
Handheld Routers:
Intelligent Bandwidth Aggregation for Mobile Collaborative Communities

Puneet Sharma,∗ Sung-Ju Lee,∗ Jack Brassil,∗ and Kang G. Shin†
∗Mobile & Media Systems Lab, Hewlett-Packard Laboratories, Palo Alto, CA 94304

†Department of Electrical Engineering & Computer Science, University of Michigan, Ann Arbor, MI 48109

Abstract

Multi-homed, mobile wireless computing and communi-
cation devices can spontaneously form communities to log-
ically combine and share the bandwidth of each other’s
wide-area communication links usinginverse multiplexing.
But membership in such a community can be highly dy-
namic, as devices and their associated WAN links randomly
join and leave the community. We identify the issues and
tradeoffs faced in designing a decentralized inverse multi-
plexing system in this challenging setting, and determine
precisely how heterogeneous WAN links should be charac-
terized, and when they should be added to, or deleted from,
the shared pool. We then propose methods of choosing the
appropriate channels on which to assign newly-arriving ap-
plication flows. Using video traffic as a motivating example,
we demonstrate how significant performance gains can be
realized by adapting allocation of the shared WAN channels
to specific application requirements. Our simulation and
experimentation results show that collaborative bandwidth
aggregation systems are, indeed, a practical and compelling
means of achieving high-speed Internet access for groups
of wireless computing devices beyond the reach of public or
private access points.

1 Introduction

An increasing number of multi-homed wireless mobile
computing devices are being equipped with two distinct
types of wireless communication interfaces: a local area
network (LAN) interface such as IEEE 802.11x, and a wide
area network (WAN) interface such as a 2.5G or later gen-
eration cellular link. The capabilities of these interfaces dif-
fer greatly, most notably with the available LAN bandwidth
exceeding the WAN’s bandwidth by one to three orders of
magnitude. For the foreseeable future we anticipate that this
bandwidth disparity between local and wide area wireless
network connections will remain intact.

Public high-speed Internet connectivity from such de-
vices is now typically achieved by connection via the wire-
less LAN interface to an access point which is connected to
a high-speed, wired connection. It remains unlikely, how-
ever, that opportunistic deployment of these access points
will ever realize ubiquitous — or even relatively geographi-
cally broad — access. Even where access points are densely
deployed, seamless roaming between access points remains
a technical challenge, and may not serve the business inter-
ests of either access point operators, venue owners or ser-
vice providers. Further, even where access point coverage
is rich, the transmission rate of the wired connection — typ-
ically 1.5 Mb/s — is limited and shared among a possibly
large group of users, and unlikely to increase significantly
in transmission speed in the foreseeable future.

To overcome the limited geographic coverage of public
access points, we envision an alternative, complementary
solution to high-speed Internet access through collaborative
resource sharing. A group of wireless, mobile computing
and communication devices in close proximity can dynam-
ically form communities interconnected through their com-
patible high-speed LAN interfaces; we call these ad hoc
groupsMobile Collaborative Communities (MC2). Each
MC2 member independently uses its WAN interface to cre-
ate a communicationchannelto an inverse multiplexer, and
optionally offers to other members (full or partial) access
to this channel. The set of participating channels connect-
ing theMC2 members to the inverse multiplexer can be
logically combined with an inverse multiplexing protocol
to yield a higher-speedaggregated channelthat is available
from any one of the individualMC2 members. The partic-
ipating members acting ashandheld routers, receive some
of the packets destined to other members over their WAN
links and forward them onto the LAN.

Due to end-device heterogeneity, mobility, and time-
varying link transmission characteristics, the system we
consider here is highly dynamic, and must be assembled,
administered, and maintained in a decentralized fashion.
We present the design of a collaborative bandwidth aggre-
gation architecture that is both practical and readily de-

ployable. A key contribution we make is showing that
significant performance gains can be realized by adapting
shared WAN link selection to the specific application re-
quirements of the communication flows. As an illustration,
we demonstrate how the quality of a hierarchically-layered
video stream transmitted over lossy channels can be im-
proved by a priority/application-aware traffic assignment.

The rest of the paper is organized as follows. Section 2
explores the issues and tradeoffs faced in creating a de-
centralized inverse multiplexing system. Section 3 intro-
duces algorithms for the assignment of application flows
to heterogeneous WAN channels, and Section 4 describes
the specific system architecture we chose to study. Perfor-
mance evaluation results from anns-based simulation are
presented in Section 5, and Section 6 describes the imple-
mentation of a prototype system used to corroborate our
findings. Related work is summarized in Section 7, and our
conclusions are presented in the final section.

2 Issues, Challenges, and Approaches

The challenge of designing an effective inverse multi-
plexing system becomes harder when we recognize that
the components are heterogeneous, imperfect, and sup-
porting time-varying workloads. For example, WAN link
transmission characteristics (i.e., bandwidth, packet latency,
loss) will vary, possibly dramatically as end-devices move
around. Links from different service providers may be of
dissimilar technologies with different costs, complicating
link selection. Links of the same type from a single network
operator might have dependent or correlated transmission
characteristics or outages.

The potentially large latencies introduced by packet
forwarding through power- and processing-limited mobile
computing devices is also a challenge. Disparities in the for-
warding latency on different paths traversing heterogeneous
computing devices with time-varying computing workloads
can introduce packet misordering in the end-to-end path
that can affect certain applications adversely. For example,
non-interactive multimedia streaming applications will typ-
ically be lightly affected, though larger client buffer capac-
ities might be desired. Although packet reordering might
not reduce multimedia application performance noticeably,
it can complicate TCP RTT computation and decrease TCP
throughput.

2.1 Multiplexing Layer

A key issue in our overall system design is the identifi-
cation of the preferred protocol layer for the multiplexing
function. Since IP performs routing and multiplexing, it is
natural to consider a network layer multiplexing implemen-
tation. An IP-based solution could be implemented exclu-

Figure 1. A bandwidth aggregation service ar-
chitecture.

sively at the communicating end-systems; in this case any
packet scheduling, reordering, and reassembly would occur,
as usual, only at the source and the destination. Though
such a network layer implementation can be achieved in
several ways, each requires end-system kernel modification,
restricting the availability of channel aggregation to data
transfers between modified end-systems. An additional dis-
advantage of network layer striping is that it could restrict
the channel assignment policies (i.e., the intelligent map-
pings of flows to available channels) that we might seek to
implement, since the network layer is generally not aware
of application characteristics and requirements. Performing
multiplexing at the network layer, however, does have the
advantage that it would not require any changes to existing
applications.

An alternative solution is to perform multiplexing at
the transport layer. Once again, end-system protocol
stacks would require modifications, though transport-layer
channel assignment policies could potentially be made
more easily aware of application requirements. The ob-
vious deployment issues associated with either network-
or transport-layer multiplexing suggest a role for solu-
tions using application-layer multiplexing. Although such
an implementation would incur more packet processing
overhead, it requires no kernel modification and is easy
to install, maintain and monitor. Application-layer mul-
tiplexing also permits controlling packet scheduling on a
per-application, per-connection or per-packet priority ba-
sis. Like transport-layer and network-layer multiplexing,
application-layer multiplexing is also transparent to the ap-
plications and does not require modifications to the applica-
tions themselves.

2.2 Forwarding Mechanism

What forwarding mechanism should an inverse multi-
plexer use to transmit a packet over a chosen channel? Irre-
spective of a packet’s destination, different packets must tra-
verse different routes. There are several means of achieving

this. One approach is to change each packet’s destination
address to the IP address of the appropriateMC2 mem-
ber’s WAN interface. When a packet arrives at theMC2,
its destination address would be reverted back to the orig-
inal MC2 member destination address. This would, in a
sense, be similar to providing a Network Address Trans-
lation (NAT) service, albeit in a distributed manner. But
packet modification and processing overhead at the for-
warding nodes associated with this approach might be sig-
nificant.

Another packet forwarding approach could useloose
source routingto forward a packet through the intermediary
interfaces associated with the desired WAN channel to tra-
verse. This would avoid the need to provide a special NAT-
like packet forwarding service beyond ordinary IP routing
itself. However, loose source routing has multiple, well-
known weaknesses (e.g., use of IP options, extra router pro-
cessing) as well as limited router support, making its use
largely unworkable.

A preferred packet forwarding implementation would
usetunnelsbetween the inverse multiplexer and eachMC2

node. Tunneling has long been used to establish static paths,
and most OS network stacks today have built-in support for
tunnels. In such a system packet forwarding would operate
as follows. Unicast packets sent from an Internet-connected
source would be routed normally to the inverse multiplexer,
where each would then be forwarded, according to the mul-
tiplexer’s flow-to-channel assignment policy, to the tunnel
corresponding to the appropriate WAN channel. Upon ar-
rival at theMC2 node, the packet would be decapsulated
and forwarded on the wireless LAN to its intended destina-
tion. In this simple case, all upstream traffic would be sent
over a single WAN link, typically — but not necessarily —
the receiver’s own. Figure 1 shows a bandwidth aggregation
service architecture using Generic Routing Encapsulation
(GRE) [3] tunnels.

2.3 Proxy Placement

Another key question in the design of our system is the
appropriate placement of the inverse multiplexer in the end-
to-end connection. In principle, this function can be located
at almost any point between the WAN link terminations and
the connection end-point (e.g., origin server), including the
end-point itself. The preferred location depends on many
factors including the type of WAN links, who is provid-
ing the aggregation service, whether collaborating devices
agree to connect to a common multiplexing point, and how
generally accessible the multiplexing service must be from
a wide range of origin servers.

If all the WAN links from aMC2 terminate at the same
point, a preferred location for the inverse multiplexer is that
termination point. It is natural to think of aproxy provid-

ing this service, and to ease our discussion, we will simply
use this term to refer to the location of the inverse multi-
plexer, regardless of whether a distinct physical component
is used to implement the function. If the proxy is located
near the WAN link termination points, then it is likely eas-
ier and more efficient for a wide range of services to use the
proxy to transfer data to theMC2. In such a case the ag-
gregation service can be provided as a value-added service
by theMC2 members’ common Internet Service Provider
(ISP). The proxy can alternatively be located at the network
edge close to the origin server, or even at the origin server
itself. While this location avoids the potential restriction
of requiring a common WAN link termination point,MC2

members might have to communicate with different aggre-
gation services to communicate with different servers. As
we will describe later, one can also envision an aggregation
service being provided by a third party by placing proxy in
the middle of the network.

2.4 Collaboration Incentives

Aggregated bandwidth channels can be realized only
when hosts willingly collaborate by sharing their commu-
nication channels. Willingness to collaborate is not an is-
sue for a single user with multiple mobile devices (e.g., cell
phone, PDA, laptop, etc.) forming a ‘community’ (i.e., per-
sonal area network), nor might it be an issue for colleagues
or acquaintances. But what are the incentives for collabora-
tion between hosts owned by multiple parties with little or
no pre-existing relationship? Clearly, if many community
members seek access to the same content (e.g., multicast
video) then the members will be well motivated to take ad-
vantage of faster download or streaming. But if each host
seeks to receive unique content, will the community mem-
bers each be willing to sacrifice their computing and com-
munications resources?

We have reason to be optimistic that collaborating com-
munities will occur spontaneously in public settings. The
benefits of aggregated channels are high, particularly when
members seek to access large files or high-quality media
objects. In some cases no viable alternative means of ac-
cess will exist. In addition, the ‘cost’ of the resources be-
ing offered (e.g., bandwidth) is relatively low, members can
experiment at low risk by offering partial resources, and of-
fered resources may be reclaimed with little difficulty. The
recent success of peer-to-peer file sharing leads us to believe
that device owners may be willing to share communication
and computational resources as readily as they do informa-
tion, particularly if they directly and immediately benefit
from resource sharing.

Table 1. Categorization of channel allocation.
Application-aware Application-agnostic

Channel adaptive Layer Priority Stripinga WRR, WFQ

Channel non-adaptive Not applicableb Random, Round-robin

3 Channel Allocation and Packet Striping

For each active flow a proxy is responsible for two tasks.
First, the proxy must select a set of channels on which to
forward packets to theMC2 destination. Second, the proxy
must intelligently stripe arriving packets across those chan-
nels. Efficient channel allocation and striping algorithms
map or remap the flows to the channels based on both ap-
plication requirements and the number and the condition
of available channels. Hence, the algorithms we exam-
ine in this section are bothapplication-awareandchannel-
adaptive. As an example, the algorithms we consider would
seek to assign a flow from an audio or video source to chan-
nels that would maintain that application’s stringent delay
or delay jitter requirements, while assigning bulk data trans-
fer (e.g., FTP) flows to channels that might incur longer de-
lays but are reliable. Of course, both the number and condi-
tion of assignable channels might vary over a given flow’s
lifetime. Channel allocation and striping algorithms can be
categorized along the following orthogonal dimensions:

• Channel-adaptive: These algorithms assign packets on
different channels according to the channel conditions
such as bandwidth, loss, and delay. For example, a
Weighted Round Robin (WRR) algorithm stripes pack-
ets to channels in proportion to each channel’s available
bandwidth.

• Application-aware: Striping algorithms can also use
knowledge or aprofileof an application flow and its end-
system requirements for channel selection and packet
striping. Since applications can have different profiles,
each application would potentially need a different algo-
rithm. These algorithms promise to provide better per-
formance than application-agnostic algorithms, but they
have the burden of obtaining information about a flow’s
requirements. This information can be obtained explic-
itly from the traffic source, or may be inferred by ex-
amining the flow itself, or some combination of both.
For instance, a source might mark its packets (e.g., ToS
field in the IP header) or a proxy might infer application
type from destination information (e.g., TCP or UDP port
numbers) or even the application payload.

A given striping algorithm can be both channel-adaptive
and application-aware, as summarized in Table 1.1

1(a) We propose layer-priority striping for hierarchically-layered videos
in Section 3.4. (b) Application-aware algorithms are application-specific
and also require channel information.

3.1 Application Characteristics

Each application flow can be described by itself (intra-
characterization) or against other application flows (inter-
characterization). Examples of the former include Multi-
ple Description video Coding (MDC) [1] and the impre-
cise computation model [5] that is widely used in the real-
time computing community. That is, an application flow
has multiple representations or versions expressing different
degrees of satisfaction (being minimally-to-fully satisfac-
tory). The proxy must allocate and schedule resources to at
least guarantee the minimum degree of satisfaction for each
given application flow. That is, timely delivery of the base
layer or essential part of each application flow must be guar-
anteed, and the enhancement layer or the optional part re-
ceives lower priority. For more general types of applications
(including video), an application flow itself is also charac-
terized by its minimum packet interarrival time, burstiness,
multiple QoS levels, bandwidth, loss rate, delay, and jitter
requirements.

On the other hand, the inter-characterization deals with
relative importance among different applications, rendering
their priority order. In general, it is more “beneficial” to give
more important application flows priority over less impor-
tant ones in scheduling their data transmission or allocating
bandwidth.

3.2 Channel Characteristics

The number and condition of channels between the
proxy andMC2 can change with time due to many fac-
tors including interchannel interference, and communica-
tion failures due toMC2 members’ departures, device mo-
bility, or power depletion. While a proxy must be continu-
ously aware of channel conditions, it does not have the ben-
efit of observing packet reception orMC2 member behav-
ior directly. The proper design of a monitoring system pro-
viding such feedback is crucial to achieving superior system
performance, and we have investigated it in detail in a sep-
arate paper [9].

We assume that our bandwidth aggregation system has a
two-sided channel monitor (i.e., one side on theMC2 and
the other side at the proxy) that is jointly responsible for
detecting membership changes, “sensing” channel charac-
teristics (e.g., bandwidth, error rate, latency, security, re-
liability, cost, etc.) and ensuring that the proxy has rea-
sonably current channel information. Further, to facilitate
WAN channel monitoring and overall system reliability and
responsiveness, theMC2-based agents are distributed, op-
erating on many or all of the member devices [9].

The proxy is thus capable of ordering channels in its re-
source pool according to the application requirements of ar-
riving flows. For example, channels can be sorted accord-

ing to their delay and reliability characteristics, and then the
proxy may choose then most reliable channels for trans-
porting the base layer (or essential part) of a video flow
while choosing less reliable channels for the enhancement
layer.

3.3 Allocation/Reallocation of Channels

Each application flowfi; 1 ≤ i ≤ k, is assumed
to have been demultiplexed into an ordered (according to
the application characteristics) set ofnfi ≥ 1 subflows
{sfj : j = 1, . . . , nfi}. The traffic of each subflowsfj is
represented by either a simple token bucket model(ρj , σj)
or a linear bounded arrival process(pj , smaxj , bmaxj), where

ρj : average token drain rate,
σj : bucket size,
pj : minimum or average time separation between

two consecutive packets,
smaxj : maximum packet size (in bytes),
bmaxj : maximum burst size (in bytes) for subflowj.

Let C = {ch` : ` = 1, . . . , nc} be an ordered (according
to their condition) set of channels available. Note that the
size and ordering of this set changes with time and will be
updated by the monitor. The problem is now to select one or
more channels fromC on which to assign each subflowj.
This selection must also be adapted to reflect the changing
number and condition of available channels.

We want to map a demultiplexed application flowfi =
{sf ij : j = 1, . . . , nfi} to a changing set of channels
C = {ch` : ` = 1, . . . , nc}. Recall that the subflows
of fi are ordered according to their importance to the ap-
plication, while the channels are ordered according to their
relevance to the application requirements. For example,
fv = {sfv1 , sfv2 } andC = {ch1, ch2, ch3} wheresfv1 and
sfv2 represent the base and enhancement layers of a video
streamfv, respectively, andchi’s are ordered according to
their reliability or their signal-to-noise ratio values. In this
casesfv1 may be transported viach1 andch2, andsfv2 via
ch3, assuming that the former requires two channels while
the latter requires only one channel.

In general, as many topmost (say,k) channels as neces-
sary for transportingsf i1 are assigned first tosf i1, and then
repeat the same procedure with the remaining channels for
sf i2, and so on. Ifsf i1 does not need the entire bandwidth
of channelchk, the remaining bandwidth of this channel is
assigned tosf i2, andchk will transmit the packets ofsf i1
andsf i2 using a Weighted Round-Robin (WRR) scheduling
algorithm where the weights between the two subflows are
determined based on thechk ’s bandwidth assigned tosf i1
andsf i2. Also, if there is not enough bandwidth available,
the least important subflows are not transported at all, real-

izing a form of imprecise computation [5]. The more gen-
eral case of multiple application flows is described in [8].

3.4 Example: Assignment of Video Flows

The potential benefit of application-aware channel as-
signment is best illustrated by considering the case of video
traffic. First, a high-quality video flow might be of suffi-
ciently high bandwidth that it could not be transmitted over
a single WAN channel. Second, link transmission character-
istics can directly affect the perceived quality of the trans-
mission. We present three ‘strawman’ algorithms, based on
simple heuristics, for striping video packets.

• Layer-Priority Striping (LPS) : This algorithm can be
used for video streams that are hierarchically layer-
coded. This encoding process generates a base layer`0
containing information required for decoding, and one or
more optional enhancement layers (`i : i = 1, . . . , n) in
a hierarchical structure of cumulative layers. The recon-
struction is progressive (i.e., enhancement layer`k can
only be used if all sublayers̀i : i = 0, . . . , k − 1 are
available). Thus, the layer indexi corresponds to the
layer priority.

The LPS algorithm matches the layer-priority to the
channel reliability as described in Section 3.3. For in-
stance, the base layer`0 is assigned to the most reliable
channels, where the channel loss rate is used as the met-
ric for reliability. The packets for each layer are striped in
WRR fashion onto the allocated channels. If a new chan-
nel with higher reliability becomes available, allocation
of layers is shifted up to channels with higher reliabil-
ity. Similarly, if the channel with the highest reliability
becomes unavailable, the allocation is shifted down.

• Frame-Priority Striping (FPS) : This algorithm can be
used for MPEG video traffic. The MPEG video stream
is separated into three subflows (sfI , sfP , sfB) based on
frame types. The priority order for the frames in MPEG
Group of Pictures (GoP) is I>P>B. Similar to the LPS al-
gorithm, the channels are allocated according to the sub-
flow priority. The I-frame subflow (sfI) is sent over the
most reliable channels, and so on.

• Independent-Path Striping (IPS): This algorithm is
well suited to multiple state video coding [1], where a
stream is encoded into multipleindependentlydecode-
able subflows. Moreover, information from one sub-
flow can be used to correct the errors in another subflow.
Hence, it is important for a receiver to successfully re-
ceive as many complete subflows or components as pos-
sible, and it is desirable to achieve a low correlation of
loss across different subflows.

The IPS algorithm tries to achieve path diversity by allo-
cating a separate channel for each description. Since the

video can be reconstructed (albeit at lower quality) even
if one or more entire subflows are lost, video reception
is protected against one or more complete channel fail-
ure(s).

4 Architecture

Considering the many systems issues identified in Sec-
tion 2, we chose a channel-aggregation architecture that is
both simple and scalable. Figure 1 shows the proposed ar-
chitecture which permits deployment by various types of
network transport and service providers, including content
owners, Internet access providers, wireless telecommunica-
tion service providers, or content distribution network oper-
ators.

The system architecture has three principal components:
a dedicated appliance providing channel-aggregation proxy
services, standard LAN-based announcement and discov-
ery protocols, and standard protocol tunnels. The dedicated
aggregation proxy performs inverse multiplexing at the ap-
plication layer.

Generic Routing Encapsulation (GRE) [3] tunnels are
used to create channels between the proxy and participating
MC2 members, and support packet forwarding. This ap-
proach requires no modification toMC2 members, as most
contemporary OSs (e.g., Linux, FreeBSD, Windows) have
built-in support for GRE tunnels. Each packet received by
aMC2 member over a GRE tunnel is automatically decap-
sulated and forwarded via the wireless LAN to the desti-
nation device. Since the destination is oblivious to which
MC2 node forwarded the data packets, no additional data
reassembly functionality is required at the receiver.

To participate inMC2 formation and channel aggrega-
tion, a standard announcement and discovery protocol is re-
quired on end-devices. The choice of a standard protocol
enables end-devices to participate in other types of resource
or service discovery and access. Though the specifics of
these protocols are beyond the scope of this paper, Jini, Uni-
versal Plug and Play (UPnP), and the Service Location Pro-
tocol (SLP) may all be suitable candidates.

5 Performance Evaluation: Simulation

We evaluated the proposed bandwidth aggregation sys-
tem using thens-2 simulator. Figure 2 shows the net-
work topology we used for simulating an entire end-to-
end system. The number ofMC2 members was varied
from 2 to 14, and theMC2 members were interconnected
via an 11 Mb/s wireless LAN. In our experiments with
homogeneous WAN links, the link bandwidth was set at
115.2 kb/s, roughly consistent with currently-available 2.5G
cellular services. With the exception of the single dedi-
cated receiver, eachMC2 member was equipped with both

Figure 2. Simulation topology.

a WAN and a LAN interface. The receiver could com-
municate upstream only using one of the other members
as a gateway. We consider a variety of scenarios with
varying link characteristics such as bandwidth, loss, and
membership dynamics. We first evaluate the benefits of
bandwidth aggregation for different applications: we use
(1) bulk file transfer over TCP and measure TCP through-
put, and (2) CBR traffic over UDP and measure packet
loss rate. We then study how much performance improve-
ments application-aware striping can make using layered
video as an example application. For experiments with
TCP and UDP traffic we implemented three application-
agnostic striping algorithms: random, round-robin (RR),
and weighted round-robin (WRR).2 We implemented the
LPS algorithm described in Section 3.4 for application-
aware, channel-adaptive striping algorithms. Due to space
limit, we show only a subset of the results from [8].

5.1 TCP Throughput

We first evaluate the effect of the addition or deletion
of a WAN link in an aggregated channel on TCP through-
put. Let’s consider the simple case of a fixed member-
shipMC2. We measured TCP throughput by transferring
a 1 MB file from a data source to aMC2 receiver us-
ing 2 ∼ 14 identically-configured links aggregated into
the shared pool. To provide a baseline for measured TCP
throughput, we also performed the experiment with a single
channel (i.e., no aggregation).

Figure 3 plots the measured TCP throughput as theMC2

size changes. The average throughput achieved with a sin-
gle link was 103.2 kb/s. As expected, the TCP throughput
increases nearly linearly as the number of links grows under
both RR and WRR policies until saturation occurs with six
links. This saturation occurs due to the limit imposed by the
receiver’s maximum window. As the number of available

2To be precise, since packets are not fragmented in the proxy we have
implemented the Surplus Round Robin approximation of bit-WRR.

0

400

800

1200

1600

0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

kb
/s

)

Number of Members

Raw Bandwidth
RR

WRR
Random

No Proxy

Figure 3. TCP throughput as a function of
MC2 size.

channels increases, the bandwidth-delay product increases,
but TCP cannot utilize all the available bandwidth because
of the small receiver window. The TCP throughput contin-
ues to increase linearly if the receiver-advertised window is
increased to accommodate a larger bandwidth-delay prod-
uct. The random policy does not perform as well as (W)RR
because it causes undesired side effects, such as packet re-
ordering and unstable RTT calculation, thus reducing the
TCP throughput.

We next explore TCP performance for the highly-
dynamic case where the channels were frequently added or
removed from the pool. In this scenario, two links always
remain active in the pool and two links periodically join
the pool simultaneously forup-timeand leave fordown-
time. The sum ofup-timeand down-timewas kept con-
stant at 20 seconds. That is, anup-timeof 20 seconds is
same as striping continually over four links (i.e., 100% duty
cycle) and adown-timeof 20 seconds is the same as con-
tinually striping over only two links (i.e., 0% duty cycle).
In this set of experiments there was no significant differ-
ence in the achieved throughput for RR and WRR striping.
Hence it is difficult to distinguish between the two in the
figures presented here. Figure 4 shows that as the duty cy-
cle increases, the average TCP throughput increases for RR
and WRR, whereas the random striping cannot effectively
utilize the available bandwidth of the transient link. Even
though two of the links in the pool are rather short-lived,
channel-adaptive striping is able to utilize their capacity to
improve the transfer rate.

100

200

300

400

0 25 50 75 100

T
hr

ou
gh

pu
t (

kb
/s

)

Transient Link Duty Cycle (%)

Raw Bandwidth
RR

WRR
Random

Figure 4. TCP throughput with two persistent
links and two transient links.

Table 2. CBR loss rate (%) as a function of
MC2 size.

of members Random RR WRR No proxy

2 75.15 75.15 75.15 87.57
4 50.31 50.3 50.32 87.57
6 25.48 25.45 25.5 87.57
8 1.14 0.61 0.59 87.57

10 or more 0 0 0 87.57

5.2 CBR Media Traffic over UDP

Many media applications generate CBR traffic carried
over UDP. We studied the loss observed for an 8×115 kb/s
= 920 kb/s CBR stream from a video source to aMC2 des-
tination. The topology used for this set of experiments was
the same as the one for the TCP throughput experiments.

Table 2 shows the packet loss rate as a function of the
MC2 size. Without channel aggregation we observe 87.6%
loss as the CBR stream rate was eight times the bandwidth
of a single link. As more links are pooled, the loss rate
decreases.

We also studied the performance of different striping al-
gorithms for UDP streaming over four heterogeneous links
of 128 kb/s, 64 kb/s, 32 kb/s, and 16 kb/s, respectively. Ta-
ble 3 shows the loss rates when a CBR stream of 256 kb/s
is sent over the aggregated channel. Random and RR algo-
rithms do not adapt to channel bandwidth and allocate an
equal number of packets to each channel. Hence, the lower
bandwidth links drop larger amounts of traffic, resulting in
higher total loss rates. In contrast, WRR achieves a low
overall loss rate by assigning packets proportionally to the
bandwidths of various links and distributing the loss uni-
formly over different links.

Table 3. CBR loss rate (%) over four heteroge-
neous links.

Random RR WRR

Link 1 (128 kb/s) 0 0 14.1
Link 2 (64 kb/s) 6.93 7.9 13.75
Link 3 (32 kb/s) 53.67 53.95 13.06
Link 4 (16 kb/s) 77.15 76.97 11.54

Total 34.18 34.4 13.25

Table 4. Loss rate (%) with extra available
channels.

Protocols Random RR WRR LPS

Loss rate 5.56 5.58 5.68 1.41

We also evaluated how CBR streaming over UDP is af-
fected by the dynamics ofMC2 membership. Under the
same join and leave dynamics as for the TCP throughput ex-
periments, the loss rate decreased with the increase in duty
cycle.

5.3 Application-Aware Striping

We now present the results from the application-
aware striping experiments. We experimented with the
application-aware, channel-adaptiveLPS algorithm intro-
duced in Section 3.4. The scenarios were so chosen as to
elucidate the key benefits of application-aware mechanisms
in comparison with application-agnostic schemes.

5.3.1 Availability of Extra Channels

Let’s consider a scenario where the proxy has ten channels
available for striping data. All the channels are identical
except for having different error rates that vary from 1 to
10%. The error rateei for channelchi was set ati%. The
traffic source generated CBR traffic at 30 kb/s and the band-
width of each channel was 20 kb/s. Thus, at least two chan-
nels are required for the transfer. Table 4 shows the average
loss rates for the different striping algorithms. If the proxy
is unaware of the application profile/requirements, then it
will use all the available channels indiscriminately. Hence,
the observed loss rate is higher for the application-agnostic
striping algorithms. But the proxy using an application-
aware algorithm achieves better performance by striping
data over only the two channels with minimum loss. Hence,
even minimal information, such as the bandwidth require-
ments of the application, can make a significant improve-
ment in the system performance.

Table 5. Loss rate (%) for layered video with
static channels.

Application-agnostic Application-aware
Random RR WRR LPS

Layer`0 5.07 9.97 6.05 1
Layer`1 5.28 1.02 4.89 4.96
Layer`2 5.53 4.81 5.16 9.72

Table 6. Loss rate (%) for layered video in lim-
ited static channels.

Application-agnostic Application-aware
Random RR WRR LPS

Layer`0 18.99 23.57 18.76 0.96
Layer`1 19.64 12.44 20.53 5.15
Layer`2 19.89 22.4 19.25 100

5.3.2 Priority-awareness

We now present the results for striping a hierarchically-
layered video stream with a base layer`0 and two enhance-
ment layers̀ 1 and`2. Each layer was modeled as a 15 kb/s
CBR stream. The topology consists of threeMC2 mem-
bers, each with a 20 kb/s WAN link. The error rate on the
channels was 1, 5 and 10%, respectively. Table 5 shows the
percentage loss rate suffered by each layer. As expected, the
random striping indiscriminately distributes the loss over all
the layers. Since all the layers are constant bit-rate with
equal bandwidth and the number of channels is same as the
number of layers, the RR algorithm stripes all the packets
from one layer to one channel. Instead of the loss being
spread over all the layers equally, the layer sent over the
most unreliable link suffers the most loss. The loss rate for
the base layer is significantly less with the LPS algorithm.
LPS uses priority-awareness to assign the base layer to the
most reliable link, and the highest enhancement layer to the
link with the highest error rate.

The striping algorithms utilize application-awareness to
intelligently drop lower-priority subflows when an insuffi-
cient amount of resource is available. To demonstrate this
benefit of application, we simulated a scenario with two
MC2 members connected to the Internet via 20 kb/s WAN
link. The error rate of the channels was 1 and 5%, respec-
tively. Note that the offered traffic rate exceeds the aggre-
gated channel bandwidth. Table 6 shows the loss experi-
enced by different layers while streaming the same video
traffic as described above. Since the two available channels
cannot handle the offered load of all the three video layers,
the LPS algorithm drops the layer`2 entirely, improving the
loss suffered by the base layer`0 and the enhancement layer
`1. The application-agnostic mechanisms end up spreading
the loss over all the layers.

Table 7. Loss rate (%) for layered video in lim-
ited dynamic channels.

Application-agnostic Application-aware
Random RR WRR LPS

Layer`0 18.88 22.9 18.9 1.01
Layer`1 19.73 12.78 20.75 4.97
Layer`2 19.96 22.76 18.88 100

5.3.3 Dynamic Channel Adaptation

What happens if in the above scenarios the link error rates
change dynamically? We also simulated the limited channel
scenario described earlier with varying channel error rates.
Each link has an error rate of 1% for 50 seconds and then
10% for 50 seconds, repeating this cycle several times dur-
ing the lifetime of the flow. The changes in error rates are
distributed such that at any instant one link has error rate of
1% and the other 10%. Thus, the total error rate is the same
throughout the experiment. Table 7 shows the measured
loss for each layer. With application-agnostic schemes, lack
of application knowledge leads to uniform loss rates for all
the layers of the flow. In contrast, LPS entirely drops the
enhancement layer`2 due to limited channel availability, to
shield layers̀ 0 and`1 from loss. Also, it remaps the base
layer to the more reliable channel as the channel error rates
change. Hence, the loss suffered by the base layer is lower.

6 Implementation, Experiments and Results

We now present a detailed description of the channel
aggregation testbed we built and the experiments we per-
formed. The principal goals of the testbed were to vali-
date our proposed architecture, corroborate our simulation
results, and explore deployment issues that might not read-
ily emerge from our simulations. Again, readers are refered
to [8] for the entire results.

6.1 Testbed Implementation

Figure 5 shows a block diagram of the prototype channel
aggregation system we constructed, with dark arrows repre-
senting control messages and light arrows representing data
traffic. EachMC2 member runs a compactClient Connec-
tion Manager(CCM) application. The CCM participates
in the announcement and discovery ofMC2 members (and
their associated WAN links). The CCM communicates the
addition or deletion of links to theServer Connection Man-
ager (SCM) which resides on the proxy and maintains the
channel resource pool. The CCM also monitors link trans-
mission characteristics such as bandwidth and delay that is
provided to the striping proxy.

We implemented a Linux-based inverse multiplexing
proxy. The proxy intercepts each packet destined for a

� � � �� � � ��� 	

� � � � �

 � � � �
�� � �

��� ���� ��� � �

��� ��

Figure 5. Linux-based implementation of an
aggregation proxy.

MC2 and forwards it to the GRE tunnels corresponding to
each active channel. Packet interception at the proxy is han-
dled byNetfilter, a packet filtering subsystem in Linux that
is primarily used for building firewalls and NATs. For each
channel aggregate, the proxy sets up Netfilter’s forwarding
rules to intercept appropriate data traffic and passes it to
the proxy’s user-layer forwarding engine. The forwarding
engine currently implements both random and round-robin
data striping policies.

Data reassembly at the receiving side is automatic and
straightforward. Packet forwarding is enabled at eachMC2

node sharing a WAN link. When a packet is received by a
node over a GRE tunnel, it is decapsulated and passed to
the node’s routing engine. Since the destination address of
the decapsulated packet corresponds to the receiver’s LAN
address, the packet is forwarded to the LAN.

We emulated an entire end-to-end system with the topol-
ogy similar to our simulation topology in earlier section.
Notebook computers running Linux (2.2.16) kernel, each
with built-in support for GRE tunnels, were used to asMC2

members. TheMC2 members were connected to each
other via a 10 Mb/s Ethernet. WAN links were emulated by
connecting a wired serial null modem running PPP to the
NISTnetnetwork emulator whose transmission link charac-
teristics we could control. As in simulations presented in
Section 5, the transmission speed of each serial link was
set at 115.2 kb/s. EachMC2 member, with the exception
of the dedicated data receiver, had both an emulated WAN
interface and an Ethernet interface.

Traffic generation, collection and measurement was per-
formed using NetIQ’sChariot network measurement tool
version 4.2. Chariotend-pointsrunning on the data source
and receiver generated various packet flows, emulating reli-

0

100

200

300

400

500

1 2 3 4

T
hr

ou
gh

pu
t (

kb
/s

)

Number of Links

Raw Bandwidth
Round-Robin

Random
No Proxy

Figure 6. Effect of MC2 size on TCP through-
put.

able data transfers, streams, etc.

6.2 Experimental Results

6.2.1 TCP Throughput

To validate our simulation results in practice, we measured
TCP throughput by transferring a 1MB file from a data
source to aMC2 receiver using two to four identically-
configured, aggregated links. To provide a baseline for mea-
sured TCP throughput we also performed the experiment
with a single channel (i.e., no aggregation) both with and
without the proxy in the data path. Performance was mea-
sured using both round-robin and random striping policies.
Figure 6 plots the measured TCP throughput as the num-
ber of links in the aggregate pool changes, with error bars
showing the minimum and maximum measured throughput
among the 50 trials.

The average TCP throughput achieved with no proxy
was 45 kb/s. The TCP throughput with a single link and the
proxy in the data path is 38 kb/s, not significantly lower than
the throughput achieved without a proxy, indicating that the
proxy does not introduce a long delay. The TCP throughput
measured in the testbed was lower than the simulation re-
sults due to PPP overhead and the presence of background
traffic. However, the trends with respect to the number of
MC2 members were similar in both the cases.

6.2.2 Streaming Media via UDP

We next conducted experiments to study how high band-
width streaming is enabled with channel aggregation. In
these experiments a server streams a stored media file to
the receiver at one of various bit rates (64, 128, 175, and

256 kb/s). Chariot generates a traffic pattern intended to
resemble the video transmission of Cisco’s IP-TV. RTP is
used as the stream transport protocol. Each experiment was
repeated 25 times, measuring the loss rate and RTP delay
jitter observed by the receiver.

Without channel aggregation the receiver can only re-
ceive a stream with negligible loss at the 64 kb/s rate.
Higher bit-rate streams suffered more than 70% loss, and
due to this high loss rate, the tests were prematurely termi-
nated by Chariot. Note that the limited available bandwidth
precludes use of retransmission for loss recovery. Tech-
niques such as Forward Error Correction (FEC) cannot be
used in this setting, especially for low-bandwidth links, as
it further increases the bandwidth required. Such a high
loss rate can severely degrade the perceived stream recep-
tion quality, making it unwatchable. Yet striping over just
two links reduced the loss rate dramatically for the 128 kb/s
stream; every 128 kb/s stream test completed with a loss
rate of less than 0.1%. Dynamic link striping was able to
sustain a 175kb/s stream over three links and a 256kb/s
stream over four links with negligible loss rate less than
0.2%. This result confirms that bandwidth aggregation en-
ables high bandwidth multimedia streams to be delivered to
MC2s, which would otherwise be impossible.

It was also observed that the system generates relatively
little jitter. In most cases, the jitter is less than 10 ms with
the maximum jitter occasionally exceeding 20 ms. Such
small amounts of jitter can be easily absorbed by the re-
ceiver buffer in multimedia applications and will have negli-
gible effect on the viewing experience of the video receiver.

7 Related Work

Adaptive inverse multiplexing for CDPD wireless net-
works is explored in [10]. In this scheme the packets are
split into fragments of size proportional to the observed
throughput of component links. Here the goal is to cre-
ate variable fragments sizes such that each fragment can
be transmitted in roughly the same amount of time. The
fragmented packets are then tunneled over multiple links.
In this case the endpoints of the WAN connections forming
the virtual link are the same.

The bandwidth of mobile users with multiple inter-
faces is aggregated at the transport layer in pTCP (parallel
TCP) [4]. pTCP is a wrapper that interacts with a modi-
fied TCP called TCP-virtual (TCP-v). A TCP-v connection
is established for each interface, and pTCP manages send
buffers across the TCP-v pipes. The striping is performed
by pTCP and is based on congestion window size of each
TCP-v connection. When congestion occurs on a certain
pipe, pTCP performs data reallocation to another pipe with
large congestion window. One possible problem of this ap-
proach is that the congestion window size may not accu-

rately reflect the bandwidth-delay product.
Coordinating communications frommultiple mobile

computing devices has become a new focus of interest. Net-
work connection sharing has been proposed in [6]. This
architecture permits use of a single, idle WAN connection
among collaborating mobile devices but it does not address
aggregation of multiple links into a high capacity bundle.

Our goal of cooperation and resource aggregation among
collaborating devices is similar to the vision of the mobile
grouped devices (MOPED) architecture [2]. The goal of
MOPED project is to enable group mobility such that a
user’s set of personal devices appear as a single mobile en-
tity connected to the Internet. The MOPED routing archi-
tecture builds a newmultipath layer to encapsulate pack-
ets between the home agent and MOPED devices, unlike
our approach of using GRE tunnels. MOPED architecture
adapts the Mobile IP home agent to support aggregation of
multiple links at network and transport layers. In MOPED,
modifications to both client and server kernels are also re-
quired. Our application-level approach does not require any
kernel changes and allows support for different application
profiles.

The commuter Mobile Access Router (MAR) project [7]
also leverages wireless WAN connection diversity to pro-
vide high speed Internet access to mobile users. Instead of
using the WAN connections of the users, it relies on pre-
provisioning the MAR with different WAN connections,
limiting the aggregation to the already exiting links.

8 Conclusion

We have designed, implemented and evaluated a deploy-
able bandwidth aggregation system providing high-speed
Internet access to a collaborating community of wireless
end-systems. We have demonstrated that the system not
only improves access service quality, but enables other-
wise unachievable services such as the delivery of high-
bandwidth streaming media. Further, we have shown that
network and application-aware allocation and assignment
policies do indeed improve system performance.

Though not described in this paper, we performed var-
ious experiments with bandwidth-adaptive multimedia ap-
plications over aggregated connections. Ideally, such appli-
cations would measure available bandwidth and smoothly
increase or decrease audio or video quality to optimize per-
ceived reception quality. We typically observed an applica-
tion decreasing its streaming rate to a predefined fraction of
its maximum rate; often this rate was well below the avail-
able bandwidth of the aggregated connection. The applica-
tion would subsequently maintain that low rate, remaining
non-responsive to any increase in available bandwidth, no
matter how large it is. Since the widely-used applications
we tested were proprietary, we were unable to modify their

adaptation algorithms.
To aggregate bandwidth we have relied upon the conven-

tional technique of inverse multiplexing. But rarely, if ever,
has inverse multiplexing been applied in such a dynamic
and decentralized setting and made to work. As a result of
operating in this challenging environment, we have iden-
tified a significant number of technical issues that appear
to be fertile areas for future research. Some of these in-
clude WAN cost sharing, accounting, information privacy,
and security. We have also relied on the assumption that
an application’s networking requirements are well-known,
though such a characterization remains a formidable and
long standing problem. Not surprisingly, we have found that
aggregating relatively homogeneous communication links
is often easier and more successful than working with het-
erogeneous links. Opportunity lies in the development of
simple ‘rules-of-thumb’ that help identify which links are
sufficiently homogeneous that aggregation is likely to per-
form well.

References

[1] J. Apostolopoulos. Error-resilient video compression via
multiple state streams. InProceedings of VLBV, pages 168–
171, Kyoto, Japan, Oct. 1999.

[2] C. Carter and R. Kravets. User device cooperating to sup-
port resource aggregation. InProceedings of IEEE WMSCA,
pages 59–69, Callicoon, NY, June 2002.

[3] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina.
Generic routing encapsulation GRE. RFC 2784, IETF, Mar.
2000.

[4] H.-Y. Hsieh and R. Sivakumar. A transport layer approach
for achieving aggregate bandwidth on mutli-homed mobile
hosts. InProceedings of ACM MobiCom, pages 83–94, At-
lanta, GA, Sept. 2002.

[5] J. W. S. Liu, K.-J. Lin, W. K. Shih, R. Bettati, and J. Chung.
Imprecise computations.Proc. IEEE, 82(1):1–12, Jan. 1991.

[6] M. Papadopouli and H. Schulzrinne. Connection sharing in
an ad hoc wireless network among collaborative hosts. In
Proceedings of NOSSDAV, pages 169–185, Florham Park,
NJ, June 1999.

[7] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, and
S. Banerjee. MAR: A commuter router infrastructure for the
mobile internet. InProc. of ACM/USENIX MobiSys, Boston,
MA, June 2000.

[8] P. Sharma, S.-J. Lee, J. Brassil, and K. G. Shin. Handheld
routers: Intelligent bandwidth aggregation for mobile col-
laborative communities. Technical Report HPL-2003-37R1,
HP Labs, May 2003.

[9] P. Sharma, S.-J. Lee, J. Brassil, and K. G. Shin. Distributed
channel monitoring for wireless bandwidth aggregation. In
Proceeding of the IFIP-TC6 Networking 2004, pages 345–
356, Athens, Greece, May 2004.

[10] A. C. Snoeren. Adaptive inverse multiplexing for wide area
wireless networks. InProceedings of IEEE GLOBECOM,
pages 1665–1672, Rio de Janeiro, Brazil, Dec. 1999.

