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Abstract—With the ever growing size of the Internet
and increasing popularity of the overlay and peer-to-peer
networks, scalable end-to-end (e2e) network monitoring is
essential for better network management and application
performance. For large scale networks, an e2e monitor-
ing infrastructure should minimize the measurement cost
while ensuring that the network is still monitored at fine
enough time-scales required for each application flow. We
explore the relationships between different e2e network
metrics with the aim of leveraging such relationships for
reducing monitoring costs while maintaining measurement
accuracy. We analyze long range network measurements
from PlanetLab, where we collected e2e network data
(route, number of hops, capacity bandwidth and available
bandwidth) for about two years on several thousand
paths. We also present a few schemes to leverage the
metric correlations and reduce the monitoring cost. Our
preliminary results indicate that in some cases, we can
reduce the monitoring costs by 75% while maintaining
the accuracy at about 88%.

I. INTRODUCTION

The goal of most network monitoring systems is
to capture the dynamic state of the end-to-end (e2e)
network paths in near-real time so as to enable the
control systems to react to these changes. The network
monitoring systems thus directly impact the applications
and services running on top of the network infrastructure.
Since changes are unpredictable, a naı̈ve network mon-
itoring system would measure all end-to-end metrics of
interest as frequently as possible on all paths. However,
this might consume a large fraction of network resources.
For example, metrics such as bandwidth require tools
that have significant probing packet overhead and time
(seconds to multiple minutes) to obtain a statistically
significant estimate. Thus measuring all possible metrics
at very high frequencies is not practical. On the other
hand, measuring these metrics at low frequencies can
cause a monitoring system to miss important network
dynamics and handicap the control capabilities impacting
the application/service performance.
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Fig. 1. Correlations in different e2e network metrics along with
some measurement tools for each of those metrics.

The goal of our “Network Genome” project is to study
the correlations in different end-to-end network metrics
and their impact on large scale network monitoring.
We study both auto-correlation and cross-correlation
for different network metrics on a given e2e path and
across the entire network with the goal of leveraging
the observed correlations for reducing the network mon-
itoring costs. Note that several previous projects study
some subsets of these correlations. For example, systems
such as GNP [4], Meridian [10], NetVigator [7], and
Vivaldi [1] leverage correlation of e2e latency across
different paths and measure only a few paths to infer
latency for all other paths. Our research goal is to
explore the correlations between other metrics, and if
any correlation exists, design monitoring mechanisms
that exploit such correlations.

In this paper, we consider the following fundamental
question:

Are the changes in various end-to-end network
metrics correlated such that changes in a metric
with a lower measurement cost can indicate
changes in other metrics with a higher mea-
surement cost?

The answer to the above question will provide clues for
optimizing large scale network measurement systems.

As a first step, our focus is on exploring the cross-
correlations between different end-to-end network met-
rics as shown in Figure 1. The figure also shows sev-
eral measurement tools that are available for measuring
those metrics. Using the S3 (Scalable Sensing Service)
monitoring system [11] on PlanetLab, we have collected
route information, capacity, and available bandwidth on



several thousand paths between PlanetLab nodes for
about 2 years since January 2006. In this paper, we
target the following correlations: (a) route changes and
changes in the number of hops and latency and (b)
route changes and changes in capacity. If there is a
strong correlation between changes in the number of
hops, latency, and route, a monitoring infrastructure can
use low cost pings to detect changes in the number
of hops and latency and invoke relatively expensive
traceroutes for the route information only when a change
is detected. Note that the remaining TTL value in IP
headers of ping responses can be used to determine the
number of hops [8], [12]. Similarly, if there is a strong
correlation between changes in a route and changes in
the capacity on a path, relatively inexpensive traceroutes
(in comparison to capacity measurements) can be used
to detect a capacity change and only then the expensive
capacity measurement can be triggered.

There has been a large body of research in studying
various properties of the Internet paths. Paxson [5]
presented the end-to-end routing behavior in the In-
ternet including the instabilities in the paths and path
asymmetry. Zhang et al. [13] studied the stationarity of
Internet path properties. Though proposals such as [8],
[12] assume a correlation in hop count changes and
route changes, neither presents any quantitative proof
of such correlation for any deployment. To the best
of our knowledge, this paper is the first to quantify
the correlations between different metrics to explore the
optimization of monitoring infrastructure cost.

Note that we do not a priori claim that there exists any
or no correlation between any two e2e network metrics.
Our goal is to first explore and quantify such correlations
and then propose schemes that can help in reducing the
monitoring cost in large-scale distributed systems.

Our analysis is still preliminary, but the results are
promising for optimizing large scale monitoring infras-
tructures. Note that the specific optimizations need to be
closely coupled with the monitoring observations on a
particular network. This paper provides a framework and
methodology that can be applied broadly but the results
of this paper can only be reliably used for end-to-end
PlanetLab paths.

II. S3 DATA

For our analysis, we use data collected from the
Scalable Sensing Service (S3) [11] running on PlanetLab
since January 2006 (http://networking.hpl.hp.com/s-cube).
PlanetLab currently consists of 840 nodes at 416 sites.
The S3 system is run as a loosely coupled Service

Oriented Architecture (SOA) with a web-services in-
terface for tools and collects different all-pair metrics:
latency, available bandwidth, capacity bandwidth, and
lossrate. For latency, we perform traceroutes from all
nodes to approximately 20 “landmark” nodes distributed
across the globe (US, Canada, Sweden, Brazil, Italy,
Korea, Singapore), once about every 30 minutes, and
use NetVigator [7] to infer the all-pair latency. We use
Pathchirp [6] and Spruce [9] for available bandwidth,
Pathrate [2] for capacity, and Tulip [3] for lossrate
measurements. While many of these tools have been
developed a while ago, deploying them in the large scale
is still a challenge [11]. Significant engineering effort has
been spent in making sure that the tools run reliably and
with reasonable accuracy.

We utilize the traceroute measurements for study-
ing path changes, end-to-end hops, and latency. The
traceroute data set contains approximately 15 million
data points for up to 14,000 source-destination pairs.
We observe that the minimum, maximum and average
number of hops in the dataset are 4, 30 and 16.27, respec-
tively. Similarly, the minimum, maximum and average
latency are 0.324 ms, 28026.931 ms and 149.383 ms,
respectively. Note that because of a few outliers, we
observe a very high maximum latency value in our mea-
surements. The 99-percentile latency value is 671.21 ms.
We use pathrate measurements along with the traceroute
measurements for the analysis of correlation between
capacity changes and path changes.

To obtain quick estimates of capacity, we run pathrate
in the Quick Termination mode. We use results only
when the coefficient of variation is between 0 and 1. We
run these measurements in a loop at each source node
measuring each destination in a round-robin fashion. It
takes approximately a day on average to complete an
entire cycle of measurements for all PlanetLab nodes.

III. NUMBER OF HOPS, LATENCY, AND ROUTE

In this section, we study the correlation between the
changes in the number of hops, latency and routes on
a path. Specifically, we are interested in determining if
changes in the number of hops, referred as ‘numhops,’
and/or changes in the latency can be used as a reli-
able test to detect route changes. Route changes are
important to detect, since they can affect other metrics
such as capacity and available bandwidth and thus the
application performance. Without the knowledge of the
correlations between these network metrics, a monitoring
infrastructure needs to continuously perform traceroutes
to keep track of the current route of a path. However, if



correlations exist, a monitoring infrastructure can first
perform inexpensive ping measurements to determine
both latency and number of hops. Only upon detecting
any change in numhops and/or latency, the monitoring
system can perform relatively expensive traceroutes to
determine the changed route. Note that the changes in
the number of hops certainly indicate a route change, but
latency changes may occur due to factors other than route
changes, such as network load. On the other hand, a route
change may not always cause a change in the number
of hops. It is important to understand the timescales at
which measurements must be done, so as to minimize
the measurement cost while still maintaining an accurate
description of the network conditions.

A. Methodology

We denote changes in numhops, latency, and route
with H, L, and R, respectively. From the S3 dataset,
we have a series of traceroute measurement samples for
several e2e paths, thus providing all three metrics above.
Below we describe how we determine changes in these
different metrics along with the methodology for our
Cost-Accuracy tradeoff analysis.

1) Defining Route Changes: For every sample of an
e2e path, we analyze if the route is different compared
with the previous sample (denoted as R=1) or the same
(R=0). Note however that not all measurements can
be 100% successful. We observed that many traceroute
measurements suffer from different levels of imprecision.
There were many instances where a traceroute measure-
ment returns a “*” on some hops as the intermediate
routers corresponding to those hops did not respond
with ICMP TTL-Exceeded messages; either they silently
dropped the packets that the source sent or the packets
got lost in the route from the source to those routers or
back. For the analysis of this paper, we deem a route
to be changed in a sample only if there is at least a
hop where we observe a different router IP address in
comparison with the previous sample.

2) Defining Hop Changes: Since traceroutes return
the number of hops, we compute for each path whether
the numhops changed (denoted as H=1) or not (H=0) by
comparing the numhops in a sample with the numhops in
the previous sample. Since we can compute the number
of hops only when the destination is reachable using
traceroutes, we discard all measurements that do not
reach the destination node.

3) Defining Latency Changes: We use traceroute’s
observed round-trip times as latency. Since latency is a
continuous value, we deem that the latency has changed

(L=1) only when the latency observed in a sample differs
from the one observed in the previous sample by pl%
or more. Otherwise we assume that the latency has not
changed (L=0). We use pl = 5 in the analysis for this
paper and we later describe the reason.

4) Cost-Accuracy Tradeoff: As mentioned earlier, our
goal is to optimize the network monitoring system by
understanding the dependence of metrics with higher
measurement cost on those that have lower measure-
ment cost. If such a strong dependence is observed,
the idea is to frequently measure the lighter-weight
(LW) metric and based on changes in the metric value,
trigger the heavier-weight (HW) measurement. For this
simple algorithm, the savings in the probing traffic,
in comparison to a naı̈ve strategy that only performs
heavier-weight measurements, can be represented as:
(MHW ∗F −MHW ∗ changeFrequencyLW −MLW ∗F ),
where Mx is the measurement cost in bytes for metric
x and F is the measurement frequency.

It must be noted that such savings in probing traffic
often come at the expense of accuracy. This straw-
man scheme will be inaccurate in the case when LW
metric based detection has false negatives, i.e., the
lighter weight metric did not change while the HW
metric changes. We hence enhance the above strategy
to also perform heavier-weight measurements but at
low frequencies in conjunction with the measurements
described above. We study the performance of this
enhanced strategy (both accuracy and costs) and compare
it with a naı̈ve strategy that only performs HW measure-
ments.

B. Analysis

We determined an appropriate pl for defining latency
changes as follows. For each sample, we computed the
percentage change in latency in comparison with the
previous sample. We then computed the median for
the samples in R=0 case and R=1 case separately for
each path. We observed that the averages are 1.6% and
10.6% across all paths for R=0 and R=1, respectively.
This implies that the latency value changed significantly
whenever there was a change in the route. Hence, we
chose pl = 5, a setting that falls between the above
values.

1) Correlation Between Numhops, Latency, and Route
Changes: Every successive pairwise samples of a path
can be categorized to one of the eight combinations
based on the H, L and R values. For each path, we
compute the percentage of samples that fall into each of
those combinations. In Table I, we present the average



TABLE I
NUMHOPS, LATENCY, AND ROUTE CHANGE CORRELATION: %

SAMPLES FOR DIFFERENT CASES AVERAGED ACROSS ALL PATHS.

Case Avg. % Case Avg. %
H=0, L=0, R=0 77.75 H=0, R=0 93.21
H=0, L=0, R=1 2.43 H=0, R=1 3.73
H=0, L=1, R=0 15.46 H=1, R=0 0
H=0, L=1, R=1 1.30 H=1, R=1 3.06
H=1, L=0, R=0 0.00 L=0, R=0 77.75
H=1, L=0, R=1 1.74 L=0, R=1 4.17
H=1, L=1, R=0 0.00 L=1, R=0 15.46
H=1, L=1, R=1 1.32 L=1, R=1 2.62

for these cases across all paths. As expected, numhops
metric has very high correlation with the route changes.
Only in 3.73% samples on average across paths, H and
R values are different (H=0 and R=1 case). Remember
that a change in numhops always implies a change in
the route (count for cases with H=1 and R=0 is always
zero), but the converse is not true. On the other hand,
changes in the latency have a modest positive correlation
with changes in the route for a path. If we consider
both changes in latency and numhops in conjunction,
only 2.43% samples fall into the case of H=0 and
L=0, but R=1. This implies that a hybrid predictor that
takes changes in both numhop and latency metrics to
determine changes in route will perform better than a
predictor based on any one of those metrics.

2) Cost and Accuracy Tradeoff: We now investigate
the tradeoff between the measurement cost and the
accuracy. For this analysis, we consider the series of
our traceroute measurements as the baseline accuracy
and measurement cost. We assume that each sample is
obtained at an interval of approximately static period
of T . Given any measurement strategy, we estimate the
traceroute entries for all time intervals in the baseline.
For the intervals, where we do not conduct a new
traceroute, the route is assumed to be the same as the last
measurement. We compute the inaccuracy of the strategy
as the number of intervals where that strategy’s estimate
is different from the baseline, divided by the total number
of intervals considered.

We compare our algorithms that utilize the correlation
between the metrics against a simple periodic probing
approach. This simple approach, which we label as
“plain,” conducts traceroutes at a predefined frequency.
For example, conducting traceroutes at half the fre-
quency of the baseline (i.e., once every two T periods,
and hence a sampling factor of 2) will reduce the probing
cost to half of the baseline. However, its inaccuracy could
increase up to 0.5 as there might be route changes in all
the instances when traceroutes were not performed.
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Fig. 2. Cost and accuracy tradeoff curves for different strategies.

Let us continue to use the example with the sampling
factor of 2 to describe the other approaches. In the “hop
based” strategy, we perform traceroutes every two T
periods. In addition, we perform ping in the period when
a traceroute is not performed. If we detect a change in the
number of hops via ping, we then perform a traceroute.
This approach therefore, has more cost than the plain
approach at a given sampling factor, but is possibly more
accurate.

Finally, the “hop-and-latency based” approach is sim-
ilar to the “hop based” except that we use both the
numhops and the latency. If we detect a change in either
of those metrics, we perform a traceroute.

Figure 2 shows the mean of the inaccuracy and
normalized cost for the above three mechanisms against
the baseline, as we vary the sampling factor. The right-
most point (x=10,000) corresponds to a sampling factor
of infinity, i.e., where we do not perform any periodic
scheduled traceroutes and rely on changes in numhops
and hop-and-latency to invoke a traceroute.

We observe that the hop based and the hop-and-latency
based approaches are good indicators for detecting route
changes. With the infinity sampling factor, the hop-based
approach reduces the cost to 0.08 fraction with about
33% inaccuracy. For the hop-and-latency approach, the
cost is reduced to 0.25 fraction with only 12% inac-
curacy. Note that choosing a good sampling factor in
the plain approach can lead to better performance than
the hop-based or hop-and-latency based approaches. For
example at sampling factor 12, the plain approach has
only 14% inaccuracy with a cost reduction to about 0.08.

However, finding such a good frequency to perform



TABLE II
LINK TYPES USED FOR LINK MAPPING.

LinkType ISDN DSL T1 E1 T2 E2 LAN10 E3 T3 OC-1 LAN100 OC-9 OC-12
Capacity(Mbps) .064 .128 1.54 2.05 6.31 8.44 10 34.36 44.73 51.84 100 466 622

measurements in the plain approach is a challenge. From
the graphs, we can see that performing measurements at
high frequency can be inefficient as the routes do not
change very often. On the other hand, performing them
at very low frequencies can lead to a rapid increase in
the inaccuracies. Thus, using the hop based or hop-and-
latency based strategy ensures that, in contrast to the
plain-strategy, (i) the accuracy of the measurements does
not deteriorate rapidly with reducing the frequency of
measurements and (ii) the inaccuracy is bounded by a
value much smaller than 1 irrespective of the sampling
factor (0.33 in the case of hop and 0.12 in the case of
hop-lat).

IV. ROUTE AND CAPACITY

We now explore the correlations in route changes
and capacity changes on a path. Route changes can
be monitored by traceroute which consumes much less
bandwidth than the capacity monitoring tools such as
Pathrate. If there exists a high correlation between the
route changes and the capacity changes, relatively inex-
pensive traceroutes can be used to detect route changes.
Only upon detection of a route change, expensive capac-
ity measurements need to be performed.

A. Methodology

We denote the changes in route and changes in ca-
pacity with boolean variables R and C respectively. We
have a series of pathrate and traceroute measurement
samples for several e2e paths from the S3 dataset. Hence
we have measurements for both metrics, although at
different sample rates.

1) Defining Capacity Changes: Since pathrate out-
puts a continuous float value as a capacity measurement,
we discretize it to detect the changes. We analyze data
with two different definitions for the capacity changes:
(i) Link-Mapping technique: We select a set of link types
with known capacity values as presented in Table III-B2
and map the measured capacity value to the link that
has the capacity closest to the measured value. (ii)
Percentage Change: We assume that the capacity of a
path changed when the measured capacity in the current
sample is larger or smaller than pc% of the previous
value. We set pc = 10 for the analysis in this section.
The capacity measurement tools are prone to PlanetLab

TABLE III
ROUTE AND CAPACITY CHANGE CORRELATION: % OF SAMPLES

FOR FOUR DIFFERENT CASES AVERAGED ACROSS ALL PATHS.

Average Percentage
Case Link-Mapping Percent-Change

R=0, C=0 53.76 42.15
R=1, C=1 8.96 15.63
R=1, C=0 25.07 18.42
R=0, C=1 12.21 23.80

imposed bandwidth restrictions and we are exploring
better mechanisms for marking capacity changes.

2) Sample Set : As described in Section II, the sam-
pling rate for capacity measurements in S3 deployment
is about once a day for a path. Whereas the sampling
rate for routes (using traceroutes) is approximately once
every 15 minutes, but for a subset of paths. For this
section, we consider only paths for which we have both
route and capacity measurement data. For each capacity
measurement sample on a path, we pick the traceroute
measurement for that path that is performed closest in
time to the time of the capacity measurement. The data
we consider for this section thus has the same sampling
rate as the capacity measurement data.

B. Analysis

1) Path Changes and Capacity Changes Correlation:
For each sample for a given path, we have four cases
depending on whether capacity and/or route changed
in comparison with the previous sample. If there is a
change in the capacity, we denote it as the C=1 case,
and otherwise as the C=0 case. Similarly, R=1 denotes
a change in the route and R=0 denotes otherwise. For
each path, we compute the percentage of samples that
fall into each of these cases. In Table III, we present
the averages for these cases across all paths. In about
63% of the samples with Link-Mapping and 58% of the
samples in Percent-Change cases, we observe that R and
C take on the same value. This data implies a modest
positive correlation between these two metrics. Similar
to the cost-accuracy tradeoff analysis in the previous
section, we further analyze the data to understand if this
correlation can be helpful in reducing the monitoring
cost while maintaining the accuracy.

2) Cost and Accuracy Tradeoff: We compare the
monitoring cost and accuracy of the different capac-
ity monitoring schemes. The baseline case consists of
conducting pathrate measurements at an interval period
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Fig. 3. Cost and accuracy tradeoff curves for different strategies
when capacity changes as defined using Link-Mapping.
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Fig. 4. Cost and accuracy tradeoff curves for different strategies
when capacity changes as defined using Percent-Change.

equal to T . The “plain” method uses Pathrate to estimate
capacity at a defined frequency (say for example, every
two T periods). Using the example sampling factor
of two again, the “strategy” method conducts Pathrate
measurements every two T periods. It performs a tracer-
oute measurement when a pathrate is not conducted.
Only when a path/route change is detected, a pathrate
measurement is then conducted.

Figures 3 and 4 show the mean of the inaccuracy and
normalized cost for the “plain” and “strategy” mecha-
nisms against the baseline, as we vary the sampling fac-
tor. Similar to Figure 2, the right-most point (x=10,000)
correspond to a sampling factor of infinity.

We observe that the route change based approaches
are good indicators for detecting capacity changes. With
the infinity sampling factor, the route-based approach
reduces the measurement cost to 0.35 fraction with about
25% and 42% inaccuracies as defined according to Link-
Mapping and Percent-Change techniques, respectively.
Note that in both graphs, though increasing sampling
factor for the “plain” strategy reduces the measurement
cost drastically, it also causes a rapid increase in the
inaccuracy. On the other hand, by leveraging the correla-
tion between the route changes and the capacity changes,
“strategy” mechanism can choose any sampling factor
for pathrate measurements while ensuring a modest
inaccuracy at all factors.

V. CONCLUDING REMARKS

We consider the problem of optimizing network mon-
itoring infrastructures based on the observed dependence
in various metrics of interest. Since different metrics
have varying probe overheads, not all metrics can be
scalably measured at high frequencies. Thus, one op-
timization is to trigger the higher cost measurements
on a need basis when the lower cost measurements
detect a change in the end-to-end path. The S3 system
on PlanetLab has been monitoring network metrics on
PlanetLab since January 2006. We present our analysis of
this long range dataset studying the correlations between
routes, number of hops, capacity, and available band-
width. Based on this analysis, we present a framework
and schemes to optimize the monitoring infrastructure.
Our preliminary results with the PlanetLab dataset are
promising and demonstrate that with the existing cor-
relations, in some cases it is possible to reduce the
monitoring cost to about 25% while maintaining the
accuracy levels to about 88%.
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