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Abstract—We consider a community of multi-homed wireless
devices, where each device has both a wireless wide area network
(WWAN) interface to connect to the Internet and a wireless
local area network (WLAN) interface to connect to its neighbors.
Suppose users in the community are interested in receiving the
same piece of delay-sensitive media content, and are willing to
share their network resources. It is obvious that the community
can benefit from the bundling of WWAN links and achieve higher
aggregate bandwidth that is not possible with a single user with a
single WWAN connection. What is not obvious is that by inverse
multiplexing or striping packets across multiple WWAN channels,
one can also improve the goodput of delay-sensitive media traffic
by striping FEC and ARQ packets across available channels.
In this paper, we analyze the potential benefits of striping
media traffic, and develop algorithms that take advantage of
these benefits to optimize the delivery of delay-sensitive media
streams to a wireless multi-homed device community. Results
show dramatic improvement over näıve striping schemes such as
weighted round robin both in terms of packet loss ratio, and in
terms of peak signal-to-noise ratio for H.264 video streaming.

I. I NTRODUCTION

It is now commonplace for modern wireless devices to
be multi-homed — each having both a wireless wide area
network (WWAN) interface to connect to the Internet via
a cellular network basestation, and a wireless local area
network (WLAN) interface to connect to neighboring and
similarly configured wireless devices. While WWAN links
such as 3G networks’ UMTS [1] remain comparatively limited
in bandwidth, slow in transmission and burst-loss-prone in
packet delivery, WLAN links such as 802.11x are in contrast
plentiful, fast and reliable. Though WLAN links can provide
media-streaming capable high-speed Internet connectivity, it
requires the availability of an access point connected to a
high-speed, (mostly) wired connection. The users have to
rely on bandwidth limited WWAN connections in the areas
where the coverage of public access points is absent. A
collaborative resource sharing approach has been proposed
as a complimentary mechanism for high-speed access in
such conditions [2]. Aggregated bandwidth channels can be
realized only when hosts willingly collaborate by sharing
their communication channels. Willingness to collaborate is
not an issue for a single user with multiple mobile devices
(e.g., cell phone, PDA, laptop, etc.) forming a community,
(i.e., personal area network), nor might it be an issue for
colleagues or acquaintances. But there need to be incentives
for collaboration between hosts owned by multiple parties
with little or no pre-existing relationship. Clearly, if many
community members seek access to the same content (e.g.,
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Fig. 1. Overview of the packet striping system.

multicast video) then the members will be well-motivated to
take advantage of faster download or streaming.

Suppose then acommunityof multi-homed wireless users
are interested in receiving the same piece ofdelay-sensitive
content such as a video stream, and are willing to share their
network resources to achieve their common goal. To maximize
the usage of the community’s available WWAN links, one
can first divide the incoming packet stream into smaller sub-
streams at a gateway located at the junction of wired and
wireless WAN networks, and inverse-multiplex orstripe them
across the community’s WWAN links. Upon receiving packets
of a sub-stream, each user will forward them to others in
the community for stream recomposition via its high-speed
WLAN links. It is obvious that such striping framework for
a community of wireless multi-homed users benefits from the
aggregation of the community’s WWAN bandwidths, enabling
the streaming of high bandwidth content that is not otherwise
possible for an individual user with a single bandwidth-
limited WWAN link. See Figure 1 for an illustration. Similarly,
a device with multiple WWAN connections can bundle its
multiple low bandwidth channels together to reap benefits of
bandwidth aggregation.

Such striping framework can not only provide higher band-
width for streaming applications, but the additional channels
can also be used for error correction. Error correction is of
paramount importance here, given that the WWAN connec-
tions are prone to burst loss, and that the delay sensitivity of
streaming traffic allows only a very limited time window for
error correction. It turns out that intelligent assignment of error
correction in a striping scenario, either forward error correction
(FEC) or retransmissions (ARQ), can greatly improve the
timely delivery (goodput) of delay-sensitive media traffic. For
FEC, similar to a single channel packet interleaver, striping
FEC packets across multiple channels can avoid decoding
failure due to a single burst loss. Yet unlike the interleaver,
striping avoids excessive transmission delay of long inter-
leaving in a single channel. We call this striping benefit
the interleaving effect. For ARQ, given a packet’s delivery
deadline, striping empowers one with the ability to select
among multiple WWAN channels for packet transmission,
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each with different channel characteristics in delay and loss.
One can then judiciously select a channel that optimizes the
packet’s chance of survival — one that maximizes its success-
ful transmission probabilityand its chance for retransmission
if the current transmission fails. We call this striping benefit
the channel selection effect.

The goal of the paper is to closely examine the potential
benefit of the interleaving effect and the channel selection
effect for striping of delay-sensitive packets. In particular, our
contributions are the following:

1) To pinpoint the performance of a striped FEC block,
we mathematically derived expressions for the packet
loss ratio of an FEC block striped across multiple
independent burst-loss channels.

2) To exploit the potential of the interleaving effect, we de-
vised a heuristic-based fast-converging greedy algorithm
that stripes an FEC block across multiple independent
burst-loss channels.

3) To exploit the potential of the channel selection effect,
we devised an ARQ-based algorithm that stripes incom-
ing and previously lost delay-sensitive packets across
lossy channels in a bandwidth-limited system.

4) To exploit the potential of the interleaving effect in a
bandwidth-limited system, we devised an FEC-based
algorithm that selects the appropriate FEC block for
incoming delay-sensitive media traffic and stripes them
across multiple burst-loss channels.

5) We combined the ARQ-based and FEC-based algorithms
into an hybrid algorithm that selects the right mixtures
of FEC and ARQ and stripes them across multiple
channels in a bandwidth-limited system. We devised an
appropriate penalty function to drive the system towards
optimal behavior.

The rest of the paper is organized as follows. Section II
discusses background and related work. Section III discusses
the modeling of burst-loss channels and basic definitions.
Section IV derives the effective packet loss ratio (PLR) when
FEC Reed-Solomon code RS(n, k) is applied to a single bursty
channel. Section V derives PLR when RS(n, k) is striped over
a set ofm independent burst-loss channels under a particular
mapping. A fast heuristic algorithm that finds a good FEC
mapping is also developed. Striping on bandwidth-limited,
bursty channels is analyzed, and optimization algorithms are
designed in Section VI for the ARQ-based algorithm and Sec-
tion VII for the FEC-based and hybrid FEC/ARQ algorithms.
Section VIII presents two important enhancements towards
real-time implementation for striping of multimedia traffic:
i) a recursive procedure to optimize multiple input packets
at a time using developed algorithms for a single packet;
and, ii) a two-tier dynamic programming implementation that
reduces the computational complexity at the cost of solution
quality. Experimental results that compared our derived strip-
ing schemes with common striping schemes in the literature
such as weighted round robin — including video streaming
experiments that used MPEG test sequences as inputs to
the striping system — are presented in Section IX. Finally,
concluding remarks are presented in Section X.

II. BACKGROUND

As shown in Figure 1, striping is the mapping of a single
flow to multiple channels. While fair load sharing among
multiple channels is a concern, effective traffic mapping of
delay-sensitive media packets onto the channels for optimized
performance (delay-bounded goodput) is also critical — this is
the sole focus of this paper. In particular, we assume packets
entering the striping gateway are each marked with adelivery
deadline, before which time the packet must be delivered to
the clients or the packet is rendered useless. Delivery deadlines
are the only application level details exposed to the striping
gateway; it is our goal to show that even with this simple
level of abstraction, it is sufficient for the striping gateway to
dramatically improve the delivery of delay-sensitive packets
without resorting to more computationally intensive cross-
layer optimizations like real-time transcoding [3].

It is clear that the receiving end of the striping gateway must
re-synchronize out-of-order delivery packets; we assume the
existence of reassembly mechanisms that handle reordering of
packets. Applications such as media streaming use receiver
side buffers that can also be used for packet reordering.
We additionally assume the packet size and the transmission
rate are constant. The wireless channels are always available,
although they will sometimes be lossy. In other words, the
disappearance of the channels due to mobility of the end hosts
is not considered.

There are related works in different areas: striping over
wireless channels, modeling wireless channels, and media
streaming over single wireless channel or multiple wired
paths. However, very few model striping delay-sensitive media
packets across multiple wireless channels. We review the three
categories in order.

Adaptive inverse multiplexing for Cellular Digital Packet
Data (CDPD) wireless networks is proposed in [4]. In this
scheme the packets are split into fragments of size proportional
to the observed throughput of component links. The fragment
size of each link is dynamically adjusted in proportion to the
measured throughput. The bandwidth of mobile users with
multiple interfaces is aggregated at the transport layer in pTCP
(parallel TCP) [5]. pTCP establishes virtual TCP connection
for each interfaces and performs striping based on congestion
window size of each virtual TCP connection. A scheduling
algorithm for aggregating bandwidth for real-time applications
is detailed in [6]. The authors propose a Earliest Delivery
Path First (EDPF) scheduling algorithm that is channel and
application aware and minimizes the cost of striping traffic
over multiple wireless channels of a device. The commuter
Mobile Access Router (MAR) [7] leverages wireless WAN
connection diversity to provide high speed Internet access to
mobile users. Instead of using the WAN connections of the
users, it relies on pre-provisioning the MAR with different
WAN connections, limiting the aggregation to the already
exiting links.

Modeling the wireless channel behavior has been an active
research area. Wireless channel is modeled using the traces
in [8]. Bursty errors are modeled using two-state Markov chain
and two variations. The length of errors is shown to have two



3

exponential curves and the length of error-free packets has a
combination of two Pareto distributions and one exponential
curve. TCP throughput over bursty losses is analyzed in [9]. It
models TCP’s fast retransmit and timeout mechanism’s impact
on TCP performance. The authors argue that the timeouts
have a large effect on TCP throughput. TCP throughput over
random losses is studied in [10]. It shows that random losses
degrade TCP performance significantly when the product
of loss rate, the normalized asymmetry, and the square of
the bandwidth-delay product is large. TCP performance in
wireless channels with random and bursty losses is modeled
using a continuous time finite state Markovian Chain in [11].
TCP over Rayleigh fading wireless channels, along with ARQ-
based link level recovery are considered in [12]. This work
shows that for end-to-end paths that are composed with both
wired and wireless links, link level recover schemes improve
TCP performance. Type-II hybrid ARQ over wireless bursty
channels is analyzed with 16-state Markov chain in [13].
Allocation of packets on parallel channels to improve the error
protection for best-effort traffic has been studied earlier in [14],
[15].

Streaming over lossy channels creates another challenge
as packets are delay-sensitive. Using a burst-loss model,
performance analysis of a MPEG-2 streaming system using
FEC over a single lossy channel is presented in [16]. Optimal
MPEG-2 source rate and FEC packet rate for minimizing
video distortion is derived. Streaming packet scheduling over
wireless channels has been investigated in several papers. An
opportunistic scheduling is proposed in [17] where the channel
state and the utility function are considered. Their goal is to
minimize delay and also enforce fairness. FEDD (Feasible
Earlier Due Date) scheduling is proposed in [18]. This policy
selects the packet whose expiry is the earliest and the channel
is in good state. The authors have shown that FEDD per-
forms better than the longest-queue-first scheduling. A frame-
based and a motion-texture discrimination-based scheduling
algorithms are proposed in [19]. Packets are scheduled based
on deadline thresholds, which are assigned to video packets
based on importance of packets. A scheme proposed in [20]
also uses packet priority when scheduling packets. Channel
condition is also factored in for their scheduling algorithm.
Point-to-point rate-distortion optimized packet scheduling in
lossy channels is thoroughly analyzed in [21]. It is shown
that rate-distortion optimized scheduling of the entire session
can be solved by isolating error-cost optimized transmission
of a single data. EDBS (Expected Runtime Distortion Based
Scheduling) for layered streaming video in lossy channels is
presented in [22]. Using a fast greedy algorithm, it estimates
the importance of each packet and schedules the packets based
on the importance. FEC and ARQ performances in continuous
streams over bursty channels are compared in [23]. Its study
shows that ARQ schemes perform better in most cases.

Streaming real-time traffic over multiple paths is also a
well-studied subject (see [24] and references within), but most
of these work consider paths in the wired Internet where
significant burst loss events on delivery paths are not common
as in wireless channels.

In our previous work, we have examined performance of
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Fig. 2. Gilbert loss model.

striping over multiple burst-loss channels with constant delays
[25] and random delays [26]. A recent work [27] proposed two
modifications: i) an ad-hoc weighting function to modify the
objective function in order to drive the striping system away
from pathological local minimum; and ii) a two-tier dynamic
programming technique to speed up the implementation of the
developed striping algorithms. Our current work presents a
series of refinements upon previous work. First, the indepen-
dent assumption of data and parity packets previously used
for the calculation of packet loss ratio of a Reed-Solomon
code RS(n, k) striped over a set ofm channels is removed,
making the new calculation more accurate. Second, a new
greedy search algorithm calledlocal to find a good FEC
distribution of RS(n, k) packets overm channels is discussed.
We will show thatlocal is point-by-point better than other
greedy search algorithms we have previously developed. Third,
instead of estimating the queuing time of a channeli by
counting the number of packets currently in the outgoing
queue of the channel, the queuing delay of a channeli is
more accurately estimated by recording the time when the
most recent packet that entered the queue would exit and
free up the queue. Fourth, the selection of the strength of
FEC — n and k in RS(n, k) — is restricted to ones whose
ratios of total packet to source packetn/k do not exceed
the ratio of aggregate channel packet rate to incoming packet
rate. Experiments show that the combination of these two
refinements eliminates the need for ad-hoc weighting functions
[27] that drives the system away from poorly performing local
minima. Fifth, optimization algorithms are generalized from
one packet to all packets at the head of the incoming queue
at optimization instance. This is needed as media data like a
video frame is often segmented into multiple packets, each
having the same delivery deadline, and it is imperative that all
packets arrive at the client, not just the first one. Finally, we
demonstrate the efficacy of the striping system in the context
of a H.264 video streaming scenario and show its performance
in Peak Signal-to-Noise Ratio (PSNR).

III. C HANNEL MODEL BASICS

We begin our study with an introduction of our network
loss model and definitions of basic terms that will be used for
analysis and derivation of striping algorithms in later sections.
Note that the derivation in Setion III and IV was first presented
in [28]; for the sake of completeness we will nevertheless
present our notations which differ slightly.

Given the burst-loss nature of wireless links, we model
losses in each channel using a two-state Markov chain (Gilbert
model), shown in Figure 2. A correct (incorrect) packet
delivery event is denoted by0 (1).



4

We next define basic terms similar to those introduced
in [16]. Let p and q be the Gilbert model parameters. Let
p(i), i ≥ 0, be the probability of havingexactlyi consecutive
correctly delivered packets between two lost packets, follow-
ing an observed lost packet, i.e.,p(i) = Pr(0i1|1). Let P (i)
be the probability of havingat least i consecutive correctly
delivered packets, following an observed lost packet, i.e.,
P (i) = Pr(0i|1). p(i) andP (i) can be written mathematically:

p(i) =

{
1− q if i = 0
q(1− p)i−1p o.w.

(1)

P (i) =

{
1 if i = 0
q(1− p)i−1 o.w.

(2)

q(i) =

{
1− p if i = 0
p(1− q)i−1q o.w.

(3)

Q(i) =

{
1 if i = 0
p(1− q)i−1 o.w.

(4)

q(i) andQ(i) are complementarily defined functions:q(i) =
Pr(1i0|0) andQ(i) = Pr(1i|0).

We next defineR(m,n) as the probability that there are
exactlym lost packets inn packets, following an observed lost
packet. It can be expressed recursively using earlier definitions
as:

R(m, n) =


P (n) for m = 0 and n ≥ 0
n−m∑
i=0

p(i)R(m− 1, n− i− 1) for 1 ≤ m ≤ n

(5)

We additionaly definer(m,n) as the probability that there
are exactly m loss packets inn packetsbetweentwo lost
packets, following an observed lost packet. Similarly,r(m,n)
can be expressed recursively:

r(m, n) =


p(n) for m = 0 and n ≥ 0
n−m∑
i=0

p(i)r(m− 1, n− i− 1) for 1 ≤ m ≤ n

(6)

Finally, we definer̄(m,n) as the probability that there are
exactly m lost packets inn packets, following an observed
lost packet and preceding a successfully received packet.

r̄(m, n) = R(m, n)− r(m, n) (7)

We define the complementary functionS(m,n), as the
probability of havingexactlym correctly received packets in
n packets following an observed correctly received packet.

S(m, n) =


Q(n) for m = 0 and n ≥ 0
n−m∑
i=0

q(i)S(m− 1, n− i− 1) for 1 ≤ m ≤ n

(8)

s(m,n) and s̄(m,n) are defined counterparts tor(m,n) and
r̄(m,n).

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

k n−k

n

data packets FEC packets

condtion 1: previous transmitted pkt
condition 2: last data pkt

Fig. 3. FEC encoding of data packets.

IV. FEC FOR ONE BURST-LOSSCHANNEL

Various error correction and retransmission schemes can be
used for improving the data delivery in high loss environments.
In this paper we consider and evaluate the performance of
two such schemes, namely, forward error correction (FEC)
and automatic repeat request (ARQ). In this section we model
the impact of FEC on data delivery ratio over one bursty loss
channel.

Given the network model and definitions introduced in the
previous section, we can now derive the expected packet
loss ratio (PLR) of FEC code —αRS of Reed-Solomon
code RS(n, k) in particular — on a burst-loss channel. Reed-
Solomon code is commonly used in practice for FEC packet-
level recovery systems with delay constraints [29], [30], [31].
Figure 3 shows an example of an RS(5, 3) code. Note,
however, that our analysis holds valid for all other maximum
distance separable codes besides RS. Our choice of RS stems
both from its wide acceptance and its many available fast
implementations, including Newton’s Interpolation [32]. As
shown in [33], the complexity of Newton’s Interpolation is
(k− 1)(k

2 + u), whereu = n− k at the encoder andu is the
number of lost data packets at the decoder. For the small ranges
of n and k we use in the to-be-discussed FEC algorithms in
Section VII, it is negligible.

Recall RS(n, k) is correctly decoded if anyk packets of the
group ofk data andn−k parity packets are correctly received.
First, we condition on the status of the last transmitted
packet (loss/success), i.e., the state of the channel as shown
as condition 1 in Figure 3, giving us two conditional
probabilities,αRS|1 and αRS|0, respectively.αRS can then
be expressed as:

αRS = π ∗ αRS|1 + (1− π) ∗ αRS|0 (9)

whereπ = p
p+q is the raw PLR of the channel.

To find αRS|1, we consider thek data packet block and the
n−k parity packet block separately. We condition on the status
of the last (k-th) data packet; given thek-th data packet is lost
or received, we useR(., .) or S(., .) for probability calculation
of the trailingn− k parity packet block.

Conditioning on the event when thek-th data packet is lost
(condition 2 in Figure 3), we consider all cases when any
numberi of the remainingk−1 data packets are lost. Each case
i will have a loss ratio ofi+1

k , assuming there are≥ n−k+1
total loss packets including then − k parity packets. Similar
analysis conditioning on the event when thek-th data packet
is successfully received completes the derivation forαRS|1:
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αRS|1 =

k−1∑
i=0

(
i + 1

k

)
r(i, k − 1)

n−k∑
j=[n−k−i]+

R(j, n− k)

+

k−1∑
i=1

(
i

k

)
r̄(i, k − 1)

n−k∑
j=[n−k+1−i]+

S(n− k − j, n− k)

(10)

where[x]+ is the positive part ofx. Following similar analysis
for αRS|0 we get:

αRS|0 =

k−1∑
i=0

(
i + 1

k

)
s̄(k − 1 − i, k − 1)

n−k∑
j=[n−k−i]+

R(j, n − k)

+

k−1∑
i=1

(
i

k

)
s(k − 1 − i, k − 1)

n−k∑
j=[n−k+1−i]+

S(n − k − j, n − k)

(11)

V. STRIPING FEC FOR MULTIPLE BURST-LOSSCHANNELS

Having derived the PLR of a given RS(n, k) on a single
burst-loss channel, we now extend the analysis to derive the
PLR of a particular “stripe” of a given RS(n, k) on m burst-
loss channels. We call the mapping or “stripe” ofk data and
n−k parity packets tom bursty channels anFEC distribution.
We denote such mapping function asg : (k, n − k) →
(u,v), u,v ∈ Im. It is a mapping of two scalars to two
vectors of lengthm, whereui (vi) represents the number of
data packets (parity packets) assigned to channeli.

Let random variableX be the number of unrecoverable data
packets at the receiver ink data packets in an RS(n, k) code.
Let Y , Z be the number of correctly transmitted data packets
and parity packets, respectively.X, Y and Z are related as
follows:

X =

{
k − Y if Y + Z ≤ k − 1
0 o.w. (12)

If given joint probability mass function (pmf) ofY andZ,
P(Y, Z), we can find the expectation ofX as:

E[X] = E[k − Y |Y + Z ≤ k − 1]P(Y + Z ≤ k − 1)

=

k−1∑
y=0

(k − y) P(Y = y, Z ≤ k − 1− y)

=

k−1∑
y=0

(k − y)

k−1−y∑
z=0

P(Y = y, Z = z) (13)

To find P(Y,Z), we first define random variablesYi ≤
ui and Zi ≤ vi as the number of correctly transmitted data
packets and parity packets in channeli, respectively. We can
then write:

Y =

m∑
i=1

Yi, Z =

m∑
i=1

Zi (14)

For each channeli, joint pmf of Yi andZi, Pi(Yi, Zi), can
be written as one of the two following forms. Ifui = 0, then
Pi(0, Zi) is simple:

Pi(0, Zi = z) = πiRi(ui − z, vi) + (1− πi)Si(z, vi) (15)

If ui ≥ 1, thenPi(Yi, Zi) is:

Pi(Yi = y, Zi = z) =

1(ui > y)
[

πiri(ui − 1 − y, ui − 1)Ri(vi − z, vi) + (1 − πi)s̄i(y, ui − 1)Ri(vi − z, vi)
]

+1(y > 0)
[

πir̄i(ui − y, ui − 1)Si(z, vi) + (1 − πi)si(y − 1, ui − 1)Si(z, vi)
]

(16)

wherey = 0, . . . , ui, z = 0, . . . , vi and 1(c) = 1 if clause
c is true, and= 0 otherwise. SinceY andZ, are both sums
of random variables, we derive joint pmf ofP(Y, Z) using
probability generating function (pgf)GY,Z(ξ, ζ):

GY,Z (ξ, ζ) = E[ξY
ζ

Z ] =

∑
y

∑
z

P (Y = y, Z = z)ξ
y

ζ
z = E[ξY1+···+Ym ζ

Z1+···+Zm ]

= E[ξX1ζ
Z1 ] · · ·E[ξXm ζ

Zm ] = GY1,Z1
(ξ, ζ) · · ·GYm,Zm

(ξ, ζ)

Hence joint pgfGY,Z(ξ, ζ) is simply a product of joint pgfs
GYi,Zi(ξi, ζi)’s. We recover joint pmfP(Y,Z) from joint pgf
GY,Z(ξ, ζ) as follows:

P(Y = y, Z = z) =
1

y!

1

z!

dy

dξy

dz

dζz
GY,Z(ξ, ζ)

∣∣∣∣
ξ=0, ζ=0

(17)

We can now deriveE[X] using (13). We denoteπ(g) as
E[X]/k — PLR given mappingg for RS (n, k).

A. Fast FEC Distribution Search Algorithms

Given RS(n, k), the number of unique mappings ofk data
packets tom channels can be shown to be exponential inm.
Together with the mappings ofn−k parity packets tom chan-
nels, the total number of unique FEC distributions grows faster
than exponential growth rate. For large values ofm and k,
exhaustively searching through all possible FEC distributions
is impractical. In such cases, we need a computation-efficient
algorithm to find a good FEC distribution.

We now explore practicalgreedyalgorithms to select good
d FEC istributions. A greedy algorithm is an algorithm that
iteratively makes the most profitable selection locally at each
turn until an ending condition is met. The first greedy algo-
rithm greedy1 first allocates one data packet to theoptimum
channel — channel in which adding the additional packet will
result in the smallest PLR. It then allocates one parity packet
to the optimum channel, then the rest of the data packets
one at a time to the optimum channel, and then the rest of
the parity packets.greedy2 allocates one data packet to
the optimum channel, all the parity packets one at a time to
the optimum channel, and then the rest of the data packets.
greedy3 allocates data and parity packets alternatively to
optimum channel when possible.greedy4 allocates data and
parity packets alternatively in small bundles, proportional to
the ratio of data to parity packets.

Taking a different approach,local begins with an initial
FEC distribution (to be discussed), then iteratively finds and
applies the most profitable data/parity packet movement —
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TABLE I
AVERAGE PLR FOR FEC DISTRIBUTION SEARCH ALGORITHMS.

Algorithm greedy1 greedy2 greedy3 greedy4 local optimal
Avg PLR 0.0183 0.0176 0.0174 0.0177 0.0145 0.0143
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Fig. 4. PLR for different FEC distribution search algorithms.

one where the reallocation of one data/parity packet from one
channel to another would result in the largest decrease in PLR.
local continues the packet reallocations until no profitable
packet movement can be found. Obviously, such greedy local
search depends heavily on the initial FEC distribution; we
use two extreme initializations — one where all packets are
assigned to the single channel with lower raw PLR, and
another where all packets are evenly distributed among all
channels — and use the lower of the two resulting PLRs as
the performance point oflocal .

To compare these greedy algorithms, we set the parameters
of three burst-loss channels as(0.05, 0.45), (0.03, 0.27) and
(0.05, 0.4), and we calculated PLR for these algorithms for
RS(n, k), 1 ≤ k < n ≤ 8. The resulting average effective
PLRs over the possible FEC’s are shown in Table I. We
compare their performance with the optimal FEC distribu-
tion, found by exhaustive searchoptimal . We observe that
local is by far the best greedy performer. In fact, when we
plot the difference in effective PLR compared withoptimal
in Figure 4 for RS(7, k) and RS(8, k), we see thatlocal
is point-by-point better than all other greedy algorithms. We
conjecture the reason as the following:RS(n, k) inherently be-
haves much differently thanRS(n−1, k) or RS(n−1, k−1),
and hence it is better to start with an initialRS(n, k) distri-
bution and reallocate packets rather than grow a distribution
one packet at a time. Henceforth we will uselocal as our
heuristic for constructing FEC distribution. We will later show
in Section IX-A2 thatlocal does in fact perform close to
the optimal exhaustive search for all practical purposes. As for
complexity, though in the theoretical worst caselocal has
exponential running time like exhaustive searchoptimal ,
we found in the above experiments thatlocal in practice
converged quickly in a handful of iterations.

VI. STRIPING DELAY-SENSITIVE MEDIA TRAFFIC OVER

BANDWIDTH -LIMITED CHANNELS

As mentioned in the Introduction, besides burst losses,
realistic WWAN channels are also comparatively bandwidth-
limited. Given the delay-sensitivity of the media traffic, it is
important to consider not only the packet loss rate but also
the delivery deadlines while arriving at the striping schedule.

To incorporate the bandwidth-limited dynamics for realtime
traffic into our analysis when studying the interleaving and
channel selection effects of striping, we expand the Gilbert
loss model in Figure 2 to a bandwidth-limited, burst-loss
model with random delays as shown in Figure 5. Eachj of
m channels is modeled by a FIFO queue and transmission
link pair: a queue with constant service rateµj is connected
to a transmission link of shifted-Gamma-distributed random
variable delayγj ∼ G(κj , αj , λj) and Gilbert-modeled burst
loss of parameterspj and qj . A low-bandwidth WWAN
channel is modelled by a correspondingly small service rate.
We assume the packet gateway records the timetj at which the
most recent packet that entered queuej would exit the queue.
The queuing delay experienced by a packet entering queuej
at optimization instantt is thenθj = 1/µj + max (tj − t, 0);
new t′j will need to be subsequently updated for the next
optimization instant as:t′j = max (tj , t) + 1/µj .

The time required to transmit the packet through queuej is
then simply the sum of the queuing and transmission delay:
θj + γj . Detailing the transmission delay, a Gamma random
variableγ with Gamma shape parameterα and scale parameter
λ has the following probability density function (pdf) (pg.117
of [34]):

gΓ(γ) =
λ (λγ)α−1

e−λγ

Γ(α)
0 < γ < ∞ (18)

whereΓ(α) is theGamma function:

Γ(α) =
∫ ∞

0

τα−1e−τdτ α > 0 (19)

Similarly, the shifted version of the Gamma random variable
with shift parameterκ is:

gΓs
(γ) =

λα (γ − κ)α−1
e−λ(γ−κ)

Γ(α)
κ < γ < ∞ (20)

In addition, we assume the client can inform the striping
gateway of a loss event losslessly in constant timeDF .

For input into the striping gateway, we assume the packets
in the incoming queue before the striping gateway are labeled
with expiration timesdi’s. A packet withdi must be delivered
by time di or it expires and becomes useless. In other words,
at optimization timet, a packet haspacket delay tolerance
di − t — the amount of time the gateway has to deliver the
packet to the client. We assume the packets are ordered in
the incoming queue by earliest expiration times. We assume
striping gateway is activated whenever there is a packet in the
incoming queue.

Availability of multiple channels in a striping system allows
for use of error correction and packet retransmission, specially
in high loss channels. Depending on the channel characteristics
and delay tolerance of the real-time traffic, FEC and ARQ can
be used to improve the data delivery ratio. We now analyse the
impact on FEC and ARQ on delivery of striped delay-sensitive
media traffic.

A. ARQ-based Algorithm

We first develop anARQ-based algorithmto exploit the
channel selection effect of packet striping. We assume for
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Fig. 5. Bandwidth-limited network model

now that we are optimizing the first packet at the front of the
input queue with expiration timed. Let f(d′), d′ = d − t, be
the probability that a packet with packet delay toleranced′ is
timely delivered to the client. LetfARQ(d′) be the probability
that the same packet is timely delivered using (re)transmission
(ARQ). Let f (i)

ARQ(d′) be the probability that the same packet
is timely delivered if channeli is first used for ARQ. Given
the client can losslessly inform the gateway of the loss event
in time DF , the packet has a chance for retransmission with
a tighter deadline. We can write:

f(d
′
) =

{
fARQ(d′) if d′ ≥ 0
0 o.w.

fARQ(d
′
) = max

i=1,...,m
f
(i)
ARQ

(d
′
)

f
(i)
ARQ

(d
′
) =

∫ d′−θi

κi

gΓs (γ)
(
(1− πi) + πif(d

′ −DF − θi − γ)
)

dγ

(21)

The interval over which the integral is taken is written as
such, becausegΓs

(γ) is zero for transmissionγ < κi, and the
packet in question will miss its deadlined for γ > d′ − θi.

B. Quantization & Dynamic Programming

As (21) is defined recursively within an integral, it is diffi-
cult to solve directly. Hence we first approximate (21) using
quantization, before usingdynamic programmingto resolve
the recursive calls. By quantization, we mean we divide the
non-zero area under pdfgΓs(γ), γ ≤ d′ − θi, into L evenly
spaced regions, where regionl has boundaries[b(i)

l−1, b
(i)
l ):

b
(i)
l−1 = κi +

l − 1

L

(
d′ − θi − κi

)
b
(i)
l = κi +

l

L

(
d′ − θi − κi

)
(22)

This is illustrated in Figure 6. It is easy to see that by con-
struction, transmission delaysγ’s in each regionl are upper-
bounded by boundaryb(i)

l . If we quantize all the delays in each

region l to b
(i)
l , each region has probability

∫ b
(i)
l

b
(i)
l−1

g
(i)
Γs

(γ)dγ,

and we can approximate (21) to:

f
(i)
ARQ

(d
′
) ≈

L∑
l=1

∫ b
(i)
l

b
(i)
l−1

g
(i)
Γs

(γ)dγ
[
(1− πi) + πif

(
d
′ −DF − θi − b

(i)
l

)]
(23)

Notice that the quantized (23) is much easier to solve, because
the integral no longer includes the recursive call. Now (23)

γΓ

γ
κ

g   (  )

i

s

l1 l2 µi i+ 1) /   d’ − (l

Fig. 6. Illustration of quantization scheme.

can be solved recursively with dynamic programming (DP).
DP means that each timef(d′) is called, the solution is stored
in the d′th entry of the DP tableF [ ], so that if a repeated
recursive callf(d′) is made, the answer can simply be looked
up instead.

The complexity of solvingf(d′) is bounded by the time to
solve each entry in the DP table, times the number of entries
in the table. Solvingf(d′) involves m channels andO(L)
operations in (23) for each channel, and there are a maximum
of d′ filled entries in the DP table. Hence the complexity of
the algorithm isO(Lmd′).

VII. D EVISING FEC STRIPING ALGORITHMS

We now turn our attention to devising FEC striping algo-
rithms for a set ofm bandwidth-limited, burst-loss channels
to exploit the interleaving effect of FEC striping. We first
derive an FEC-based algorithm in Section VII-A. We then
discuss how to appropriately set the Lagrange multiplier value,
which controls the volume of parity packets entering the set
of queues. Finally, we derive a Hybrid FEC/ARQ algorithm
that exploits both the channel selection effect of ARQ striping
and interleaving effect of FEC striping at the same time in
Section VII-C.

A. FEC-based Algorithm

We will assume greedy algorithmlocal is always used
to find a sub-optimal but good FEC distributiong for a
given RS (n, k) to be deployed on a set ofm burst-loss
channels. In general, we consider RS(n, k) while varying
n and k for different channel coding strengths and FEC
encoding/decoding delays, wheren/k is no larger than the
ratio of the aggregate channel packet rate to the input packet
rate. Let fFEC(d′1), d

′
1 = d1 − t, be the probability that a

packet with expirationd1 is timely delivered using FEC. To be
precise,fFEC(d′1) affects allk data packets in RS(n, k), and
so we should maximize the average success probability of all
k packets in the head of the incoming packet queue. However,
because we assume the packets in the queue are ordered by
expiring deadline, we can lower-bound the decoding success
probability fg

n,k(d′i) of k packets with the FEC decoding
success probability of the first packetfg

n,k(d′1). We can now
write fFEC(d′1) as:
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fFEC(d′1) = max
(n,k)

[
1

k

k∑
i=1

f g

n,k(d′i)− λ
(

n− k

k

)]
≈ max

(n,k)
f g

n,k(d′1)− λ
(

n− k

k

)
(24)

wherefFEC(d′1) is optimized over a range ofn andk.
Notice there is apenaltyterm λ(n−k

k ) in (24). The reason
is that using RS(n, k) invariably increases the traffic volume
by (n − k)/k fraction more parity packets. Hence a penalty
term is used to regulate the packet volume so that it does
not lead to excessive queuing delays; in Section IX-A2, we
will demonstrate the importance of the penalty function by
comparing the performance of the FEC-based algorithm with
and without penalty. The proper selection of the weight of the
penalty function —Lagrange multiplierλ — is also crucial
to the performance of (24); this is the subject of the following
section.

fg
n,k(d′1) in (24) can be approximated as follows: it is the

PLR associated with the FEC distributiong of RS (n, k) over
m channels, multiplied byΦg

n,k(d′1) — probability thatall n
FEC packets arrive at the receiver in time durationd′1 given
distributiong and queuing delaysθ′is. It is an approximation
because it assumes alln FEC packets must first be transmitted
over the varying delay channel, before packet losses are
determined and the FEC block is decoded. Delay of then
packetsΦg

n,k(a) is defined as follows:

Φg

n,k(a) =

m∏
i=1

ui+vi∏
j=1

∫ a−θi−(j−1)/µi

κi

g
(i)
Γs

(γ)dγ (25)

fg
n,k(d′1) can now be written as:

f g

n,k(d′1) ≈ [ 1− π(g) ] Φg

n,k(d′1) (26)

B. Lagrange Multiplier Selection

At a high level, since the goal of the penalty function
λ

(
n−k

k

)
is to regulate the volume of packets inm queues, it

makes sense to selectλ to be proportional to the total amount
of traffic currently in them queues. So given packet volume
w, the question is how to select an appropriate sloped and an
y-intercepth in linear equationλ = dw + h?

Parametersd and h control the sensitivity of the penalty
function λ

(
n−k

k

)
to the volume of queue traffic. To derive

the appropriate sensitivity, we first trace out each multiplier
valueλi at which optimization (24) switches optimal solutions
RS (no

i , k
o
i ) to RS (no

i+1, k
o
i+1). As an example, we see

in Figure 7a that the performance of each FEC RS(n, k),
n ≤ 5, is plotted on a graph of PLR vs.parity-to-data ratio
r = (n − k)/k. As λ varies, the FECs that are optimal
solutions to (24) are traced out as the convex hull of the
graph. Any two consecutive convex hull points,(PLRi, ri)
and (PLRi+1, ri+1), will induce a slopeλi = (PLRi+1 −
PLRi)/(ri − ri+1), which is the value at which (24) will
switch from solution(PLRi, ri) to (PLRi+1, ri+1). If we
now plot these slopes as a function ofdata-to-parity ratio
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(a) Convex hull of FEC.
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Fig. 7. Method of selecting Lagrange multiplier value.

1/r = k/(n − k), as shown in Figure 7b, we see an almost
linear relationship. The line essentially shows how drastically
λ-value must change to effect a corresponding change in data-
to-parity ratio given optimization (24) is used. This is the
sensitivity we are seeking for. The only task left is to find
a line of best fit that describes the relationship betweenλ and
data-to-parity ratio. To that end, we use a well-known linear
regression technique in [35], where for a given set of data
points (x1, y1), (x2, y2), . . . , (xN , yN ), the parameters of line
of best fity = dx + h are:

h =

∑
x2

i

∑
yi −

∑
xi

∑
xiyi

N
∑

x2
i −

(∑
xi

)2

d =
N

∑
xiyi −

∑
xi

∑
yi

N
∑

x2
i −

(∑
xi

)2
(27)

where each summation is taken fromi = 1 to N . To
summarize, we find the parametersd andh of linear equation
λ = dw + h as follows:

1) Find performance data points(PLRi, ri) of PLR
vs. parity-to-data ratio for various candidate FECs,
RS (n, k).

2) Trace the convex hull of the performance graph.
3) Using convex hull points(λi, 1/ri)’s, derive appropriate

d andh using (27).

C. Hybrid FEC/ARQ Algorithm

To combine the channel selection effect of ARQ striping
and interleaving effect of FEC striping, we can combine the
ARQ and FEC algorithms into one hybrid algorithm.f(d′1) is
then simply the larger value of the two possible choices —
(re)transmission or FEC:

f(d′1) =

{
max [ fARQ(d′1), fFEC(d′1) ] if d′1 ≥ 0
0 o.w. (28)

Unlike (26), the FEC decoding success probability given FEC
distributiong, fg

n,k(d′1), is now defined recursively to permit
retransmission (reFEC) if initial FEC decoding fails:

f
g

n,k
(d′1) =

∫ d′1

0

[
(1− π(g)) + π(g)f(d′1 −DF − γ)

]
φ
g

n,k
(γ) dγ

(29)
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whereφg
n,k(γ) =

d Φ
g

n,k
(γ)

dγ is the probability that RS(n, k)
is ready for decoding after exactlyγ time duration. As done
in Section VI-B for the ARQ-based algorithm, in order to
separate the integral from the recursion in (29), we need to first
divide the non-zero area under pdfφ

g
n,k(γ) into L quantization

regions. We first define the largest minimum delay,Dmax,
experienced by any packet in RS(n, k) given FEC distribution
g due to queuing and shifts in Gamma distributions:

Dmax = max
i=1,...,m

[
θi +

ui + vi − 1

µi
+ κi

]
(30)

It is clearφg
n,k(γ) = 0 for γ < Dmax. The largest amount of

time permissible to transmit all packets is of coursed′1. Hence
to quantize the area underφ

g
n,k(γ) into L regions, each region

l with boundaries[al−1, al), we get:

[ al−1, al ) =
[
l − 1

L
(d′1 −Dmax) + Dmax,

l

L
(d′1 −Dmax) + Dmax

)
(31)

To calculate
∫ al

al−1
φg

n,k(γ)dγ — the probability that
RS (n, k) is ready for decoding in interval[al−1, al), we
simply subtract the probability that alln packets arrive by
al−1, Φg

n,k(al−1), from the probability that alln packets arrive
by al, Φg

n,k(al). We can now writefg
n,k(d′1) as follows:

f
g

n,k
(d
′
1) ≈

L∑
l=1

[
(1 − π(g)) + π(g)f(d

′
1 − DF − al)

][
Φg

n,k
(al) − Φg

n,k
(al−1)

]
(32)

VIII. R EAL-TIME IMPLEMENTATION OF THE HYBRID

FEC/ARQ ALGORITHM FOR MEDIA STREAMS

There are two remaining concerns for the Hybrid FEC/ARQ
algorithm developed in Section VII-C when implementing it
for real-time striping of media stream. First, as mentioned in
Section II, media data like a video frame is often segmented
into multiple packets, each with the same delivery deadline,
and all packets must be delivered on time or none will be
useful for the client decoder. This means the striping gateway
must have the ability to optimize a group of packets in the
head of the queue at the same time. Second, it is clear that
the hybrid FEC/ARQ algorithm is computation-intensive, and
a fast implementation is needed. In this section we address
these two issues in order.

A. Optimizing Packet Group at Head of Input Queue

To optimize delivery ofN packets at the heard of input
queue, we modify our Hybrid FEC/ARQ algorithm (28) as
follows. We pass on an additional argumentc to function
f(d′1), wherec indicates the number of packets we need to
optimize. A recursive callf(d′1, N) will return the optimal
answer. In more details, when we test simple transmission
on channeli for the first of c packets, we additionally call
f(d′1, c − 1) to calculate PLR for the remainder of the of
packets. Mathematically, for ARQ we modify (21) and (23)
to:

fARQ(d
′
1, c) =

{
maxi=1,...,m

(
1
c

)
f
(i)
ARQ

(d′, c) +
(

c−1
c

)
f(d′, c − 1) if (c ≥ 2)

maxi=1,...,m f
(i)
ARQ

(d′, c) o.w.

(33)

f
(i)
ARQ

(d
′
1, c) =

L∑
l=1

∫ b
(i)
l

b
(i)
l−1

g
(i)
Γs

(γ)dγ

[
(1 − πi) + πif

(
d
′ − DF − θi − b

(i)
l

, 1
)]
(34)

Two details are worthy of note here. First, in (33) we recurse
on f( ) to find the average PLR overc packets only if there
are more packets in input queue to consider (c ≥ 2). Second,
regardless of the current value ofc, recursion call onf( ) in
(34) has argumentc reduced to1. This prevents the averaging
of PLR in lower level of recursive calls in the recursion tree
as done in the first line of (33).

FEC-based recursions (24) and (32) need to be modified
accordingly as well. The necessary modifications are similar
and hence are omitted here.

B. Two-tier Dynamic Programming Implementation

To reduce the computation complexity of the Hybrid
FEC/ARQ algorithm (28), we employ a two-tier dynamic
programming implementation. The first tier of dynamic pro-
gramming, like the dynamic programming tables used for
ARQ-based algorithm of (23) in Section VI-B, is used when
(28) is solved for the first time. Because (28) recursively calls
f() with smaller arguments repeatedly, computed value of
f(a) can be stored in theath entry of dynamic programming
(DP) tableF [ ], so that future recursive calls of same argument
can be simply looked up instead of re-computed. Further, we
can restrict the size of the DP table to a limitH entries —
hence placing an upper bound on the execution time. To do
so, we must derive an indexa′ into the table by first dividing
the argumenta of f(a) by constantK to place or retrieve a
value into or from the table;K ∈ R can be selected so that
all possible argumentsa’s map just inside the available space
H.

K =
amax

H − 1
a′ =

⌊ a

K

⌋
(35)

whereamax is the largest possible argument for (28). Because
f() is monotonically non-decreasing by definition, the round-
ing down operation provides a lower bound when calculating
f() recursively using the table.

The second tier of dynamic programming is used when
parameters of the network models remain unchanged from
packet to packet. Observe that the algorithm is computed based
only on the following: i) survival timed′ of the first packet
in the head of queue; ii) number of packetsN in the head of
queue; and, iii) queuing delaysθi’s in the outgoing channels.
Each timef(d′) is computed using (28), the solutions should
be stored in entry[d′][N ][[θ1][θ2][θ3] of a DP tableSoln
(assuming the number of channels is3). When a future packet
arrives with survival timed′, number of packets in input queue
N ,and queue delaysθ1, θ2 and θ3, the striping engine can
have its solution simply looked up inSoln. Similar dividing
and rounding operation by constant factorK2 can be done for
queuing delaysθi’s as well to further reduce complexity at the
cost of solution quality.
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TABLE II
MODEL PARAMETERS FOR PACKET LOSS EXPERIMENTS.

channel p q µ α λ κ

1 0.05 0.45 30ms/pkt 4 0.2 50
2 0.03 0.27 30ms/pkt 4 0.2 50
3 0.05 0.4 25ms/pkt 4 0.16 50
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Fig. 8. Performance comparisons for ARQ schemes.

IX. PERFORMANCEEVALUATION

To test the developed striping algorithms, we implemented
muns (MUlti-path Network Simulator) in C on linux ,
with Gilbert losses, and constant queuing delays and shifted-
Gamma distributed transmission delays, as shown in Figure 5.
The network model parameters assumed are shown in Table II.
We studied the performance of our algorithms for two kinds
of data traffic. In the first set of results we used a constant bit
rate data stream. Second set of results is based on two H.264
encoded video streams.

A. Constant Rate Traffic

In this section we use the packet loss ratio as the metric for
evaluating the various striping algorithms for constant bitrate
data source. For each data point of PLR,300, 000 packets were
inputed for an averaging effect.

1) ARQ-based Algorithm:We first experimentally examine
the channel selection effect of striping; we compare the
performance our optimal ARQ schemeoptARQ in (21) with
weighted round-robinWRR, which randomly assigns incoming
input packets to channels with probabilities proportional to the
relative sizes of the channel bandwidths, and biased weighted
round robinWRR2which is likeWRRbut only choose channels
that the packet in the head of the queues has a non-zero
probability of successful transmission. Figure 8 shows the
resulting PLR of the three schemes as a function of packet end-
to-end delay tolerances in ms. Quantization was set toL = 10
to solve (23);L was set large enough so that quantization
effects are negligible. We conducted two trials, with input
packet spacing of15ms and 16ms respectively, resulting in
input packet volume of66.7 pkts/s and62.5 pkts/s respec-
tively. We see thatoptARQ outperformedWRRandWRR2for
the entire range of packet tolerance delay for both trials. In
particular, at the threshold value of delay tolerance of220ms
where the timely delivery of the second transmission depends
heavily on the channel selection,optARQ outperformedWRR
andWRR2by 5.1% and3.5% for trial 1 and4.1% and2.8%
for trial 2. This demonstrates that the channel selection effect
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Fig. 9. Comparing greedy and exhaustive FEC distribution selection schemes.
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Fig. 10. Performance comparison for FEC schemes and for multiplier
variation.

of striping — the clever selection of delivery channels for
transmission and retransmission packets — is important and
makes significant difference in realistic scenarios.

2) FEC-based Algorithm:We next examine the interleaving
effect of striping by investigating the performance of our
devised FEC-based algorithm. We limited the feasible FEC
set to be the set of RS(n, k)’s, k < n ≤ 5. First, we
compare the performance of our FEC-based algorithm when
greedy FEC distribution selection algorithmlocal , discussed
in Section V, is used, versus the same algorithm when an
exhaustive search algorithmexhaust is used to search for
good FEC distributions. We conducted two trials for packet
spacing of15ms and16ms. We see in Figure 9 thatlocal
performed almost identically toexhaust for both packet
spacing of 15ms and 16ms. This shows that though our
local selection algorithm may on occasion be sub-optimal,
it performs sufficiently well for practical purposes. We note
that while the running time of usingexhaust was about
twice the time of usinglocal , it was not computationally
prohibitive for the small range of RS(n, k) we searched in the
search space.

Using the linear regression method described in Section
VII-B to find the appropriateλ for given volume of packets
in queues, we traced the performance of our FEC-based algo-
rithm optFEC of (24) and plotted in Figure 10a against packet
delay tolerance in ms. Input packet spacing was15ms. For
comparison, we plotted two other FEC schemes. TheuniFEC
finds the currently best performing channel coding RS(n, k)
and transmits the data and parity packets over thesingle
channel with the highest delivery success probability given
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Fig. 11. ComparingoptFEC , optARQ andHybrid schemes.

current queue lengths and network conditions. ThefixFEC
performs fixed RS(4, 3) but stripes over three channels using
greedy algorithmlocal . Both uniFEC and fixFEC will
elect to send simple packet transmission if simple transmission
has better delivery success probability due to delays introduced
by FEC.

Several observations can be made in Figure 10 (a). First,
performance benefits due to FEC forfixFEC kicked in
earlier thanuniFEC . This is because striping across channels
typically has the benefit of reducing end-to-end FEC decoding
delay. Due to this early “kick-in” effect of FEC striping,
optFEC outperformeduniFEC and fix-FEC by up to to
8.0% at low delay tolerance.

Second, even after FEC benefits ofuniFEC kicked in,
PLR of fixFEC was still smaller thanuniFEC . This is
because a single burst in a single channel corrupts entire FEC
block for uniFEC , while it only corrupts a portion of FEC
block for fixFEC . optFEC , in addition to the interleaving
effect, has the flexibility to find the appropriate FEC given
the current queuing delays. Due to these advantages,optFEC
outperformeduniFEC and fix-FEC by up to to5.9% and
1.9%. respectively, at high delay tolerance.

3) Hybrid FEC/ARQ Algorithm:We next investigate the
performance of the hybrid FEC/ARQ algorithmhybrid in
(28) and (29). Recall in Section VII that the performance of
both FEC-based and Hybrid FEC/ARQ algorithm depends on
the selection of the Lagrange multiplierλ, which determines
the weight of the penalty functionλ

(
n−k

k

)
. To stress this

point, we constructed Figure 10 (b), which shows the per-
formance of our hybrid FEC/ARQ algorithm (hybrid ) in
PLR as a function ofλ, where for each data pointλ was
held constant for the experimental run. Input packet spacing
is 16ms, and end-to-end packet delay tolerance is150ms. We
see that an inappropriateλ value results in a worse PLR by
7.6%, demonstrating the importance of a cleverly selectedλ.

To validate the performance ofhybrid , we compare the
following. For input packet spacing of15ms and 16ms,
performance in PLR is again plotted against packet delay
tolerance. For comparison, the performance ofoptFEC and
optARQ are also plotted in Figure 11. We see that the
performance ofhybrid was as least as good as bothoptFEC
and optARQ for all range of packet delay tolerance, and
at some high delay tolerance,hybrid outperformed both
optFEC andoptARQ.

TABLE III
MODEL PARAMETERS FOR VIDEO STREAMING EXPERIMENTS.

channel p q µ (sean ) µ (foreman ) α λ κ

1 0.05 0.45 208ms/pkt 202ms/pkt 3 0.1 50
2 0.03 0.27 208ms/pkt 202ms/pkt 3 0.1 50
3 0.05 0.4 194ms/pkt 191ms/pkt 3 0.16 50
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Fig. 12. Performance comparison among WRR, WRR2 and hybrid-
FEC/ARQ schemes: PSNR vs. client buffer delay

B. H.264 Video Streaming

Finally, we show the applicability and performance of our
developed packet striping system to streaming video applica-
tions. Using a H.264 video encoder, we encoded two 100-
frame QCIF (176×144) MPEG test video sequences named
sean and foreman of 10 frames per second at28kbps
and 64kbps in IPPP format (one I-frame followed by P-
frames). We use a streaming server to send frames to a multi-
homed wireless streaming client simply according to their
presentation times, via our striping system. Each compressed
video frame is broken into one or more packets of no more
than 1500 bytes, which is assumed to be the Maximum
Transport Unit (MTU). Parameters of the network model for
this part of the experiment is shown in Table III.

A frame at the client is decoded on time if: a) it is delivered
by its playback deadline; and, b) its reference frame was
decoded on time. If a framei is timely decoded, PSNR is
calculated using the reconstructed framei and the original
frame i. If a frame i cannot be decoded on time, the most
recently timely decoded framej is used as its replacement, and
PSNR is calculated using reconstructed framej and original
frame i.

We compare the performance of our hybrid FEC/ARQ
scheme (hybrid-FEC/ARQ ) to two competing schemes:
weighted round robin (WRR), and biased weighted round robin
(WRR2). WRRand WRR2are as described in Section IX-A1.
In Figure 12, we see the performance of the three schemes in
Peak Signal-to-Noise Ratio (PSNR) as function of the initial
playback buffer delay at the client. We see that for small
playback buffer delay,hybrid-FEC/ARQ outperformedWRR
by up to 10.5dB and WRR2by up to 7.3dB for the sean
sequence, and outperformedWRRby up to9.6dB, WRR2by up
to 6.1dBfor the foreman sequence. This shows that though
all three schemes enjoy the benefit of aggregated bandwidth of
three bandwidth-limited channels, a good striping algorithm —
one that benefits from both the interleaving effect of striping
FEC and the channel selection effect of striping ARQ — can
intelligently stripe packets across channels to further improve
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performance drastically for streaming video, particularly for
low-delay applications.

X. CONCLUSION

Use of striping or inverse-multiplexing for sharing and
aggregation of the limited bandwidth of WWAN connec-
tions in a collaborative community of multi-homed wireless
devices, each having both a WWAN interface to connect
to the Internet and a WLAN interface to connect to its
neighbors, has potential to provide ubiquitous highspeed Inter-
net access. Striping traffic over bundled WWAN connections
enables streaming of high quality media to devices without
highspeed Internet access. Furthermore, smart striping FEC
and ARQ packets across multiple channels can improve the
timely delivery of delay-sensitive traffic due to following
two effects: i) interleaving effect, where by striping FEC
packets across channels one can avoid FEC decoding failure
due to a single burst loss, at the same time avoid the long
interleaving delay of a single-channel interleaver; and, ii)
channel selection effect, where one can judiciously select one
among many available channels that maximizes a packet’s
survival chances given its delivery deadline and the channels’
delay and loss characteristics. We have developed dynamic
programming based algorithm for smart striping of streaming
media along with error correction over multiple burst-loss
channels. Our simulation-based performance evalution shows
that our striping algorithm finds an operating region to balance
conflicting channel characteristics such as loss, latency and
bandwidth to outperform naı̈ve algorithms such as weighted
round-robin. We have also presented techniques to aid the real-
time implementation of the proposed striping algorithm. Since
our striping scheme operates on a per-packet basis and not
per-flow, we can easily extend our developed techniques to
multiple flows sharing multiple channels. In future we plan
to study the performance impact of variations in the channel
properties due to fading and interference.
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