDDI registries within an enterprise’s
boundaries. The readers can refer to [7] for a recent article that
discusses the shortcomings of UDDI and the properties of an ideal
service registry. Improvement of the UDDI standard is continuing
in full force and UDDI version 3 (V3) was recently approved as
an OASIS Standard. However, UDDI today has issues that have
not been addressed, such as scalability and autonomy of
individual registries.

UDDI V3 provides larger support for multi-registry environments
based on portability of keys By allowing keys to be re-registered
in multiple registries, the ability to link registries in various
topologies is effectively enabled. However, no normative
description of these topologies is provided in the UDDI

specification at this point. The improvements within UDDI V3
that allow support for multi-registry environments are significant
and open the possibility for additional research around how multi-
registry environments may be deployed. A recommended
deployment scenario proposed by the UDDI V3.0.2 Specification
is to use the UDDI Business Registries as root registries, and it is
possible to enable this using our solution.

2.3 Distributed Hash Tables
A Distributed Hash Table (DHT) is a peer-to-peer (P2P)
distributed system that forms a structured overlay allowing more
efficient routing than the underlying network. It maintains a
collection of key-value pairs on the nodes participating in this
graph structure. For our deployment, a key is the hash of a
keyword from a service name or description. There will be
multiple values for this key, one for each service containing the
keyword. Just like any other hash table data structure, it provides
a simple interface consisting of put() and get() operations. This
has to be done with robustness because of the transient nature of
nodes in P2P systems. The value stored in the DHT can be any
object or a copy or reference to it. The DHT keys are obtained
from a large identifier space. A hash function, such as MD5 or
SHA-1, is applied to an object name to obtain its DHT key. Nodes
in a DHT are also mapped into the same identifier space by
applying the hash function to their identifier, such as IP address
and port number, or public key. The identifier space is assigned
to the nodes in a distributed and deterministic fashion, so that
routing and lookup can be performed efficiently. The nodes of a
DHT maintain links to some of the other nodes in the DHT. The
pattern of these links is known as the DHT’s geometry. For
example, in the Bamboo DHT [11], and in the Pastry DHT [8] on
which Bamboo is based, nodes maintain links to neighboring
nodes and to other distant nodes found in a routing table. The
routing table entry at row i and column j, denoted Ri[j], is another
node whose identifier matches its own in first i digits, and whose
(i + 1)st digit is j. The routing table allows efficient overlay
routing. Bamboo, like all DHTs, specifies algorithms to be
followed when a node joins the overlay network, or when a node
fails or leaves the network The geometry must be maintained even
when this rate is high. To attain consistent routing or lookup, a
DHT key must be routed to the node with the numerically closest
identifier. For details of how the routing tables are constructed
and maintained, the reader is referred to [8, 11].

3. PROPOSED ARCHITECTURE OF DHT
BASED UDDI REGISTRY HIERARCHIES
As mentioned earlier, we propose to build a distributed UDDI
system on top of a DHT infrastructure. This choice is primarily
motivated by the simplicity of the put/get abstraction that DHTs
provide, which is powerful enough for the task at hand, especially
since we plan to validate our approach with an implementation
running on PlanetLab [9]. A secondary motivation is to
understand deployment issues with DHT based systems. Several
applications have been built as overlays using DHTs, such as
distributed file storage, databases, publish-subscribe systems and
content distribution networks. In our case, we are building a DHT
based overlay network of UDDI registries, where the DHT acts as
a rendezvous network that connects multiple registries. In the
grid computing scenario, an overlay network of multiple UDDI
registries seems to an interesting alternative to the UDDI public

registries currently maintained by Microsoft, IBM, SAP and NTT.
In addition, our aim is to not change any of the UDDI interfaces
for clients as well as publishers.

Figure 1 highlights the proposed architecture for the DHT based
UDDI Registry framework. UDDI nodes are replicated in a UDDI
registry as per the current UDDI standard. However, each local
registry has a local proxy registry that mediates between the local
UDDI registry and the DHT Service. The DHT service is the glue
that connects the Proxy Registries together and facilitates
searching across registries.

Figure 1: DUDE Architecture

Service information can be dispersed to several UDDI registries to
promote scalability. The proxy registry publishes, performs
queries and deletes information from the dispersed UDDI
registries. However, the scope of the queries is limited to relevant
registries. The DHT provides information about the relevant
registries. The core idea in the architecture is to populate DHT
nodes with the necessary information from the proxies which
enables easy and ubiquitous searching when queries are made.
When a new service is added to a registry, all potential search
terms are hashed by the proxy and used as DHT keys to publish
the service in the DHT. The value stored for this service uniquely
identifies the service, and includes the URL of a registry and the
unique UDDI key of the service in that registry. Similarly when
queries arrive, they are parsed and a set of search terms are
identified. These search terms are hashed and the values stored
with those hash values are retrieved from the DHT. Note that a
proxy does not need to know all DHT nodes; it needs to know just
one DHT node (this is done as part of the bootstrapping process)
and as described in Section 2.3, this DHT node can route the
query as necessary to the other nodes on the DHT overlay. We
describe three usage scenarios later that deal with adding a new
local registry, inserting a new service, and querying for a service.

Furthermore, the DHT optimizes the UDDI query mechanism.
This process becomes a lookup using a UDDI unique key rather
than a query using a set of search parameters. This key and the
URL of the registry are obtained by searching initially in the
DHT. The DHT query can return multiple values for matching
services, and in each of the matching registries, the proxy
performs lookup operations.

The service name is used as a hash for inserting the service
information. The service information contains the query URL and

unique UDDI key for the registry containing the service. There
could be multiple registries associated with a given service. The
service information conforms to the following schema.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

 <xs:element name="registries">

 <xs:annotation>

 <xs:documentation>Service Information</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="registry" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name"/>

 <xs:element name="key" maxOccurs="unbounded"/>

 </xs:sequence>

…

</xs:schema>

There can be multiple proxy UDDI registries in this architecture.
The advantage of this is to introduce distributed interactions
between the UDDI clients and registries. Organization can also
decide what information is available from the local registries by
implementing policies at the proxy registry.

3.1 Sequence of Operations
In this section, we demonstrate what the sequence of operations
should be for three crucial scenarios – adding a new local registry,
inserting a new service and querying a service. Other operations
like deleting a registry, deleting a service, etc. are similar and for
the sake of brevity are omitted here.

Figure 2: Sequence Diagram- Add New Local Registry
Add a New Local UDDI Registry
Figure 2 contains a sequence diagram illustrating how a new
UDDI registry is added to the network of UDDI registries. The
new registry registers itself with its proxy registry. The proxy
registry in turn queries the new registry for all services that it has

UDDI Local Registry UDDI Local Registry

UDDI Local Registry

Proxy Registry

DHT Based Distribution

Proxy Registry

Proxy Registry

stored in its databases and in turn registers each of those entries
with the DHT.

Figure 3: Sequence Diagram – Add New Service
Add a New Service
The use case diagram depicted in Error! Reference source not
found. highlights how a client publishes a new service to the
UDDI registry. In order to interact with the registry a client has to
know how to contact its local proxy registry. It then publishes a
service with the proxy registry which in turn publishes the service
with the local UDDI registry and receives the UDDI key of the
registry entry. Then new key-value pairs are published in the
DHT, where each key is obtained by hashing a searchable
keyword of the service and the value consists of the query URL of
the registry and the UDDI key.

Figure 4: Sequence Diagram – Query for a Service
Query a Service
Figure 4 shows how a client queries the UDDI registry for a
service. Once again, the client needs to know how to contact its
local proxy registry and invokes the query service request. The
proxy registry in turn contacts one of the DHT nodes to determine
DHT queries using the search terms.
As explained earlier in the context of Figure 1, multiple values
might be retrieved from the DHT. Each value includes the query
URL of a registry, and the unique UDDI key of a matching

service in that registry. The proxy then contacts the matching
registries and waits for the response of lookup operations using
the corresponding UDDI keys. Upon receiving the responses, the
proxy registry collates all responses and returns the aggregated set
of services to the client.

We will now illustrate these operations using an example.
Consider a client contacting its local proxy to publish a service
called “Computer Accessories”. The proxy follows the steps in
Figure 3 to add the service to UDDI 1 registry, and also publishes
two entries in the DHT. The keys of these entries are obtained by
hashing the words “computer” and “accessories” respectively.
Both entries have the same value consisting of the query URL of
this registry and the unique UDDI key returned by the registry for
this service. Next we consider another client publishing a service
called “Computer Repair” through its proxy to UDDI 2 registry. A
similar process results in 2 more entries being added to the DHT.
Recall that our DHT deployment can have multiple entries with
the same key. If we follow the steps in Figure 4 for a client
sending a query to its proxy using the word “computer”, we see
that the DHT is queried with the hash of the word “computer” as
key. This retrieves the query URL and respective UDDI keys of
both services mentioned before in this example. The proxy can
then do a simple lookup operation at both UDDI 1 and 2
registries. It is clear that as the number of UDDI registries and
clients increases, this process of lookup at only relevant UDDI
registries is more scalable that doing a full search using the word
“computer” at all UDDI registries.

4. IMPLEMENTATION
In this section, we describe our implementation which is currently
deployed on PlanetLab [9]. PlanetLab is an open, globally
distributed platform for developing, deploying, and accessing
network services. It currently has 527 machines, hosted by 249
sites, spanning over 25 countries. PlanetLab machines are hosted
by research/academic institutions as well as industrial companies.
France Telecom and HP are two of the major industry supporters
for PlanetLab. Every PlanetLab host machine is connected to the
Internet and runs a common software package including a Linux
based operating system that supports server virtualization. Thus
the users can develop and experiment with new services under
real-world conditions. The advantage of using PlanetLab is that
we can test the DUDE architecture under real-world conditions
with a large scale geographically dispersed node base.

Due to the availability of jUDDI, an open source UDDI V2
registry (http://www.juddi.org) and a lack of existing readily
available UDDI V3 registry, a decision to use UDDI V2 was
made. The standardization of UDDI V3 is recent and we intend to
extend this work to support UDDI V3 and subsequent versions in
the future. The proxy registry is implemented by modifying the
jUDDI source to enable publishing, querying and deleting service
information from a DHT. Furthermore, it also allows querying
multiple registries and collating the response using UDDI4j [13].

For the DHT implementation, we use the Bamboo DHT code
[11]. The Bamboo DHT allows multiple proxy registries to
publish and delete service information from their respective UDDI
registries, as well as to query for services from all the registries.
The proxy uses the service name as input to the DHT’s hash

function to get the DHT key. The value that is stored in the DHT
using this key is the URI of the registry along with the UDDI key
of the service. This ensures that when the proxy registry queries
for services with a certain name, it gets back the URI and UDDI
keys for matching entries. Using these returned results, the proxy
can do fast lookup operations at the respective UDDI registries.
The UDDI keys make it unnecessary to repeat the search at the
UDDI registries with the service name.

We have so far described the process of exact match on service
name. However there are additional types of search that must be
supported. Firstly, the search requested could be case-insensitive.
To support that, the proxy registry has to publish the same service
once using the name exactly as entered in the UDDI registry, and
once with the name converted to all lower-case letters. To do a
case-insensitive search, the proxy registry simply has to convert
the query string into lower-case letters. Secondly, the user could
query based on the prefix of a service name. Indeed, this is the
default behavior of search in UDDI. In other words, a wildcard is
implicit at the end of the service name being searched. To support
this efficiently in the DHT, our proxy registries have to take
prefixes of the service name of varying length and publish the
URI and UDDI key multiple times, once using each prefix. For
example, the prefix sizes chosen in one deployment might be 5,
10, 15 and 20 characters. If a search for the first 12 characters of a
service name is submitted, the proxy registry will query the DHT
with the first 10 characters of the search string, and then refine the
search result to ensure that the match extends to the 12th character.
If the search string has less than 5 characters, and the search is for
a prefix rather than an exact match, the DHT cannot be of any
help, unless every service is published in the DHT with prefix of
length 0. Using this null prefix will send a copy of every
advertised service to the DHT node to which the hash of the null
prefix maps. Since this can lead to load-imbalance, a better
solution might be to use the DHT only to get a list of all UDDI
registries, and send the search to all of them in the locations to be
searched. Thirdly, the service name being searched can be a
regular expression, such as one with embedded wildcard
characters. For example, a search for “Garden%s” should match
both “Garden Supplies” and “Gardening Tools”. This will be
treated similarly to the previous case as the DHT has to be queried
with the longest available prefix. The results returned have to be
refined to ensure that the regular expression matches.

Figure 5 shows the network diagram for our implementation.
There are two proxy UDDI and juddi registry pairs. Consider a
client which contacts the UDDI proxy on grouse.hpl.hp.com. The
proxy does a lookup of the DHT using the query string or a prefix.
This involves contacting one of the DHT nodes, such as pli1-br-
3.hpl.hp.com, which serves as the gateway to the DHT for
grouse.hpl.hp.com, based on the latter’s configuration file. The
DHT node may then route the query to one of the other DHT
nodes which is responsible for the DHT key that the query string
maps to. The results of the DHT lookup return to pli1-br-
3.hpl.hp.com, which forwards them to grouse.hpl.hp.com. The
results may include a few services from each of the juddi
registries. So the proxy registry performs the lookup operations at
both planetlab1 and planetlab2.rdfrancetelecom.com for their
respective entries listed in the search results. The responses to
these lookups are collated by the proxy registry and returned to
the client.

Figure 5 Network Diagram

5. RELATED WORK
A framework for QoS-based service discovery in grids has been
proposed in [18]. UDDIe, an extended UDDI registry for
publishing and discovering services based on QoS parameters, is
proposed in [19]. Our work is complementary since we focus on
how to federate the UDDI registries and address the scalability
issue with UDDI. The DUDE proxy can publish the service
properties supported by UDDIe in the DHT and support range
queries using techniques proposed for such queries on DHTs.
Then we can deliver the scalability benefits of our current solution
to both UDDI and UDDIe registries. Discovering services meeting
QoS and price requirements has been studied in the context of a
grid economy, so that grid schedulers can use various market
models such as commodity markets and auctions. The Grid
Market Directory [20] was proposed for this purpose.

In [12], the authors present an ontology-based matchmaker.
Resource and request descriptions are expressed in RDF Schema,
a semantic markup language. Matchmaking rules are expressed in
TRIPLE, a language based on Horn Logic. Although our current
implementation focuses on UDDI version 2, in future we will
consider semantic extensions to UDDI, WS-Discovery [16] and
other Grid computing standards such as Monitoring and
Discovery Service (MDS) [10]. So the simplest extension of our
work could involve using the DHT to do an initial syntax-based
search to identify the local registries that need to be contacted.
Then the Proxy Registry can contact these registries, which do
semantic matchmaking to identify their matches, which are then
merged at the Proxy Registry and returned to the client.

The convergence of grid and P2P computing has been explored in
[5]. GridVine [2] builds a logical semantic overlay on top of a
physical layer consisting of P-Grid [1], a structured overlay based
on distributed search tree that uses prefix-based routing and
changes the overlay paths as part of the network maintenance
protocol to adapt to load in different parts of the keyspace. A
federated UDDI service [4] has been built on top of the PlanetP
[3] publish-subscribe system for unstructured P2P communities.
The focus of this work has been on the manageability of the
federated service. The UDDI service is treated as an application

service to be managed in their framework. So they do not address
the issue of scalability in UDDI, and instead use simple
replication. In [21], the authors describe a UDDI extension (UX)
system that launches a federated query only if locally found
results are not adequate. While the UX Server is positioned as an
intermediary similarly to the UDDI Proxy described in our DUDE
framework, it focuses more on the QoS framework and does not
attempt to implement a seamless federation mechanism such as
our DHT based approach. In [22] D2HT describes a discovery
framework built on top of DHT. However, we have chosen to use
UDDI on top of DHT. D2HT have used (Agent Management
System) AMS/ (Directory Facilitator) DF on top of DHT.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a distributed architecture to
support large scale discovery of web-services. Our architecture
will enable organizations to maintain autonomous control over
their UDDI registries and at the same time allowing clients to
query multiple registries simultaneously. The clients are oblivious
to the transparent proxy approach we have adopted and get richer
and more complete response to their queries. Based on initial
prototype testing, we believe that DUDE architecture can support
effective distribution of UDDI registries thereby making UDDI
more robust and also addressing its scaling issues. The paper has
solved the scalability issues with UDDI but does not preclude the
application of this approach to other service discovery
mechanisms. An example of another service discovery mechanism
that could benefit from such an approach is Globus Toolkit’s
MDS. Furthermore, we plan to investigate other aspects of grid
service discovery that extend this work. Some of these aspects
include the ability to subscribe to resource/service information,
the ability to maintain soft states and the ability to provide a
variety of views for various different purposes. In addition, we
plan to revisit the service APIs for a Grid Service Discovery
solution leveraging the available solutions and specifications as
well as the work presented in this paper.

7. REFERENCES
[1] “P-grid: A self-organizing structured p2p system”. K.

Aberer, P. Cudr_e-Mauroux, A. Datta, Z. Despotovic, M.
Hauswirth, M. Punceva, and R. Schmidt. ACM SIGMOD
Record, 32(3), 2003.

[2] “GridVine: Building Internet-Scale Semantic Overlay
Networks” Karl Aberer, Philippe Cudre-Mauroux, Manfred
Hauswirth, and Tim van Pelt. Proceedings, 3rd ISWC 2004,
Hiroshima, Japan.

[3] "PlanetP: Using Gossiping to Build Content Addressable
Peer-to-Peer Information Sharing Communities". F. M.
Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. In
Proceedings of 12th Intl Symposium on HPDC, June 2003.

[4] “Self-Managing Federated Services”. Francisco Matias
Cuenca-Acuna and Thu D. Nguyen. In Proceedings of 23rd
IEEE International SRDS, 2004, Florianpolis, BRAZIL.

[5] “On Death, Taxes, and the Convergence of P2P and Grid
Computing”. Ian Foster and Adriana Iamnitchi. In
Proceedings of the 2nd IPTPS 2003.

[6] “The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration”, I. Foster,
C. Kesselman, J. M. Nick and S. Tuecke. Presented to OGSI
WG, Global Grid Forum, June 22, 2002. Available at
http://www.globus.org/alliance/publications/papers.php

[7] “Was the Universal Service Registry a Dream?”, Fred
Hartman and Harris Reynolds, In the Web Services Journal,
Dec 2, 2004.

[8] “Pastry: Scalable, distributed object location and routing for
large scale peer-to-peer systems”. A. Rowstron and P.
Druschel. In Proc. of IFIP/ACM Middleware, Nov. 2001

[9] http://www.planet-lab.org

[10] “Grid information services for distributed resource sharing”.
K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Proceedings of the IEEE HPDC-10, 2001.

[11] “Handling churn in a DHT”. S. Rhea, D. Geels, T. Roscoe,
and J. Kubiatowicz. Proceedings of the USENIX Annual
Technical Conference, June 2004.

[12] “Ontology-based Resource Matching in the Grid – The Grid
Meets the Semantic Web”, Hongsuda Tangmunarunkit,
Stefan Decker, Carl Kesselman. In Proceedings of the
Second ISWC (2003), Miami, Florida.

[13] UDDI4j Java Class Library: http://www-
124.ibm.com/developerworks/oss/uddi4j/

[14] UDDI V2 specification: Available at http://uddi.org/

[15] UDDI V3.0.2 specification: http://uddi.org/

[16] Web Services Dynamic Discovery (WS-Discovery)
Specification, February 2004.
http://msdn.microsoft.com/ws/2004/02/discovery

[17] Information Services (MDS): Key Concepts.
http://www.globus.org/toolkit/docs/4.0/info/key/

[18] “G- QoSM: Grid Service Discovery using QoS Properties”,
R J. Al-Ali, O.F. Rana, D.W. Walker, S. Jha and S. Sohail.
Journal of Computing and Informatics (Special issue on Grid
Computing), Ed: Domenico LaForenza, Vol. 21, No. 4, pp.
363-382, 2002.

[19] “UDDIe: An Extended Registry for Web Services”, A.
ShaikhAli, O.F. Rana, R. Al-Ali and D.W. Walker,
Workshop on Service Oriented Computing: Models,
Architectures and Applications at SAINT Conference,
Florida, US, January 2003. IEEE Computer Society Press.

[20] “A Market-Oriented Grid Directory Service for Publication
and Discovery of Grid Service Providers and their Services”,
J. Yu, S. Venugopal and R. Buyya, Journal of
Supercomputing, Kluwer Academic Publishers, USA, 2005.

[21] Chen Zhou, Liang-Tien Chia, Bilhanan Silverajan, Bu-Sung
Lee: UX - An Architecture Providing QoS-Aware and
Federated Support for UDDI. ICWS 2003: 171-176.

[22] Kee-Hyun Choi, Ho-Jin Shin, Dong-Ryeol Shin, Service
Discovery Supporting Open Scalability Using FIPA-
Compliant Agent Platform for Ubiquitous Networks, Lecture
Notes in Computer Science, Volume 3482, Jan 2005.

