
SmartSeer: Using a DHT to Process Continuous
Queries Over Peer-To-Peer Networks

Jayanthkumar Kannan∗, Beverly Yang†, Scott Shenker‡, Puneet Sharma§, Sujata Banerjee§, Sujoy Basu§, Sung-Ju Lee§
∗University of California at Berkeley, kjk@cs.berkeley.edu

†Stanford University, byang@stanford.edu
‡ University of California at Berkeley and International Computer Science Institute, shenker@icsi.berkeley.edu

§ Hewlett-Packard Labs, {puneet,sujata,basus,sjlee}@hpl.hp.com

Abstract— As the academic world moves away from physical
journals and proceedings towards online document repositories,
the ability to efficiently locate work of interest among the torrent
of newly-generated papers will become increasingly important.
To aid in this endeavor, we designed SmartSeer, a system that
allows users to register personalized continuous queries over the
CiteSeer database of technical documents. Users are then alerted
whenever papers that match their queries are put online.

SmartSeer has two main design requirements. First, to allow
effective information retrieval, it should support rich continuous
queries (as opposed to simple keyword searches). Second, to make
effective use of donated infrastructure, it should be capable of
running on a loosely maintained group of unreliable machines
spread across multiple organizations (as opposed to assuming a
reliable and tightly coupled distributed system). Existing work
on distributed continuous query systems fails at least one of these
requirements. Our design for SmartSeer is based on Distributed
Hash Tables (DHTs), and thereby leverages previous work on
DHT-based query systems. A prototype of SmartSeer has been
implemented and evaluated on Planetlab. Though we evaluate
our design only for the SmartSeer application, we believe it also
provides useful insights into other distributed and rich continuous
query systems (web alerts, news alerts etc).

I. INTRODUCTION

Academic journals (and their more recent brethren, confer-
ence proceedings) have been, for over a century, the primary
method for both disseminating and archiving technical docu-
ments. The advent of electronic publishing and the web has
given rise to various online document repositories that contain
not only the electronic versions of journals and proceedings,
but also host a much larger collection of documents, including
preprints, technical reports, and the like. In some fields, such
as theoretical physics, an online preprint collection has largely
replaced journals as the primary document repository. Other
fields, such as computer science, are moving more slowly,
but even in this field the CiteSeer [1] database has become
a common way to find technical papers.

As research communities move away from highly filtered
venues such as journals and conferences and towards less
selective vehicles such as preprint and general document
repositories (such as CiteSeer), researchers will find it much
harder to keep pace with the literature. The stream of docu-
ments flowing into the repository will be far greater than any
individual could possibly filter on their own. One way to aid
researchers is to allow them to submit continuous (or standing)

queries that issue an alert whenever a document matching the
query enters the document repository. While certainly not a
complete solution to the document-overload problem, such
personalized document alerts would greatly reduce the volume
of papers individual researchers would have to scan.

This paper describes the design of SmartSeer, a system
that allows users to register personalized continuous queries
over the CiteSeer database of technical documents. SmartSeer
supports instantaneous queries as well (though that is not our
primary focus). Our design decisions are also applicable to
other large scale event notification systems (e.g., news alerts,
web alerts), but in this paper, we only describe how it applies
to handling continuous queries over a technical document
database. What distinguishes this system from the well-known
implementations of continuous queries in traditional databases
are two nonstandard design requirements.

The first requirement concerns the nature of queries sup-
ported in SmartSeer – to enable more effective information re-
trieval, we insist that SmartSeer support a family of continuous
queries that is far richer than just simple keyword searches. For
example, users should be able to search for papers written by
their coauthors and for papers that reference their own papers,
neither of which are naturally expressed as keyword searches.

The second requirement relates to the infrastructure support-
ing SmartSeer. We envision eventually deploying SmartSeer as
a free public service, much as CiteSeer is now. However, for
SmartSeer to scale to significantly more users and documents,
as it must if it is to become an important mode of document
dissemination, it will require a substantial increase in both the
number of hosts and the access bandwidth. Without a revenue
stream we cannot foresee how SmartSeer (or CiteSeer) could
purchase the necessary resources. However, many universities
and other research institutions would likely be willing to
donate the use of in-place hosts (and their access bandwidth) to
SmartSeer. Thus, we require that SmartSeer should be capable
of running on an “opportunistic infrastructure” consisting
of donated hosts from multiple organizations. Moreover, far
from being a hardened infrastructure, these hosts are loosely
maintained and potentially unreliable. These characteristics
rules out many traditional distributed information retrieval
solutions (such as [2], [3]). We describe the related literature
in Section VIII, but for now we note that, to our knowledge,

all the existing work on distributed continuous query systems
fails on at least one of the two requirements listed above.

In designing SmartSeer, we face three major design de-
cisions. The first decision is overall system architecture. In
Section III, we consider various alternative architectures, such
as mirroring queries, and then argue for a design based on
Distributed Hash Tables (DHTs). Our approach thus leverages
the large body of work on DHT-based query systems, where
keyword indexing guides queries to the relevant lists of doc-
uments, and extends it to rich continuous queries.

The second design decision is how to best accomplish the
rendezvous between queries and documents. In Section IV,
we investigate several options – such as ”send document to
query”, ”send query to document”, and ”exchange bloom
filter” – in the context of keyword queries and provide a simple
analytical model of the performance tradeoffs. In Section V,
we investigate these tradeoffs through simulation.

The third design decision is how to support richer queries,
such as nested queries and ranking. We discuss these issues
in Section VI. We report on our initial implementation in
Section VII and conclude with a brief discussion in Section IX.

II. BACKGROUND

CiteSeer (and other document repositories) currently sup-
port instantaneous queries, where queries are computed
against the current document database, and the answer is
returned immediately to the user. Latency is a prime design
requirement for instantaneous queries, since a user awaits
results from the system. The key scaling factors are the size
of the document database and the rate of incoming queries.
In contrast, SmartSeer focuses on continuous queries: these
are standing queries that are applied to each document as it is
inserted into the repository. Latency is not a key requirement
here (users are not otherwise aware of document insertions,
and so are not sensitive to delays in query processing), and
the important scaling factors are the number of standing
queries and the rate at which documents are inserted. Most
online repositories that offer continuous queries are based on
a centralized design.

Keyword queries, where users submit a set of search terms,
are the simplest form of queries we consider. Users can
optionally specify a context such as title or author (e.g., (TI-
TLE:smartseer) specifies the keyword “smartseer” appearing
in the title of the document). Queries are boolean conjunctions
or disjunctions of such terms, which can be seen as simple
predicates expressed using keywords and attribute values. The
accepted method of processing instantaneous keyword queries
is to use an inverted index. An inverted index consists of one
inverted list per term that appears in the document corpus,
where the inverted list consists of the IDs of all documents
that contain the given term. Because we process continuous
queries, we may use an inverted index over the terms that
appear in the queries, rather than in the documents. We refer
to the inverted index (list) built over queries as the ”query
inverted index (list),” and the inverted index (list) built over
the documents as the ”document inverted index (list).”

Nested queries extend the expressiveness of simple boolean
keyword queries by allowing queries on the relationship be-
tween entities (e.g., authors, documents, etc.). For example,
a query for all documents by co-authors of Jane would be
expressed by the nested query AUTHOR:(AUTHOR:Jane).
We will discuss such nested queries in Section VI. Most
information retrieval systems also support relevance ranking of
results, where the relevance of a document may be calculated
using a number of different metrics. In SmartSeer, we use
the standard cosine similarity metric to rank instantaneous
query results. For continuous queries, SmartSeer provides the
relevance score of individual results to the user.

III. SMARTSEER ARCHITECTURE

We now describe the basic architecture of the SmartSeer
system. We note that support for certain kinds of continuous
queries requires the ability to support instantaneous queries as
well (for more details, refer to Section VI). Thus, the design
choice for SmartSeer is dictated by the constraints imposed
by both kinds of queries. In terms of performance, Smart-
Seer should be able to scale to large numbers of registered
continuous queries as well as high document arrival rates and
should incur low overhead in terms of bandwidth. We begin
by comparing different high-level architectures and justifying
our choice of a push-based rendezvous based on DHTs. We
then describe the details of the SmartSeer implementation over
this architecture.

A. Basic Architecture

The highest-level decision to make is between the pull-
based and push-based approaches. In a pull-based architecture,
the user polls the system periodically, or the system runs all
registered queries as instantaneous queries periodically. Any
new results found since the last poll are returned to the user
as results to her continuous query. The main disadvantage
of such pull-based mechanisms is that a fixed overhead is
incurred even if there are no new results. In contrast, in a push-
based architecture, costs are only incurred at the insertion of
a document. We therefore choose the push-based approach as
the more efficient alternative.

There are three well-known design choices for a push-based
continuous query architectures: mirroring, partition-by-ID, and
partition-by-keyword. In all these architectures, each node
maintains a subset of a global index of queries and documents;
the difference lies in how these subsets are constructed. In the
mirroring approach, all documents and continuous queries are
stored on all nodes, and a new document or instantaneous
query is sent to a randomly chosen mirror. The partition-
by-ID approach partitions the continuous queries (documents)
among the nodes, and a new document (instantaneous query)
is sent to all nodes. The partition-by-keyword method builds a
distributed index of the keywords in the continuous queries or
documents using a DHT, and this index is partitioned among
the different nodes based on the keyword.

We immediately rule out the mirroring option: though it
might work well on smaller data sets, it cannot scale to

SmartSeer’s requirements. For example, the current CiteSeer
database has over 795G worth of document data. Not only
would we expect a preprint library to exceed this size by orders
of magnitude (especially if topics outside of Computer Science
are included), but in an opportunistic infrastructure we need
to make use of the available resources, which will likely not
be powerful servers with terabytes of storage. Query mirroring
also may not be suitable for SmartSeer if a huge volume of
continuous queries are registered.

Secondly, notice that in the partition-by-keyword method,
during the insertion of a new query (document), only nodes
that store queries containing keywords belong to the document
need to be contacted. In contrast, in the partition-by-ID ap-
proach, irrespective of the number of nodes in the system, all
of them will have to be notified of the arrival of the new query
(document). We expect that queries will mostly use words that
occur in the metadata and abstract of the document (although
SmartSeer supports full text search within the document as
well). For this common case, the rendezvous approach is more
scalable in terms of bandwidth, as the number of nodes that
need to be contacted will typically be lower (assuming that the
infrastructure consists of the order of hundreds of machines).

For these reasons, we base the design of SmartSeer on the
partition-by-keyword architecture. We use a DHT to imple-
ment this architecture, thereby allowing us to leverage the
existing advantages of DHTs – their ability to run on an
unreliable set of nodes, and other useful functionality such as
replication, load balancing, etc. Leveraging these advantages
considerably simplifies the design of our application.

B. DHT-based design

SmartSeer’s design is based on the simple observation
(pointed out in PSoup [4]) that the execution of continuous
queries can be thought of as running instantaneous queries
with the role of documents and queries reversed. Queries are
stored in the system, and on the arrival of a new document,
queries that match the document are notified of the same.
Our architecture for supporting continuous queries is a simple
extension of the conventional architecture used for executing
instantaneous queries over DHTs. For clarity, in this section
we focus on the execution of simple conjunctive queries that
involve multiple terms of the form (AUTHOR:name).

Every DHT node is responsible for maintaining a list of
queries whose keys fall into the keyspace of that node. In
particular, SmartSeer nodes participate in a Bamboo DHT [5].
Distributed hash tables provide a simple put/get interface that
allows insertion and retrieval objects by key over distributed,
unreliable storage. Nodes in a DHT are automatically assigned
a region of an identifier space for which they are responsible.
A term is assigned to the node whose keyspace its hash falls
in. We augmented this interface with other SmartSeer-specific
operations which we will describe later. We now describe how
SmartSeer supports the insertion of new continuous queries
and new documents.

Query Insertion: Each conjunctive query is stored at the
node responsible for one of its terms ts (assuming for now,

that there are no negated predicates), and the query is said to
be registered at that term. The key of the query is defined to be
the hash of ts. Thus, for conjunctive queries, a query and its
metadata are stored only at a single node, in a single inverted
list. This approach is different from the document inverted
index, where only the document ID (and not the document
itself) is stored in an inverted list, and where the ID is stored
in the inverted lists of all terms in the document.

We choose ts as the most selective term in the query;
doing so allows us to maximize load-balancing, and minimize
wasted processing. If queries were registered on common
terms, then the node(s) responsible for the most common
terms would have disproportionately high load. In addition,
because query inverted lists for popular keywords tend to be
larger than for uncommon keywords, registering queries on
their common terms would result in higher overhead. Statistics
on the selectivity of terms can be obtained in our system
by querying the node responsible for storing the document
inverted list for that term.

Document Insertion: When a new document is inserted, it
is parsed into tokens, which are then transformed into terms
via stop-word filtering and stemming. All nodes responsible
for at least one term in the document are then contacted
via a document notification message. We refer to the node
inserting and parsing the document as the document insertion
node (DN), and each of the nodes contacted as the query
nodes (QNs). When a document is inserted into the system,
one node serves as the document insertion node, and is
responsible for handling all actions associated with the insert.
The DN is typically just the node to which a document is
initially uploaded. This node is responsible for initiating the
protocol for finding matching queries, and also for updating
the document indices.

In the basic case, when the DN contacts each QN with
respect to a particular keyword, the QN will return the inverted
list of all queries registered on that keyword. The DN then
matches these queries against the new document, and users are
notified of successfully matched queries. We call this approach
the Send Query method, because queries are shipped between
nodes. Note that this method is an exact analogue of query
processing in an instantaneous query-processing DHT system.

Note that since instantaneous queries are also supported in
our system, we must update the document index on the inser-
tion of a new document, in addition to processing continuous
queries. We piggyback these update messages on document
notification messages in order to conserve bandwidth. Because
a query q is stored on a node responsible for at least one term
in q, q is necessarily co-located with the document inverted
list of that term. As a result, when a new document is inserted
into the system, the nodes that manage the relevant document
inverted lists are the same set of nodes that manage the relevant
query inverted lists.

C. Scaling Properties

We now analyze the bandwidth consumption of the Send
Query method. This analysis is very similar to that for instan-

taneous queries in [6]. Reference [6] argued that the bandwidth
required to handle instantaneous queries (at the rate of I per
second) over N documents is β × NI × WqWd, where β is
a constant depending on the distribution of terms in queries
and documents, and Wq and Wd are the average number of
keywords in queries and documents, respectively.

This same kind of analysis may be extended to the case
of continuous queries. We assume that the occurrence of
keywords follows the same distribution in both queries and
documents, and that this distribution is ZipF with parameter
α. During the insertion of a document with Wd keywords, the
inverted list of queries stored under each keyword is retrieved.
The size Q(r) of the inverted list of queries under a given key-
word of rank r can be written as Q(r) = C × FZ(r, α,Wq).
Here, FZ(r, α,Wq) is the probability that a query with Wq

keywords drawn from the ZipF distribution of parameter α is
registered on a keyword of rank r. Assuming each keyword
occurs in the document independently, then the retrieval of Wd

inverted lists requires bandwidth Wd × (
∑

r Z(r, α) × Q(r))
where Z(r, α) is the probability that a keyword drawn from a
ZipF distribution has rank r. Thus, at a first approximation, the
bandwidth required to handle C continuous queries when new
documents arrive at a rate R per second, is β × RC × FWd.
Note that most words that occur in documents (such as ‘The’
etc) will not appear in queries: the effective keyword fraction
F accounts for this. This equation is very similar to the
equation for instantaneous queries: the number of continuous
queries corresponds to the number of documents, and the rate
of new documents to the rate of instantaneous queries.

We substituted typical values in this equation: the number
of registered continuous queries is set to 1 million queries,
the number of words per document was set at 10, 000,
the effective keyword fraction was set to 0.01, the average
keyword selectivity to 10−3, and the size of a query to 10
bytes. We set the effective keyword fraction by assuming
that only words in the abstract of a document will be used
to query as search keywords to find that document. This
suggests that the communication overhead required to process
a single document is about 10 MB. This is about 3 orders of
magnitudes smaller than the cost of answering instantaneous
queries (which have a very high incoming query rate). Note
however, that this cost is still high, and optimizations that cut
down on bandwidth consumption are useful. More importantly,
this equation shows that the current Send Query approach does
not scale with the number of continuous queries: as number
of queries C grows, so do the sizes of the query inverted lists,
and thus the bandwidth consumption as well. This observation
leads us to explore other approaches to “join” query and
document data.

IV. DESIGN ALTERNATIVES

We now explore three other approaches to join query
and document data that are feasible only in the context
of continuous query systems. These approaches exploit two
main difference between continuous and instantaneous query
systems.

First, continuous query systems process inverted lists of
queries where the entire query is stored in the list. In contrast,
an instantaneous query system works with document inverted
lists where only the ID of a document is stored in the inverted
lists. As a result, rather than shipping the potentially large
query inverted list to the document node, each query node
can instead process some or all of the queries themselves, and
thereby potentially save much bandwidth. Second, a continu-
ous query system has less stringent requirements on latency
as compared to an instantaneous query system. This allows us
to focus on bandwidth as the main objective, possibly trading
off bandwidth with latency (which is still required to be on
the order of seconds or minutes).

A. Rendezvous Alternatives

Based on these two observations, we now present three
alternatives to the ”Send Queries” rendezvous approach.

Send Document: The first design alternative that these
differences suggest is the “Send Document” approach, which
is a dual of the “Send Query” approach. When a new document
is inserted, the entire document is sent to all the QNs storing
the inverted lists for keywords in the document. This might
be beneficial, if for instance, if the query inverted list is much
larger than the document itself (for example, if it is a popular
keyword). Each QN now matches its stored queries against the
new document, and notifies matching queries. This approach
becomes useful as the number of continuous queries increases:
the bandwidth consumed is at most the cost of sending the
entire document to all nodes in the system (it reduces to
broadcasting the document).

Term Dialogue: In a term-by-term dialogue, the QN sends
a message to the DN asking about the presence of a set of
keywords in the document, and the DN responds with a bit
vector – one bit per requested term – specifying the presence
of each term. The QN chooses this set of keywords from
the keywords present in the queries being processed. We say
that a keyword is resolved if it the QN includes it in the
dialogue, and the document insertion node responds regarding
its presence. On one extreme, the QN can resolve all distinct
terms appearing in the queries in a single batched message; at
the other extreme, the QN can resolve a single term at a time.
Due to packet header overhead, batching of terms is desirable.

The rationale behind the term-by-term method is that ship-
ping keywords can be much cheaper than shipping entire
queries, especially if many queries can be eliminated by the
resolution of just a few keywords. We say a query is eliminated
if, for example, one of its keywords is resolved and found to be
absent in the document. Finally, if all terms present in a query
are resolved and are known to be present, then the document
is known to satisfy the query. Thus, over multiple rounds
of requests and response, the QN eventually trims the set of
candidate queries to only the successfully matched queries.

There are many opportunities to optimize the term-by-term
dialogue. Given general probabilities of the likelihood of terms
appearing in documents, a QN may first resolve terms that
are not frequent, or terms that appear in many queries, in

order to maximize the expected number of queries that can
be eliminated. However, due to packet header and messaging
overhead, it is also important not to extend the dialogue to too
many rounds. By eliminating queries, as discussed earlier, we
may be able to eliminate terms from consideration as well.
A QN must therefore order the terms to be resolved so as to
maximize the number of expected terms eliminated.

The exact solution to this problem seems hard (more
specifically, it seems to involve computation exponential in the
number of rounds in the dialogue). For this reason, we consider
heuristics to optimize the term-by-term dialogue. First, we
observe that there is a class of terms that cannot be eliminated
by resolving a different keyword. These are the terms that
appear in any remaining query (i.e., a query that has not yet
been eliminated) such that all other terms in the query have
already been resolved. In order to determine whether the query
is satisfied by the document, this last remaining term must be
resolved. Therefore, an optimal dialogue will always resolve
these “singleton” terms first. Once a singleton term is resolved,
new singleton terms may be introduced. Therefore, an optimal
dialogue will repeatedly resolve singleton terms until no such
terms remain – that is, all remaining queries have 2 or more
unresolved terms. It is possible to develop other heuristics
based on the selectivity of the terms and the number of queries
containing a specific term: we leave the detailed investigation
of such queries for future work.

Bloom Filter: In the ”Bloom Filter” method, the DN sends
a bloom filter over all terms in the document to each of the
QNs. Since the bloom filter has no false negatives, the QN can
discard queries that have a term corresponding to a 0 in the
bloom filter. In this manner, a QN may prune the set of queries
stored in the inverted list to a smaller set. After this step, the
QN use the “Send Query” method and send all the remaining
queries to the DN. It can alternatively initiate a term-by-term
dialogue to process the remaining queries.

B. Analytical Model

In this section, we present a model for the bandwidth costs
of each approach that will show us the general scenarios in
which each approach is optimal. In our workload simulations
(Section V), we demonstrate the utility of this model in
determining the best approach. All costs below are in terms
of the number of terms that must be shipped. As a result,
absolute bandwidth cost would multiply the below costs by
W̄ , the average length of a term (in bits).

We note that the Term Dialogue approach is always superior
to the Send Queries method, since query metadata (e.g.,
information on the user who registered the query, feedback
information used to tune relevance ranking, etc.) is typically
much larger than the terms comprising the query. As a result,
rather than shipping an entire query over to the document
insertion node, it always makes sense to instead batch all
terms into a single round of a term-by-term dialogue. Thus, we
will only consider the other three approaches: Send Document,
Term-by-Term Dialogue, and Send Bloom Filter. These three
approaches can all be optimal in different scenarios. The

bandwidth cost SD of shipping a document is simply d, where
d is the number of unique terms in the document.

The cost TD of a term-by-term dialogue is, in the worst
case, q, where q is the number of unique terms across the
queries. In practice, TD may be much smaller than q, due
to the possibility of query elimination. In the extreme case,
if every query contains the term t which is found not to be
present, then all queries are eliminated, and the cost of the
dialogue is simply the size of two small messages. Thus, the
actual cost of the dialogue is TD = δ · q, where δ is a fudge
factor depending on which terms are actually present in the
document, and the order in which terms are resolved.

The bandwidth cost BF of shipping a bloom filter,
followed by a term-by-term dialogue for all non-filtered
query terms, is BF = f(d) + δ′Q′. Here, f(d) is a function
determining the “optimal” bloom filter size given a document
size and Q′ is the number of queries at the QN after the
bloom filter has been used to prune the list of queries. The
term δ′Q′ accounts for the cost of the term-dialogue once
the the bloom filter has been applied. In order to calculate
Q′, first let us define Qi as the number of queries such
that all but i of their terms appear in the document. Thus,
Q0 is the number of the true matching queries, and since a
bloom filter has no false negatives, Q′ includes these queries.
Q′ also includes some false positives whose number can
be expressed using the false positive rate f of the bloom filter:

Q′ = Q0 +
∑i=k

i=1 Qif
i

The second term accounts for all the false positives. Denote
the total number of queries at the QN, before the bloom filter
was applied, as Q (the number of query terms q is νQ where
ν is the average number of terms per query). Then, ignoring
the higher order error terms Q2, Q3, · · · (assuming we have a
Bloom Filter with a low false positive ratio):

BF = f(d) + δ′(γ0Q + fγ1Q) = f(d) + γq + εq

where Q0, Q1 are written as γ0Q, γ1Q. The second equation
is obtained by suitably defining the constant terms γ, ε. The
term ε is proportional to the error probability of the bloom
filter and the selectivity of the document, while the term γ is
proportional to the selectivity alone. The size of the optimal
bloom filter can be written as a function of the required error
probability ε.

Looking at the above equations, the basic tradeoffs between
the three approaches is clear. If d is large relative to q, then
Term Dialogue is best, given that it is not a function of
document size. If q is very large relative to d, then depending
on the values of ε and γ, Send Document or Bloom Filter
would be best. If we assume that ε, the false positive rate, is
small given an appropriately sized bloom filter, and that the
size of the bloom filter, f(d), is a slowly growing function
of document size, then Bloom Filter is better than Send
Document if the fraction of satisfied queries (roughly γ) is
low. Otherwise, if γ is relatively high (e.g., if queries tend
to have just a few common terms), then Send Document is
best. Later in Section V, we will quantitatively compare these
approaches through simulations of SmartSeer over typical

document workloads, and show how the above simple model
predicts well the best approach to use.

Recall that in all approaches, the document insertion node
must first send a document notification message to all QNs
corresponding to all terms in a new document, to alert them
of the need to process continuous queries over this document.
In this message, we can include the bloom filter, document,
or any other information necessary to implement the desired
join approach.

C. Batch Notification

In addition to considering different rendezvous approaches,
we must also be careful of how each approach is implemented.
In this section, we study how we might batch process docu-
ment notifications by node, and when doing so is beneficial.

In a large-scale system with thousands or even million of
nodes, each term in a document will likely hash to a separate
node. However, in a likely implementation of SmartSeer on the
order of hundreds of nodes, there will be significant overlap
in the nodes to which terms hash. Therefore, it may not make
sense to process continuous queries on a per-term basis, as
assumed thus far. To illustrate, say the terms “john”, “james”,
and “jack” all hash to the same node, and that the Send
Document approach is in use. As currently described, the DN
will send the document to the same node three times, which is
expensive. Alternatively, by recognizing that the above three
terms hash to a single node, the DN can send the document
to that node just once.

Therefore, in the clustered approach to document notifica-
tion, the document insertion node will first find, for each term,
the QN responsible for that term. The document insertion
node will then send one document notification message to
each unique node, along with the terms in the document
that each node is responsible for. Note however that this
clustered approach is complex, and difficult to code robustly
due to the fact that keyspace mappings may change during
the notification process. In our implementation, clustering is
implemented by looking up terms in a serial fashion: looking
up a term gives the node responsible for the term, as well as
the keyspace that node is responsible for. In addition to being
complex and error-prone, the clustered approach has a high
latency due to the processing required to look up all necessary
mappings. Therefore, the clustered approach is feasible when
the number of nodes in the system is relatively small.

If the number of nodes in the system is very small compared
to the number of unique terms in a document, then with high
probability, every node will receive a document notification
message. In this case, rather than performing a lookup for ev-
ery term in the document, the broadcast approach to document
notification will simply broadcast the notification message to
all other nodes in the DHT, via an efficient application-level
multicast tree (e.g., [7]). However, broadcast cannot be used
for all join approaches. In particular, it cannot be paired with a
term-by-term dialogue, since a QN receiving the notification
will have no idea which terms in its keyspace are relevant
to the document. Similarly, broadcast cannot be paired with

TABLE I

DEFAULT PARAMETER VALUES FOR SIMULATION.

Parameter Default
Network size 10 nodes
Document Set CiteSeer
Query Workload Generated
Join Approach Ship document
Notification Type Naive
Mean terms per query 5
Skew type Same
Number of continuous queries 50000

bloom filters. Broadcast is only appropriate in conjunction with
the Send Document approach. With the full document, the
QNs can extract which terms in its keyspace are relevant to
the document, and thereby update the appropriate inverted lists
and process the appropriate queries.

V. EVALUATION

In this section we describe simulations of SmartSeer over
realistic workloads, and quantify the comparison across the
different approaches to supporting continuous queries.

Our SmartSeer implementation is written in Java using the
libraries exported by Bamboo and OpenDHT [8]. Since in our
system, the node storing the tuples may have to do complex
operations other than put/get (such as sending bloom filters),
we use the ReDiR OpenDHT library that stores tuples on
application hosts rather than OpenDHT hosts. We use this
same implementation both for deployment (for more details,
refer to Section VII), and for simulating multiple nodes.

We run SmartSeer over two document sets: CiteSeer [1],
and TREC [9]. CiteSeer is our target application, so it is
the best-suited corpus over which to simulate SmartSeer.
However, since the SmartSeer architecture and techniques
may be applied to other application scenarios, we also study
the performance of SmartSeer over TREC, a widely-used
corpus for evaluation of information retrieval systems. The
main difference between these corpora is that the TREC data
consists of smaller documents (an average of about 200 unique
words) compared to CiteSeer where the document had on an
average about 2000 unique words. For this reason, we use a
bloom filter of 10K bits for the CiteSeer data, and a bloom
filter of 1K bits for the TREC data. In both cases, we inserted
1000 random documents from the corpus.

We run SmartSeer over a workload of synthetically gen-
erated queries. There are few operational continuous queries
systems whose query logs are widely available, so we rely
on synthetic queries whose properties we can tune. Queries
are generated in the following manner: first, we calculate the
term frequency distribution over the document corpus. We then
generate a query by selecting terms independently from this
distribution, without replacement. The number of terms for
this query is generated from a normal distribution with mean
ν and standard deviation .3ν. Before generating queries, we
may perturb the distribution by increasing the skew (i.e., those
terms that appear frequently in documents appear even more
frequently in queries), maintaining the same skew, ignoring
the skew (i.e., using a uniform frequency distribution), or

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160 180

B

yt
es

Inv List Size

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140 160 180 200

B

yt
es

Inv List Size

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

(b)

Fig. 1. Bytes Vs Inverted List Size (a) TREC data (b) CiteSeer

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

B
yt

es

Inv List Size

DIALOGUE(2)
BLOOM(2)

DIALOGUE(8)
BLOOM(8)

(a)

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

B
yt

es

Inv List Size

DIALOGUE(2)
BLOOM(2)

DIALOGUE(8)
BLOOM(8)

(b)

Fig. 2. (Varying Query Selectivity) Bytes Vs Inverted List Size (a) TREC data (b) CiteSeer data

inverting the skew (i.e., those terms that appear frequently
in documents appear infrequently in queries). The first 500
documents are used to infer the term frequency distribution,
and the next batch is used to measure the bandwidth consumed.
The above description of query generation involves several
parameters. In addition, several other simulation parameters,
such as network size and join approach, must also be specified.
Unless otherwise specified, parameter values are set as shown
in Table I.

A. Basic Comparison

First, we compare the three join approaches under different
workload scenarios. Figure 1 shows the average number of
bytes exchanged between the DN and a single QN on the
insertion of a new document. Because different QNs may have
different loads, as some QNs may be responsible for large
inverted lists, along the x-axis we vary the size of the inverted
lists, where size is measured by the number of queries in the
list. We show one curve for each of the three join approaches.

In this figure we see clearly the basic tradeoffs described
in Section IV. First, note that the term q used in our analysis
is (approximately) proportional to the inverted list size. When
the inverted list size (and thus, q) is low, Term Dialogue has
best performance. As inverted list size and q grow, however,
the cost of Term Dialogue grows linearly with q. Likewise,
the cost of the Bloom Filter approach grows linearly with q;
however, its slope (ε + γ) is so small, this approach still has

good performance even when q is fairly large. The overhead
of the Send Document is nearly constant since the complete
document is sent. Note that documents are compressed (using
gzip) before being sent on the network. In our simulations
under the default parameters, we did not reach the point where
Bloom Filter has worse performance than Send Document.

B. Query Selectivity

Recall from Section IV that Bloom Filter performs relatively
poorly when γ is large – that is, when queries are unselective
and thus many queries are satisfied by the document. Intu-
itively, the more selective a query, the more likely the query
will be eliminated by the bloom filter. To study the impact of
query selectivity on performance of the join approaches, we
indirectly tune selectivity by varying the average number of
terms per query – the higher the number of terms, the more
selective the query.

Figure 2 shows us the performance of Term Dialogue and
Bloom Filter in terms of the number of bytes exchanged
between the DN and a single QN, again as we vary inverted list
size along the x-axis. We do not plot the performance of Send
Document since it is constant irrespective of the selectivity
of the queries. For join approach we show two curves: one
representing the case where queries have an average of 2 terms,
and one where queries have an average of 8 terms.

From this figure, we see that as the number of terms per
query increases (and thus the queries become more selective),

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 1.5 2 2.5 3 3.5 4 4.5 5

 B
yt

es

Inv List Size

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6

 B
yt

es

Document

SEND_DOC
TERM_DIALOGUE

SEND_BLOOM

(b)

Fig. 3. (Varying Term Distribution: CiteSeer data) Bytes Vs Inverted List Size (a) Uniform Distribution (b) Inverse Skew Distribution

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 100 200 300 400 500 600 700 800 900 1000

 B
yt

es

Number of Nodes

SEND_DOC(NAIVE)
SEND_DOC(CLUSTERED)
SEND_DOC(BROADCAST)

(a)

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

 0 100 200 300 400 500 600 700 800 900 1000

 B
yt

es

Number of Nodes

DIALOGUE(NAIVE)
DIALOGUE(CLUSTERED)

BLOOM(NAIVE)
BLOOM(CLUSTERED)

(b)

Fig. 4. (Varying Number of Nodes: CiteSeer data) Avg Bytes Vs Number of Nodes (a) Send Document (b) Send Bloom Filter and Term Dialogue

the performance of Bloom Filter improves relative to Term
Dialogue. For example in Figure 2a (over TREC data), when
inverted list size is 40 and queries have an average of 8
terms, Bloom Filter outperforms Term Dialogue by over a
factor of 3. When the number of terms is very low, however,
Term Dialogue outperforms Bloom Filter, because of highly
unselective queries. In Figure 2a Term Dialogue consistently
outperforms Bloom Filter by a factor of two when queries
have an average of 2 terms; in Figure 2b (over CiteSeer data),
Term Dialogue outperforms Bloom Filter by over a factor 3.

Therefore, when queries are unselective – such as when
they contain few keywords, or when they contain common
keywords – Term Dialogue is preferred over Bloom Filter. In
addition, recall from Figure 1 that when q is large (i.e., when
the inverted list sizes are large), Send Document outperforms
Term Dialogue. Thus, Send Document is the optimal approach
when many unselective continuous queries are registered.

C. Distribution of Terms

Recall from Section V that by default, the popularity
distribution of query terms is set to be the same as the
distribution of document terms. In addition, we can perturb
the data by increasing the skew of the distribution, ignoring
the skew (i.e., using a uniform distribution), and inverting
the skew. In Figure 3 we show the performance of our three
join approaches under the (a) uniform and (b) inverse skew
distributions. Figure 1 already studied the default skew, and

we omit increased skew results as they are similar to default
skew results. Figure 3 only displays results over CiteSeer data;
experiments over TREC data yielded similar results.

From Figure 3, we find that most inverted lists are very
short: the maximum size being about 6. Such conditions favor
Term Dialogue over other approaches, as observed earlier in
Figure 1. The reason for short inverted lists is that that under
the uniform and inverse skew distributions, the domain of
terms on which queries are registered is very large. In contrast,
under the default or high skew distributions, queries mostly
only contain common terms, which leads to fewer and larger
inverted lists. As a result, the distribution of query terms affects
the inverted list size, which in turn influences the tradeoffs
between the join approaches.

D. Batch Notification

Figure 4 shows the performance of the different notification
methods (Naive, Clustered, and Broadcast) described in Sec-
tion IV-C, as the number of (simulated) nodes in the system is
varied along the x-axis. In this figure, performance is measured
as the total number of exchanged bytes across all query nodes,
on average, across document insertions.

First, note that for all three join approaches, the Naive
notification method, which does not batch notifications by
node, has the same performance regardless of number of
nodes. Clearly, then, performance is suboptimal when the
number of nodes is small. For the Send Document approach,

the bandwidth for Broadcast grows linearly with the size of
the system, as would be expected. The Clustered notification
method also grows roughly linearly with system size: however,
note that with Clustered, the Bloom Filter method has a much
higher slope than the Term Dialogue method. The reason for
this observation is that as the number of nodes increases, the
size of the inverted list at each node decreases, and as we
have seen before, Term Dialogue outperforms Bloom Filter
when the inverted lists are small. Also note that as the number
of nodes increases, the performance of Clustered notification
approaches that of Naive.

Given that Clustered notification always outperforms (or
performs similarly to) Naive in terms of bandwidth, we might
be tempted to conclude that Clustered is always preferred
over Naive. However, not shown in this figure is latency,
which is a small constant for Naive, but is roughly linear
to min(number of nodes, number of distinct terms in doc-
ument) for the Clustered approach. If the number of nodes
is large enough such that the bandwidth difference between
these approaches is small, the Naive method is preferred for
superior latency, as well as improved robustness and simplicity,
as discussed in Section IV-C. Note also that for the Send
Document approach, the Broadcast and Clustered methods
perform similarly; therefore, again due to simplicity, latency
and robustness, the former is preferred.

E. Discussion

Our experiments in this section clearly demonstrate the
tradeoffs between different join and notification approaches,
which we found to be highly dependent on a number of
parameters: query selectivity, size of inverted lists, etc. An
optimal continuous query system, therefore, cannot simply
implement a single approach, unless all workload character-
istics are known at design time and do not evolve. Instead,
we believe our experiments make it clear that an adaptive
approach is best: one in which all approaches are implemented,
and the best approach is chosen according to current workload.

For example, when our SmartSeer application is initially
deployed with few nodes and few registered queries, we
may use the Term Dialogue join approach with Clustered
notification. As the number of continuous queries and nodes
grow, we may switch to Bloom Filter. However, if inverted
lists become extremely large and we find queries to be very
unselective, we may revert to Term Dialogue or even Send
Document, and use Naive or Broadcast notification. Note that
approaches can also be determined on a case-by-case basis;
for example, if only a short abstract is submitted, the DN may
unilaterally select the Send Document join approach, and send
the small abstract to all relevant nodes. Such decisions can be
made by monitoring selectivity and other statistics, which can
then plugged into the analytical model discussed earlier.

VI. HANDLING COMPLEX QUERIES

Our discussion thus far has been limited to simple con-
junctive queries with all predicates based on equality. In this

section, we describe how to extend our techniques to the
following classes of queries:

• Queries with arbitrary boolean expressions: These are
queries with the basic equality predicates composed using
the operations AND, OR, and negation (!).

• Nested Queries: Nested queries are queries whose terms
can contain subqueries and predicates using the relation
IN (membership function). e.g., Q1 = AUTHOR:IN:Q2
where Q2 is subquery that returns a list of authors. Note
that we generally omit the IN keyword, and would write
the above query as Q1 = AUTHOR:Q2

We also note that there are certain categories of queries that
SmartSeer does not support efficiently because of limitations
imposed by the DHT-based rendezvous mechanism: we dis-
cuss such limitations at the end of this section.

A. Boolean Queries

We first describe how queries with negated predicates and
OR queries (queries where the boolean expression is a dis-
junction of simple predicates) are supported, and then explain
how to handle arbitrary boolean expressions.

Negated Predicates: Consider a query Q which has negated
predicates (of the form !T where T is Attribute:Value). Such
a query can only be registered on its non-negated predicates
efficiently, since a DHT only directly supports registration
based on equality. In a DHT, the only way to register a query
on a negated predicate of the form !(A:V) would be to register
the query on all terms A:V’ (such that V ′ �= V), which would
be clearly inefficient.

Thus, SmartSeer always registers such a query on its non-
negated predicates. Negated predicates are matched during the
process of joining the query and the document. For example,
consider a conjunctive query Q = (!S) AND (T) , registered
on non-negated term T . In the Send Document method, the
QN responsible for T ensures that Q is matched only if the
document satisfies the negated predicate !S as well (i.e., by
verifying that the document does not contain S). The other join
approaches handle negated predicates in a similar fashion.

Note that the approach taken for negated predicates can
also be taken for other predicates that are not supported over
a DHT. For example, SmartSeer is unable to process range
predicates, as DHTs only support equality. If a conjunctive
query contains a range predicate as well as non-negated
equality predicates, SmartSeer will simply register the query
on a non-negated equality predicate. Later in Section VI-C
we discuss the case where certain combinations of difficult
predicates lead to a query that SmartSeer cannot support.

OR Queries: Consider OR queries of the form
T1 OR T2 · · · OR Tk. OR queries are registered on
every term, rather than the least selective (or any single
term). When a document is inserted into SmartSeer, if
it contains any terms in the OR query, then the query
will be processed. If the document contains more than
one term in the query, however, the query may be
processed multiple times (duplicate processing). One
possible optimization is to rewrite an OR query into

multiple queries such that only one of them is matched. A
query of the form Q = (T1 OR T2 OR · · · OR Tk)
can be written into k queries of the form Qi =
(!T1) AND (!T2) AND · · · AND (!Ti−1) AND Ti.
Each of these queries Qi has only one positive term, Ti, on
which it is registered. It is clear that a new document cannot
match more than one out of these set of queries: this method
thus minimizes wasteful processing.

Boolean Queries: An arbitrary boolean query Q can be
decomposed into its disjunctive normal form (DNF) where
Q is written as Q1 OR Q2 · · · OR Qk, and each clause Qi

is an AND query. We then register each clause as we would
an independent AND query, and on a match to any of these
queries, the owner of the parent query Q is notified.

B. Nested queries

Technical documents have rich meta-data associated with
them (such as list of authors, list of citations etc), that imply a
relationship between different entities (e.g., a paper is written
by its author, a paper is cited by another). So far, we have
allowed the user to query based on first-order constraints,
such as a paper written by XY Z, or a paper that cites
paper X . Nested queries are queries whose terms involve
subqueries, and such queries allow users to express higher-
order constraints: e.g., papers cited by papers that cite paper
XXX. SmartSeer supports such nested queries by translating
the complex query into multiple subqueries and registering
these subqueries. Note that traditional database joins may be
expressed using nested queries.

To motivate the need for such nested queries, we list some
sample queries below that we expect in SmartSeer, outside of
simple keyword queries. First, users of the system might be in-
terested in tracking citations to their papers. The naive way of
stating this query would be to insert the query (CITATION:X1

OR CITATION:X2 OROR CITATION:Xn), where X1...Xn

are the IDs of all the user’s papers. Alternatively, and more
conveniently, we could state the following nested query: CI-
TATION:IN:(AUTHOR:author name). In other words, return
papers that contain a citation in the set of papers written by
author name. As another example, consider the user John who
is interested of keeping track of new papers written by his co-
authors. The query (AUTHOR:IN:(AUTHOR:John)) would
notify John of papers written by people who are in the set
of authors found in all papers written by John (i.e., John’s
co-authors). Since nested queries allow users to concisely
express their interests, SmartSeer supports such queries both
as continuous queries and instantaneous queries. For clarity,
we first discuss how SmartSeer handles nested instantaneous
queries, and then show how to extend this mechanism to
handle continuous queries.

1) Nested Instantaneous Queries: When a query contains
a subquery as a term, we first execute the subquery to retrieve
a list of documents D that satisfy the subquery. From such
matching documents, attributes of the appropriate type are
extracted. An OR query is then created that represents the
materialized, or translated, version of the original subquery.

This translated version is then executed to retrieve a list of
documents D′ that satisfy the term. D′ acts as an inverted list
for this term, and is then used in processing the original query.

For example, say a user submits the query Q = (YEAR:2004
AND AUTHOR:(networks AND AUTHOR:Bob)) in order to
find papers written in 2004 by authors who co-authored a
paper with Bob containing the text ‘networks’. SmartSeer
will execute the subquery (networks AND AUTHOR:Bob) to
find all documents D = {X1,X2} that satisfy the subquery.
Say documents X1 and X2 are written by Bob, AuthorX,
AuthorY and AuthorZ. Then, the translated version of this
subquery is (AUTHOR:AuthorX OR AUTHOR:AuthorY OR
AUTHOR:AuthorZ) . Clearly, given the state of the database (at
the time the query is first submitted), this translated subquery
is equivalent to the original subquery term AUTHOR:(networks
AND AUTHOR:Bob). SmartSeer then incorporates the trans-
lated subquery into its parent query Q to form the translated
query Q′ = (YEAR:2004 AND (AUTHOR:AuthorX OR AU-
THOR:AuthorY OR AUTHOR:AuthorZ)). Q′ is now a normal
boolean query, and can be executed as described earlier.

2) Nested Continuous Queries: Continuous nested queries
are slightly more complicated. First, when the query Q is first
registered, the subquery is translated as described earlier. Once
all subqueries have been translated, the translated query Q′ is
registered as a normal boolean query. In addition, the original
subqueries themselves are also registered.

Consider our example from the previous section
(YEAR:2004 AND AUTHOR:(networks AND AUTHOR:Bob)).
The original subquery is (networks AND AUTHOR:Bob)
and the translated subquery is (AUTHOR:AuthorX OR
AUTHOR:AuthorY OR AUTHOR:AuthorZ). Say a new
document is inserted in 2004, in which one of the authors is
AuthorZ. This document will match the translated query, and
will thus be returned as a continuous query result. Note that
if the query were not registered in its translated form, then
for every document inserted, we would have to re-evaluate
the entire subquery and query expression as described in
the previous section. Therefore, the translated subquery
is essentially a “materialized view” of the results of the
subquery, necessary only to improve efficiency.

However, registering the translated subquery is not suffi-
cient for correctness. Say Carol has never written a paper
with Bob before on networks, until now. When their new
document is inserted, Carol now satisfies the original sub-
query, and suddenly all of Carol’s documents from 2004
now satisfy the query. Therefore, when the original sub-
query is matched by this new paper with Bob, the translated
query is rewritten as (YEAR:2004 AND (AUTHOR:Carol AND
(!AUTHOR:AuthorX) AND (!AUTHOR:AuthorY) AND (!AU-
THOR:AuthorX)) , and this rewritten version is executed as
an instantaneous query. Note that to ensure that only new
results are returned (i.e., only those papers by Carol), the
rewriting states that the author is not any one of the previous
authors. Note that these mechanisms can be extended in a
straightforward way to support multiple levels of nesting.

SmartSeer does not allow negated subqueries in a con-

tinuous query since, as noted in previous literature, such a
subquery could require that results for a continuous query
be “recalled.” As there is no clean solution to this problem,
SmartSeer disallows negated terms in continuous complex
queries.

C. Limitations on Expressiveness

There are certain classes of queries that SmartSeer does
not support efficiently because of limitations imposed by our
implementation of the DHT-based rendezvous mechanism.

First, SmartSeer does not currently allow similarity queries
that ask for all documents similar to a given document. We
handle such similarity queries by assuming that the user is
willing to augment such queries with a few keywords. We
then register the query on these keywords, and when a new
document is inserted containing these keywords, we can use
our ranking mechanism to determine whether the document
is above a certain threshold of similarity with the query. We
can also allow the user to vary this threshold dynamically, so
that the system can utilize feedback from the user. We leave
examination of such relevance feedback for future work.

Second, there are some restrictions regarding the structure
of the queries allowed by SmartSeer, when difficult predicates
(negation, range) are present. For example, queries with all
negated terms cannot be handled in our system; the rendezvous
mechanism requires at least one non-negated term on which
to register. To determine whether a query can be supported
by SmartSeer, we describe the following simple algorithm:
Express the query as a parse tree, where leaves are simple
term predicates, and internal nodes are clauses – an AND
node is a conjunctive clause, an OR node is a disjunctive
clause. Mark all non-negated equality term predicates. Then,
recursively mark any internal node if (1) it is an AND node
and at least one child is marked, or (2) it is an OR node and
all children are marked. If the root node is marked, SmartSeer
can support the query; otherwise not.

For queries that SmartSeer cannot directly support, one
possible action is to store these queries on a dedicated set of
machines. This set of machines will receive all new documents
as they are inserted, over which they will process all the
“unsupportable queries.” In practice we expect this solution
to work well, as SmartSeer should be able to handle almost
any meaningful query in this domain.

VII. DEPLOYMENT

We have a basic implementation of SmartSeer running
on Planetlab currently and in this section, we report the
performance of our preliminary SmartSeer deployment. The
purpose of this initial rollout is to debug our system as well as
to obtain performance numbers that validate our design. In this
initial deployment, 20 machines were chosen from different
Planetlab sites and the average TCP throughput between two
machines was about 10 − 15 Mbps.

In these experiments, we used a query corpus of about
hundred thousand queries and a document corpus of 1000
documents. Continuous query logs for the CiteSeer database

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100

N
um

be
r

of
 In

ve
rt

ed
 L

is
ts

Inv List Size

Histogram of Inv List Size

Fig. 5. Distribution of Inverted List Sizes

were not available, so we converted instantaneous queries to
CiteSeer (from a MIT log) into continuous queries. All queries
are simple conjunctive queries (although our implementation
supports complex nested queries as well). Out of these 96, 000
distinct queries, about 4, 000 of them are from real MIT
CSAIL (Computer Science and AI laboratory) users, and the
remaining are from search engine crawls (queries such as
“author year title” obtained from web page links). Since most
of these queries are likely to refer to papers in recent years,
we chose the most recent documents available to us from
the CiteSeer database. The document corpus consists of 1000
documents randomly chosen from about 4000 documents that
were inserted in the first half of 1999 into CiteSeer (we could
not get access to more recent documents).

Our methodology was as follows: we inserted 100 docu-
ments into the system, followed by the entire query corpus, and
then the entire document corpus. The initial set of documents
are inserted so the system can obtain selectivity of keywords
(which is used in registering the queries). After all documents
and queries have been inserted, we measured the throughput
of the system by observing the time taken to finish processing
all 1000 documents. The time taken to insert a new continuous
query is very low (of the order of milli-seconds), so we do
not report those results in detail. The bandwidth consumption
was already extensively studied in simulations using the same
code, so we do not report them either. We tested all the
three join approaches: Send Document, Term Dialogue, and
Bloom Filter. Since the number of nodes in the system is low
(compared to the average number of terms in a document,
which is roughly 2000), we used Clustered notification.

In order to understand some of the query characteristics,
we first plot the size of the inverted lists in Figure 5. This
plot suggests that most inverted lists have very few queries,
while some of them can get very long: this kind of heavy-tail
distribution is expected. In fact, there are a few inverted lists
with sizes of a few thousand, but these are not shown in the
graph. Note that this distribution is influenced by the fact that
SmartSeer chooses the most selective keyword to register a
query: for this reason, this distribution is a slightly normalized
version of the underlying query distribution.

The results of our experimental study on the throughput
of the system are as follows. The Send Document, Term

Dialogue, and Bloom Filter approaches can support 66, 886,
78, 728, and 81, 430 document insertions per day. The Bloom
Filter and Term Dialogue methods provide nearly the same
performance, while Send Document is the costliest. The
throughput of this system is about 80, 000 new documents
per day, which is probably adequate for a preprint library.
Therefore, we expect that our design can easily match the per-
formance requirements for a preprint library. Note, however,
that the number of machines and number of registered queries
are likely to be much higher in a realistic public deployment.

VIII. RELATED WORK

Related work can be organized into into four main cate-
gories. First, there is a large body of work on distributed
database solutions (eg: Mariposa [10]) that provide strict ACID
semantics and operate on a set of reliable machines. Such
systems are not designed for an opportunistic infrastructure,
which is one of the key requirements of SmartSeer.

Second, much research has been conducted on supporting
continuous queries in a centralized setting (e.g., Eddies [11],
Babcock et. al [12]). These systems support and optimize
complex continuous queries, though clearly, many of these
techniques do not apply in the setting of a distributed op-
portunistic infrastructure. For example, they do not deal with
the possibility of failure during an ongoing computation. We
also note that CiteSeer [1] itself supports continuous queries
using a centralized database (it is however not available to
users: presumably, because of heavy load). Clearly, such an
approach does not scale as the number of queries increases.

The third category consists of more recent solutions from
the database world for supporting instantaneous queries over
DHTs. Examples of such systems are PIER [13] and Li et.
al. [6] (which studied the feasibility of indexing the web using
DHTs). PIER is a general system that is designed for arbitrary
schemas and arbitrary queries. It also supports continuous
queries to a limited extent (though the details of supporting
complex queries are not specified). PIER treats continuous
queries as long-running instantaneous queries, and thus pro-
cesses even related queries (queries sharing a keyword) as
individual queries, which can be potentially expensive. On the
other hand, SmartSeer is meant to support continuous queries,
and the design is optimized towards such a workload. Other
works such as Overcite [14] and Felber et. al. [15] support
instantaneous queries over a CiteSeer-like document database.
There is a rich literature on supporting instantaneous queries,
and the design of SmartSeer leverages on such efforts.

Finally, existing work has studied continuous queries over
distributed systems. Systems such as Scribe [16] provide event
notification systems over a distributed architecture; however,
they are mainly concerned with supporting simple keyword
queries. There has been considerable research in supporting
continuous XML queries which can be very expressive (eg:
Onyx [17]), but such research focuses on building a network
for routing queries and documents, and does not address
unreliable infrastructure.

IX. CONCLUSION AND FUTURE WORK

In this paper we described SmartSeer, a distributed preprint
repository supporting rich continuous queries. We described
the basic architecture of the system, and identified several key
issues in supporting continuous keyword queries. We point out
key differences between continuous and instantaneous queries
that allow us to implement the joining of documents and
queries by new techniques which are not feasible in the latter
scenario. From our simulations, we highlight the importance
of selecting a suitable approach to these challenges. SmartSeer
also handles a rich set of complex queries such as nested
queries, by rewriting them into simpler queries. Finally, we
report on some preliminary performance results from a de-
ployment of the SmartSeer system. In the future, we wish
to explore adaptive join approaches based on the size of the
document and the inverted lists. We are also interested in
evaluating and optimizing the performance of nested queries.

ACKNOWLEDGMENT

We would like to thank Jeremy Stribling for access to the
CiteSeer repository of documents and query logs from MIT.

REFERENCES

[1] K. Bollacker, S. Lawrence, and C. L. Giles, “A system for automatic
personalized tracking of scientific literature on the web,” in ACM Digital
Libraries, New York, 1999.

[2] B. Ribeiro-Neto and R. Barbosa, “Query performance for tightly coupled
distributed digital libraries,” in ACM Digital Libraries, June 1998.

[3] B. Ribeiro-Neto, e. S. Moura, M. S. Neubert, and N. Ziviani, “Efficient
distributed algorithms to build inverted files,” in ACM Conference on
R&D in Information Retrieval, August 1999.

[4] S. Chandrasekaran and M. J. Franklin, “PSoup: a system for streaming
queries over streaming data,” VLDB, vol. 12, no. 2, pp. 140–156, 2003.

[5] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in
a DHT,” in USENIX Annual Technical Conference, Boston, June 2004.

[6] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Morris, “The
feasibility of peer-to-peer web indexing and search,” in International
Workshop on Peer-to-Peer Systems, Berkeley, California, June 2003.

[7] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “Splitstream: High-bandwidth content distribution in a coop-
erative environment,” in IPTPS, Feb. 2003.

[8] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “Opendht: A public dht service and its uses,” in
SIGCOMM, 2005.

[9] “TREC data,” trec.nist.gov/data.html.
[10] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell,

C. Staelin, and A. Yu, “Mariposa: A wide-area distributed database
system,” The VLDB Journal, vol. 5, no. 1, pp. 048–063, 1996.

[11] R. Avnur and J. Hellerstein, “Eddies: Continuously adaptive query
processing,” in ACM SIGMOD, May 2000.

[12] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and Issues in Data Stream Systems,” in ACM Symposium on Principles
of Database Systems, June 2002.

[13] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica, “Querying the internet with pier,” in VLDB, Sep 2003.

[14] J. Stribling, I. G. Councill, J. Li, M. F. Kaashoek, D. R. Karger,
R. Morris, and S. Shenker, “Overcite: A cooperative digital research
library,” in IPTPS, Feb 2005.

[15] P. Felber, E. Biersack, L. Garces-Erice, K. Ross, and G. Urvoy-Keller,
“Data indexing and querying in dht peer-to-peer networks,” in ICDCS,
2004.

[16] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “SCRIBE: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in communications, 2002.

[17] Y. Diao, S. Rizvi, and M. J. Franklin, “Towards an internet-scale xml
dissemination service,” in VLDB, Toronto, August 2004.

