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ABSTRACT 
 
We propose a transcoding-enabled caching system (TeC) 
along with a new set of caching algorithms for video 
delivery over the Internet. Our system is designed for 
efficient delivery of rich media web contents to 
heterogeneous network environments and client 
capabilities. The proxies perform transcoding as well as 
caching in our system. This design choice allows content 
adaptation to be performed at the edges of the networks. 
Depending on the connection speed and processing 
capability of an end user, the proxy transcodes the 
requested (and possibly cached) video into an appropriate 
format and delivers it to the user. By serving the 
transcoded video directly from the proxy, we improve the 
cache hit ratio. Simulation results indicate that by 
incorporating transcoding capability at the network edges, 
the traffic to the content origin server is reduced 20%.  
 
KEY WORDS:  video transcoding, multimedia 
caching, mobile multimedia. 
 
 
1. INTRODUCTION 
 
Delivery of multimedia contents over the Internet is 
always a challenge; encoding, delivery, caching, and 
processing are all more difficult than those of simple web 
objects. For example, when CNN posts a news video clip 
on its Web server, it first has to encode the news clip at 
several different bit rates (28-56 Kbps for dialup 
connections and 150+ Kbps for broadband networks [1]) 
to satisfy end users with different network connection 
speeds. In addition, the prosperity of wireless network 
brings more heterogeneous client devices. Traditional 
caching system treats each client request independently. 
Usually, popular items are cached at a proxy close to the 
end user and therefore, reducing the traffic between the 
content origin and proxies as well as the user perceived 
startup latency. However, various versions with different 
bit rates of the same video clip may be cached at one 
instance, which can be a waste of storage. 
 
Our solution is to enable the caching proxy with the 
transcoding capability so that variants of a video object 

can be delivered with transcoding what is cached in the 
proxy to the appropriate format, instead of accessing the 
object from the content origin that may be far away from 
the client. This approach puts transcoding units in the 
content delivery path. Putting computing resources in the 
content delivery path has been addressed in [2,3]. 
Dynamic content adaptation can be performed by these 
network intermediaries. One of the advantages of having 
transcoding-enabled proxy is that the content origin 
servers may not need to generate different bit rate videos. 
Moreover, heterogeneous clients with various network 
conditions will receive videos that are suited for their 
capabilities, as content adaptation can easily be done at 
the network edges.  
 
We investigate the possibility of using computing 
resource to trade off caching storage space, therefore 
further improving the responsiveness for media-rich Web 
access. One may argue that storage is cheap these days 
and saving storage is not necessary. This is partially true. 
The processing capabilities have been advanced and the 
processors are cheap as well. In addition, because the 
video files are very large in size, we cannot assume the 
unlimited availability of storage. 
 
Focusing on streaming video delivery over the Internet, 
we use video transcoders at the caching proxies. Video 
transcoding itself is a computing intensive task. Many 
work targets at improving the efficiency of the task. In 
[4], we were able to transcode DVD video at high 
resolution to low bit rate video at lower resolution in real 
time. The results are video objects deliverable to mobile 
clients through low bandwidth channels. 
  
Given that the caching proxy is transcoding-enabled, new 
adaptive caching systems need to be developed for better 
utilization of the storage resource. This paper proposes a 
set of caching algorithms taking into account that variants 
of the same video object may exist in the system at any 
point of time. The variants are produced either a priori or 
on demand by the transcoder. The algorithm can choose 
to cache single or multiple variants of a video. The cached 
video version can be either from the origin server or 
generated by the transcoder. Transcoding can be used to 
trade off the origin server access. Preliminary results 



indicate 20% of increase in caching performance with 
manageable computation load on the transcoders. 
 
The rest of the paper is organized as follows. In Section 2, 
basic background for transcoding and the architecture of 
the transcoding-enabled caching proxy are introduced. In 
Section 3, we propose a set of caching algorithms for 
transcoding-enabled proxies. Performance analysis and 
simulation results are presented in Section 4.  Related 
work is discussed in Section 5. We conclude in Section 6. 
 
 
2. SYSTEM ARCHITECTURE 
 
Caching proxy is often deployed at the edges of the 
network to reduce the traffic to the origin server and user 
perceived latency. We propose a transcoding enabled 
caching proxy that serves variants of objects to the end 
users with different devices or connection profiles. 
Focusing on the video delivery, we illustrate the system 
architecture as follows. 
 
Transcoding-enabled caching (TeC) proxy consists of the 
components as shown in Figure 1. The proxy acts as a 
client to the content server. Therefore, a RTP/RTSP client 
is built into the proxy to receive the streamed content 
from the origin server (uplink). The received bit stream is 
put into the incoming buffer. The transcoder continuously 
pull bit streams from the incoming buffer and 
subsequently pushes out the transcoded bits to the 
outgoing buffer. The caching proxy can decide to cache 
the content from the incoming buffer or the outgoing 
buffer while it is being produced by the transcoder. The 
proxy acts as a server to the end user. Therefore, a 
RTP/RTSP server is built in to stream the video to the end 
user (downlink). The data in the outgoing buffer is 
obtained either from the transcoder or from the caching 
system.  
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Figure 1 System and components for transcoding-
enabled caching proxy. 

The size of the incoming buffer and the outgoing buffer 
can be small given that the transcoder processes the video 
data in a streamlined fashion. The speed of the process, 
i.e., the transcoding bit rate is defined as the number of 
bits generated by the transcoder per second. As long as 
the transcoding bit rate is larger than the minimum of the 
bandwidth of the uplink and the downlink, the 
transcoding process does not significantly increase the 
end-to-end delay. However, video transcoding can be 
computing intensive. Many works are under investigation 
to reduce the workload of such a session. Among them, 
compressed domain based approach provides the best 
performance [4]. In compressed domain transcoding, the 
incoming video is only partially decompressed and rate 
adapting is performed in the compressed domain while 
the motion information is reused. This approach 
significantly improves the speed over the conventional   
decoding-transcoding-recoding approach. While not in the 
scope of this paper, we assume the transcoder is capable 
of handling reasonable number of concurrent sessions in 
real time. This allows us to focus on the investigation of 
the caching benefits brought by the collocated transcoder. 
 
Given the real time transcoding capability, the TeC proxy 
can dynamically transcode objects to different variants to 
satisfy the end users with various capabilities. Each 
variant is a version. If version x can be obtained by 
transcoding from version y, we call version y a 
transcodable version for x. Conversely, version x is the 
transcoded version of y. In video transcoding, a higher bit 
rate version can be transcoded to a version at lower bit 
rate. For example, a video at bit rate of 64 Kbps can be 
transcoded from the same video at bit rate of 128 Kbps, 
and the 128 Kbps version is a transcodable version for the 
one at 64 Kbps. The 64 Kbps version is a transcoded 
version from the one at 128 Kbps. 
 
The transcoded version may have degradation in fidelity 
comparing with the original version. The TeC proxy can 
produce transcoded versions with 1 to (n-1) generation 
loss in fidelity, where n is the total number of possible 
versions. For video transcoding, this loss is negligible 
when bit rate reduction is coupled with resolution 
reduction. For example, when a video clip with the CIF 
resolution (352×288) at bit rate of 1 Mbps is to be 
delivered to a PDA type of client device with resolution at 
QCIF (176×144), the reduction in the resolution already 
reduces the bit rate by a factor of approximately four.  
 
 
3. CACHING STRATEGIES 
 
A TeC proxy trades off computation with storage. The 
main idea is to serve the end user with the transcoded 
version of what is available in the cache whenever 
possible. Let us assume that the origin server has n 
versions at bit rates b1, b2, …, bn for each video object. 
The highest bit-rate version is b1 and the lowest is bn, i.e., 
b1 > b2 >…> bn. When version bi is requested from the 



end user, and if there is version bj (bj > bi, i.e., bj is a 
transcodable version for bi) available in cache, the TeC 
proxy will transcode bj to bi instead of fetching bi from the 
content origin. Therefore, it is a cache hit even though bi 
is not directly available from the cache. We define the 
following events in a TeC proxy:  
- Exact Hit, the requested version of the requested 

object exists in the cache. 
- Transcode Hit, the requested version does not exist in 

the cache, but a transcodable version of the requested 
object does. 

- Miss, the requested version of the requested object 
nor a transcodable one does not exist in the cache. 

Depending on the caching behavior when each event 
occurs, we propose two types of caching algorithms. 
 
3.1 Cache Single Version (TEC_11 and TEC_12) 
This algorithm allows at most one version of a video 
object to be cached at the proxy at any time. By caching 
only one version, we are utilizing the storage more 
efficiently and caching more video objects. The main 
challenge of this algorithm is to decide which bit-rate 
version of the video to cache.  
 
When there is an exact hit, the TeC proxy refreshes the 
access record for the hit. Then the requested version of 
the video object is streamed to the end user.  
 
If a request leads to a cache miss, the TeC proxy fetches 
the video from the origin server, streams it to the end user 
and caches it. However, remember that we are 
considering each version of a video as an item; even if a 
request is received to a video that is stored in the cache, if 
that request had to be responded from the content origin 
(i.e., the end user requests a higher bit rate version than 
the cached one), then it is considered a cache miss. Since 
we only allow one version of an object to exist in the 
cache, the lower bit rate version is evicted. In general, if 
the end user requests version bi of a video object while bj, 
where bi > bj, exists in the cache, then bj is evicted before 
bi is fetched from origin server and subsequently cached 
at the proxy. 
 
If an access results in a transcode hit, the TeC proxy 
transcodes it to an appropriate version and streams the 
transcoded version to the end user. In the mean time, the 
proxy can choose to cache in two different ways, which 
leads to two variations of the algorithm. For algorithm 
TEC_11, the proxy chooses to refresh the access record of 
the transcode hit without caching the newly transcoded 
version. For algorithm TEC_12, the proxy chooses to 
evict the transcode hit and caches the newly transcoded 
version. In general, if the end user requests version bi of a 
video object while bj, where bi < bj, exists in the cache, 
then bi is transcoded from bj and streamed to the end user. 
For TEC_11, the access record of bj is refreshed. For 
TEC_12, bj is first evicted and bi is cached. 
 

Whenever the cache becomes full and requests to the 
video that are not in the cache are received, certain files in 
the cache must be replaced. We can simply use the 
existing popular cache replacement algorithms (e.g., 
LRU, LFU, LRU-k [6], or GD* [7]).  
 
3.2 Cache Multiple Versions (TEC_2) 
The motivation of caching multiple versions of the same 
object is to reduce the load on the transcoder. For 
example, if b1 and b2 are both in the cache, a request to b2 
will lead to an exact hit, i.e., no transcoding is needed. In 
addition, if the temporal-locality of accesses to a certain 
video object across its variants is high, this approach may 
further improve the caching performance. 
 
In this algorithm, when there is a cache miss, the TeC 
proxy fetches the requested version, streams it to the end 
user and caches it even though there may be other 
versions of the same video object in the cache. 
Effectively, multiple popular versions of a popular video 
can be cached at a given time. 
 
If a transcode hit occurs, the transcoder is invoked to 
generate the particular version requested. It is 
subsequently delivered to the end user and cached in the 
proxy. For example, if the client request version bi of a 
video while bj (bj > bi) exists in the cache, then bi is 
transcoded from bj, delivered to the end user and 
subsequently cached. Note that in this case, bi and bj both 
exist in the cache. 
 
Similarly, when the cache becomes full, we use an 
existing algorithm for the replacement of each item. For 
example, if LRU algorithm is used, TeC proxy will find 
the least recently used objects and replace them with 
either the fetched or the transcoded version. 
 
 
4. SIMULATION MODEL AND RESULT 
 
There are limited video traces available to the public, and 
to make things worse, even less for variant-based web 
traces. We choose to simulate access pattern to the best of 
our knowledge by setting the parameters found in [7]. In 
all the simulations, LRU is used for cache replacement 
algorithm and a stack-based implementation is developed. 
 
4.1 Simulation Parameters 
To evaluate the performance of the proposed algorithms, 
we simulate the video access patterns as follows. Given a 
pool of 500 original video objects of lengths varying from 
one minute to five minutes, the access pattern is 
characterized by three factors:  
1. Popularity of the video. We assume a Zipf 

distribution with α of 0.47 [7]. 
2. Access arrival interval. We assume a random arrival 

through a Poisson process. 



3. Variety of downlink capacity. Three settings are 
selected.  We designate 1 Mbps and 512 Kbps for 
desktop users, and 256 Kbps for mobile users. 

Using the above parameters, we generate a content pool 
of about 20 GB of data. Based upon various cache 
capacities, we study the byte hit ratio of transcoding-
enabled caching proxy. 
 
4.2 Reference Scenario 
Our algorithms are compared with the case where the 
caching proxy is not transcoding-enabled. That is, the 
original content server stores all different versions of each 
original video object. The caching proxy only serves as a 
regular interception proxy using the same caching 
algorithm (LRU). That is, the proxy treats each access 
independently even if the access is to the same video 
object but a different version. We call this algorithm a 
reference model. 
 
4.3 Simulation Scenario 
For TeC simulation, the content origin server stores all 
different versions for each video. The TeC proxy serves 
transcoded versions based on requests from the end users 
and the available versions in the cache storage. 
 
We define a “dominant-variant” scenario as follows. In 
this scenario, we picture the requests are mainly from 
mobile users after work checking news through cell 
phones or PDAs. The access arrival interval is short and 
highly temporally localized. We simulate this scenario by 
a one-hour simulation. In this experiment, 600 accesses 
arrive through a random Poisson process. Therefore, the 
average access arrival interval is six seconds. In this case, 
the variation in downlink capacity is relatively small. We 
simulate this by assigning 80% of the downlink traffic to 
dominant downlink capacity. For example, we assume 
that 256 Kbps downlink from mobile device is the 
dominant link while there are occasional requests from 
512 Kbps or 1 Mbps downlink from desktops.   
 
We further define an “even-variant” scenario as follows. 
In this scenario, video contents are accessed evenly 
through all three types of clients. This scenario represents 
a highly heterogeneous environment. While the popularity 
of video objects still follows a Zipf-like distribution 
(α =0.47), the downlink capacity varies evenly. The 
simulation time is extended to 12 hours with 600 accesses 
arriving through a random Poisson process. Effectively, 
the average access arrival time interval is extended to 72 
seconds. 
 
4.4 Simulation Result 
We use the byte hit rate to evaluate each algorithm under 
each simulation scenario. Note that the byte hit ratio 
represents what percentage of the bytes of the content the 
end users requested are replied directly from the TeC 
proxy. The larger the byte hit ratio, the better the 
performance. 
 

Figure 2 (a) shows the byte hit ratio for various cache 
capacities in even-variant scenarios. Note that TEC_11 
algorithm provides the best result, which is nearly 30% 
better than the reference model. Figure 2 (b) shows the 
portion of exact hit (E_Hit) and transcode hit (T_Hit) for 
TEC_11 algorithm. The result reflects the fact that 20% to 
50% of the byte can be served through transcoding. 
Figure 2 (c) shows the total number of streaming sessions 
and the number of transcoding sessions for each caching 
algorithm when the cache capacity is 2 GB. The result for 
the first 6000 seconds of the 12-hour simulation is shown. 
The number of concurrent transcoding sessions is well 
within the range that a current PC can cope with. 
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Figure 2 Simulation result for even-variant scenario. 
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Figure 3 Simulation results for dominant-variant 
scenario. 

For dominant-variant scenario, Figure 3 shows similar 
results except that the benefit gained from the TEC 
algorithms is reduced compared to the even-variant 
scenario. 
 
Note that from Figure 3 (c), the number of total streaming 
sessions and transcoding sessions is increased 
significantly comparing with Figure 2 (c). This is due to 
the high density of client accesses. For TEC_11, up to 

50% of the total session needs transcoding, which poses a 
heavy load on the transcoding unit. Variations of the TEC 
algorithms provide different level of load on the 
transcoder. TEC_11 has the highest level of transcoding 
load, while TEC_2 has the lowest. This is not surprising 
since the TEC_11 algorithm tries to cache the highest bit 
rate version, while TEC_2 tries to cache multiple versions 
and therefore an exact hit is more likely to occur 
especially when accesses are highly temporally localized. 
In practice, one can choose to use different TEC 
algorithms based on the transcoding resource available. 
For example, if the TeC proxy can handle at most ten 
concurrent transcoding sessions, TEC_2 is a better choice 
since it incurs at most eight concurrent transcoding 
sessions according to Figure 3 (c). On the other hand, 
TEC_2 still produces around 20% increase in byte hit 
ratio comparing with the reference model. 
 
 
5. RELATED WORK 
 
Several schemes for caching video streams from the 
Internet have been proposed. Prefix caching [8] stores the 
initial parts of popular videos on the proxy to reduce the 
playback latency. MiddleMan [9] aggregates a number of 
proxy caches connected within a network to cache video 
files. The system proposed in [10] has proxies perform 
request aggregation, prefix caching, and rate control to 
cache streaming media. Video staging [11] prefetches 
certain videos onto the proxies to preserve WAN 
bandwidth. All of the above schemes do not use 
transcoding at the local network proxies. 
 
Many works have contemplated with the idea of putting 
transcoders at network intermediaries [12-16]. MOWSER 
[12] allows mobile users to specify the QoS parameters. 
Proxy agents between the web server and mobile users 
transcode the web content into viewing preference to the 
clients. MOWSER however, does not deal with proxy 
caching. A similar work is done at [13] that uses 
InfoPyramid data model to adapt web contents to mobile 
client capabilities. Web caching is not considered in this 
work, either. On-the-fly transformation of web contents at 
the network infrastructure was proposed in [14]. Lossy 
compression is used for each specific data-types to adapt 
to network and client variations. An analytical framework 
for transcoding web streams at the proxies was discussed 
in [15]. IBM Websphere transcoding publisher [16] can 
transcode HTML and image contents into various 
languages and formats suited for the users’ wireless 
devices. It is not however, capable of transcoding 
streaming objects. 
 
In [17], a layered caching scheme is introduced to adjust 
stream quality based on per-layer popularity. The video 
layers are dependent. In our work on the other hand, 
different versions of a video object are independent. In 
[17] the proxy can serve the end user with part of the 
object while fetching for other parts (enhancement layer) 



if the video gets popular. The concept of partial hit is thus 
introduced. However, the transcode hit defined in our 
work is different. A transcode hit contains a supper set of 
the content that the end user requests. The TeC proxy 
serves the end user with a transcoded version, and no 
access to the server is required. 
 
Similar to [17], [18] proposed a soft caching system for 
caching Web images at different resolutions. It is similar 
to our work in the sense that different resolutions of the 
same image can be cached at the proxy. However, the 
tradeoff between computation and storage was not 
considered. In addition, [18] evaluated the soft caching 
system for images based on the user download time. 
Video caching poses a different set of challenges. Our 
work investigates the benefits transcoder brings to 
caching. Download time is less of a factor given that the 
video is streamed from end to end. 
 
 
6. CONCLUSION 
 
We proposed a transcoding-enabled caching proxy 
system. Two types of caching algorithms specific to TeC 
proxy system are presented. In addition to an efficient 
video delivery to the end users with heterogeneous 
network conditions and client capabilities, the proposed 
system improves caching performance by serving 
transcoded objects to the client and intelligently caching 
them. Simulation result indicates 20% of increase in 
caching performance with manageable computation load 
on the transcoder. 
 
The TeC proxy system can be extended to deal with other 
types of Web contents such as images. Similar strategies 
can be used. For video contents, interval caching can be 
deployed rather than storing the entire video. Given a 
distribution of access intervals, our algorithm can be 
expanded to operate in a similar fashion and comparable 
advantages can be expected.  
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