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Abstract—The exploding popularity of 802.11 Wireless Local
Area Networks (WLAN) has drawn intense research interest
in the optimization of WLAN performance through channel
assignment to access points (AP), AP-client association control,
and transmission scheduling—we refer to any combination of
the three approaches as WLAN management. No matter what
degrees of freedom are enabled in WLAN management for
performance optimization in a particular WLAN setting, a
fundamental question is the corresponding maximum achievable
system throughput. We show that for a particular network
setting, the derivation of the system throughput (where system
throughput is aggregate throughput of all clients or max-
min throughput), for any combination of channel assignment,
association control and transmission scheduling, is NP-hard and
inapproximable to a constant factor in polynomial time.

I. I NTRODUCTION

With increasing popularity of 802.11 Wireless Local Area
Networks (WLAN), extensive research into optimization of
WLAN system performance is being conducted. A key chal-
lenge in WLAN optimization is to properly account for sig-
nal interference, stemming from simultaneous wireless trans-
missions by different entities in the same channel. Broadly
speaking, there are three mechanisms to mitigate interference:
channel assignment to access points (AP) [1], AP-client associ-
ation control [2], and transmission scheduling [3]. Depending
on a particular network setting, an optimizer may perform
any combination of the three—together we simply callWLAN
management—to maximize a chosen system throughput ob-
jective function.

No matter what particular WLAN management an opti-
mizer is to perform, a fundamental question is the maximum
achievable system throughput for a givenstatic network setup:
namely, placements of APs and clients and their communica-
tion and interference relations. Not only can the maximum
throughput serve as an upper bound against which different
WLAN management schemes can be compared, it can also be
used to evaluate the network setup itself, so that the setup can
be recasted (e.g., relocation of APs) to increase throughput.

In this paper we prove, for our chosen network model, the
following negative result: for the special case when there is
only one channel and each client can only associate to one
particular AP, the derivation of 802.11 system throughput,
where throughput can be eitheraggregate throughput of all
clients ormax-min throughput, is NP-hard and inapproximable
to a constant factor in polynomial time. As a corollary, the
derivation of throughput for the general case when there are
more than one channel and a client can associate to one
of several APs is also NP-hard and inapproximable to a

constant factor in polynomial time. Compared to previous
WLAN throughput analysis, our work differs from [4] in that
optimal centralized scheduling is considered formultiple APs
when the system throughput is sought, and differs from [5] in
that a graph-based interference model is adopted rather than
distance-based models. Moreover, there is no discussion on
the complexity of deriving optimal system throughput.

Compared to the majority of previous works studying
complexity and algorithms for interference-aware wireless
networking, we focus on AP-client communication in WLAN
only, which issingle-hop, while [3], [6], [7] discussed the more
generalmulti-hop case. While the general multi-hop problem
includes single-hop as a special case, from an algorithmic
point of view, there is hope that the special case of deriving
system throughput for single-hop network can be simpler in
complexity. Our contribution is to demonstrate that even inthe
special case of single-hop network, deriving system throughput
is NP-hard and inapproximable in polynomial time.

II. M ODEL AND ASSUMPTIONS

We consider a set of WLAN APs, each with its own exclu-
sive group of associated client stations (STA), all managedby
a single administrative domain. (See Fig. 1 for an example.)
An ideal optimizer schedules interference-free transmissions
for each AP-STA pair in normalized time0 ≤ t ≤ 1 to
maximize a chosen performance metric (to be defined in
Section III), taking into account all STA-AP, STA-STA and
AP-AP interference relationships. Finding the ideal schedule
is equivalent to deriving the system throughput for a given
network setup.

a1 a2

s1 s2

s4s3

a3

s6

s5 s7

s8

Fig. 1. Example of WLAN graphG(V ;L, E). Triangles are APs; circles are
STAs; arrows are communication links; dotted lines are interference edges.

More precisely, input to an optimizer is aWLAN graph
G(V ;L, E), containing: i) verticesV = A ∪ S of APsA and
STAs S, ii) directedcommunication links L connecting each
AP to its associated STAs, and iii) vertex-to-vertexinterference
edges E . An AP ai and any one of its associated STAssj share
two communication linksli,j andlj,i; activation ofli,j means
data is transmitted from vertexvi to vertexvj . A bi-directional
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edge1 ei,j between verticesvi andvj (between APs, between
STAs associated with different APs, or between a STA and an
AP different from its associated AP) implies that one vertex’s
transmission can interfere with another vertex’s transmission
or reception.vi andvj can receive at the same time, however.

An optimizer schedules transmissions of each communica-
tion link. An ideal schedule πi,j for each linkli,j , is given in
the form of a set ofTi,j tuples:

πi,j = {[si,j(1), ti,j(1)), . . . , [si,j(Ti,j), ti,j(Ti,j))} (1)

where for each tuplek, [si,j(k), ti,j(k)), link li,j becomes
active (vi transmits) from timesi,j(k) to ti,j(k). Without loss
of generality, we assume the tuples are non-overlapping and
ordered in time, i.e.,si,j(k) < ti,j(k) ≤ si,j(k + 1). In
addition, we assume that the ideal schedule is normalized to
1, i.e.,0 ≤ si,j(1) and ti,j(Ti,j) ≤ 1.

Mathematically, we say that two schedulesπi,j and πi′,j′

overlap if the following is true:

∃k, k′ s.t. si′,j′(k
′) ≤ si,j(k) < ti′,j′(k

′) or

si′,j′(k
′) < ti,j(k) ≤ ti′,j′(k

′)

∃k, k′ s.t. si,j(k) ≤ si′,j′(k
′) < ti,j(k) or

si,j(k) < ti′,j′(k
′) ≤ ti,j(k) (2)

III. PROBLEM FORMULATIONS

A. Client Throughput Model

Let di be thetransmission and reception duration of a STA
vi. STA vi shares two communication links,li,j and lj,i, with
its associated APvj . Mathematically, we calculatedi using
transmission schedulesπi,j andπj,i as follows:

di =

Ti,j
∑

k=1

(ti,j(k) − si,j(k)) +

Tj,i
∑

k=1

(tj,i(k) − sj,i(k)) (3)

We usedi as a metric to quantify client throughput (uplink plus
downlink) for STA vi ∈ S. An alternative definition of client
throughputdi is the volume of uplink traffic only, derived
using scheduleπi,j . One can easily verify that our claim of
NP-hardness and inapproximability for derivation of aggregate
client throughput and max-min client throughput holds equally
true for this alternative definition of client throughput using the
same proofs in Section IV.

B. Objective Functions

The goal of an optimizer is to find interference-free
transmission schedules that maximize a given performance
objective. We consider two objectives: maximize aggregate
client throughput (MaxSum), and maximize the minimum
client throughput (MaxMin). MaxSum, maximizing the sum of
throughput of all STAs in the network, can be written simply:

max
∑

∀vi∈S

di (4)

Taking fairness into consideration,MaxMin identifies the
minimum throughput STA and maximizes its performance:

max

{

min
∀vi∈S

di

}

(5)

1The interference relation can be derived by a measurement-based estima-
tion [8] or by a distance-based interference model [5].

IV. NP-HARDNESSPROOFS

A. Maximizing Aggregate Throughput

We show thatMaxSum (4) is NP-hard via a reduction
from a known NP-hard problemindependent set (IS). IS
optimization problem is to find the largest subset of nodes
U ′ ⊂ U in an undirected graphQ = (U, E) such that there
does not exist an edgeei,j ∈ E between any two nodesui, uj

in U ′, and the cardinality of|U ′| is maximized.
We show that solvingMaxSum is equivalent to solvingIS,

henceMaxSum is also NP-hard. For each instance ofIS, we
construct an instance ofMaxSum as follows. First, the set
of nodesU in IS will be reused as the set of STAsS in
MaxSum. Second, each STA will have its own AP serving it
and shared by no other STAs, hence|S| = |A|, and there exist
interference edges from each AP to all other APs. Third, the
same set of edgesE among nodes inIS will be reused as
interference edges among STAs inMaxSum.

We claim that there exists an independent set of sizeK
in an instance ofIS if and only if there is an aggregate
throughput ofK in a corresponding instance inMaxSum,
hence solvingMaxSum is equivalent toIS. We show this
in both directions. If there is an independent set of sizeK
in IS, then the same corresponding set of STAs inMaxSum
can transmit simultaneously for all time0 ≤ t ≤ 1 without
interference, resulting in an aggregate throughput ofK.

Conversely, if there is an aggregate throughput ofK in
MaxSum, we know that there exists an instantt, 0 ≤ t ≤ 1,
where there are at leastK simultaneously transmitting vertices
(otherwise throughput ofK cannot be achieved). At such in-
stantt, theK transmitting vertices must beK non-interfering
STAs (a single transmitting AP will prevent all other APs
from transmitting or receiving data). Hence theK nodes in
IS corresponding to theK simultaneously transmitting STAs
will form a size-K independent set.

Since both directions have been proven, we have shown
that solvingMaxSum is equivalent to solvingIS, and hence
MaxSum is NP-hard.2

B. Maximizing Minimum Client Throughput

We show thatMaxMin (5) is NP-hard via a reduction from
a known NP-hard problemK-coloring (COL). Recall thatCOL
optimization problem is to find the smallest numberK of
distinct colors required to color each node in an undirected
graphQ = (U, E) so that no two nodesui, uj ∈ U connected
by an edgeei,j ∈ E are of the same color.

We show that solvingMaxMin is equivalent to solvingCOL,
henceMaxMin is also NP-hard. For each instance ofCOL,
we construct a corresponding instance ofMaxMin as follows.
First, the set of nodesU in COL will be reused as the set of
STAs S in MaxMin. Second, the set of edgesE connecting
nodes inCOL will be reused as the set of interference edges
connecting corresponding STAs inMaxMin. Third, each STA
will have its own AP for communication, and there exist
interference edges from each AP to all other APs.

We claim that graphQ of COL is K-colorable if and only if
the correspondingMaxMin instance has max-min throughput
of ≥ 1/K. We prove this claim for both directions. It is clear
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that if Q is K-colorable, then STAs ofMaxMin corresponding
to nodes of the same color inQ can be scheduled for
transmission simultaneously without causing interference. If
each set of STAs ofMaxMin corresponding to the same-color
nodes inCOL are scheduled for transmission in turn for the
same duration each, then the throughput of each STA is exactly
1/K, and the max-min throughput ofMaxMin is also1/K.
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Fig. 2. Example of anMaxMin instance constructed from anCOL instance.

We now show that if the max-min throughput of the
corresponding instance inMaxMin is ≥ 1/K, then original
Q of COL is K-colorable. Without loss of generality, we first
define a scheduleπ = {C1, C2, . . . , CB} that results in max-
min throughput for the givenMaxMin instance.B is the
number of STA setsCi’s in scheduleπ, where eachCi is
scheduled for transmission in turn for the same duration1/B.
Let M be the minimum number of times any STA appears as a
transmitter in setsCi’s of scheduleπ. The max-min throughput
using scheduleπ is henceM/B. Let K be the smallest integer
such that:

1

K
≤

M

B
(6)

As an example, consider anMaxMin instance
in Fig. 2 with five STAs and five associated APs.
One optimal transmission scheduleπ would be
{{l1,6, l3,8}, {l2,7, l4,9}, {l3,8, l5,10}, {l4,9, l1,6}, {l5,10, l2,7}}.
It is easy to see thatB = 5 and M = 2 and max-min
throughput is2/5. Smallest integerK satisfying (6) is3.

We prove by contradiction. Suppose scheduleπ has max-
min throughput ofM/B andK such that1/K ≤ M/B, but
graphQ of COL is notK-colorable.Q being notK-colorable
means there are≥ K +1 nodes inQ. Let us first consider the
special case when the number of nodes inQ is exactlyK +1.
HavingK+1 nodes inQ andQ notK-colorable meansK+1
nodes form a clique. We know each STA must appear in the
scheduleπ at leastM times. But each STA cannot appear in a
same setCi with any other STA, because corresponding nodes
in Q forming a clique means each STA interferes with every
other STA. Thus, at least(K +1)M setsCi’s are needed, but
at mostMK sets are available. A contradiction.

Consider now the general case where the number of nodes
in Q is Kv and the chromatic number (minimum number of
colors to color a graph) ofQ is Kc, whereKv ≥ Kc ≥ K+1.
We can transpose the original graphQ to a new graphQc by
mapping all same-color nodes inQ to a single node of the
same color inQc; all edges shared by the same-color nodes
in Q will now be shared by a single node inQc. Note thatQc

hasKc nodes, each of a different color, and forms a clique.

Similarly, we can map STAs inG corresponding to these
same-color nodes inQ to a single STA inGc. Scheduleπ
for G can be transposed to a new scheduleπc for Gc, where
it contains the same numberB of setsCi’s, but the previous
schedule for STAs corresponding to the same color inQ are
now for a single STA. Clearly, the minimum number of times
any STA appears in setCi’s is now M c ≥ M . Now we see
the same contradiction we countered in the special case: each
of Kc ≥ K + 1 STAs must appear at leastM times alone in
scheduleπc (given corresponding nodes inQc form a clique),
but there are only at mostMK STA sets. Having shown there
is a contradiction in the general case, we have shown that if the
max-min throughput of the corresponding instance inMaxMin
is at least1/K, then originalQ of COL is K-colorable.

Since both directions are proven, solvingMaxMin is equiv-
alent to solvingCOL, henceMaxMin is NP-hard.2

V. PRACTICAL IMPLICATIONS

We discuss the implications of having shownMaxSum
and MaxMin are both NP-hard. First, it has been shown
that bothIS [9] and COL [10] are both inapproximable in
polynomial time to a constant factor. Given solvingMaxSum
and MaxMin is equivalent to solvingIS and COL, we
conclude thatMaxSum and MaxMin are inapproximable in
polynomial time to a constant factor. Notice that we formulated
our optimization problemsMaxSum and MaxMin for the
special case when there is only one channel and each STA
can only associate to one particular AP. Given deriving the
system throughput for the special case is already NP-hard and
inapproximable, deriving the system throughput for the general
case when there are more than one channel and each STA
can associate to one of several APs within range (which must
be no easier) is also NP-hard and inapproximable. For future
work, we are designing heuristics exploiting clues provided by
the constructed NP-hardness proofs that indicate the rootsof
difficulty of the sought optimization problem.
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