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Abstract

Multi-homed mobile devices have multiple wireless com-
munication interfaces, each connecting to the Internet via
a long range but low speed and bursty WAN link such as
a cellular link. We propose a packet striping system for
such multi-homed devices — a mapping of delay-sensitive
packets by an intermediate gateway to multiple channels,
such that the overall performance is enhanced. In partic-
ular, we model and analyze the striping of delay-sensitive
packets over multiple burst-loss channels with random de-
lays. We first derive the expected packet loss ratio when
forward error correction (FEC) and retransmissions are
applied for error protection over multiple channels. We
next model and analyze the case when the channels are
bandwidth-limited with shifted-Gamma-distributed trans-
mission delays. We develop a dynamic programming-based
algorithm that solves the optimal striping problem for the
ARQ, the FEC, and the hybrid FEC/ARQ case.

1 Introduction

Many modern wireless devices are multi-homed — hav-
ing multiple wireless communication interfaces, each con-
necting to the Internet via a wireless wide area network
(WWAN) interface such as a cellular link. Though this type
of interface provides long range services, the bandwidth is
limited, and packet losses are frequent and bursty. To en-
hance performance in this setting, an assistant gateway can
“aggregate” device’s low speed WAN channels — a map-
ping of incoming packets to its multiple channels together
with the use of error protection schemes such as forward er-
ror correction (FEC) and retransmissions (ARQ) — to op-
timize end-to-end packet delivery. Clearly, suchstriping
engine can potentially improve delivery of delay-sensitive
media streaming data greatly: like a typical single channel
packet interleaver, by spreading FEC packets across chan-
nels, one avoids decoding failure due to a single burst loss,
yet unlike the interleaver, one also avoids excessive trans-
mission delay of long interleaving.

:
:

Figure 1. Packet Striping Engine

Indeed, this striping orinverse multiplexingproblem has
recently received great interest in mobile wireless network-
ing domain [1, 2]. Yet previous work has mainly focused on
designing wireless inverse multiplexing systems to improve
TCP throughput in such environments. Unlike previous
work that focuses on bulk transfer, we focus our attention
on delay-sensitive packet delivery such as media streaming.
The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 provides basic definitions
and the modeling of bursty error channels. Section 4 de-
rives the effective packet loss ratio when FEC is applied to
a single bursty channel. Section 5 derives the effective loss
ratio when Reed-Solomon(n, k) code is striped over a set
of m bursty channels under a particular mapping. Striping
on bandwidth limited, bursty channels is analyzed and opti-
mization algorithms are designed in Section 6.

This work is a generalization of our previous work [3]
on striping delay-sensitive packets over multiple burst-loss
wireless channels. In [3], the transmission delay of each
channel is modeled as a constant. In contrast, the transmis-
sion delay in this work has been generalized to a shifted-
Gamma-distributed random variable, which is found to be
accurate for common network load [4]. Given the general-
ization of network model, we detail the corresponding strip-
ing optimization based on earlier developed algorithms [3].

2 Background

As shown in Figure 1, striping is the mapping of a sin-
gle flow to multiple channels. While fair load sharing
among multiple channels is a concern, effective traffic map-
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Figure 2. Gilbert loss model

ping onto the channels for optimized performance (i.e., high
throughput and bounded delay) is also critical. The receiv-
ing end of the striping system must re-synchronize out-of-
order delivery packets. In this paper we assume the exis-
tence of reassembly mechanisms that handle reordering of
packets. Applications such as media streaming use receiver
buffers that can also be used for packet reordering.

The inverse multiplexing network model we consider is
composed of wireless channels with bursty losses. We also
apply forward error correction (FEC) technique and analyze
the striping performance in bandwidth limited channels. We
are particularly interested in streaming applications that are
delay-sensitive. There is a significant amount related work,
although only a few of these consider striping in wireless
channels. We overview the earlier research in this area.

Modeling the wireless channel behavior has been an ac-
tive research area. Wireless channel is modeled using the
traces in [5]. Bursty errors are modeled using two-state
Markov chain and two variations. The length of errors is
shown to have two exponential curves and the length of
error-free packets has a combination of two Pareto distri-
butions and one exponential curve.

Streaming over lossy channels creates another challenge
as packets are delay-sensitive. Streaming packet schedul-
ing over wireless channels has been investigated in [6, 7].
Rate-distortion optimized packet scheduling is thoroughly
analyzed in [8], and scheduling of layered streaming video
is presented in [9]. FEC and ARQ performances in contin-
uous streams over bursty channels are compared in [10].

In our model, we assume the packet size and the trans-
mission rate are constant. The wireless channels are al-
ways available, although they will sometimes have errors.
In other words, the disappearance of the channels due to
mobility of the end hosts is not considered.

3 Channel Model Basics

Given the burst-loss nature of wireless links, we model
losses in each channel using a two-state Markov chain
(Gilbert model), shown in Figure 2. A correct (incorrect)
packet delivery event is denoted by0 (1).

We begin with definitions similar to those introduced
in [11]. Let p andq be the Gilbert model parameters. Let
p(i), i ≥ 0, be the probability of havingexactlyi consec-
utive correctly delivered packets between two lost packets,

following an observed lost packet, i.e.p(i) = Pr(0i1|1).
Let P (i) be the probability of havingat least i consecu-
tive correctly delivered packets following an observed lost
packet, i.e.,P (i) = Pr(0i|1). p(i) andP (i) can be written
mathematically:

p(i) =

{
1− q if i = 0
q(1− p)i−1p o.w.

(1)

P (i) =

{
1 if i = 0
q(1− p)i−1 o.w.

(2)

q(i) =

{
1− p if i = 0
p(1− q)i−1q o.w.

(3)

Q(i) =

{
1 if i = 0
p(1− q)i−1 o.w.

(4)

q(i) and Q(i) are complementarily defined functions;
q(i) = Pr(1i0|0) andQ(i) = Pr(1i|0).

We next defineR(m,n) as the probability that there are
exactlym lost packets inn packets following an observed
lost packet. It can be expressed recursively using earlier
definitions as:

R(m, n) =


P (n) for m = 0 and n ≥ 0
n−m∑
i=0

p(i)R(m− 1, n− i− 1) for 1 ≤ m ≤ n

(5)

We additionaly definer(m,n) as the probability that
there areexactlym loss packets inn packetsbetweentwo
lost packets following an observed lost packet. Similarly,
r(m,n) can be expressed recursively:

r(m, n) =


p(n) for m = 0 and n ≥ 0
n−m∑
i=0

p(i)r(m− 1, n− i− 1) for 1 ≤ m ≤ n

(6)

Finally, we definēr(m,n) as the probability that there are
exactlym lost packets inn packets following an observed
lost packet and preceding a successfully received packet.

r̄(m, n) = R(m, n)− r(m, n) (7)

We define the complementary functionS(m,n), as the
probability of havingexactlym correctly received pack-
ets inn packets following an observed correctly received
packet.

S(m, n) =


Q(n) for m = 0 and n ≥ 0
n−m∑
i=0

q(i)S(m− 1, n− i− 1) for 1 ≤ m ≤ n

(8)

s(m,n) and s̄(m,n) are defined counterparts tor(m,n)
andr̄(m,n).
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Figure 3. FEC encoding of data packets.

4 FEC for One Burst-loss Channel

We derive the expected packet loss ratio (PLR) of FEC
code —αRS of (n, k) Reed-Solomon code in particular —
on a burst-loss channel. Reed-Solomon code is commonly
used in practice for FEC packet-level recovery systems with
delay constraints [12, 13, 14]. Figure 3 shows an example
of a RS(5, 3) code.

Recall RS(n, k) is correctly decoded if anyk packets
of the group ofk data andn − k parity packets are cor-
rectly received. First, we condition on the status of the last
transmitted packet (loss/success), giving us two conditional
probabilities,αRS|1 andαRS|0, respectively.αRS can then
be expressed as:

αRS = π ∗ αRS|1 + (1− π) ∗ αRS|0 (9)

whereπ = p
p+q is the raw PLR of the channel.

To find αRS|1, we consider thek data packet block and
then − k parity packet block separately. We condition on
the status of the last (k-th) data packet; given thek-th data
packet is lost or received, we useR(., .) or S(., .) for prob-
ability calculation of the trailingn− k parity packet block.

Conditioning on the event when thek-th data packet is
lost, we consider all cases when any numberi of the re-
mainingk− 1 data packets are lost. Each casei will have a
loss ratio ofi+1

k , assuming there are≥ n− k + 1 total loss
packets including then − k parity packets. Similar analy-
sis conditioning on the event when thek-th data packet is
successfully received completes the derivation forαRS|1:

αRS|1 =

k−1∑
i=0

(
i + 1

k

)
r(i, k − 1)

n−k∑
j=[n−k−i]+

R(j, n− k)

+

k−1∑
i=1

(
i

k

)
r̄(i, k − 1)

n−k∑
j=[n−k+1−i]+

S(n− k − j, n− k)

(10)

where[x]+ is the positive part ofx. Following similar anal-
ysis forαRS|0 we get:

αRS|0 =

k−1∑
i=0

(
i + 1

k

)
s̄(k − 1− i, k − 1)

n−k∑
j=[n−k−i]+

R(j, n− k)

+

k−1∑
i=1

(
i

k

)
s(k − 1− i, k − 1)

n−k∑
j=[n−k+1−i]+

S(n− k − j, n− k)

(11)

5 Striping FEC for Multiple Burst-loss
Channels

Data and parity packets of a given RS(n, k) can be
striped over a set ofm channels in multiple ways. We
call the mapping ofk data andn − k parity packets tom
bursty channels anFEC distribution. We denote such map-
ping function asg : (k, n−k) → (u,v), u,v ∈ Im. It is a
mapping of two scalars to two vectors of lengthm, whereui

(vi) represents the number of data packets (parity packets)
assigned to channeli. In addition, we definewi = ui + vi

as the total number of packets assigned to channeli.
Let random variableX be the number of unrecoverable

data packets at the receiver ink data packets in a RS(n, k)
code. LetY , Z andΘ be the number of correctly transmit-
ted data packets, parity packets and total packets, respec-
tively. X, Y andZ are related as follows:

X =

{
k − Y if Y + Z ≤ k − 1
0 o.w.

(12)

When given probability mass functions (pmfs) ofY , Z and
Θ = Y + Z, we can find the expectation ofX as follows:

E[X] = E[k − Y |Y + Z ≤ k − 1]P (Y + Z ≤ k − 1)

= (k − E[Y |Θ ≤ k − 1]) P (Θ ≤ k − 1) (13)

To find P (Θ ≤ k − 1), we first define random variables
Yi ≤ ui, Zi ≤ vi andΘi ≤ wi as the number of correctly
transmitted data packets, parity packets and total packets in
channeli, respectively. We can then write:

Y =

m∑
i=1

Yi, Z =

m∑
i=1

Zi, Θ =

m∑
i=1

Θi (14)

For each channeli, pmf ofΘi = Yi + Zi can be written as:

P (Θi = j) = πi R(wi − j, wi) + (1− πi)S(j, wi) (15)

wherej = 0, . . . , wi. SinceΘ, as well asY andZ, are
all sums of random variables, we derive pmf ofΘ using
probability generating function (pgf)GΘ(ξ):

GΘ(ξ) = E[ξΘ] =
∑

j

P (Θ = j)ξj = E[ξΘ1+···+Θm ]

= E[ξΘ1 ] · · ·E[ξΘm ] = GΘ1(ξ) · · ·GΘm(ξ)



Table 1. Average PLR for FEC distribution search algorithms
Algorithm greedy1 greedy2 greedy3 greedy4 even optimal
Avg PLR 0.0128 0.0127 0.0130 0.0129 0.0172 0.0124

Hence pgfGΘ(ξ) is simply a product of pgfsGΘi
(ξ)’s.

We recover pmf ofΘ from pgf GΘ(ξ) as follows (p.148 of
[15]):

P (Θ = j) =
1

j!

dj

dξj
GΘ(ξ)

∣∣∣∣
ξ=0

(16)

We can now findP (Θ ≤ k − 1) by summingP (Θ = j)
for 0 ≤ j ≤ k − 1.

To find E[Y |Θ ≤ k − 1], we make the simplifying as-
sumption thatY andZ are independent. We get:

E[Y |Y + Z ≤ k − 1] ≈ E[Y |Y ≤ k − 1]

=

k−1∑
j=1

jP (Y = j)

P (Y ≤ k − 1)
(17)

pmf of Y is found similar toΘ. We will denoteπ(g) as
E[X]/k — PLR given mappingg for RS(n, k) code.

5.1 Fast FEC Distribution Search Algo-
rithms

The number of unique mappings ofn − k parity and
k data packets tom channels is exponential inm andk.
Instead of exhaustive search, we explore practical greedy
schemes to select good FEC distributions. A greedy algo-
rithm incrementally grows an FEC distribution one packet
at a time. The order in which one grows the FEC distri-
bution — when to insert a data packet or a parity packet
— greatly affects the performance. We tried several greedy
algorithms and present the four best performers.

The first algorithmgreedy1 first allocates one data
packet to theoptimumchannel — channel in which adding
the additional packet will result in the smallest PLR. It then
allocates one parity packet to the optimum channel, then
the rest of the data packets one at a time to the optimum
channel, and then the rest of the parity packets.greedy2
allocates one data packet to the optimum channel, all the
parity packets one at a time to the optimum channel, and
then the rest of the data packets.greedy3 allocates data
and parity packets alternatively to optimum channel when
possible. greedy4 allocates data and parity packets al-
ternatively in small bundles, proportional to the ratio of
data to parity packets. We also compare them with an
even allocation schemeeven where the same number of
data and parity packets are evenly allocated to each chan-
nel,

⌊
k
m

⌋
and

⌊
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Figure 4. PLR for different FEC distribution
search algorithms

and (n − k) − m
⌊

n−k
m

⌋
, allocated to the channel with

smallest PLR. For three burst-loss channels of parameters
(0.05, 0.45), (0.03, 0.27), (0.05, 0.4), we calculated PLR
for these algorithms for RS(7, x) and RS(8, x) where1 ≤
x ≤ n − 1. The resulting average effective PLRs over the
possible FEC’s are shown in Table 1. We compare their
performance with the optimal FEC distribution, found by
exhaustive searchoptimal .

even is by far the worst performer andgreedy2 is the
best overall performer. In fact, when we plot the difference
in effective PLR compared withoptimal in Figure 4, we
see that althoughgreedy2 may not always be the best per-
former in the group, it has the overall smallest maximum
difference. For the above reasons, we usegreedy2 as our
heuristics for constructing FEC distribution.

6 Delay-sensitive Traffic over Bandwidth-
limited Channels

We expand the Gilbert loss model in Figure 2 to a
bandwidth-limited, burst-loss model with random delays
as shown in Figure 5. Eachj of m channels is mod-
eled by a FIFO queue and transmission link pair: a queue
with constant service rateµj is connected to a transmis-
sion link of shifted-Gamma-distributed random variable de-
lay γj ∼ G(κj , αj , λj) and Gilbert-modeled burst loss of
parameterspj and qj . At a given time, the fullness of
the queuej is lj . The time required to transmit a packet
through queuej is then:(lj +1)/µj +γj . In more details, a
Gamma random variableγ with Gamma shape parameterα
and scale parameterλ has the following probability density
function (pdf) (pg.117 of [15]):

gΓ(γ) =
λ (λγ)α−1

e−λγ

Γ(α)
0 < γ < ∞ (18)
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whereΓ(α) is theGamma function:

Γ(α) =
∫ ∞

0

τα−1e−τdτ α > 0 (19)

Similarly, the shifted version of the Gamma random vari-
able with shift parameterκ is:

gΓs
(γ) =

λα (γ − κ)α−1
e−λ(γ−κ)

Γ(α)
κ < γ < ∞ (20)

In addition, we assume the client can inform the striping
engine of a loss event losslessly in constant timeDF .

For input into the striping engine, we assume the pack-
ets in the incoming queue before the striping engine are la-
beled with expiration timesdi’s. A packet withdi must be
delivered by timedi or it expires and becomes useless. We
assume the packets are ordered in the incoming queue by
earliest expiration times. We assume striping engine is acti-
vated whenever there is a packet in the incoming queue.

6.1 ARQ-based Algorithm

To achieve low complexity, we choose to optimize one
packet at a time with expiration timed. Let f(d′), d′ =
d − t, be the probability that a packet with expirationd is
timely delivered to the client, wheret is the time of opti-
mization instant at the striping engine. LetfARQ(d′) be the
probability that the same packet is timely delivered using
(re)transmission (ARQ). Letf (i)

ARQ(d′) be the probability
that the same packet is timely delivered if channeli is first
used for ARQ. Given the client can errorlessly inform the
engine of the loss event in timeDF , the packet has a chance
for retransmission with a tighter deadline. We can write:

f(d
′
) =

{
fARQ(d′) if d′ ≥ 0
0 o.w.

fARQ(d
′
) = max

i=1,...,m
f
(i)
ARQ

(d
′
)

f
(i)
ARQ

(d
′
) =

∫ d′−
(

li+1
µi

)
κi

gΓs (γ)
(
(1− πi) + πif(d

′ −DF − γ)
)

dγ

(21)

The interval over which the integral is taken is written as
such, becausegΓs

(γ) is zero for transmissionγ < κi, and
the packet in question will miss its deadlined for γ > d′ −(

li+1
µi

)
.

6.2 Quantization & Dynamic Program-
ming

As (21) is defined recursively within an integral, it is
difficult to solve directly. Instead, our approach is to first
approximate (21) usingquantization, before usingdynamic
programmingto resolve the recursive calls. By quanti-
zation, we mean we divide the non-zero area under pdf

gΓs
(γ), γ ≤ d′ −

(
li+1
µi

)
, into L evenly spaced regions,

where regionl has boundaries[b(i)
l−1, b

(i)
l ):

b
(i)
l−1

= κi +
l − 1

L

(
d′ −

(
li + 1

µi

)
− κi

)
b
(i)
l

= κi +
l

L

(
d′ −

(
li + 1

µi

)
− κi

)
(22)

This is illustrated in Figure 6. It is easy to see that by
construction, transmission delaysγ’s in each regionl are
upper-bounded by boundaryb(i)

l . If we quantize all the de-

lays in each regionl to b
(i)
l , each region has probability∫ b

(i)
l

b
(i)
l−1

g
(i)
Γs

(γ)dγ, and we can approximate (21) to:

f
(i)
ARQ(d′) ≈

L∑
l=1

∫ b
(i)
l

b
(i)
l−1

g
(i)
Γs

(γ)dγ

[
(1− πi) + πif

(
d′ −DF − b

(i)
l

)]
(23)

Notice that the quantized (23) is much easier to solve, be-
cause the integral no longer includes the recursive call. Now
(23) can be solved recursively with dynamic programming
(DP). DP means that each timef(d′) is called, the solution
is stored in thed′th entry of the DP tableF [ ], so that if a re-
peated recursive callf(d′) is made, the answer can simply
be looked up instead.

The complexity of solvingf(d′) is bounded by the time
to solve each entry in the DP table, times the number of
entries in the table. Solvingf(d′) involvesm channels and
O(L) operations in (23) for each channel, and there are a
maximum ofd′ filled entries in the DP table. Hence the
complexity of the algorithm isO(Lmd′).

7 Deriving FEC Striping Algorithms

In this section, we derive FEC striping algorithms for a
set ofm bandlimited, burst-loss channels with random de-
lays. We first derive an FEC-based algorithm in Section
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7.1. We then discuss how to appropriately set the Lagrange
multiplier value, which controls the volume of parity pack-
ets entering the set of queues. Finally, we derive Hybrid
FEC/ARQ algorithm in Section 7.3.

7.1 FEC-based Algorithm

We will assume greedy algorithmgreedy2 is always
used to find a sub-optimal but good FEC distributiong for
a given RS(n, k) to be deployed on a set ofm burst-loss
channels. In general, we consider RS(n, k) while varying
n andk for different channel coding strengths and FEC en-
coding/decoding delays. LetfFEC(d′1), d

′
1 = d1− t, be the

probability that a packet with expirationd1 is timely deliv-
ered using FEC. To be precise,fFEC(d′1) affects allk data
packets in RS(n, k), and so we should maximize the aver-
age success probability of allk packets in the head of the
incoming packet queue. However, because we assume the
packets in the queue are ordered by expiring deadline, we
can lower-bound the decoding success probabilityfg

n,k(d′i)
of each ofk packets with expiration timedi with the FEC
decoding success probability of the first packetf

g
n,k(d′1).

We can now writefFEC(d′1) as:

fFEC(d′
1) = max

(n,k)

[
1

k

k∑
i=1

f g

n,k(d′
i)− λ

(
n− k

k

)]
≈ max

(n,k)
f g

n,k(d′
1)− λ

(
n− k

k

)
(24)

wherefFEC(d′1) is optimized over a range ofn andk.
Notice there is apenaltytermλ(n−k

k ) in (26). The rea-
son is that using RS(n, k) invariably increases the traffic
volume by(n − k)/k fraction more parity packets. Hence
a penalty term is used to regulate the packet volume so that
it does not lead to queue overflows. The proper selection of
λ is crucial to the performance of (24); this is the subject of
the following section.

fg
n,k(d′1) in (24) can be approximated as follows: it is the

PLR associated with the FEC distributiong of RS (n, k)
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Figure 7. Method of Selecting Lagrange Mul-
tiplier Value

over m channels, multiplied by the probabilityΦg
n,k(d′1)

that each of then FEC packets arrives at the receiver in
time durationd′1. Φg

n,k(a) is defined as follows:

Φg

n,k(a) =

m∏
i=1

ui+vi∏
j=1

∫ a−
(

li+j

µi

)
κi

g
(i)
Γs

(γ)dγ (25)

f
(i)
n,k(d′1) can now be written as:

f g

n,k(d′
1) ≈ [ 1− π(g) ] Φg

n,k(d′
1) (26)

7.2 Lagrange Multiplier Selection

At a high level, since the goal of the penalty function
λ

(
n−k

k

)
is to regulate the volume of packets inm queues,

it makes sense to selectλ to be proportional to the total
amount of traffic currently in them queues. so given packet
volumew, the question is how to select appropriate sloped
and y-intercepth in linear equationλ = dw + h?

Parametersd andh control the sensitivity of the penalty
function λ

(
n−k

k

)
to the volume of queue traffic. To de-

rive the appropriate sensitivity, we first trace out each mul-
tiplier value λi at which optimization (24) switches opti-
mal solutions RS(no

i , k
o
i ) to RS (no

i+1, k
o
i+1). As as ex-

ample, we see in Figure 7a that the performance of each
FEC RS(n, k), n ≤ 5, is plotted on a PLR vs. parity-
to-data ratio(n − k)/k graph. Asλ varies, the FECs
that are optimal solutions to (24) are traced out as the
convex hull of the graph. Any two consecutive convex
hull points, (xi, yi) and (xi+1, yi+1), will induce a slope
λi = (yi+1 − yi)/(xi − xi+1), which is the value at which
(24) will switch from solution(xi, yi) to (xi+1, yi+1). If
we now plot these slopes as function ofdata-to-parityratio
k/(n − k), as shown in Figure 7b, we see an almost lin-
ear relationship. The line essentially shows how drastically
λ-value must change to effect a corresponding change in



data-to-parity ratio given optimization (24) is used. This is
the sensitivity we are seeking for. The only task left is to
find a line of best fit that describes the relationship between
λ and data-to-parity ratio. To that end, we use well-known
linear regression technique in [16], where for a given set of
data points(x1, y1), (x2, y2), . . . , (xN , yN ), the parameters
of line of best fity = dx + h are:

h =

∑
x2

i

∑
yi −

∑
xi

∑
xiyi

N
∑

x2
i −

(∑
xi

)2

d =
N

∑
xiyi −

∑
xi

∑
yi

N
∑

x2
i −

(∑
xi

)2
(27)

where each summation is taken fromi = 1 to N . To sum-
marize, we find the parametersd andh of linear equation
λ = dw + h as follows:

1. Find performance data points(PLRi, ri) of PLR
vs. parity-to-data ratio for various candidate FECs,
RS(n, k).

2. Trace the convex hull of the performance graph.

3. Using convex hull points(λi, 1/ri)’s, derive appropri-
ated andh using (27).

7.3 Hybrid FEC/ARQ Algorithm

We can combine the ARQ and FEC algorithms into one
hybrid algorithm.f(d′1) is then simply the larger value of
the two possible choices — (re)transmission or FEC:

f(d′
1) =

{
max [ fARQ(d′

1), fFEC(d′
1) ] if d′

1 ≥ 0
0 o.w.

(28)

Unlike (26), the FEC decoding success probability given
FEC distributiong, fg

n,k(d′1), is now defined recursively to
permit retransmission (reFEC) if initial FEC decoding fails:

f
g

n,k
(d′1) =

∫ d′1

0

[
(1− π(g)) + π(g)f(d′1 −DF − γ)

]
φ
g

n,k
(γ) dγ

(29)

whereφg
n,k(γ) =

d Φ
g

n,k
(γ)

dγ is the probability that RS(n, k)
is ready for decoding after preciselyγ time duration. As
done in Section 6.2 for the ARQ-based algorithm, in order
to separate the integral from the recursion in (29), we need
to first divide non-zero areas under pdfφ

g
n,k(γ) intoL quan-

tization regions. We first define the largest queuing delay,
Dmax, experienced by any packet in RS(n, k) given FEC
distributiong:

Dmax = max
i=1,...,m

[
li + ui + vi

µi
+ κi

]
(30)

Table 2. Model Parameters for Experiment
chnl p q µ α λ κ

1 0.05 0.45 30ms/pkt 4 0.2 50
2 0.03 0.27 30ms/pkt 4 0.2 50
3 0.05 0.4 25ms/pkt 4 0.16 50

In mathematical terms,φg
n,k(γ) = 0 for γ < Dmax. The

largest amount of time permissible to transmit all packets is
of coursed′1. Hence to quantize the area underφg

n,k(γ) into
L regions, each regionl with boundaries[al−1, al), we get:

[ al−1, al ) =

[
l − 1

L
(d′1 −Dmax) + Dmax,

l

L
(d′1 −Dmax) + Dmax

)
(31)

To calculate
∫ al

al−1
φg

n,k(γ)dγ — the probability that

RS (n, k) is ready for decoding in interval[al−1, al), we
simply subtract the probability that alln packets arrive by
al−1, Φg

n,k(al−1), from the probability that alln packets
arrive byal, Φg

n,k(al). We can now writefg
n,k(d′1) as fol-

lows:

f
g

n,k
(d
′
1) ≈

L∑
l=1

[
(1− π(g)) + π(g)f(d

′
1 −DF − al)

] [
Φ

g

n,k
(al)− Φ

g

n,k
(al−1)

]
(32)

8 Results

To test the developed striping algorithms, we imple-
mented a network simulator inC running onlinux . We
assumed input packet rate of62.5pkt/s and network model
parameters as shown in Table 2. For each data point of PLR,
300, 000 packets were inputed for an averaging effect.

8.1 ARQ-based Algorithm

We first compare the performance our optimal ARQ
schemeopt-ARQ in (21) with weighted round-robinWRR,
which randomly assigns incoming input packets to chan-
nels with probabilities proportional to the relative sizes of
the channel bandwidths. Figure 8a shows the resulting PLR
of the two schemes as a function of packet end-to-end de-
lay tolerances in ms. In the experiment, we used quantiza-
tion L = 3 to solve (23). We see thatopt-ARQ outper-
formedWRRfor the entire range of packet tolerance delay,
with maximum difference being4.2%.

Recall the performance ofopt-ARQ depends on the
quantization levelL. To investigate the relative perfor-
mance impact for changingL, we reranopt-ARQ for
L = 1 andL = 5 as well. The results are shown in fig-
ure 8b. We first notice that the performance for all three
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quantization levels were quite similar. We next notice that
the PLR improvement asL increases is diminishing: the
maximum difference betweenL = 1 andL = 3 is 0.51%,
while the maximum difference betweenL = 3 andL = 5
is 0.32%. Recalling that the complexity of (23) is propor-
tional toL, we decided that a good performance-complexity
tradeoff point isL = 3. This quantization level will be used
throughout the rest of the experiments. Support for retrans-
mission will be turned off for FEC-based algorithms.

8.2 FEC-based Algorithm

We next investigate the performance of FEC-base algo-
rithms. We limited the feasible FEC set to be the set of
RS(n, k)’s, k < n ≤ 5. Recall in FEC-based algorithm
(24) that the performance depends heavily on the selection
of the Lagrange multiplierλ, which determines the weight
of the penalty functionλ

(
n−k

k

)
. To stress this point, we

constructed Figure 9, which shows the performance in PLR
as a function ofλ, which for each data point was held con-
stant for the experimental run. We see that an inappropriate
λ value can result in a poorer PLR by8%, demonstrating
the importance of a cleverly selectedλ.
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Figure 10. Performance Comparison for Hy-
brid FEC/ARQ

Using the linear regression method described in Section
7.2 to find the appropriateλ for given volume of pack-
ets in queues, we traced the performance of the optimal
opt-FEC of (24) and plotted in Figure 9b. For comparison,
we plotted two other FEC schemes in addition.uniFEC
performs fixed channel coding RS(4, 3) on the data packets
and transmits over thesinglechannel with the highest deliv-
ery success probability given current queue lengths and net-
work conditions. fixFEC , like uniFEC , performs fixed
RS(4, 3) but strips over three channels using greedy algo-
rithm greedy2 . BothuniFEC andfixFEC will elect to
send regular transmission if regular transmission has bet-
ter delivery success probability due to delays introduced by
FEC.

Several observations can be made in Figure 9. First, per-
formance benefits due to FEC forfixFEC kicked in earlier
thanuniFEC . This is because striping across channels typ-
ically has the benefit of reducing end-to-end FEC decoding
delay. Second, even after FEC benefits ofuniFEC kicked
in, PLR of fixFEC was still smaller thanuniFEC . This
is because a single burst in a single channel corrupts entire
FEC block foruniFEC , while it only corrupts a portion of
FEC block forfixFEC . Finally, we see thatopt-FEC out-
performed bothuniFEC and fixFEC , demonstrating the
value of dynamically controllingλ as the volume of packets
in queue varies.

8.3 Hybrid FEC/ARQ Algorithm

Finally, we investigate the performance of the hy-
brid FEC/ARQ algorithmhybrid FEC/ARQ in (28) and
(29). For comparison, the performance ofopt-FEC and
opt-ARQ are also plotted in Figure 10. We see that the



performance ofhybrid FEC/ARQ was at least as good
as bothopt-FEC and opt-ARQ for all range of packet
delay tolerance.

9 Conclusion

We presented algorithms for optimal striping of delay-
sensitive packets over multiple burst loss channels. Our
algorithms find an operating region to balance conflicting
channel characteristics such as loss, latency and bandwidth
to reap the benefit of aggregating multiple channels. Sim-
ulation results show that our algorithm outperforms naı̈ve
algorithms such as weighted round-robin.
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