
TRANSCODING-ENABLED CACHING PROXY FOR VIDEO DELIVERY IN
HETEROGENEOUS NETWORK ENVIRONMENTS

Bo Shen and Sung-Ju Lee

Hewlett-Packard Laboratories
1501 Page Mill Road

Palo Alto, CA 94304, USA
{boshen, sjlee}@hpl.hp.com

ABSTRACT

We propose a transcoding-enabled caching system (TeC)
along with a new set of caching algorithms for video
delivery over the Internet. Our system is designed for
efficient delivery of rich media web contents to
heterogeneous network environments and client
capabilities. The proxies perform transcoding as well as
caching in our system. This design choice allows content
adaptation to be performed at the edges of the networks.
Depending on the connection speed and processing
capability of an end user, the proxy transcodes the
requested (and possibly cached) video into an appropriate
format and delivers it to the user. By serving the
transcoded video directly from the proxy, we improve the
cache hit ratio. Simulation results indicate that by
incorporating transcoding capability at the network edges,
the traffic to the content origin server is reduced 20%.

KEY WORDS: video transcoding, multimedia
caching, mobile multimedia.

1. INTRODUCTION

Delivery of multimedia contents over the Internet is
always a challenge; encoding, delivery, caching, and
processing are all more difficult than those of simple web
objects. For example, when CNN posts a news video clip
on its Web server, it first has to encode the news clip at
several different bit rates (28-56 Kbps for dialup
connections and 150+ Kbps for broadband networks [1])
to satisfy end users with different network connection
speeds. In addition, the prosperity of wireless network
brings more heterogeneous client devices. Traditional
caching system treats each client request independently.
Usually, popular items are cached at a proxy close to the
end user and therefore, reducing the traffic between the
content origin and proxies as well as the user perceived
startup latency. However, various versions with different
bit rates of the same video clip may be cached at one
instance, which can be a waste of storage.

Our solution is to enable the caching proxy with the
transcoding capability so that variants of a video object

can be delivered with transcoding what is cached in the
proxy to the appropriate format, instead of accessing the
object from the content origin that may be far away from
the client. This approach puts transcoding units in the
content delivery path. Putting computing resources in the
content delivery path has been addressed in [2,3].
Dynamic content adaptation can be performed by these
network intermediaries. One of the advantages of having
transcoding-enabled proxy is that the content origin
servers may not need to generate different bit rate videos.
Moreover, heterogeneous clients with various network
conditions will receive videos that are suited for their
capabilities, as content adaptation can easily be done at
the network edges.

We investigate the possibility of using computing
resource to trade off caching storage space, therefore
further improving the responsiveness for media-rich Web
access. One may argue that storage is cheap these days
and saving storage is not necessary. This is partially true.
The processing capabilities have been advanced and the
processors are cheap as well. In addition, because the
video files are very large in size, we cannot assume the
unlimited availability of storage.

Focusing on streaming video delivery over the Internet,
we use video transcoders at the caching proxies. Video
transcoding itself is a computing intensive task. Many
work targets at improving the efficiency of the task. In
[4], we were able to transcode DVD video at high
resolution to low bit rate video at lower resolution in real
time. The results are video objects deliverable to mobile
clients through low bandwidth channels.

Given that the caching proxy is transcoding-enabled, new
adaptive caching systems need to be developed for better
utilization of the storage resource. This paper proposes a
set of caching algorithms taking into account that variants
of the same video object may exist in the system at any
point of time. The variants are produced either a priori or
on demand by the transcoder. The algorithm can choose
to cache single or multiple variants of a video. The cached
video version can be either from the origin server or
generated by the transcoder. Transcoding can be used to
trade off the origin server access. Preliminary results

indicate 20% of increase in caching performance with
manageable computation load on the transcoders.

The rest of the paper is organized as follows. In Section 2,
basic background for transcoding and the architecture of
the transcoding-enabled caching proxy are introduced. In
Section 3, we propose a set of caching algorithms for
transcoding-enabled proxies. Performance analysis and
simulation results are presented in Section 4. Related
work is discussed in Section 5. We conclude in Section 6.

2. SYSTEM ARCHITECTURE

Caching proxy is often deployed at the edges of the
network to reduce the traffic to the origin server and user
perceived latency. We propose a transcoding enabled
caching proxy that serves variants of objects to the end
users with different devices or connection profiles.
Focusing on the video delivery, we illustrate the system
architecture as follows.

Transcoding-enabled caching (TeC) proxy consists of the
components as shown in Figure 1. The proxy acts as a
client to the content server. Therefore, a RTP/RTSP client
is built into the proxy to receive the streamed content
from the origin server (uplink). The received bit stream is
put into the incoming buffer. The transcoder continuously
pull bit streams from the incoming buffer and
subsequently pushes out the transcoded bits to the
outgoing buffer. The caching proxy can decide to cache
the content from the incoming buffer or the outgoing
buffer while it is being produced by the transcoder. The
proxy acts as a server to the end user. Therefore, a
RTP/RTSP server is built in to stream the video to the end
user (downlink). The data in the outgoing buffer is
obtained either from the transcoder or from the caching
system.

TranscoderIncoming
Buffer Outgoing

Buffer

up link

down link

Caching
System

RTP/RTSP Client

RTP/RTSP Server

origin
server

end
user

Figure 1 System and components for transcoding-
enabled caching proxy.

The size of the incoming buffer and the outgoing buffer
can be small given that the transcoder processes the video
data in a streamlined fashion. The speed of the process,
i.e., the transcoding bit rate is defined as the number of
bits generated by the transcoder per second. As long as
the transcoding bit rate is larger than the minimum of the
bandwidth of the uplink and the downlink, the
transcoding process does not significantly increase the
end-to-end delay. However, video transcoding can be
computing intensive. Many works are under investigation
to reduce the workload of such a session. Among them,
compressed domain based approach provides the best
performance [4]. In compressed domain transcoding, the
incoming video is only partially decompressed and rate
adapting is performed in the compressed domain while
the motion information is reused. This approach
significantly improves the speed over the conventional
decoding-transcoding-recoding approach. While not in the
scope of this paper, we assume the transcoder is capable
of handling reasonable number of concurrent sessions in
real time. This allows us to focus on the investigation of
the caching benefits brought by the collocated transcoder.

Given the real time transcoding capability, the TeC proxy
can dynamically transcode objects to different variants to
satisfy the end users with various capabilities. Each
variant is a version. If version x can be obtained by
transcoding from version y, we call version y a
transcodable version for x. Conversely, version x is the
transcoded version of y. In video transcoding, a higher bit
rate version can be transcoded to a version at lower bit
rate. For example, a video at bit rate of 64 Kbps can be
transcoded from the same video at bit rate of 128 Kbps,
and the 128 Kbps version is a transcodable version for the
one at 64 Kbps. The 64 Kbps version is a transcoded
version from the one at 128 Kbps.

The transcoded version may have degradation in fidelity
comparing with the original version. The TeC proxy can
produce transcoded versions with 1 to (n-1) generation
loss in fidelity, where n is the total number of possible
versions. For video transcoding, this loss is negligible
when bit rate reduction is coupled with resolution
reduction. For example, when a video clip with the CIF
resolution (352×288) at bit rate of 1 Mbps is to be
delivered to a PDA type of client device with resolution at
QCIF (176×144), the reduction in the resolution already
reduces the bit rate by a factor of approximately four.

3. CACHING STRATEGIES

A TeC proxy trades off computation with storage. The
main idea is to serve the end user with the transcoded
version of what is available in the cache whenever
possible. Let us assume that the origin server has n
versions at bit rates b1, b2, …, bn for each video object.
The highest bit-rate version is b1 and the lowest is bn, i.e.,
b1 > b2 >…> bn. When version bi is requested from the

end user, and if there is version bj (bj > bi, i.e., bj is a
transcodable version for bi) available in cache, the TeC
proxy will transcode bj to bi instead of fetching bi from the
content origin. Therefore, it is a cache hit even though bi
is not directly available from the cache. We define the
following events in a TeC proxy:
- Exact Hit, the requested version of the requested

object exists in the cache.
- Transcode Hit, the requested version does not exist in

the cache, but a transcodable version of the requested
object does.

- Miss, the requested version of the requested object
nor a transcodable one does not exist in the cache.

Depending on the caching behavior when each event
occurs, we propose two types of caching algorithms.

3.1 Cache Single Version (TEC_11 and TEC_12)
This algorithm allows at most one version of a video
object to be cached at the proxy at any time. By caching
only one version, we are utilizing the storage more
efficiently and caching more video objects. The main
challenge of this algorithm is to decide which bit-rate
version of the video to cache.

When there is an exact hit, the TeC proxy refreshes the
access record for the hit. Then the requested version of
the video object is streamed to the end user.

If a request leads to a cache miss, the TeC proxy fetches
the video from the origin server, streams it to the end user
and caches it. However, remember that we are
considering each version of a video as an item; even if a
request is received to a video that is stored in the cache, if
that request had to be responded from the content origin
(i.e., the end user requests a higher bit rate version than
the cached one), then it is considered a cache miss. Since
we only allow one version of an object to exist in the
cache, the lower bit rate version is evicted. In general, if
the end user requests version bi of a video object while bj,
where bi > bj, exists in the cache, then bj is evicted before
bi is fetched from origin server and subsequently cached
at the proxy.

If an access results in a transcode hit, the TeC proxy
transcodes it to an appropriate version and streams the
transcoded version to the end user. In the mean time, the
proxy can choose to cache in two different ways, which
leads to two variations of the algorithm. For algorithm
TEC_11, the proxy chooses to refresh the access record of
the transcode hit without caching the newly transcoded
version. For algorithm TEC_12, the proxy chooses to
evict the transcode hit and caches the newly transcoded
version. In general, if the end user requests version bi of a
video object while bj, where bi < bj, exists in the cache,
then bi is transcoded from bj and streamed to the end user.
For TEC_11, the access record of bj is refreshed. For
TEC_12, bj is first evicted and bi is cached.

Whenever the cache becomes full and requests to the
video that are not in the cache are received, certain files in
the cache must be replaced. We can simply use the
existing popular cache replacement algorithms (e.g.,
LRU, LFU, LRU-k [6], or GD* [7]).

3.2 Cache Multiple Versions (TEC_2)
The motivation of caching multiple versions of the same
object is to reduce the load on the transcoder. For
example, if b1 and b2 are both in the cache, a request to b2
will lead to an exact hit, i.e., no transcoding is needed. In
addition, if the temporal-locality of accesses to a certain
video object across its variants is high, this approach may
further improve the caching performance.

In this algorithm, when there is a cache miss, the TeC
proxy fetches the requested version, streams it to the end
user and caches it even though there may be other
versions of the same video object in the cache.
Effectively, multiple popular versions of a popular video
can be cached at a given time.

If a transcode hit occurs, the transcoder is invoked to
generate the particular version requested. It is
subsequently delivered to the end user and cached in the
proxy. For example, if the client request version bi of a
video while bj (bj > bi) exists in the cache, then bi is
transcoded from bj, delivered to the end user and
subsequently cached. Note that in this case, bi and bj both
exist in the cache.

Similarly, when the cache becomes full, we use an
existing algorithm for the replacement of each item. For
example, if LRU algorithm is used, TeC proxy will find
the least recently used objects and replace them with
either the fetched or the transcoded version.

4. SIMULATION MODEL AND RESULT

There are limited video traces available to the public, and
to make things worse, even less for variant-based web
traces. We choose to simulate access pattern to the best of
our knowledge by setting the parameters found in [7]. In
all the simulations, LRU is used for cache replacement
algorithm and a stack-based implementation is developed.

4.1 Simulation Parameters
To evaluate the performance of the proposed algorithms,
we simulate the video access patterns as follows. Given a
pool of 500 original video objects of lengths varying from
one minute to five minutes, the access pattern is
characterized by three factors:
1. Popularity of the video. We assume a Zipf

distribution with α of 0.47 [7].
2. Access arrival interval. We assume a random arrival

through a Poisson process.

3. Variety of downlink capacity. Three settings are
selected. We designate 1 Mbps and 512 Kbps for
desktop users, and 256 Kbps for mobile users.

Using the above parameters, we generate a content pool
of about 20 GB of data. Based upon various cache
capacities, we study the byte hit ratio of transcoding-
enabled caching proxy.

4.2 Reference Scenario
Our algorithms are compared with the case where the
caching proxy is not transcoding-enabled. That is, the
original content server stores all different versions of each
original video object. The caching proxy only serves as a
regular interception proxy using the same caching
algorithm (LRU). That is, the proxy treats each access
independently even if the access is to the same video
object but a different version. We call this algorithm a
reference model.

4.3 Simulation Scenario
For TeC simulation, the content origin server stores all
different versions for each video. The TeC proxy serves
transcoded versions based on requests from the end users
and the available versions in the cache storage.

We define a “dominant-variant” scenario as follows. In
this scenario, we picture the requests are mainly from
mobile users after work checking news through cell
phones or PDAs. The access arrival interval is short and
highly temporally localized. We simulate this scenario by
a one-hour simulation. In this experiment, 600 accesses
arrive through a random Poisson process. Therefore, the
average access arrival interval is six seconds. In this case,
the variation in downlink capacity is relatively small. We
simulate this by assigning 80% of the downlink traffic to
dominant downlink capacity. For example, we assume
that 256 Kbps downlink from mobile device is the
dominant link while there are occasional requests from
512 Kbps or 1 Mbps downlink from desktops.

We further define an “even-variant” scenario as follows.
In this scenario, video contents are accessed evenly
through all three types of clients. This scenario represents
a highly heterogeneous environment. While the popularity
of video objects still follows a Zipf-like distribution
(α =0.47), the downlink capacity varies evenly. The
simulation time is extended to 12 hours with 600 accesses
arriving through a random Poisson process. Effectively,
the average access arrival time interval is extended to 72
seconds.

4.4 Simulation Result
We use the byte hit rate to evaluate each algorithm under
each simulation scenario. Note that the byte hit ratio
represents what percentage of the bytes of the content the
end users requested are replied directly from the TeC
proxy. The larger the byte hit ratio, the better the
performance.

Figure 2 (a) shows the byte hit ratio for various cache
capacities in even-variant scenarios. Note that TEC_11
algorithm provides the best result, which is nearly 30%
better than the reference model. Figure 2 (b) shows the
portion of exact hit (E_Hit) and transcode hit (T_Hit) for
TEC_11 algorithm. The result reflects the fact that 20% to
50% of the byte can be served through transcoding.
Figure 2 (c) shows the total number of streaming sessions
and the number of transcoding sessions for each caching
algorithm when the cache capacity is 2 GB. The result for
the first 6000 seconds of the 12-hour simulation is shown.
The number of concurrent transcoding sessions is well
within the range that a current PC can cope with.

0

20

40

60

0.5 1.5 2.5 3.5 4.5
cache capacity (GB)

by
te

 h
it

ra
tio

 (%
)

 Ref
 TEC_11
 TEC_12
 TEC_2

(a)

0

20

40

60

0.5 1.5 2.5 3.5 4.5
cache capacity (GB)

cu
m

ul
at

iv
e

by
te

 h
it

ra
tio

 (%
)

 T_Hit

 E_Hit

(b)

0

2

4

6

8

10

1 6000time (second)

nu
m

be
r o

f s
es

si
on

s

Total
TEC_11
TEC_12
TEC_2

(c)

Figure 2 Simulation result for even-variant scenario.

0

10

20

30

40

50

0.5 1.5 2.5 3.5 4.5
cache capacity (GB)

by
te

 h
it

ra
tio

 (%
)

Ref
TEC_11
TEC_12
TEC_2

(a)

0

10

20

30

40

50

0.5 1.5 2.5 3.5 4.5
cache capacity (GB)

cu
m

ul
at

iv
e

by
te

 h
it

ra
tio

 (%
) T_Hit

 E_Hit

(b)

0

15

30

45

1 3600time (second)

nu
m

be
r o

f s
es

si
on

s

Total TEC_11
TEC_12 TEC_2

(c)

Figure 3 Simulation results for dominant-variant
scenario.

For dominant-variant scenario, Figure 3 shows similar
results except that the benefit gained from the TEC
algorithms is reduced compared to the even-variant
scenario.

Note that from Figure 3 (c), the number of total streaming
sessions and transcoding sessions is increased
significantly comparing with Figure 2 (c). This is due to
the high density of client accesses. For TEC_11, up to

50% of the total session needs transcoding, which poses a
heavy load on the transcoding unit. Variations of the TEC
algorithms provide different level of load on the
transcoder. TEC_11 has the highest level of transcoding
load, while TEC_2 has the lowest. This is not surprising
since the TEC_11 algorithm tries to cache the highest bit
rate version, while TEC_2 tries to cache multiple versions
and therefore an exact hit is more likely to occur
especially when accesses are highly temporally localized.
In practice, one can choose to use different TEC
algorithms based on the transcoding resource available.
For example, if the TeC proxy can handle at most ten
concurrent transcoding sessions, TEC_2 is a better choice
since it incurs at most eight concurrent transcoding
sessions according to Figure 3 (c). On the other hand,
TEC_2 still produces around 20% increase in byte hit
ratio comparing with the reference model.

5. RELATED WORK

Several schemes for caching video streams from the
Internet have been proposed. Prefix caching [8] stores the
initial parts of popular videos on the proxy to reduce the
playback latency. MiddleMan [9] aggregates a number of
proxy caches connected within a network to cache video
files. The system proposed in [10] has proxies perform
request aggregation, prefix caching, and rate control to
cache streaming media. Video staging [11] prefetches
certain videos onto the proxies to preserve WAN
bandwidth. All of the above schemes do not use
transcoding at the local network proxies.

Many works have contemplated with the idea of putting
transcoders at network intermediaries [12-16]. MOWSER
[12] allows mobile users to specify the QoS parameters.
Proxy agents between the web server and mobile users
transcode the web content into viewing preference to the
clients. MOWSER however, does not deal with proxy
caching. A similar work is done at [13] that uses
InfoPyramid data model to adapt web contents to mobile
client capabilities. Web caching is not considered in this
work, either. On-the-fly transformation of web contents at
the network infrastructure was proposed in [14]. Lossy
compression is used for each specific data-types to adapt
to network and client variations. An analytical framework
for transcoding web streams at the proxies was discussed
in [15]. IBM Websphere transcoding publisher [16] can
transcode HTML and image contents into various
languages and formats suited for the users’ wireless
devices. It is not however, capable of transcoding
streaming objects.

In [17], a layered caching scheme is introduced to adjust
stream quality based on per-layer popularity. The video
layers are dependent. In our work on the other hand,
different versions of a video object are independent. In
[17] the proxy can serve the end user with part of the
object while fetching for other parts (enhancement layer)

if the video gets popular. The concept of partial hit is thus
introduced. However, the transcode hit defined in our
work is different. A transcode hit contains a supper set of
the content that the end user requests. The TeC proxy
serves the end user with a transcoded version, and no
access to the server is required.

Similar to [17], [18] proposed a soft caching system for
caching Web images at different resolutions. It is similar
to our work in the sense that different resolutions of the
same image can be cached at the proxy. However, the
tradeoff between computation and storage was not
considered. In addition, [18] evaluated the soft caching
system for images based on the user download time.
Video caching poses a different set of challenges. Our
work investigates the benefits transcoder brings to
caching. Download time is less of a factor given that the
video is streamed from end to end.

6. CONCLUSION

We proposed a transcoding-enabled caching proxy
system. Two types of caching algorithms specific to TeC
proxy system are presented. In addition to an efficient
video delivery to the end users with heterogeneous
network conditions and client capabilities, the proposed
system improves caching performance by serving
transcoded objects to the client and intelligently caching
them. Simulation result indicates 20% of increase in
caching performance with manageable computation load
on the transcoder.

The TeC proxy system can be extended to deal with other
types of Web contents such as images. Similar strategies
can be used. For video contents, interval caching can be
deployed rather than storing the entire video. Given a
distribution of access intervals, our algorithm can be
expanded to operate in a similar fashion and comparable
advantages can be expected.

REFERENCES

[1] http://www.cnn.com/video
[2] W.Y. Ma, B. Shen, J. Brassil, Content Service
Network, The Architecture and Protocols, Proc. 6th
Internation Web Content Caching and Distribution
Workshop, Boston, MA, 2001, 89-107.
[3] E. Amir, S. McCanne and R. Katz, An Active Service
Framework and its Application to Real-time Multimedia
Transcoding, Proc. SIGCOMM’98, Vancouver, B.C.
1998, 178-189.
[4] B. Shen, S. Roy, A Very Fast Video Special
Resolution Reduction Transcoder”, Proc. International
Conf. On Acoustics Speech and Signal Processing
(ICASSP), May 2002.
[5] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K
Page Replacement Algorithm for Database Disk

Buffering,” Proceedings of the ACM SIGMOD’93
International Conference on Management of Data,
Washington, DC, May 1993, 297-306.
[6] S. Jin and A. Bestavros, "GreedyDual Web Caching
Algorithm: Exploiting the Two Sources of Temporal
Locality in Web Request Streams," Computer
Communications, 24(2), Feb. 2001, 174-183.
[7] M. Chesire, A. Wolman, G. M. Voelker, and H. M
Levy, “Measurement and Analysis of a Streaming-Media
Workload,” Proceedings of the 3rd USENIX Symposium
on Internet Technologies and Systems (USITS'01), San
Francisco, CA, March 2001.
[8] S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix
Caching for Multimedia Streams,” Proceedings of the
IEEE International Conference on Computer
Communications (INFOCOM’99), New York, NY, March
1999, 1310-1319.
[9] S. Acharya and B. Smith, “MiddleMan: A Video
Caching Proxy Server,” Proceedings of the 10th
International Workshop on Network and Operating
System Support for Digital Video and Audio (NOSSDAV
2000), Chapel Hill, NC, June 2000.
[10] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul,
“Design and Implementation of a Caching System for
Streaming Media over the Internet,” Proceedings of the
6th IEEE Real-Time Technology and Applications
Symposium (RTAS 2000), Washington, DC, June 2000,
111-121.
[11] Z. -L. Zhang, Y. Wang, D. H. C. Du, and D. Su,
“Video Staging: A Proxy-Server-Based Approach to End-
to-End Video Delivery over Wide-Area Networks,”
IEEE/ACM Transactions on Networking, 8(4), August
2000, 429-442.
[12] H. Bharadvaj, A. Joshi and S. Auephanwiriyakul, An
active transcoding proxy to support mobile web access,
Proc. 17th IEEE Symposium on Reliable Distributed
Systems, 1998, 118-123.
[13] J. Smith, R. Mohan, and C. Li, Scalable multimedia
delivery for pervasive computing, Proc. ACM
Multimedia, Orlando, FL, 1999, 131-140.
 [14] A. Fox, S. D. Cribble, Y. Chawathe & E. A. Brewer,
Adapting to network and client variation using
infrastructural proxies: lessons and perspectives, IEEE
Personal communications, 5(5), Aug. 1998, 10-19.
[15] R. Han, P. Bhagwat, et al., Dynamic adaptation in an
image transcoding proxy for mobile web browsing, IEEE
Personal communications, 5(7), Dec. 1998, 8-17.
[16] IBM Websphere,
http://www.developer.ibm.com/websphere/index.html
[17] R. Rejaie, H. Yu, M. Handely, D. Estrin, Multimedia
Proxy Caching Mechanism for Quality Adaptive
Streaming Applications in the Internet, Proc. of
INFOCOM, Tel Aviv, Israel, Mar. 2000, 980-989.
[18] J. Kangasharju, Y. Kwon, A. Ortega, X. Yang, K.
Ramchandran, Implementation of Optimized Cache
Replenishment Algorithms in a Soft Caching System,
Proc. 1998 IEEE Second Workshop on Multimedia Signal
Processing, Dec. 1998, 233-238.

