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Abstract— Estimation of network proximity among nodes is
an important building block in several applications like service
selection and composition, multicast tree formation, and overlay
construction. Recently, scalable techniques have been proposed
to estimate inter-node latencies, including network coordinate
systems like GNP and Vivaldi. However, existing mechanisms
for querying such information do not scale well to a very large
number of nodes, when one wants to accurately find a set of nodes
globally closest to a given node. In this paper we are concerned
with distributing the position data among a set of infrastructure
nodes, and propose ways of partitioning and querying this data.
The trade-offs between accuracy and overhead in this distributed
infrastructure are explored. We evaluate our solution through
simulations with real and synthetic network measurement data.

I. INTRODUCTION AND MOTIVATION

As Internet services further proliferate, current knowledge
of network properties becomes more crucial in maintaining
efficient operation of the service infrastructure, and the desired
performance of applications. These network path properties
include end-to-end latency, bandwidth, hops, and error rates
between two end points. ‘Network health’ can change dynam-
ically as the load patterns change or failures occur. Knowledge
of such parameters can be crucial to many uses. A distributed
service infrastructure can use such network health information
to make resource allocation decisions. Applications use such
information to tune performance parameters. End clients use
information about current network performance to choose a
server that maximizes their user experience, for example in a
networked multi-player game scenario.

Scalable measurement and querying of dynamic network
properties is a challenging task and centralized solutions will
certainly fail beyond a certain network size. Below we discuss
the options of centralization, replication and partitioning of a
network position information repository. Further, measuring
every parameter on every path with the lowest measure-
ment granularity is practically impossible1, and some esti-
mation/inferencing/prediction techniques will be needed. The
goal is to provide the most accurate measurement attainable
with the lowest measurement overhead as possible.

In this paper we focus only on latency information: how to
build an infrastructure to allow querying of network distance
to be performed in a scalable and distributed way. This is an

1In some cases, measurement access is not available due to policy decisions
or for technical reasons. In other cases, measurement may impair performance.

important building block for applications such as server selec-
tion, multicast tree formation, and overlay construction. We
believe that the architecture we explore here could be extended
to other network information as well. The specific scenario
we examine consists of a very large set of server and client
nodes, and a smaller number of measurement infrastructure
nodes. We generically call the client and server nodes ‘service
nodes’ throughout the paper. What the infrastructure provides
to the server and client nodes is a way of finding other service
nodes that satisfy some distance constraints. Specifically, we
look into queries for the closest service node to another given
node.

Recently, scalable techniques have been developed that
allow the estimation of latency and/or ordering of nodes
according to latency, e.g. [1]–[4], and we use these as methods
to obtain what we call position information about network
nodes. The idea is that the position information of a node
can be obtained with relatively few measurements, and given
two node’s information it is possible to estimate their distance
without directly measuring it.

Given a database with such position information about
nodes, one can answer queries like ‘what is the closest node
to node A’, ‘what are the k closest nodes to A’, or ‘give
me k nodes closer to A than x’. A centralized database with
information about all nodes has the advantage of complete
information: answers returned will be globally best with
no extra cost. However, there are some disadvantages to a
centralized system, specially as the number of service nodes
increases. First, the centralized system has a single point of
failure, and may hinder the availability of the service. Second,
if this database is to receive updated information periodically
from all of the service nodes, there is clearly a limit to the
traffic that such updates can impose: in practice this limits
either the frequency of the individual updates or the number
of nodes in the system, given the same amount of bandwidth.
Lastly, a centralized database cannot be located at the same
distance from all nodes that might issue queries, and some of
these nodes may end up paying a higher latency to perform the
queries. Replicating the database will increase the availability
and potentially decrease the average latency for querying,
while still providing the same answers as the centralized
system, but it further aggravates the network traffic problem
for updates.

We propose partitioning the position information database



Fig. 1. Architecture for the network position information database

across a set of infrastructure nodes. Our goal is to partition
the information such that the quality of the answers is close
to that of the centralized system, the update and query traffic
is load-balanced among infrastructure nodes, and the query
latency is similar to that of the replicated case. Figure 1 shows
the distributed architecture for querying the network distance
information.

In the next section, we present a brief description of the
related work. This is followed by a description of our proposed
approach and architecture in Section III. An evaluation of
the different schemes is presented in Section IV, followed by
concluding remarks.

II. RELATED WORK

There has been quite a bit of work in acquiring and
representing network positions recently [1]–[3].

These approaches assign nodes coordinates in a geometric
space, such that the distance, in this space, is a good estimate
of the true network latency. The advantage in comparison to
actually measuring the distance is that only a small fraction
of the O(n2) measurements between the service nodes are
needed. GNP embeds the nodes in a cartesian space, and
finds that not many dimensions are needed to represent the
distances to a good approximation. In [5], the authors use
Principal Component Analysis to reduce the dimensionality
of the resulting space, without a significant loss in accuracy.
Another position represenation, landmark order vector has
been presented in [4]. The landmark order vector presents
position as a vector of landmark ids, ordered by increasing
latency.

Our work is orthogonal to these approaches, as we are con-
cerned with partitioning and querying the position information
in a scalable way.

In [6], two spatial-database approaches are compared for
supporting multi-dimensional range queries in P2P systems.
The first approach uses space-filling curves to map multi-
dimensional data to a single dimension. The later is then
partitioned by ranges among the available nodes. The second

approach uses kd-trees to partition the multi-dimensional space
into hypercuboids, each of which is assigned to a node. The
fundamental difference with our work is our focus on net-
work proximity. Our multi-dimensional data points represent
network position, and so the interesting query for us is the
distance or relative order of data points. For them, the multi-
dimensional data represents metadata of content stored in a
P2P network, and so multi-dimensional range queries on the
data points is interesting. So even though their first approach of
using space-filling curve is similar to one of our approaches,
the way in which queries are done is different. They map
each multi-dimensional query into one-dimensional queries,
which are individually routed. We simply route to the network
position of the querying node, after mapping it to the DHT
geometry.

PIER [7] is a distributed query engine that sacrifices ACID
semantics to perform database queries over a DHT. A study of
how proximity queries or range queries will perform on PIER
is not available at this point.

In Sword [8], the authors present a framework for storing
information about service nodes in a DHT, and to answer
multi-attribute queries to locate suitable nodes. When querying
for information, a node selects one particular infra-structure
node that sends sub-queries to different infrastructure nodes.
The replies are aggregated on the original node, and then
processed to yield the combined results.

We envision a system in which processing of the query is
more distributed, with as much work as possible being done
by the infrastructure nodes that have the information.

III. ARCHITECTURE

The distributed architecture for querying the network dis-
tance information, as shown in Figure 1, has three basic com-
ponents: position measurement and representation, information
partitioning and distribution, and information querying. In
this paper we focus on information partitioning and query-
ing, and compare schemes based on use three well-known
representations of node network position: landmark distance
vectors, landmark order vectors, and geometric coordinates.
These use measurements to a small set of reference nodes,
called landmarks.2 The landmark distance vector approach
(DV) represents the position information as simply the set
of distances to the landmarks. The landmark order vectors
use the same information, but the position information is a
vector of landmark ids, ordered by increasing latency. This
is the representation used in the Binning scheme described
in [4]. Finally, coordinate based methods, such as those used
by GNP [1] and Vivaldi [2], embed the nodes in an Euclidean
geometric space which allows latencies between two nodes
to be predicted fairly accurately by computing the Euclidean
distance in that space.

The partitioning scheme assigns each service node A, to one
infrastructure node called its root – R(A) – that is responsible

2For the geometric coordinates, it is not necessary to have the set of land-
marks as a reference. Vivaldi [2], for example, uses periodic measurements
among random pair of nodes.



to storing the information about the service node. We design
the partitioning such that service nodes that are close to each
other are mapped to the same, or nearby, infrastructure nodes.
This partitioning is optimized for proximity queries of the type
’what is the closest node to node A’, or ’the k closest nodes to
A’, or ’the k nodes closer to A than a given threshold’. These
queries can restrict how many different infrastructure nodes are
queried, or a maximum execution time. The general approach
to answering the queries is to direct the queries relative to node
A to R(A). As an added benefit, if A is issuing a query about
itself, such as ’the closest node to me’, it is likely, according to
our partitioning schemes, that R(A) is closer to A than other
infrastructure nodes. We investigate two different strategies to
perform the partitioning, and how to do querying in each case,
which we describe below.

Closest Partitioning This is the simplest heuristic for
partitioning: each service node gets mapped to its closest in-
frastructure node in terms of latency, analogously to a Voronoi
diagram in a geometric space. While intuitive, depending
on the topology it is not necessarily true that every pair
of closest nodes will be mapped to the same infrastructure
node. For example, in Figure 1, node B is the closest to
A, but both are closest to different infrastructure nodes. For
querying the data, when there is a need to expand the search to
other infrastructure nodes, we propose that the first contacted
infrastructure node sort the other infrastructure nodes in order
of proximity to the query, and embed this ‘source route’ in
the query which is forwarded to these nodes recursively.

DHT-based Partitioning The second strategy is to use
a Distributed Hash Table (DHT) [9]–[12] abstraction to aid
in the partitioning and querying. A DHT has a number of
participating nodes that store key, value pairs in a distributed
way. Both the nodes and the keys for the data are given
coordinates in the same underlying geometry [13], and each
key is associated with the DHT node that is closest in the
geometry. Routing to a given key is performed in the geometry
by choosing neighbors that will decrease the ‘distance’ to the
destination.

We place the infrastructure nodes and the data about the
service nodes in the same DHT id space. This assumes there
is a mapping between a node’s network position information
and the DHT’s underlying geometry. The infrastructure nodes
form a DHT with their ids derived from their true network
position. Subsequently, the service nodes insert their data in
this DHT using their mapped network positions as keys. The
DHT implicitly defines a partitioning, as each key is the
responsibility of a DHT node; we call R(A) the infrastructure
node responsible for the key of node A. A query for the closest
node to a given node A is made using the mapped network
position of the node A. This query is routed by the DHT to the
root node of the query coordinates, the closest in the DHT’s
id space. If the mapping between network positions and the
DHT’s id space preserves the distance information, i.e., nodes
that are close in the network are likely to be close in the
DHT as well, then the reached infrastructure node will have
information about other nodes which are close to the queried

TABLE I
MAPPINGS POSITIONS TO THE 1D DHT.

Position Representation Mapping
Distance Vectors Hilbert Curves
Order Vectors Recursive Partitioning
Coordinates Hilbert Curves

node, and the query will likely be answered locally.
The performance of this scheme depends directly on the

underlying DHT geometry, on the representation of network
position, and on the mapping between the two. We use
previous work on representing network positions, and describe
how we map the representations into a DHT. We only evaluate
mappings using a one dimensional DHT similar to Chord [9]
in this paper, and leave other DHT geometries for future work.

For the distance vectors and geometric coordinates, we use
Hilbert space filling curves to map the higher dimensional
vectors into one dimension. A Hilbert curve produces a one
to one correspondence between points in a sequence and points
in the original space. Points in the original space that are close
to each other have a good chance of being close in the curve
as well, even though that is not possible in all cases. The
landmark order vectors require a different mapping strategy,
as they are permutations of the landmark ids, and not actual
coordinates. We use a mapping introduced in [4] consisting of
a recursive partitioning of the space. Table I summarizes these
mappings.

Practical Considerations In the closest partitioning, finding
the closest infrastructure node to a service node is a smaller
instance of the original problem. We assume all infrastructure
nodes know about the other infrastructure node’s positions.
In this way, any infrastructure node can determine which one
is the closest infrastructure node to a given querying node,
and redirect the query accordingly. We argue that there are no
scalability issues in this smaller instance because the number
of infrastructure nodes is bound to be one or two orders of
magnitude smaller than the number of service nodes.

In both schemes, service nodes need to know how to find
at least one infrastructure node, and this can be done by using
DNS, for example. This information can then be cached for
direct future access. Also, in both schemes can use a soft-state
approach to maintaining the information. The service nodes
will periodically update their information to the responsible
infrastructure node, and service node failures can be detected
by timeouts.

IV. EVALUATION

Recalling the tradeoffs involved in the partitioning of the
position database, we use the following metrics when evaluat-
ing the different schemes. The Fraction of times the root
is the closest infrastructure node and Latency to R(A)
metrics indicate how quickly nodes get to the responsible
infrastructure nodes. The globally best answer should be in
the first infrastructure node queried as much as possible, so
we measure the Fraction of times R(A) has the information
to the closest node to A, C(A). If the best answer is not in



R(A), we use the Effectiveness at R(A) metric to indicate the
latency of the closest node stored at the first hop (R(A)), over
the latency of the globally closest node in the system. If we
have to perform a search, we are also interested in the Hops
to find closest node metric. Finally, to measure the imbalance
in the load imposed to each infrastructure node, we also look
at the Standard Deviation in the cluster sizes.

We evaluate the performance of the different schemes using
two datasets obtained from wide-area Internet measurements,
one based on ping measurements [14] using 175 Planetlab [15]
nodes and the other based on the King dataset [16]. We
also performed evaluation using a 10,000 node transit-stub
topology. Due to space considerations we only include the
results for the King dataset, but the other results can be found
in [17], and show similar trends. The King dataset is a set
of latency measurements between 1740 DNS servers, used
originally for evaluation in [2]. The data is available at [16],
and uses the methodology described by Gummadi in [18] for
determining the latency between two hosts A and B, from a
third node C, using recursive DNS queries.

Given the matrix of inter-node latencies from the dataset, the
first step is defining the landmark nodes for the experiment.
These landmark nodes will determine the landmark vectors,
the landmark order vectors, and the basis from which to
calculate the GNP coordinates. We selected 12 landmarks by
enforcing a maximum minimum separation criterion. The set
of landmark nodes and the distances from all other nodes
to them define the different representations of the position
information.

For each node we obtain 12-component distance vec-
tors, and 12-component order vectors. These are respec-
tively mapped to a one dimensional coordinate space using
Hilbert curves and the recursive partitioning, as described
in Section III. The landmark vectors are also used as input
to the GNP software [1], which we use with the default
settings to produce a 7 dimension geographic coordinate.3

These coordinates are also mapped to one dimension using
Hilbert curves. To serve as a baseline and a comparison on
how unintelligent mappings should behave, we also perform
a random mapping, by assigning each node a position drawn
uniformly at random from the interval (0, 1).

We simulated the querying of the database, with each
service node querying the infrastructure for the closest node
to it. For each experiment, a given number I of infrastructure
nodes is selected at random from the set of all nodes,4 and all
our results for a given I are averaged over 5 different selections
of infrastructure nodes.

For the DHT cases, the simulation proceeds using a simpli-
fied ring topology: the (0, 1) interval is mapped to a circle
much like what Chord does, the infrastructure nodes form

3This has been found in [1], for example, to be suitable to capture the
structure of Internet latencies well.

4As we select infrastructure nodes randomly from the set of all nodes in
the measurements, we expect that these will follow the same distribution in
terms of network position as the nodes themselves: as a result, there will be
more infrastructure nodes where there are more nodes.

the DHT, and the service nodes’ information is mapped as
described previously. When performing a query for the closest
node to A, we start at the partition R(A), and do an expanding
ring search, looking at the two neighbors of R(A) in the ring,
and moving outwards at each step, until we find the global
closest node.

For the case of the closest partitioning, the partitions are
obtained by assigning each node to its closest infrastructure
node. We use the same set of infrastructure nodes as in the
DHT simulations for comparison. As there is no implicit
relationship among the different partitions, the search, when
the globally closest node is not found in the partition of the
responsible infrastructure node, is performed by following a
linear sequence of infrastructure nodes, ordered according to
the distance to the queried node.

A. Results

In this section we compare the results of the Closest
Heuristic (named ’Closest’ in the graphs) and the random
partitioning (’Random’), with 4 different mappings into the
1 dimensional DHT: Recursive Partitioning for order vectors
(’OV Recursive’), Hilbert mapping of Distance Vectors, both
under the original and a logarithmic scaling (’DV Hilber Lin’,
and ’DV Hilbert Log’, respectively), and finally a Hilbert
mapping of GNP obtained coordinates, ’GNP Hilbert’.

We ran simulation in which all true distances are know
between the nodes, and the restriction is just the information
that is available in each infrastructure node. In this way we
are able to isolate the effects that the distribution has on the
quality and cost of the results, independently of the effects of
the particular technique to actually find the closest nodes.

Figure 2(a) shows the fraction of times a node and its
closest node have the same responsible infrastructure node.
This is very important, for when this happens the query can
be answered without any additional hops. As expected, the
‘Random’ partitioning behaves approximately like the inverse
of the number of infrastructure nodes. The behavior of all the
DHT mappings is similar, within a range of 10% of each other.
There results for Closest, on the other hand, are significantly
better, stabilizing at around 60% to 70%.

If the globally closest node is not in the same infrastructure
node, it is interesting to know how well can one do if, instead
of searching other infrastructure nodes for the best global
answer, one settles for the best answer in the first infrastructure
node. This is depicted in figure 2(b). In the figure, we can
see the latency of the best answer in the first infrastructure
node, divided by the best global answer. We notice that Closest
stabilizes quickly even with many infrastructure nodes (smaller
partitions), signalling that the partitioning is quite effective in
preserving the distance relationships.

Next we look at the IP latency between node A and the
responsible infrastructure node R(A). This latency influences
the querying process, since all queries will incur this latency
cost. Figure 2(c) shows the fraction of times R(A) is the
closest infrastructure node, and figure 3(a) has the actual
latency between A and R(A) (not necessarily the closest).
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Fig. 2. (a) Fraction of times the global closest node is in the same infrastructure node (R(A) = R(C(A))). (b) Latency penalty if selecting the closest at
R(A). (c) Fraction of times R(A) is the closest infrastructure node to A.
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Fig. 3. (a) Latency between A and R(A). (b) Number of infrastructure hops for finding the globally closest node. (c) Cluster load balancing: standard
deviation in the number of nodes per infrastructure node.

Figure 3(b) concerns the search performance, and is im-
portant to set guidelines on how far one should go to get
an answer reasonably close to the globally best answer. It
shows the number of hops in the infrastructure to find the
globally closest node that answers the query. The performance
for closest is again very good, and even with 100 infrastructure
nodes, the closest is within less than 5 hops.

Finally, figure 2(c) shows the standard deviation of the
number of service nodes assigned to each infrastructure node,
an indication of load imbalance. We notice tradeoff between
the performance of the scheme according to other metrics and
the variation in cluster size. Random has the smallest variance,
as expected, while closest has the largest variance.

V. CONCLUSIONS AND FUTURE WORK

From our initial results, we observe that partitioning of
a position information database can have the benefits of
distributing the update and querying load, while producing
answers that are close to the best answer with complete
information an reducing the querying latency by up to 7
times. Coupled with the existing distributed techniques to
obtain the position information, we can have a scalable,
distributed solution that can be used a building block for many
applications. The closest partitioning is quite attractive in all of
our performance and cost metrics, except for a disadvantage

in terms of load balancing. We attribute part of the gap in
performance of the different DHT mappings to the reduction
in dimensionality to 1 dimension, which introduces some error
in the estimation of distances. Also, the search employed by
the closest partitioning, sorting the infrastructure nodes by
proximity to the query, requires more information about the
infrastructure than the search employed by the DHT. In all
fairness the DHT solutions could be more scalable for this
reason that the closest strategy, but some facts encourage us to
implement the closest partitioning: its simplicity, the gap in the
performance compared to the other strategies, and the fact that
it’s scale will be orders of magnitude less than the number of
service nodes, making it a quite practical technique. The DHT-
based partitioning can leverage all of the DHT techniques to
maintain the infrastructure connectivity and the partitioning in
the face of nodes failing and being added to the infrastructure.
We did not take into account these further costs involved in
maintaining the DHT.

Future work involves implementing and deploying a proto-
type system, in PlanetLab for example, to test the performance
and scalability of the schemes in a real environment. We also
want to investigate other DHT geometries that can represent
higher dimensional data in a better way, to see if we can have
the good performance of the closest partitioning.
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