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ABSTRACT

Multi-homed mobile devices have multiple wireless commu-
nication interfaces, each connecting to the Internet via a low
speed and bursty WAN link such as a cellular link. We pro-
pose a packet striping system for such multi-homed devices
— a mapping of packets by a gateway to multiple channels,
such that the overall performance is enhanced. We model
and analyze the striping of delay-sensitive packets over mul-
tiple burst-loss channels. We derive the expected packet loss
ratio when FEC (Forward Error Correction) and retransmis-
sions are applied for error protection over multiple channels.
We next model and analyze the case when the channels are
bandwidth-limited. We develop a dynamic programming-
based algorithm that solves the optimal striping problem for
the ARQ, the FEC, and the hybrid FEC/ARQ case.

1. INTRODUCTION

Many modern wireless devices are multi-homed — having
multiple wireless communication interfaces, each connecting
to the Internet via a wireless wide area network (WWAN) in-
terface such as a cellular link. Though this type of interface
provides long range services, the bandwidth is limited, and
packet losses are frequent and bursty. To enhance perfor-
mance in this setting, an assistant gateway can “aggregate”
device’s low speed WAN channels — a mapping of incoming
packets to its multiple channels together with the use of error
protection schemes such as forward error correction (FEC)
and retransmissions (ARQ) — to optimize end-to-end packet
delivery. Clearly, suchstriping engine improve delivery of
delay-sensitive media streaming data greatly: like a typical
single channel packet interleaver, by spreading FEC packets
across channels, one avoids decoding failure due to a single
burst loss, yet unlike the interleaver, one also avoids exces-
sive transmission delay of long interleaving.

Indeed, this striping orinverse multiplexingproblem has
recently received great interest in mobile wireless network-
ing domain [1, 2, 3]. Unlike previous work that focuses
on bulk transfer, we focus our attention on delay-sensitive
packet delivery such as media streaming.

2. CHANNEL MODEL BASICS

Given the burst loss nature of wireless links, we model each
channel using a two-state Markov chain (Gilbert model). Let
p(i), i ≥ 0, be the probability of havingexactlyi consec-
utive correctly delivered packets between two lost packets,
following an observed lost packet, i.e.p(i) = Pr(0i1|1). Let
P (i) be the probability of havingat leasti consecutive cor-
rectly delivered packets following an observed lost packet,
i.e.,P (i) = Pr(0i|1). Given Gilbert model parametersp and
q, p(i) andP (i) are:

p(i) =


1 − q if i = 0
q(1 − p)i−1p o.w.

(1)

P (i) =


1 if i = 0

q(1 − p)i−1 o.w.
(2)

q(i) =


1 − p if i = 0
p(1 − q)i−1q o.w.

(3)

Q(i) =


1 if i = 0
p(1 − q)i−1 o.w.

(4)

q(i) andQ(i) are complementarily defined functions;q(i) =
Pr(1i0|0) andQ(i) = Pr(1i|0).

We next defineR(m,n) as the probability that there are
exactlym lost packets inn packets following an observed
lost packet and can be expressed as:

R(m, n) =

8><>:
P (n) for m = 0 and n ≥ 0
n−mX
i=0

p(i)R(m − 1, n − i − 1) for 1 ≤ m ≤ n
(5)

We additionaly definer(m,n) as the probability that there
are exactlym loss packets inn packetsbetweentwo lost
packets following an observed lost packet. Finally, we de-
fine r̄(m,n) as the probability that there areexactlym lost
packets inn packets following a lost packet and preceding a
successfully received packet.

We define the complementary functionS(m,n), as the
probability of havingexactlym correctly received packets in
n packets following an observed correctly received packet.
s(m,n) ands̄(m,n) are defined counterparts tor(m,n) and
r̄(m,n).



3. FEC FOR BURSTY CHANNELS

We derive the expected packet loss ratio (PLR) of FEC code
— (n, k) Reed-Solomon code in particularαRS — on a bursty
channel. Recall RS(n, k) is correctly decoded if anyk pack-
ets of the group ofk data andn − k parity packets are cor-
rectly received. First, we condition on the status of the last
packet transmitted (loss/success), giving us two conditional
probabilities,αRS|1 andαRS|0, respectively.αRS can then
be expressed as:

αRS = π ∗ αRS|1 + (1 − π) ∗ αRS|0 (6)

whereπ = p
p+q is the raw packet loss ratio (PLR).

To find αRS|1, we consider thek data packet block and
then−k parity packet block separately. We condition on the
status of the last (k-th) data packet; given thek-th data packet
is lost or received, we useR(., .) or S(., .) for probability
calculation of the trailingn− k parity packet block.

Conditioning on the event when thek-th data packet is
lost, we consider all cases when any numberi of the remain-
ing k − 1 data packets are lost. Each casei will have a loss
ratio of i+1

k , assuming there are≥ n−k+1 total loss packets
including then − k parity packets. Similar analysis condi-
tioning on the event when thek-th data packet is successfully
received completes the derivation forαRS|1:

αRS|1 =

k−1X
i=0

„
i + 1

k

«
r(i, k − 1)

n−kX
j=[n−k−i]+

R(j, n − k)

+

k−1X
i=1

„
i

k

«
r̄(i, k − 1)

n−kX
j=[n−k+1−i]+

S(n − k − j, n − k) (7)

where[x]+ is the positive part ofx. Similar analysis can be
performed to deriveαRS|0.

4. STRIPING FEC DATA

Data and parity packets of a given RS(n, k) can be striped
over a set of channels in multiple ways. We call the map-
ping ofk data andn− k parity packets tom bursty channels
an FEC distribution. We denote such mapping function as
g : (k, n− k) → (u,v), u,v ∈ Im. It is a mapping of two
scalars to two vectors of lengthm, whereui (vi) represents
the number of data packets (parity packets) assigned to chan-
nel i. In addition, we definewi = ui +vi as the total number
of packets assigned to channeli.

Let random variableX be the number of data packets
dropped ink data packets in a RS(n, k) code. LetY , Z and
Θ be the number of correctly transmitted data packets, par-
ity packets and total packets, respectively.X, Y andZ are
related as follows:

X =


k − Y if Y + Z ≤ k − 1
0 o.w. (8)

When given probability mass functions (pmfs) ofY , Z and
Θ = Y + Z, we can find the expectation ofX as follows:

E[X] = E[k − Y |Y + Z ≤ k − 1]P (Y + Z ≤ k − 1)

= (k − E[Y |Θ ≤ k − 1]) P (Θ ≤ k − 1) (9)

To find P (Θ ≤ k − 1), we first define random variables
Yi ≤ ui, Zi ≤ vi andΘi ≤ wi as the number of correctly
transmitted data packets, parity packets and total packets in
channeli, respectively. We can then write:

Y =

mX
i=1

Yi, Z =

mX
i=1

Zi, Θ =

mX
i=1

Θi (10)

For each channeli, pmf of Θi = Yi + Zi can be written as:

P (Θi = j) = πi R(wi − j, wi) + (1 − πi)S(j, wi) (11)

wherej = 0, . . . , wi. SinceΘ, as well asY andZ, are all
sums of random variables, we derive pmf ofΘ using proba-
bility generating function (pgf)GΘ(ξ):

GΘ(ξ) = E[ξ
Θ

] = E[ξ
Θ1 ] · · ·E[ξ

Θm ] = GΘ1 (ξ) · · ·GΘm (ξ)

Hence pgfGΘ(ξ) is simply a product of pgfsGΘi
(ξ)’s. We

recover pmf ofΘ from pgfGΘ(ξ) as follows (p.148 of [4]):

P (Θ = j) =
1

j!

dj

dξj
GΘ(ξ)

˛̨̨̨
˛
ξ=0

(12)

We can now findP (Θ ≤ k − 1) by summingP (Θ = j) for
0 ≤ j ≤ k − 1.

To find E[Y |Θ ≤ k − 1], we make the simplifying as-
sumption thatY andZ are independent. We get:

E[Y |Y + Z ≤ k − 1] ≈ E[Y |Y ≤ k − 1]

=

k−1X
j=1

jP (Y = j)

P (Y ≤ k − 1)
(13)

pmf of Y is found similar toΘ. We will denoteπ(g) as
E[X]/k — PLR given mappingg for RS(n, k) code.

4.1. Fast FEC Distribution Search Algorithms

The number of unique mappings ofn − k parity andk data
packets tom channels is exponential inm andk. Instead
of exhaustive search, we explore practical greedy schemes
to select good FEC distributions. A greedy algorithm incre-
mentally grows an FEC distribution one packet at a time. The
order in which one grows the FEC distribution — when to
insert a data packet or a parity packet — greatly affects the
performance. We tried several greedy algorithms and present
the four best performers.

The first algorithmgreedy1 first allocates one data packet
to the optimum channel — channel in which adding the ad-
ditional packet will result in the smallest PLR. It then al-
locates one parity packet to the optimum channel, then the



Table 1. Average PLR for FEC distribution search algorithms
Algorithm greedy1 greedy2 greedy3 greedy4 even optimal
Avg PLR 0.0128 0.0127 0.0130 0.0129 0.0172 0.0124
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Fig. 1. PLR for different FEC distribution search algorithms

rest of the data packets one at a time to the optimum chan-
nel, and then the rest of the parity packets.greedy2 allo-
cates one data packet to the optimum channel, all the parity
packets one at a time to the optimum channel, and then the
rest of the data packets.greedy3 allocates data and par-
ity packets alternatively to optimum channel when possible.
greedy4 allocates data and parity packets alternatively in
small bundles, proportional to the ratio of data to parity pack-
ets. We also compare them with an even allocation scheme
even where the same number of data and parity packets are
evenly allocated to each channel,

⌊
k
m

⌋
and

⌊
n−k
m

⌋
, with left-

over packets,k−m
⌊

k
m

⌋
and(n− k)−m

⌊
n−k
m

⌋
, allocated

to the channel with smallest PLR. For three bursty channels
of parameters(0.05, 0.45), (0.03, 0.27), (0.05, 0.4), we cal-
culated PLR for these algorithms for RS(7, x) and RS(8, x)
where1 ≤ x ≤ n− 1. The resulting average effective PLRs
over the possible FEC’s are shown in Table 1. We compare
their performance with the optimal FEC distribution, found
by exhaustive searchoptimal .

even is by far the worst performer andgreedy2 is the
best overall performer. In fact, when we plot the difference
in effective PLR compared withoptimal in Figure 1, we
see that althoughgreedy2 may not always be the best per-
former in the group, it has the overall smallest maximum dif-
ference. For the above reasons, we usegreedy2 as our
heuristics for constructing FEC distribution.

5. DELAY-SENSITIVE TRAFFIC OVER
BANDWIDTH-LIMITED CHANNELS

We add bandwidth limitations to our previous burst loss model
as shown in Figure 2. Eachj of m channels is modeled by
a FIFO queue and transmission link pair: a queue with con-
stant service rateµj is connected to a transmission link of
fixed delay∆j and Gilbert-modeled bursty loss of parame-
terspj andqj . At a given time, the fullness of the queuej is
lj . The time required to transmit a packet through queuej is
then:(lj + 1)/µj + ∆j .
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Fig. 2. Model of bandwidth-limited channels.

We assume the packets in the incoming queue before the
striping engine are labeled with expiration timesdi’s. A
packet withdi must be delivered by timedi or it expires and
becomes useless. We assume the packets are ordered in the
incoming queue by smallest expiration times. We assume
striping engine is activated whenever there is a packet in the
incoming queue.

5.1. ARQ-based Algorithm

We assume we optimize one packet at a time with expiration
timed. Let f(d′), d′ = d− t, be the probability that a packet
with expiration d is correctly and timely delivered to the
client, wheret is the time of optimization instant at the strip-
ing engine. LetfARQ(d′) be the probability that the same
packet is correctly and timely delivered using (re)transmission
(ARQ). Letf (i)

ARQ(d′) be the probability that the same packet
is correctly delivered on time if channeli is first used for
ARQ. Assuming the client can errorlessly inform the striping
engine of the packet loss (packet loss ratioπi), the packet has
a chance for retransmission with a tighter deadline.

f(d
′
) =


fARQ(d′) if d′ ≥ 0
0 o.w.

fARQ(d
′
) = max

i=1...m
f
(i)
ARQ(d

′
)

f
(i)
ARQ(d

′
) =


(1 − πi) + πif(d′ − D

(i)
T − DF ) if d′ ≥ D

(i)
T

0 o.w.

(14)

whereD
(i)
T = li+1

µi
+ ∆i is the transmission delay for chan-

nel i andDF is the feedback delay for the receiver to inform
the striping engine of the loss event, same for all channels.

We can solve (14) using dynamic programming (DP),
where each timefARQ(d′) or f (i)(d′) is called, the optimal
solution is stored in the [i, d′] entry of a DP table, so that
each repeated subproblem is solved only once. Assumingd′

andD
(i)
T +DF are integers, the complexity of (14) isO(md).

If they are not integers, we need to rounddownd′ and round
upD

(i)
T + DF for an approximate solution.

5.2. FEC-based Algorithm

As mentioned, we use greedy algorithmgreedy2 to find a
sub-optimal but good FEC distribution. We will denote such



Table 2. Model Parameters for Experiment
chnl p q µ ∆

1 0.05 0.45 30ms/pkt 80ms
2 0.03 0.27 30ms/pkt 80ms
3 0.05 0.4 25ms/pkt 100ms

distribution asg from now on. In addition, we consider only
RS (n, n − 1) while varyingn for different channel coding
strength. We bound the delay of using FEC, given mapping
functiong, as the maximum delay experienced by a packet
in then-packet group:

DT = max
i=1,...,m

»
li + ui + vi

µi

+ ∆i

–
(15)

Let fFEC(d′1), d
′
1 = d1 − t, be probability that a packet

with expirationd1 is correctly and timely delivered using
FEC. BecausefFEC(d′1) affectsn− 1 data packets, it is the
average success probability of the firstn − 1 packets in the
head of the incoming packet queue. Given RS(n, n − 1),
functiong results in PLRπ(g). fFEC(d′1) is:

fF EC(d
′
1) = max

n

"
1

n − 1

n−1X
i=1

f
g
n(d

′
i) − λ

n

n − 1

#

f
g
n(d

′
i) =


(1 − π(g)) if d′i ≥ DT

0 o.w.

(16)

wherefFEC(d′1) is optimized over a range ofn.
Notice there is apenaltytermλ( n

n−1 ) in (16). The rea-
son is that using RS(n, n − 1) invariably increases the traf-
fic volume by factorn/(n − 1). Hence a penalty term is
used to regulate the packet volume so that it does not lead
to queue overflow.λ is selected inverse-proportionally to the
total amount of traffic currently in them queues.

5.3. Hybrid Algorithm with FEC and ARQ

We can now combine the ARQ and FEC algorithms into one
hybrid algorithm.f(d′1) is now simply the larger value of the
two possible choices — (re)transmission or FEC:

f(d
′
1) =


max[fARQ(d′1), fF EC(d′1)] if d′1 ≥ 0
0 o.w.

(17)

wherefFEC(d′1), unlike (16), is now defined recursively to
permit retransmission:

fF EC(d
′
1) = max

n

"
1

n − 1

n−1X
i=1

f
g
n(d

′
i) − λ

n

n − 1

#

f
g
n(d

′
i) =


(1 − π(g)) + π(g)f(d′i − DT − DF ) if d′i ≥ DT

0 o.w.

(18)5.4. Experimental Results

We implemented a simulator inC running onlinux to test
the developed striping engine. In the first experiment, we
validate the performance of near-optimal FEC distribution al-
gorithmgreedy2 striping FEC packets across bursty chan-
nels. Given input packet rate of62.5pkt/s and FEC RS(4, 3),

150 200 250
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

buffering time in ms

o
b
s
e
r
v
e
d
 
p
a
c
k
e
t
 
l
o
s
s
 
r
a
t
e

performance comparison of FEC schemes

non-distr
distr

180 200 220 240 260 280 300 320
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

buffering time in ms

o
b
s
e
r
v
e
d
 
p
a
c
k
e
t
 
l
o
s
s
 
r
a
t
e

performance comparison of retransmission schemes

WRR
WRR2
DP-ARQ

a) FEC Comparison b) ARQ Comparison

Fig. 3. Performance Comparison of FEC and ARQ Schemes

greedy stripes packets across three channels with parame-
ters shown in Table 2. Figure 3a shows the resulting PLR
of greedy2 (distr ) as a function of packet end-to-end
delay tolerances in ms, over a non-distributed FEC scheme
(non-distr ), which uses a single channel for each set of
FEC packets. Two observations can be made. First, the ben-
efit of FEC kicks in earlier fordistr thannon-distr .
This is because spreading FEC packets has lower end-to-end
delay than non-spreading. Second, even after the benefit of
non-distr kicks in for large end-to-end delay,distr is
still better. This is because spreading FEC across channels
has the effect of de-correlating the bursty channels, and RS
works better in uncorrelated channels than correlated ones.

In the second experiment, we validate the performance of
the striping engine in band-limited scenario. Figure 3b shows
the performance of optimal ARQ scheme over two weighted
round-robin (WRR) schemes.WRRrandomized only accord-
ing to bandwidth of channels, whileWRR2randomized only
using channels that the pending packet has a chance to ar-
rive on-time given current buffer occupancies. We observe
that after end-to-end delay tolerance is sufficiently large to
tolerate at least one retransmission, the optimalARQoutper-
formedWRRandWRR2.

6. CONCLUSION

We presented algorithms for optimal striping of delay-sensitive pack-
ets over multiple burst loss channels. Our algorithms find an oper-
ating region to balance conflicting channel characteristics such as
loss, latency and bandwidth to reap the benefit of aggregating mul-
tiple channels. Simulation results show that our algorithm outper-
forms näıve algorithms such as weighted round-robin.
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