
Online Web Cluster
Capacity Estimation and its

Application to Energy Conservation

Chang-hao Tsai, Kang G. Shin,
John Reumann, Sharad Singhal
chtsai@umich.edu, kgshin@umich.edu,

reumann@us.ibm.com, sharad.singhal@hp.com

The University of Michigan, IBM Research, and HP Labs

Abstract
Designers of data centers and Web servers aim to provide clients resources on demand to decrease the initial
cost of hosted service deployment models. In addition, they must also minimize operating cost, such as energy
consumption, by matching service capacity demand with resource supply. However, since the term “capacity”
is typically defined vaguely or inadequately, it is difficult to assess resource needs in a running system and
usually results in oversized server deployment. To address this problem, we first define the capacity of a
server cluster as the sustainable throughput subject to a request retransmission ratio constraint. Then, we
analyze different approaches of capacity estimation.
Various capacity estimation mechanisms, including off-line benchmarking, CPU-utilization-based, and queue
monitoring (proposed here), are studied and compared. We also employ several different data-collection
methods (application instrumentation, user-space tools, SNMP, and kernel modules) to compare their effects
on estimation accuracy. Among these, queue monitoring is found to provide a good and stable estimate of
server capacity. To validate our findings we applied our proposed estimation method to server cluster sizing
for energy conservation. A good combination of data collection and online capacity estimation is found to
make significantly more energy savings than traditional approaches (i.e., static estimation and scheduled
capacity). Our experimental results show that more than 40% of energy can be saved for regular daily usage
patterns without requiring any prior knowledge of the workload and also that long start-up and shutdown
delays affect energy conservation considerably.

Keywords
World Wide Web, Server Cluster, Resource Management, Power Management, Capacity Provisioning.

Authors
Chang-hao Tsai, +1-734-763-6131, chtsai@eecs.umich.edu, The University of Michigan, Ann Arbor
Kang G. Shin, +1-734-763-0391, kgshin@eecs.umich.edu, The University of Michigan, Ann Arbor
John Reumann, +1-914-784-3122, reumann@us.ibm.com, IBM Research, Hawthorne
Sharad Singhal, +1-650-857-5907, sharad.singhal@hp.com, HP Laboratories, Palo Alto

2

Introduction
• Server clusters provide higher availability and

capacity.
• Capacity is usually statically and conservatively

under-estimated to handle peak load, but...
– Servers are under-utilized (excessive equipment purchase)
– Powering and cooling cost are increasing (operating cost)
– Capacity changes as content changes dynamically

• With an accurate capacity estimation, datacenters
can dynamically allocate resources to services.
– Improve utilization (hosting more services)
– Reduce energy cost (turn off unused servers)
– Ensure service quality

• We estimate capacity by monitoring queues. With
simple controls, >40% power can be saved.

Clustered servers are commonly used to provide highly available and scalable services. The capacity, or
maximum sustainable throughput, of a scalable server cluster is approximately the sum of all individual
servers' capacities. However, the capacity of each server is typically unknown. Capacity is also workload-
dependent and highly-variable. This is due mainly to the unpredictability of resource demands, content change,
and the nonlinear scaling within individual servers.
For the above reasons, the current engineering approach to capacity estimation is to conservatively under-
estimate the capacity of each server based on a coarse-grained (weekly or monthly) system utilization check
and log analysis that describes user demands as well as server performance. Usually, linear scaling is assumed
and then equipment is purchased if the capacity estimate of the current infrastructure does not allow the safety
margin that practitioners value. Thus, servers are almost always severely under-utilized. While the excessive
equipment purchase may not present a major problem to an IT-driven organization or data centers, excess
capacity allocation generally reduces overall system utilization and directly reduces the profit that a service
provider can achieve from a given IT infrastructure. The operational cost of powering and cooling the excess
equipment reduces the profit margin further. Nonetheless, reducing available capacity to lower operational
cost is not an option because this would not allow the system to handle peak loads. Handling peak loads,
however, is an important deployment consideration because every lost request translates into lost revenue,
which is typically much greater than the marginal cost of energy expenditure. Furthermore, we argue that an
application service provider (ASP) also runs the risk of degrading customer satisfaction without appropriate
online capacity estimation and may potentially face service outages. The economic reasons for better
estimation of capacity are, therefore, compelling.
We explore the realities, pitfalls, and techniques of online or dynamic capacity estimation as it is an important
building block in capacity planning, on-demand computing, and energy conservation in server systems. A
symmetric server cluster model is used in this paper. After observing the correlation between queue length and
client-perceived response time, we define “drop ratio” as a measure of user satisfaction and the true “capacity”
of server systems. We propose a new scheme based on queue-length monitoring to estimate server capacity
and compare it with other simpler estimation mechanisms.
To evaluate our approach, we implement and compare several different measurement and estimation schemes.
Our estimation approach is also demonstrated by its application to the well-known energy conservation
problem [1]. In this scenario, we resize a cluster of web servers by utilizing a relatively simple controller to
determine cluster size and dynamically powering them up and down to conserve energy. Our ability to realize
substantial energy savings (in excess of 40%) demonstrates the accuracy and applicability of our capacity-
estimation method. We also show that long start-up and shutdown delays do limit the result of energy
conservation.

3

Related Work
• Workload characterization

– Workload generators: SURGE, httperf
– Benchmark program: SPECweb99, TPC

• Workload is dynamic
– Average HTTP response size changes during a day
– Distributions and parameters differ from site to site

• Energy conservation
– DVS (CPU only)
– Muse (needs pricing model)
– Request batching

• Commercial products
– Reconfigurable blade center

Significant research efforts have been made on web servers' workload characteristics [2,3,4], as understanding
the user model can facilitate the use of workload generators [5,6] and benchmark programs [7] to study server
performance problems. However, changes of the average HTTP response size over time of day suggests that
users' browsing behavior (which might be affected by browser's caching) also changes over time of day [8]. In
addition, more recent workload characterization of dynamic content website indicates diversities in the
workload model and parameters as well [9]. Both evidences suggest that online capacity estimation is the key
tool in service provisioning.
Cluster Reserves [10] extend resource containers [11] to server clusters and achieve service isolation while
services share each server node. However, as server blades provide many small servers to service providers,
estimating server capacity and allocating an appropriate number of servers to each single service is an simpler
approach.
Any performance requirement must come from the users' perspective. Previous research showed that a
response time larger than 10 seconds causes users to think there is an error in the system [12]. Many
researchers attempted to measure client-perceived response time. In [13], HTML document instrumentation is
used to assess response time. However, the result does not include a TCP connection setup time and is only
applicable to HTTP requests. Alternatively, in [14], TCP client-server interactions, including any packet drops,
are used to infer response time. However, as data centers do not have control of network delay or packet loss
in the network, using client-perceived response time directly as a service quality measure for the server is
inappropriate and misleading.
Dynamic Voltage Scaling (DVS) [15] is a well-known technique to reduce energy consumption and has also
been applied to web servers. Bohrer [16] showed via simulation that CPU energy consumption can be reduced
by up to 36%. Our cluster resizing mechanism can be combined with DVS to improve energy conservation.
Chase [1] applied an economic approach, called Muse, to manage energy and other resources in data centers.
In Muse, the value of each resource is quantified in utility functions and services place bid on resources. They
make control decisions by maximizing service revenue and profit, and their results show that 29% or more
energy can be saved for a typical workload. However, we argue that resources cannot be priced easily and the
resource price could also be highly time-variant. Since resource utilization and performance-resource
relationships are difficult to determine, it could make data center operation more complicated and even
infeasible. In this paper, we show that similar energy savings can be achieved by a much simpler method.
Rajamani [17] defined system and workload characteristics which could affect energy savings in server
clusters and applied control to demonstrate that having knowledge of these characteristics can improve the
result of a simple threshold control approach. Unfortunately, a load profile, which is assumed to be available
in that study, may not always be available. Pinheiro [18] also applied power management to cluster-based
systems, including a web server cluster. They estimate the resource utilizations on each server and add them
up to predict the total resource requirement. They also showed that mismatches between decision frequency
and workload-change rate can affect service quality. However, resource demand and utilization typically
exhibit a non-linear relationship, and performance is not directly managed in the control loop. Elnozahy [19]
proposed a request batching policy to reduce energy consumption. It can be combined with DVS and our
method to maximize energy savings.

4

Server Cluster Model
• Cluster Architecture

• Sustainable throughput := maximal throughput subject to not
violating certain thresholds performance metrics

• Capacity is determined by
– Request arrival process, type of request (dynamic, static)
– Users’ performance expectations (patience)
– Server configuration (hardware, software)
– Queue size

Load Balancer /
Virtual Server

Src 65.162.245.5

Dst 216.109.19.2

Src 65.162.245.5

Dst 192.168.4.9

httpd

httpd

httpdReal Server

Real Server

Real Server

Queue

A typical server cluster consists of a load-balancer and a set of servers. In this paper, we assume that the
servers have identical hardware and software configurations, so client requests can be dispatched to arbitrary
servers and service time is (nearly) independent of the real server being used. Servers of different
configurations or servers that can be partitioned would only require straightforward extensions to the results
presented in this paper. HTTP/1.0 encapsulates each request in a new TCP connection, which is chosen as the
basic unit of service. The request arrival process and the implicit resource demand imposed by each request
(and also each TCP connection) are assumed to follow some probabilistic distribution that is unknown to the
server cluster's operator. Although in HTTP/1.1 connections are reused to send multiple requests, our model is
still valid as the requests in one connection can be modeled as one macro request. From our perspective only
arrival process and service time distribution are affected.
Before each request is processed, it may be queued at either the load-balancer or one of the real servers. A
request would only be queued at the load-balancer if the network link toward the chosen real server is being
used. Since the HTTP traffic is usually asymmetric and the network devices can forward packets with very
low blocking probabilities, it is very unlikely that many request packets would be queued at the load-balancer.
Therefore, we assume that the load-balancer does not drop any request and its queue length is ignored in our
model. On the other hand, a request is always queued at the server before a process can pick it up due to TCP.
The size of the server queue (backlog) is determined by the server program and the OS configuration. A server
cannot accept any new connection if the backlog is full. The request is dropped silently, and it will be
retransmitted automatically after a timeout. Ideally, the queue length in active servers will have the same
distributions. With actual queue-length measurements from more than one server, one can estimate the
underlying distribution, and therefore server capacity, with higher accuracy. Although some servers may adapt
their service quality (e.g., the richness in the provided content) in certain situations [20], we assume that the
resource demands by incoming requests are not affected by cluster status. If lower quality content were
equally good for business, it would be wise to always provide lower quality content. Otherwise, buying
additional equipment is generally a cheaper and more predictable approach.
The server capacity is determined by several factors. First, the arrival process of requests and the nature of
each individual request determine both instantaneous and average resource requirements. Second, users'
performance expectations and patience define acceptable service levels, which, in turn, affect the meaning of
the term “sustainable throughput” and hence real system capacity. Third, server hardware and software
configurations directly influence performance and resource requirements. Furthermore, configured queuing
limits on the server side affect the maximal surge size that can be absorbed by the server. Depending on the
request arrival process, this can affect average client-perceived delays, because a request packet drop results in
a long delay due to slow TCP SYN packet retransmission. All of these inter-related factors make accurate
capacity estimation a very difficult problem. These issues have not been fully explored because servers are
often tested using relatively predictable workloads (e.g., typical web benchmarks), or measured in terms of
long running averages that hide inaccuracies in system capacity estimation. With a resizable server cluster like
this, it becomes possible to adapt the size of a cluster online to match the demand. Data center administrators
would like to optimize the allocation of resources to achieve the highest utilization possible, and therefore,
maximize their revenue. On the other hand, they must always provide a high level of service quality to their
customers.

5

Estimating Capacity

 400

 450

 500

 550

 600

 650

 700

 750

 800

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

 120

 140

T
hr

ou
gh

pu
t (

re
q/

s)

Q
ue

ue
 le

ng
th

 /
D

ro
p

ra
tio

 (
%

)

Time (sec)

Throughput
Queue length

Drop ratio

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

C
lie

nt
-p

er
ce

iv
ed

 r
es

po
ns

e
tim

e
(s

)
Time (sec)

samples

• Delay-based
– difficult to measure
– high variance
– arbitrary definition of threshold
– depend on content served

• TCP SYN retransmission
causes poor response time

• Request Drop Ratio
of failed connection attempts
of connection attempts

• Capacity
The max throughput while keeping
the request drop ratio under a
custom threshold (e.g., 1%).

The quality of service is often defined in Service Level Agreements (SLAs) between service providers and
customers as the binding contracts, which typically specify rough performance numbers below which the
service is considered unavailable or unacceptable. Networking SLA requirements are typically phrased in
terms of availability, bandwidth, loss rate, latency, and jitter constraints [21]. In a computing utility
environment like Océano [22], availability, response time, server load, assigned resources, and output
bandwidth are proposed as requirements and goals in SLAs. Such SLAs are, in general, not very precise with
respect to server performance. It is simply too difficult to separate network delay from server delay. Moreover,
delays depend on the service time, which, in turn, depends on the type and complexity of the outsourced
service. Thus, delay is one of the metrics which a service provider cannot commit except on a very basic level.
For example, generating a page by executing a perl script or other dynamic content-creation mechanism is
generally more resource-demanding and, therefore, slower than static pages. A large and infrequently-
accessed object naturally results in a long service time. Hence, metrics which depend on the actual service
itself seem inadequate for gauging service quality in a real system. On the other hand, loss-rate and failure-
based metrics are easier to validate and are much less ambiguous. Therefore, service quality can be expressed
in terms of loss-related quantities. Since we assume that requests are encapsulated in reliable TCP connections,
the only possibility of dropping requests is encountering full queues at a busy server.
We conducted an experiment to show the relationship between the queue length and service quality. We
increase request rate linearly over time with exponentially-distributed client inter-arrival times. All requests
are made to the same document. As shown in the upper figure, as request rate grows with time, the queue
length starts to increase at around 700 reqs/sec and continues to grow until the queue is full. We also monitor
the number of incoming requests that failed to enqueue. As the request rate increases independently of actual
throughput, the request drop ratio also increases with time. Dropped requests will be retransmitted and the
amount of time waiting for retransmission(s) is also figured in the client-perceived response time, which is
plotted in the lower figure on this page.
Since the clients and servers are connected with Fast Ethernet links, the packet-delivery time is usually very
short. However, as requests are dropped by the server, the gap between the response times of requests that
experienced no drop and one or more drops is obvious. The gaps actually map to different TCP timeout values
of 3, 6, 12, 24, and 48 seconds. With users expecting prompt response from servers, especially web servers,
even a 3-second delay will deteriorate client-perceived service quality seriously in spite of whatever service
time the request may take. Experiencing timeouts of 6 seconds or more (i.e., servers can only respond at least 9
seconds after the request had first arrived at the server) can make users lose patience and leave [12].
Based on the above observations, we define the request drop ratio as:
The request drop ratio is measured as the number of TCP connections failed to be established divided by the
number of connection attempts, where each retry is counted as a separate attempt.
With the definition of request drop ratio, we then define the capacity of a server system as:
The maximum number of requests a server can process within 1 second while keeping the request drop ratio
under a certain threshold.
We choose the threshold of request drop ratio as 1% in this paper. We believe that a 1% request drop ratio is a
reasonable choice, since statistically only less than 0.01% of request arrivals will experience a delay of 9
seconds or more.

6

Estimation Mechanisms
• Off-line Static

– Set performance requirements and measure throughput
– Problem: Workload-specific, not portable to different services

• CPU-utilization-based
– Capacity = throughput / CPU utilization
– Good if CPU is the bottleneck in web servers
– However, other factors (such as queue size) can limit capacity.
– Web server (apache), SNMP, admin tools (vmstat, netstat), and

OS kernel (/proc in Linux) all provide CPU utilization data.
– Included in comparison

Off-line Static Estimation
Server capacity can be estimated in many different ways. Benchmark programs are commonly used to measure
a system's ability to handle requests [5,6,7]. Some of them provide the maximum throughput, and others
generate fixed workload and report performance metrics such as request-acceptance ratio and response time.
For the latter type of benchmarks, users can set a performance requirement and repeat the program with
heavier workloads until the result violates the performance requirements. Although benchmark programs can
be used to estimate server capacity, they are also designed with a specific workload model in mind, such as
server functions, user access patterns, content popularity distributions, and so on. However, with new service
components introduced frequently and workload shifts during the course of a day, the fixed benchmark model
and parameters cannot capture these dynamics. Consequently, benchmark programs are good only for
comparing hardware performance in a controlled environment, but not for on-line capacity estimation. With an
inaccurate estimation by benchmark programs, one may over-estimate or under-estimate the actual capacity of
the server cluster, depending on the degree of the benchmark's deviation from the real workload.

CPU-utilization-based Estimation
Another commonly-used method is to log system utilization and estimate achievable maximum throughput
from it. System utilization usually includes CPU and network utilizations, disk activities, etc. Inside a data
center, network bandwidth is abundant so it is usually not the bottleneck. Previous research showed that the
popularity of web objects follows Zipf's law [4]. Therefore, web servers are readily equipped with sufficient
memory, and hence, most objects can be cached in memory, thus eliminating most disk accesses. Besides,
remaining disk accesses are made via a high-speed Storage Area Network (SAN). Hence, CPU becomes the
most probable bottleneck in web servers. Therefore, one may want to estimate capacity by dividing current
throughput by CPU utilization, in order to assess the number of requests a fully-utilized CPU can serve.
This method is simple and can adapt to changes in the workload model. For example, when the proportion of
dynamic content requests increases in the incoming workload, estimation based on CPU utilization can capture
the change as an increase in average CPU demand and then adjust the capacity estimation accordingly.
However, servers have only a limited queuing capacity to hold transient incoming requests. This becomes a
problem when utilization approaches 100%, because the very long predicted queue will not fit within the
system-imposed queuing limits. Therefore, utilization-based estimation typically over-estimates server
capacity by an unknown, workload-dependent factor.

7

Queue Monitoring for Capacity Estimation
• Avoiding SYN retransmissions is

key to dynamic cluster sizing
– Need to predict when retransmissions

become likely, i.e., when capacity is too
limited

• Estimate time needed to fill the
queue

• Estimate avg queue length that
causes overflows

• Capacity is estimated by

narrive

ndrop
naccept

Accept Queue

 >−

=
otherwiseundefined

 if)(/ maxmax ccK
tfill

λλ

>+−−

≤
⋅+−

⋅⋅

=
TtKTcK

Tt
ttTc

tK

fill

fill
fillfill

fill

th

 if
2

])([

 if
))((2

max

max

max

λ
λ

λ

l

<∧<
>∧≥<−⋅+⋅

≥

=

otherwise
)ˆ,max(

or,)ˆ,min(and if)1(

 if

'

c
c
ccc

th

th
th

th

µ
µεεαµα

εεµ

lll

lll

(Eq. 1)

(Eq. 2)

(Eq. 3)

As the cost of having requests dropped from the queue is high and our definition of capacity directly depends
on the request drop ratio, we derive capacity estimates from the queue itself. We assume that the queue can
hold up to K connections and is sampled every T seconds. In each sampling period, we count the number of
enqueuing attempts narrive, the number of connections accepted by server processes naccept, and also the number
of connections dropped ndrop. The time index t of each sampled value and its derivatives are omitted in the text
for clarity. With these numbers, we know that queue length is increased by ∆ℓ = narrive – (naccept + ndrop) at the
end of this sampling period. Instead of having an initial queue length and keeping track of queue length by
adding ∆ℓ, we decided to have the average queue length avg(ℓ) during each sample period as it also captures
the bursty arrivals (and also burst acceptances) in web traffic. We also define arrival rate λ to be narrive/T and
service rate µ to be naccept/T. The current request drop ratio ε is defined as ndrop / narrive which will be used to
adapt the capacity estimate c, and is also used to verify the constraint in the definition of capacity.
As previously shown, a queue with an average queue length less than a certain threshold will never cause any
requests to be dropped. The value of this threshold depends on workload characteristics, such as arrival rate
and burstiness. Since an accurate workload model is not available, we first estimate the threshold from the
queue monitoring result.
The difference between peak arrival rate, λmax, and current capacity estimation, c, represents the maximal
mismatch between arrival rate and service rate. Also, it is the fastest rate that connection requests accumulate
in the queue. The time needed to fill up the queue can be calculated as shown in the slide. As long as tfill is
defined (tfill is undefined only if the capacity estimate is also the peak arrival rate), we can estimate the
threshold, which is the minimal average queue length in a sample period that could lead to an overflow. When
the time needed is shorter than a sample period, the queue can be empty at the start of a sample period.
Otherwise, there must be some connections queued up. The threshold calculation is shown in the slide. After
the threshold has been determined, we predict future queue lengths by assuming that average queue length
grows (or shrinks) linearly with time. If current average queue length grows at a rate of ℓ’ connections/sec, and
a tforcast-second forecast, the predicted average queue length ℓ is therefore est(ℓ) = avg(ℓ) + ℓ’ × tforcast.
We adapt the capacity estimate by combining predicted average queue length and the threshold derived above.
In Eq. 3, εth is the specified request drop ratio constraint, c' is the new capacity estimate and α is a constant to
smooth out changes in the estimate. The first case clamps down the capacity estimate to current service rate if
the request drop ratio constraint is violated. Otherwise, if the queue is predicted to drop requests and the
current estimate is too optimistic, we adjust the estimate toward a more conservative value. Similarly, if a
higher service rate does not make the average queue length growth beyond the threshold, the estimate can be
relaxed. If none of these conditions holds, the original estimate is retained.
The insight behind this queue monitoring is that the average queue length grows in spite of the type of
bottleneck resource. As long as there is a speed mismatch between request arrival and service rates, the queue
length will reflect it immediately. The parameters in this mechanism, including K, T, εth, and tforcast, are all
tunable to match system specification and the request drop ratio constraints. After a certain period in the
adaptation phase, an accurate capacity estimate can be obtained.

8

Measurement Accuracy

 85

 90

 95

 100

 105

 110

 115

 2000 2050 2100 2150 2200 2250 2300 2350 2400

T
o

ta
l c

o
n

n
e

ct
io

n
 c

o
u

n
t

(x
1

0
0

0
0

)

Time (sec)

Apache
netstat

SNMP (of load-balancer)
/proc

QueueMon

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 200 250 300 350 400 450 500 550 600

C
P

U
 U

til
iz

a
tio

n
 (

%
)

Time (sec)

Apache
vmstat

SNMP (of server)
/proc

• Small discrepancies on
connection count. Linux and
apache report smaller values.

• Linux kernel is less accurate in
handling tcpPassiveOpens
SNMP counter.

• Apache only counts CPU time
used by httpd processes.

• Lessons learned: measurement
agent should be light-weight and
scheduled at high-priority.

Before estimating server capacity, we first compare the accuracy of different measurement implementations.
We set up all of them to simultaneously measure one running server at a 1Hz sampling frequency and compare
the thus-obtained results. The server is fed with increasing loads, which are based on the SURGE [5] workload
model with an increasing number of users, so as to assess the accuracy of measuring both a normal server and
an overloaded server. Although running multiple measurement methods simultaneously increases the overhead
of the server under test, this is the only way to make direct comparison of all of them.
To estimate capacity, one of the most important parameters to measure is the total number of connections,
which is also the total number of requests in our model. Before the server became saturated, all five methods
yield exactly the same result (at the lower left corner of the upper figure on this slide). However, as the server
became saturated, it took more than 1 second, which is our sampling period, to retrieve the sample from
Apache, causing zigzags in this figure.
Moreover, the total number of connections obtained by SNMP grows faster than others after the server is
saturated. This inconsistency is due to the interpretation of SNMP specification in the Linux kernel. In kernel
version 2.4, when the accept queue is full, the kernel still responds to SYN packets with SYN+ACK packets.
The load-balancer regards each three-way handshake as the creation of a connection, and hence, increases the
SNMP TotalConnections counter by one as soon as the client responds with an ACK packet. However,
the Linux kernel increases the tcpPassiveOpens counter only after the ACK packet is received and there
is room in the accept queue. Therefore, as the accept queue is full for a non-negligible period of time, many
connections are not be able to move to the accept queue even after a few retries and the inconsistency between
counters arises. The way the Linux kernel handles the counter is less accurate according to the definition in
RFC 1213 (also as STD 17) [23]: the number of times TCP connections have made direct transitions to the
SYN-RCVD state from the LISTEN state.
We also compare the CPU utilization, which we define as the fraction of time the CPU is not idle. The user-
space program vmstat represents CPU utilization in percentages while all other methods express CPU
utilization in total number of jiffies (of 10ms each) spent in each mode. With the actual sampling time of each
point, we convert all CPU performance counters to percentages.
The CPU utilizations obtained by using different methods are plotted in the lower figure. At first, it was
impossible to even retrieve CPU performance counters via SNMP when the server is saturated, because the
SNMP agent cannot get CPU time slot from OS scheduler; this problem was solved by promoting the SNMP
agent's priority. The result shows that CPU utilization grows with request rate (which increases linearly with
time). Compared with other three approaches, Apache consistently under-estimates CPU utilization as it only
counts the CPU time used by itself.

9

Measurement Overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 600 750 900 1050 1200 1350 1500

In
te

r-
sa

m
p

le
 t

im
e

 (
se

c)

Time (sec)

Apache
vmstat

SNMP (on server)
SNMP (on load-balancer)

/proc
QueueMon

• Time-stamping after retrieve
measurement result is more
accurate.

• Measurement processes
must be promoted to higher
priority.

• Inter-sample time of
measurement results from
Apache deviates a lot.

• Queue monitoring is a light-
weight process. More than 500
samples can be obtained under
heavy load.

As the server under test becomes saturated, we also noticed that some of the measurement methods cannot
keep up with the sampling frequency (1 Hz). The unpredictability of sampling interval is due to the OS
scheduler. We tagged each sample with the current system time when the sample is taken. Compared with
“before-sampling” time, we found “after-sampling” time is closer to the time when measurement entities (e.g.,
Apache server, SNMP agent, etc.) actually processed the counter-retrieval request. The inter-sample intervals
of these measurement methods are plotted in the upper figure.
Similar to the SNMP agent, we also promote the priority of other measurement-related processes. As
retrieving measurement results from the /proc filesystem does not create any new process, once the
measurement-retrieval process is scheduled, the result collection can be done immediately. If we did not adjust
the priority, there will be a fluctuating delay between 0.8s to 1.2s. The load-balancer also responds
immediately to SNMP queries in this scenario.
Although the SNMP agent is running at a higher priority, there are still some inter-sample time swing from 1s.
As we use the command vmstat 1 to trigger user-space counter logging, we can also see that the inter-
sample time is more likely to be 1.01s due to the timer accuracy of sleep(). The only method suffered from
frequent deviations around a fixed sampling delay is the Apache status retrieving, as it must be scheduled with
other Apache processes.
Using the same evaluation setup as above, we also compare the overheads of the measurement methods.
Instead of periodically sampling the server, we execute one method at a time and measure the system
continuously. The maximum sampling frequency of each method is plotted in the lower figure. As the figure
shows, when there is little load on the server, four of the five measurement methods can acquire samples at a
rate of 50Hz or much higher, with the exception of user-space measurement tools vmstat which has a limit
of 1Hz sampling frequency by design. However, as request rate increases linearly with time, the maximum
achievable sampling frequency drops exponentially. A high-overhead measurement method like Apache can
only achieve a sampling rate of 5Hz. On the other hand, we can still retrieve queue length measurement results
at 500Hz. Although we do not require a high sampling frequency to estimate capacity, it shows that kernel
instrumentation is a low-overhead measurement method.

10

Queuing Behavior

 0

 50

 100

 150

 200

 250

 300

 1000 1150 1300 1450 1600 1750 1900
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

Q
u
e
u
e
 le

n
g
th

O
ve

rf
lo

w
 r

a
tio

Time (sec)

Run queue length
Accept queue length

SYN queue length
Accept queue drop ratio

SYN queue drop ratio

• Queue length grows
– Run queue
– Accept queue
– SYN queue

• Pitfall: in Linux,
SYN+ACK packets are
dropped if both accept
queue and outgoing
packet scheduler queue
are full. Increasing
default outgoing queue
size helps.

Before using the queue-length monitoring to estimate capacity, we first examine how various queues in a
server system interact with each other and when incoming packets are dropped.
As the figure shows, as request rate increases, the run queue length first reflects the increasing workload. After
we reached the limit of the allowable number (256) of httpd processes, incoming requests start to be
accumulated in the accept queue. No request will be dropped because of the httpd processes count limit. As the
accept queue length grows, we observed that SYN packets were dropped even without any queue filled up.
This was due to the queue size limit of an outgoing packet scheduler. Although the packet scheduler normally
does not drop any packet, the SYN+ACK packet is an exception in Linux. If the SYN+ACK packet cannot be
scheduled to send, the Linux kernel does not retry before dropping it. As the default packet scheduler has a
queue of only 100 packets, bursty traffic can easily fill up the queue before the device driver has a chance to
drain some of the packets. With the limit increased to 1000, no more SYN packets were dropped at this stage.
Before the average accept queue length approaches its limit (128), the instantaneous accept queue length,
which is highly fluctuating and we choose not to plot in the figure for clarity, has reached the limit every now
and then. A full accept queue not only blocks established TCP connections out of the queue (when the ACK
packet is received from the client), but also the first SYN packet from the client will be dropped. Therefore,
we can see that both accept queue and SYN queue drop ratios increase dramatically; almost 10% of new
connections cannot be established if the accept queue is full for a few minutes. Since many SYN packets are
rejected, the SYN queue length grows at a very moderate pace and is far from its limit (1024).

Capacity Estimation -- Baseline
Using the measurement results, we apply all three capacity estimation mechanisms to the server under test. To
determine the actual capacity of the server, we feed linearly-increasing SURGE workloads to the server. We
calculate the drop ratio over a one-minute window and determine the capacity of the server as the average
throughput during that minute. The process is repeated 10 times and the average number, 595 requests per
second, is determined as the server capacity under this workload.

11

Capacity Estimation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 600 1200 1800 2400 3000 3600

R
e

q
u

e
st

 r
a

te
 /

 C
a

p
a

ci
ty

 E
st

im
a

te
 (

re
q

/s
)

Time (sec)

Request rate
Apache

vm/netstat
SNMP

/proc
QueueMon

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 600 1200 1800 2400 3000 3600

R
e

q
u

e
st

 r
a

te
 /

 C
a

p
a

ci
ty

 E
st

im
a

te
 (

re
q

/s
)

Time (sec)

Request rate
Apache

vm/netstat
SNMP

/proc
QueueMon

• Capacity under SURGE
workload: 595 requests/sec

• CPU-utilization-based
estimates are good given CPU-
bound workload and medium
loading. Queue-monitoring
gives most stable result (586
req/s)

• A 0.5s wait for backend
services for each request
shifts the workload to I/O
bound. Only queue-monitoring
produces useful and good
estimates.

Instead of using the simple linearly-increasing workload, we create a sinusoid-like workload, where the
number of emulated users changes like a sine wave, to evaluate the capacity estimation mechanisms under
fluctuating workloads. Due to the nature of SURGE user model, the workload we used here is still bursty
microscopically. When the workload is CPU-bound, CPU-utilization-based mechanism can effectively
approximate system capacity. While this method is simple, the quality of its inputs, i.e., measured data, can
seriously affect its prediction. To this end, we compare the accuracy of four measurement mechanisms that
can be used as input to any capacity-estimation method, including the simple one mentioned above. The result
of capacity estimation by queue monitoring is also included for the comparison purpose.
The upper plot shows how these mechanisms perform relative to each other. Use of Apache's status yields a
poor estimate of server capacity. It typically over-estimates load when the workload is low. This is due mainly
to various layers of indirection and inaccuracies introduced by each of them, e.g., CPU time used by
background processes is not taken into account. Estimates by using the output of vmstat and netstat
commands, using SNMP counters and measurements in the Linux's /proc filesystem are all very close to
each other. They all produce a reasonable estimate when there is a medium-level load on the server, e.g.,
during 200s and 400s in this experiment. Once the server is overloaded, the estimate essentially equals current
throughput while a large number of incoming packets are dropped. The capacity estimated by the queue-
monitoring scheme at first grows with request rate. As soon as the server gets overloaded, our scheme actually
estimates a capacity lower than current throughput, and the estimate, 586 reqs/s, is actually very close to the
one we obtained by static estimation, 595 reqs/s. After the overloaded situation disappears, it yields an
estimate of 614 reqs/s as the queue length drops to a safe region. Most importantly, in between the two
overloaded periods (from 1200s to 1800s), since there are no new triggers to adapt capacity estimation, it
keeps the current estimate. A stable estimate is very important for making control decisions.
The CPU is not the only potential bottleneck of a system, albeit the most trivial to measure. Estimating server
capacity while a resource other than CPU is the bottleneck, is much more difficult because I/O utilization is
fuzzier than CPU utilization. To simulate an I/O bound workload, before the completion of each request, we
artificially insert a 0.5-second sleep to simulate I/O waiting time, such as the time a front-end web server
waiting for back-end database committing transactions, which is common in multi-tier server designs.
Although a fixed I/O time is unrealistic, it suggests that a batch of requests that result in some I/O delay can
easily change the workload from CPU-bound to I/O-bound.
Estimates of server capacity when an I/O-bound workload is present are plotted in the lower figure. Obviously,
all estimations based on CPU utilizations are too optimistic by a large margin. Only the queue-monitoring
scheme provides a stable output regardless of the shift of the bottleneck. Therefore, we conclude that our
server capacity estimation based on queue monitoring is adaptive and can handle a wide range of workloads.

12

Energy Conservation

31%44%38%Dynamic capacity
estimation

failure35%38%Static capacity
estimation

IncreasedDecreased“Standard”Resource demand
per request

• With capacity estimates,
trivial cluster size
controllers can be built.

• Static estimates are
dangerous with
increasing workload
requirements.

• Even prior knowledge of
workload didn’t perform
better than queue
measurement.

• Request drop ratio is
well under controlled.

• Long start-up and
shutdown delay reduced
the benefits of adapting.

35%

38%

41%

44%

47%

50%

0 30 60 90 120 150 180 210

Delay (sec)

En
er

gy
 s

av
in

g
(%

)

Start-up
Shutdown

Traditionally, sizing a server cluster is based on a fixed schedule, which is usually derived by observing
typical daily demand fluctuations from logs. A fixed number of servers are activated to provide services
regardless of current utilization or service quality. The time granularity of a schedule depends on how fast the
workload changes and it is usually in the order of one hour. Although this scheme is simple, it does not
provide any service-quality guarantee, and the cluster is usually under-utilized.
Another commonly-used practice is to benchmark each server's capacity and then use controllers to adjust the
number of active servers accordingly. We call this static controller. Safety margins are also frequently used to
avoid capacity over-estimation even if the utilization is lowered at the same time. In addition, since a
benchmark workload usually differs from actual workload and the workload itself also changes during the
course of a day, static controllers cannot achieve the highest utilization.
With on-line capacity estimation, a controller as simple as a static controller can still be utilized and is more
effective. We call this dynamic controller. With more accurate capacity estimation, the timing to adjust cluster
size can be more precise, and thus, more energy can be saved without sacrificing service quality. In what
follows, percentage energy-savings are compared with an always-on server clusters. While much energy is
wasted for very little productivity, it is still the most common practice today.
We first compare static controllers with dynamic controllers by using the same workload model that was used
to determine server capacity statically. Since the workload is identical, both controllers perform almost the
same. Both controllers achieve 38% of energy savings and merely 0.001% of total requests experienced
accept queue overflows and penalties of TCP timeouts. Although the performance is similar, the dynamic
controller does not require any prior knowledge of the workload and is, therefore, easier to deploy. Also, for
comparison with fixed-schedule controllers, we have also built a capacity schedule based on the user
population profile. If the schedule has a time slice of 30 minutes, 31% of energy can be saved. If the size of
the time slice increases to two hours, energy savings are reduced to 25%.
When per-request resource demand is reduced by halving the object size, the static controller still turns on new
servers when the throughput reaches 595 reqs/s for each server. However, active servers did not reach full
utilization at that moment, and hence, turning on new servers would consume extra energy. On the other hand,
the dynamic controller estimated each server to be able to handle about 750 reqs/s, so it turned on servers later
and turned off servers earlier. At the end of the experiment, static controller saves 35% of energy while
dynamic controller saves 44% of energy. The service quality is well maintained as there is less than 0.001%
of total requests experienced accept queue overflows. This demonstrates the ability of capacity estimation to
correctly recognize the decreased resource demand in each request, thus saving more energy.
(continue on next page)

13

Conclusion
• Capacity: sustainable throughput with <1% SYN drop

– Client-perceived performance ensured
– Easy to measure
– Easy to control
– Three different estimation methods (off-line, CPU-based, and queue-

monitoring) are implemented and compared.

• Queue-monitoring generates superior results compared
to other techniques
– Applicable to diverse and changing workloads
– Low-overhead – no need to look for lower-overhead solutions

• Energy-conservation
– Up to 44% energy savings with simple capacity-based controller
– No prior knowledge is required
– Start-up and shutdown delays longer than 1 minute start to affect

performance

(continued from previous page)
To simulate increased per-request resource demand, we replace each static document with a Server-Side
Include (SSI) dynamic document. When the static controller is applied to this scenario, the result becomes
totally unacceptable as the server saturated before reaching its outdated estimated capacity. Therefore, no new
server is turned on to share the workload. A large number of requests failed to go through. On the other hand,
the dynamic controller does not suffer from the same problem. As the active server gets saturated, new servers
are activated and the quality of service is maintained. The result shows that 31% of energy is saved in this
experiment and only 0.002% of total requests experienced queue overflows.
We also simulate the effect of different start-up and shutdown delays. While keeping shutdown delay at 60s,
we simulate various start-up delays between 15s and 180s. As the result shows, a delay longer than 60s starts
to affect the performance of energy conservation. Similarly, long shutdown delays also reduce the benefits but
at a less extent.

Conclusion
In this paper, with a symmetric server cluster model and empirical evidence that shows the impact of dropping
TCP handshake packets, we defined the capacity of Internet servers as sustainable throughput with a low (e.g.,
1%) SYN request drop ratio. This definition ensures that the client-perceived performance remains acceptable
as long as enough capacity is allocated. To estimate capacity, we proposed a new mechanism based on listen
queue monitoring and demonstrated that it is superior to utilization-based estimation approaches. Also,
different means of collecting system performance measurements are all implemented, tested, and evaluated.
We found that pitfalls exist in different measurement methods, such as the priority of measurement-collection
processes and the actual meaning of each counter value. More importantly, our queue-monitoring mechanism
can obtain a good estimate of server capacity irrespective of whether workload is CPU-bound or I/O-bound.
We applied the server capacity estimation scheme to adapt the size of a web server cluster. By turning on and
off servers to match actual workload, energy consumption can be reduced significantly and utilization (and
therefore profits) of a data center can be maximized. Without requiring prior knowledge of workload or cost,
we achieved 31 to 44% of energy savings under various workloads, thus affirmatively supporting the value of
a good capacity-estimation mechanism.

References
[1] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing energy and server resources in
hosting centers. In Proc. of the 18th ACM SOSP, 2001.
[2] M. Crovella and A. Bestavros. Self-similarity in world wide web traffic: evidence and possible causes. In
Proc. of the ACM SIGMETRICS, 1996.
[3] M. Arlitt and T. Jin. Workload characterization of the 1998 World Cup web site. HP Labs Tech Report
HPL-1999-35(R.1), 1999.
[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: evidence
and implications. In Proc. of IEEE INFOCOM, 1999.
[5] P. Barford and M. Crovella. Generating representative web workloads for network and server performance
evaluation. In Proc. of ACM SIGMETRICS/PERFORMANCE, 1998.
[6] D. Mosberger and T. Jin. httperf: a tool for measuring web server performance. In Proc. of the 1st
Workshop on Internet Server Performance, 1998.
[7] SPEC. SPECweb99 Benchmark. http://www.specbench.org/osg/web99/, 1999.
[8] J. Judge, H. Beadle, and J. Chicharo. Sampling HTTP response packets for prediction of web traffic
volume statistics. In Proc. of Globecom, 1998.
[9] W. Shi, R. Wright, E. Collins, and V. Karamcheti. Workload characterization of a personalized web site
and its implications for dynamic content caching. In Proc. of the 7th Int'l Workshop on Web Caching and
Content Distribution, 2002.
[10] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: a mechanism for resource management in
cluster-based network servers. In Proc. of the ACM SIGMETRICS, 2000.
[11] G. Banga, P. Druschel, and J. Mogul. Resource containers: a new facility for resource management in
server systems. In Proc. of the 3rd OSDI, 1999.
[12] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is in the eye of the beholder: meeting users' requirements
for Internet quality of service. HP Labs Tech Report HPL-2000-4, 2000.
[13] R. Rajamony and M. Elnozahy. Measuring client-perceived response times on the WWW. In Proc. of the
3rd USENIX USITS, 2001.
[14] D. Olshefski, J. Nieh, and D. Agrawal. Inferring client response time at the Web server. In Proc. of the
ACM SIGMETRICS, 2002.
[15] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU energy. In Proc. of OSDI,
1994.
[16] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, and R. Rajamony. The case for power
management in Web servers. In Power-Aware Computing (Robert Graybill and Rami Melhem, editors).
Kluwer/Plenum series in Computer Science, 2002.
[17] K. Rajamani and C. Lefurgy. On evaluating request-distribution schemes for saving energy in server
clusters. In Proc. of ISPASS, 2003.
[18] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load balancing and unbalancing for power and
performance in cluster-based systems. Tech Report DCS-TR-440, Dept. of Computer Science, Rutgers Univ.,
2001.
[19] M. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation policies for Web servers. In Proc. of the
4th USENIX USITS, 2003.
[20] T. Abdelzaher and N. Bhatti. Adaptive content delivery for Web server QoS. In Proc. of Int'l Workshop
on QoS, 1999.
[21] J. Martin and A. Nilsson. On service level agreements for IP networks. In Proc. of INFOCOM, 2002.
[22] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishnakumar, D. Pazel, J. Pershing,
and B. Rochwerger. Oceano -- SLA based management of a computing utility. In Proc. of IFIP/IEEE IM, 2001.
[23] K. McCloghrie and M. Rose. Management information base for network management of TCP/IP-based
internets. RFC 1213, 1991.

