
Automated Generation of Resource Configurations through Policies

Akhil Sahai, Sharad Singhal, Vijay Machiraju
HP Laboratories

1501 PageMill Road, Palo-Alto, CA 94304, USA
Rajeev Joshi1,

Jet Propulsion Laboratories, Pasadena, CA
{asahai, sharad, vijaym}@hpl.hp.com, rjoshi@jpl.nasa.gov

1 Work performed while author was at HP Laboratories.

Abstract
Resource Management systems have been attempting

to undertake automated configuration management.
Automated configuration management involves
considering user requirements, operator constraints and
technical constraints of the system to create a suitable
configuration, and to create a workflow to deploy it. In
this article we propose a policy-based model that we
have used for automating these configuration
management aspects.

1. Introduction

Resource management systems have been trying to
create systems that provide automated provisioning,
configuration, and lifecycle management of a wide
variety of resources. The current trend in utility
computing is a step towards creating such automated
resource management systems. HP’s Utility Data Center
product [1], IBM’s “on-demand” computing initiative
[2], Sun’s N1 vision and Microsoft’s DSI initiative, Grid
initiative are examples of this trend. However, the
resources that are available to these resource
managements systems are “raw” computing resources
(e.g., servers, storage, network capacity) or simple
clusters of machines. The user has to still manually
install and configure applications, or rely upon a
managed services provider to obtain pre-configured
systems from service providers.

Because every user’s needs are different, it is usually
not possible to create custom environments for every
user—managed service providers rely on a small set of
pre-built (and tested) application environments to meet
each user’s needs. However, this limits the ability of
users to ask for applications and resources that have been
specially configured to meet their needs. In our research,
we are focusing on how complex application
environments (e.g., an e-commerce site, oracle clusters)
can be automatically “built-to-order” for users. In order
to create a custom solution that satisfies user

requirements many different considerations have to be
taken into account. Typically, the underlying resources
have technical constraints that need to be met in order for
valid operations, e.g., not all operating systems will run
on all processors, and not all application servers will
work with all databases. In addition, system operators
may impose constraints on how they desire such
compositions to be created. For example, when resources
are limited, only certain users may be able to request
them. Finally, the users themselves have requirements on
how they want the system to behave. Thus, automating
the design, deployment and configuration of such
complex environments is a hard problem.

In this paper we describe a model for generating
specifications for such environments based on policies.
Policies have been traditionally described as rules that
change the behavior of a system [3] and policy based
management has been viewed as an administrative
approach to simplify management by associating certain
conditions with actions.

In our model for resource composition [4], the
complex environments themselves are treated as higher-
level resources that are composed from other resources.
Policy is embedded in the various resource types,
specified by the operators of the resource pool, or by
users as part of the requests for resources, and restricts
the composition choices used when composing higher-
level resources from the component resources. Unlike
traditional policy systems, our policy model does not
couple actions to constraints, and actions (workflows)
needed for realizing the specification of the higher-level
resource are automatically generated. By guiding the
composition using policy, our model offers the following
advantages over other methods of resource composition:

Component specification is easier than traditional
approaches. Policy can be specified in a distributed and
hierarchical manner by specifying the behavior of
individual entities in the system. The designer only needs
to specify constraints (as policy) that relate locally to the
component(s) of interest, without worrying about global
conflicts during composition. All policies that are

relevant are automatically combined to ensure that the
system conforms to the relevant constraints.

The system designer no longer has to be concerned
with how a given composition can be realized. Because
configuration workflows are also generated as part of the
specification, the designer only needs to specify the
configuration actions available on individual entities in
the system.

Updating components becomes easy. If a particular
constraint on a component is modified, a new set of
attribute values are computed by the policy system that
would satisfy all policy constraints in the system, as well
as the new configuration workflow that is needed to
realize the system.

Adding or updating new entities or components is
simplified. Since policy may be attached to any entity,
new (or updated) entity instances and entity types can be
introduced freely with their associated policies. These
new policy instances are automatically considered in the
policy management system when the new or updated
entities are used.

In the next section of the paper we describe the policy-
based model, which is followed by a section on
application of the policy model for automating workflow
creation.

2. Policy-based Resource Composition

When resources are combined to form other higher-
level resources, a variety of rules need to be followed. For
example, when operating systems are loaded on a host, it
is necessary to validate that the processor architecture
assumed in the operating system is indeed the
architecture on the host. To ensure correct behavior of a
reasonably complex application, several thousand such
rules may be necessary if the construction of such
applications is to be automated. This is further
complicated by the fact that a large fraction of these rules
are not inherent to the resources, but depend on
preferences (policies) provided by the system operator or
indeed, by the customer as part of the request itself.

In this section, we propose a policy-based model for
combining resources which allows specification of such
rules in a distributed manner. By capturing the
construction rules as part of the specification of resource
types, and by formalizing how these rules are combined
when resources are composed from other resources, we
provide a very flexible policy-based model for generating
configuration specifications for complex resources.

In our model, we visualize policy as the entire set of
strict (enforced) constraints that restrict allowable
configurations of some target entity to those that satisfy
some goal. Policies are therefore formulated as

constraints on system composition (as opposed to
conditions that arise as a result of system operation). In
our model, resources and configuration activities are
considered as the target entities. Each entity is
characterized by a set of attributes and values taken by
those attributes. For resource entities, the attributes
represent configuration or other parameters of the
resource that are meaningful for resource composition.
For configuration activities, attributes represent if a
particular activity needs to be triggered by the
deployment system, and if so, parameters that are
required for that activity.

Type
Database

Request

Configuration Generator

Policy
Engine

Grounded
Request

Deployment
System

Figure 1: Resource construction process

Figure 1 shows the high level structure of the policy

based configuration generator. The user creates a request
(which may be minimally specific) for a composed
resource. The configuration generator uses a type
database and depending on the policies specified in the
resource request and those associated with the resource
types, generates a “grounded” request specification (i.e.,
a specification that is provably compliant with policy).
The grounded request contains enough detail to allow a
deployment system to instantiate the request. The policy
engine treats the user’s request and the corresponding
policy constraints as a goal to be achieved. It uses a
constraint satisfaction engine to select resource types and
configuration activities, and assigns attribute values such
that all of the policy constraints are satisfied.

Figure 2 shows the meta-model for construction
policy. Construction policy is associated with both
resources and activities that perform configuration
operations on those resources. As part of creating the
configuration specification, instances of resource types
and activities are selected by the configuration generator
such that the resulting model conforms to policy. The
deployment system then uses that specification to initiate
the appropriate activities to configure the resources to
that specification.
Construction policy instances contain constraints that are
defined using the attributes present in the associated
resource type and activity type definitions. When a

resource request is grounded, the configuration generator
ensures that all policy constraints specified for that
resource are satisfied. Because resource types can be
derived from other resource types, this implies that all
constraints for all composing resources are also satisfied.
Activity models contain attributes that describe if a
particular activity needs to be triggered during
deployment. They may also refer to attributes of the
associated resources or other associated activities. By
capturing dependencies between the activities in the
policy specification, workflows or methods may be
modeled as composite activities. Since the configuration
generator creates the union of all (relevant) constraints
when creating the resource specification, it can also
accommodate a variety of operator and user level policies
during grounding.

construction
policy

resourceactivity

associated with

performs
operations on

*

*

* *

Deployment
system initiates

associated with

* *

Figure 2: Relationship between policy, activities, and resources

The language that we use for describing policies is
derived from the SmartFrog language [5]. Constraints
contain first order predicates, arithmetic and logical
operators, and other structural constructs.
5. Creating workflows for automated
deployment

The deployment system has to execute a number of

configuration activities to instantiate the composed
resource. However, these activities cannot be executed in
any arbitrary order. Just as the resources cannot be pre-
composed (the composition depends on user
requirements), the configuration parameters and the
order of configuration cannot be pre-determined and
provided to the deployment system. Depending on the
exact composition, components may need to be
configured differently and may need different work flows
for configuration. Thus, for example, the configuration
activities associated with an application server may
change if the selected database server is different.
Furthermore, depending on the composition, activities
may need to be performed in different order. Some

activities could be executed in parallel while others may
need to wait for others to complete before proceeding.

Our Activity model is loosely based on the notion of
task-graphs as implemented in Microsoft® Project. In
our Activity model, configuration activities are modeled
similar to resources, and are associated with the
resources in the composition hierarchy. As the policy
engine selects resources appropriate for a given request,
it also selects the corresponding configuration activities.
The Activity model is shown in Figure 3. An activity has
set of attributes that determine when the activity will be
performed. It has a duration, a startdate, enddate, and a
mechanism to specify whether there is a deadline
associated with the activity. It has a constraintDate and a
constraintType that determines when the activity has to
be executed. The constraintType could be either, As early
As Possible (ASAP), As Late As Possible (ALAP), Finish
No Earlier Than (FNET), Finish No Later Than (FNLT),
Must Finish On (MFO), Must Start On (MSO), Start No
Earlier Than (SNET), Start No Later Than (SNLT).

Entity

Type: String
Name: String
Duration: duration
DurationEstimated: boolean
PercentComplete: (number)
Priority: String
StartDate: dateTime
EndDate: dateTime
IsMileStone: boolean
Deadline: DateTime
ConstraintDate: DateTime
ConstraintType:
Enum(ASAP,ALAP,FNET,FNLT,MFO,
MSO,SNET,SNLT)

Activity

PredecessorActivity

Type: Enum FS/
SF/SS/FF)
Lag: duration

*

1

FS: Finish - Start dependency
SF: Start - Finish dependency
SS: Start - Start dependency
FF: Finish - Finish dependency

ASAP: As soon as possible
ALAP: As late as possible
FNET: Finish no later than
FNLT: Finish no earlier than
MFO: Must finish on
MSO: Must start on
SNET: Start no earlier than
SNLT: Start no later than

CompensatingActivity

1

0..1

*

 Figure 3: Activity Model

An Activity is made up of other activities. An activity
may have a compensating activity and every activity may
have a set of predecessor activities. Policies are
associated with Activities and so the pre-conditions and
post-conditions of an activity may be specified as
policies. In our model, these pre-conditions and post-
conditions may also be used to create a sequence of
activities in a workflow. We have formalized the
precedence through the type attribute defined in the
association between an activity and its predecessor
activities, which determines the order in which the
activities are executed. These temporal planning based
constructs enable creation of workflows.

n FS type means the predecessor activity is finished
before the successor activity is started (sequence).

n SF means that the predecessor activity is started
before the successor activity is finished

n SS means both the activities are started at the
same time (parallel). Lag if present determines
how much time after the predecessor activity is
the successor activity started

n FF means both the activities must finish together
(synchronize).

Policy constraints associated with each resource
specify the associations between activities and
predecessor activities of itself and its components. These
predecessor activities have to follow the precedence
relationships mentioned above with the successor
activities. As a result of the constraint satisfaction a set of
components are chosen along with a set of activities.
These associations between the so chosen activities
automatically establish ordering between the selected
activities. A post-processor looks through all the enabled
activities and using precedence relationships between the
activities, creates a workflow. Figure 3 shows a part of a
resource model for an e-commerce site with the
associated activities. Note that where refinements exist
(e.g.Oracle9i, IBMDB2 for a database) for resources,
separate configuration activities may be associated with
the refinements. The complete directed acyclic graph
establishes the relationships between activities and their
immediate predecessors.

eCommerceSite

WebServerTier AppServerTier DataBaseServer
Tier

Database Server

Installed
DatabaseSoftware

Server

Computer InstalledOS

upComputer
RP5470

installOS

upServer

installOracle9i
software

upDatabaseServer

upAppServerTier UpDataBaseServer
Tier

upWebServer
Tier

upECommerce

RP5470 RP7400

upComputer
RP7400

Oracle9i IBM DB/2

installIBM
DB2Software

installDatabase
Software

Linux
RedHat8.0

installLinuxRed
Hat8.0

upComputer

Figure 3: A resource model with
associated activities

Figure 4 shows a part of the workflow generated when
the model was used to instantiate an instance of an
eCommerceSite. Note that the workflow contains both
sequential and parallel activities as well as points where
different activities need to be joined. Also note that it is
not always possible to infer the sequence of activities
from the composition hierarchy alone (e.g., the
composition hierarchy does not show that the server has
to be up before database software can be installed on it in
order to instantiate the database server. Such sequences
are determined from the dependencies specified as part of
the activity model.

upAppServerTier

upWebServer
Tier

upECommerce

upAppServer

upWebServer

upComputer
RP5470

installLinuxRed
HatVersion8.0upServer

installOracle9iS
oftware upDatabaseServer

UpDataBaseServer
Tier

upComputer
RP7400upServer

upDatabaseServerinstallOracle9iS
oftware

installLinuxRed
HatVersion8.0

Figure 4: Part of the workflow generated when the e-commerce

site is composed

Conclusion
In this article we have discussed how automated

resource configuration may be undertaken using
constraint satisfaction approach. The first-order logic and
linear arithmetic based policy expressions are used to
create system and workflow specifications of a system to
be deployed.

References
[1] HP Utility Data Center (UDC)
http://www.hp.com/enterprise
[2] IBM Autonomic Computing http://www.ibm.com/autonomic
[3] Nicodemos Damianou, Narankar Dulay, Emil Lupu, Morris
Sloman: The Ponder Policy Specification Language. POLICY
2001: 18-38
[4] Sahai A, Singhal S, Joshi R, Machiraju V. Automated
Policy-Based Resource Construction in Utility Computing
Environments. In the proceedings of IEEE/IFIP NOMS 2004.
[5] SmartFrog http://www.smartfrog.org

