
Appeared in the Proceedings of the Ninth International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications
Systems, pp. 61-69, Cincinnati, Ohio, August 2001. ©IEEE

Optimal Resource Assignment in Internet Data Centers

Xiaoyun Zhu Sharad Singhal
Hewlett-Packard Laboratories

1501 Page Mill Road, Palo Alto, CA 94304, USA
{xiaoyun, sharad}@hpl.hp.com

Abstract
This paper presents a resource model that describes the

computing and networking components in a resource
sharing environment in an Internet Data Center (IDC), a
model for multi-tier applications that need to be deployed
in this environment, and an optimization problem for
resource assignment aimed at minimizing the
communication delay between the servers. A number of
techniques are introduced to search for the
optimal/suboptimal solutions. These include projection of
the solution set, partition of the network and pruning of
the search space, and local clustering for large problems.
Results are given for two examples to demonstrate the
effectiveness of the algorithms.

1. Introduction

The rise of Applications Service Providers (ASPs) can

be attributed to the ever-growing cost of information
technology and the increasing complexity of managing the
mission-critical enterprise and Internet applications. By
outsourcing these applications to ASPs, large corporations
and dot-coms receive the benefit of organizational
efficiency, shorter time-to-revenue, as well as improved
customer satisfaction. However, the level of service
provided cannot be guaranteed without the support of a
highly available, scalable, flexible, and secure
infrastructure. Internet data centers (IDCs) aim to provide
such an infrastructure to ASPs and web site hosters for
planning, deploying and managing complex applications.
While some data center providers only offer co-location
services (e.g., leasing secure data center space and
network connectivity) to third-party ASPs, others own the
servers (compute and storage nodes) in the data center and
provide value-added management services including
security, performance monitoring, content distribution,
and capacity planning. Many data center providers are
themselves ASPs who manage not only the infrastructure
but also the applications.

Internet data centers have grown rapidly over the past
few years, both in the number of data centers built

globally and in the size of each individual data center.
Current data centers can contain tens of thousands of
servers with high-speed network connections for both
inter- and intra- data center communications. Managing
both the infrastructure and the applications in such a large
environment raises many challenging questions that do
not exist in smaller environments.

In [7], the operational scalability for large data centers
is addressed. On one hand, it is desirable to share data
center resources among different customers and
applications to maximize resource utilization. On the
other hand, customers prefer dedicated resources for their
applications that offer isolation and security as well as
flexibility in the types of applications hosted. In [7] the
notion of “virtual application environments� (VAEs) was
proposed to deal with this issue. A VAE is a collection of
data center resources allocated to a customer application
matching the specific configuration requirements of the
application. Although some resources, e.g., the network,
may be shared among applications, the resources are
partitioned and encapsulated such that the VAE logically
appears as if it were a dedicated environment. This
approach is adopted is our paper. We focus on this shared
environment for resource allocation, which is drastically
different from the caged environment currently available
in many data centers.

To reduce time-to-market for the customers, customer
applications need to be deployed within the data center in
a timely fashion. In addition, the dynamic nature and high
variability of the workload in many applications,
especially e-business applications [6], requires that the
resources allocated to each application be easily
adjustable to maintain service level agreements (SLAs).
Therefore, resource allocation and deployment of
applications need to be programmable and highly
automated. Moreover, because multiple customers co-
exist in the data center, it is important to allocate
resources intelligently to avoid bottlenecks within the data
center. In this paper, we address the problem of
automatically assigning resources to applications. Simply
put, given a free pool of data center resources (computing,
storage, networking etc.), the problem is to decide which
ones to allocate to a given customer application. Certain

mailto:{xiaoyun, sharad}@hpl.hp.com

constraints and cost function are posed so that resources
are assigned in an optimum way instead of being
randomly chosen from the free pool.

Resource assignment is needed not only when an
application is initially deployed in the data center, but also
when incremental assignment is invoked by the dynamic
resource management service (see [7]). The latter is
referred to as “capacity on demand,” which means servers
can be added to or removed from an application based on
real-time workload and performance measurements. We
will focus on the initial assignment problem in this paper.
The algorithms presented can be easily modified to also
determine which resources should be added to or removed
from an application when capacity demand has changed.

1.1. Related Work

The techniques for resource management and task

scheduling in parallel and distributed computing systems
can be classified into two categories: dynamic scheduling
and static scheduling. Dynamic scheduling deals with a
continuous stream of real-time computing jobs and
balances the load across available resources for better
throughput, for example, scheduling of independent jobs
on parallel supercomputers [2]. In contrast, static
scheduling handles a set of tasks that communicate with
one another, and the scheduling is done before run time.
An early work by Stone [8] solved a two-processor
scheduling problem using network flow algorithms. Since
then, many heuristics have been proposed for similar
problems [5]. However, they mostly aim at minimizing the
completion time of all the tasks. The resource assignment
problem in our paper falls into the category of static
scheduling, but with a different objective function. This is
in some sense similar to [9], which assigns a task
consisting of communicating modules to a hypercube
multi-computer to minimize the total communication
traffic. The difference is, in [9] the compute nodes in the
hypercube are homogeneous and there are no bandwidth
limits on the communication links. Our work also differs
from the more refined resource management for a single
server discussed in [1]. While resources can be
dynamically allocated with workload, the effort required
to provision an application on a computer is large enough
that fine-grained optimization is not possible.

The main challenge for resource management in a
shared data center environment is scalability. A remotely
related research effort is the Global Grid Forum [3], a
community-initiated forum of individual researchers and
practitioners focusing on the promotion and development
of wide-area distributed computing technologies and
applications. The commonality between the “grid”
technologies and technologies for large data centers is the
emphasis on dealing with large-scale systems and creating
a scalable infrastructure.

Resource allocation in large-scale e-service systems has
also been presented in [4], which describes optimal
partitioning of services among servers using a model
called “systems of servers”. It uses high-level abstractions
of both servers and services to tackle the large solution
space, and employs genetic algorithms to search for sub-
optimal solutions to the problem. The advantage of using
an abstract system representation is the potential to apply
the technique to a general class of large distributed
systems. The disadvantage is its requirement on detailed
modeling to guarantee crucial system and application
specific information does not get lost in the abstraction.

We next define the data center resource model in
Section 2. Section 3 describes a general model for typical
multi-tier applications in a data center. The optimization
problem is formulated in Section 4. Section 5 describes
the computational complexity associated with solutions to
this problem and discusses a variety of techniques that are
used to reduce the complexity. We also present a layered
partition and pruning algorithm, which allows us to find
the optimum solution for medium sized problems. Section
6 gives results for two examples. Section 7 offers
concluding remarks and a description of future work.

2. The Resource Model

An approach for handling manageability and scalability

in large data centers is to partition its resources into
smaller units that are easily replicable. We call each of
these units a “service core”. Each service core is assumed
to have between 100 ~ 1000 servers and can host many
customers. The resources in a service core include servers
(compute and storage nodes) and networking components
(switches, routers, firewalls, and load balancers). Through
the use of virtual LAN technology, it is possible to
partition the service core into logically independent
customer topologies [7]. When planning for multiple
applications in a single service core, we can either
consider all applications at the same time and try to
achieve the best overall resource allocation, or we can
sequentially assign one application at a time, which
means after one application has been planned, resources
consumed by it are subtracted from the available resource
pool before the next application is planned. We take the
second approach because of its simplicity and its
recursive nature. Moreover, this approach is closer to
current practice, wherein applications are typically added
or removed from data centers over time.

Resources in a service core can be classified based on
their basic functionality. In this paper we consider a
resource model that contains two types of resources:
servers and switches, where a server can be a compute
node, a storage node, or a combination of both. This
section describes their physical topology and performance
attributes that are important for the applications.

2.1. Notation

For any matrix X, X� is the transpose of X, Tr(X) is the

trace of X, and diag(X) denotes the vector that appears on
the diagonal of matrix X. ijX represents the element of X

on the ith row and jth column, while jX denotes the jth

column vector in X. Let md×1 be the all-1 matrix with
dimension md × . d1 denotes the d-dimensional column

vector with all 1’s, and ′
d1 is the corresponding row

vector. 0 is used to represent a zero scalar, a zero vector or
a zero matrix, depending on the context. The operator ⊗
is used for the element-wise matrix multiplication. Any
ordering (=,<,>) between two vectors or matrices is on an
element-by-element basis. For a finite set A, |A| denotes
the cardinality (or size) of the set.

2.2. Topology

The overall topology of a service core is shown in

Figure 1. A major concern in designing the network
topology for the service core is its scalability. One
implication is that a hierarchical structure is more
desirable than a flat one. Our network model for a service
core uses a tree-like structure with three layers of
switches: a switch mesh (SM), a number of edge switches
(SE) and more rack switches (SR). (This can be
generalized to any number of layers.) The delay inside the
switch mesh is ignored so that the switches that make up
the mesh can be viewed as one single node in the tree. The
servers (N) are connected to rack switches. In Figure 1,
the nodes represent the servers and switches, and the
edges represent the links that connect them. All the links
are duplex links and traffic can go in either direction. We
assume that the resources in one service core are sufficient
for the application we need to deploy. So only a single
service core is considered, which simplifies the problem
and make the model more mathematically tractable.

The topology of the service core can be captured using
three adjacency matrices: ERH , RNH and ENH , which
characterize the connectivity between SE and SR, SR and
N, SE and N, respectively. All the three matrices have the
following structure, with different dimensions:

.

11

11
11

�
�
�
�

�

�

�
�
�
�

�

�

=

�

�

�

�

H

For example, 1=ER
pqH means the pth edge switch is

connected to the qth rack switch. It is easy to see the
connection between these matrices: RNEREN HHH = .

Three parameters are used to describe the size of the
service core: EN (no. of edge switches), RN (no. of rack
switches) and M (no. of servers). This representation does
not impose symmetry on the structure of the network,
although a real service core typically has a great deal of
symmetry in the initial structure so that it is easier to
build. The symmetry gradually diminishes as more and
more resources are assigned to customer applications.

2.3. Attributes

The capacity and computing power of each server can

be modeled as a set of attributes. Commonly used server
attributes include processor speed, number of processors,
disk capacity, disk bandwidth and memory size. There
may be other attributes depending on applications.
Suppose there are a total of K server attributes. The
attributes can then be represented by a MK × matrix A,
where kjA is the kth attribute of the jth server.

Now consider the bandwidth attributes for all the links
that connect the servers and the switches. Due to the
hierarchical structure of the network the links have three
layers. For each duplex link we use two parameters to
characterize the bandwidth limit for the incoming and
outgoing traffic. Here “incoming” means going down the
hierarchy, and “outgoing” means going up the hierarchy.
Therefore, a total of six parameters, EIB , EOB , RIB ,

ROB , NIB and NOB , are used to describe the incoming
and outgoing bandwidth at the edge switches, the rack
switches, and the server nodes, respectively.

3. The Application Model

In this section we describe a multi-tier model for the

application that needs to be deployed in the service core.

3.1. Configuration

A typical Web application has a three-tier structure,

containing front-end web servers, application servers and

SM

SE SESE

SR SR SR SR

N N N N
… …

… …

… …

Figure 1. Topology of a service core

back-end database servers. This concept is adopted in our
application model, with every two neighboring tiers
connected through a virtual LAN (VLAN). Figure 2 shows
the configuration of a three-tier application. To be
flexible, we assume there are D tiers in the configuration.
Tier 0 is an abstraction of the connection to the Internet.

0T can be a router, whose detail is neglected in our model.
A D-dim vector C determines the distribution of servers
among tiers, where iC are assumed known a priori.

3.2. Requirements

Each application to be deployed has certain

requirements on the attributes of the servers and the
bandwidth of the network. It is conceivable that the
requirements for different servers and different links in the
network can be different. Again we make the following
assumptions to simply these requirements.

For server attributes:
• Servers in the same tier have similar functionality.

Therefore, they have uniform attribute requirements.
We assume the requirements for the server attributes

can be characterized using two KD × matrices L and U,
where ikL and ikU are the lower bound and the upper
bound for the kth attribute of all the servers in the ith tier.
For instance, if the servers on the first tier need to have
5~8 processors of at least 400 MHz speed, then

511 =L , 811 =U , 40012 =L , ∞=12U .

For link bandwidth:
• The amount of traffic generated by different servers in

the same tier is compatible, therefore is considered
identical in this model.

• Traffic coming into each tier is evenly distributed
among all the servers.

• No traffic goes between servers in the same tier.
We define a DD × matrix E to be the traffic matrix

for the application, where 'iiE indicates the maximum
amount of traffic going from each server in the ith tier to
each server in the i�th tier. In addition, two scalar
parameters 01E and 10E are used to capture the traffic
coming into and going out of the service core. Using these
parameters, we can calculate the total amount of incoming
and outgoing traffic at each server in different tiers,
denoted by two 1×D vectors IE and OE , respectively.

In particular, []′+= 0010 �EECEO , and

[]′+′= 0001 �ECEE I .
Modeling and prediction of bandwidth requirements for

real applications is a hard problem and is extensively
studied by many researchers. In this paper we focus on
the resource assignment problem, therefore, we assume
these requirements are given and can be simplified and
converted into the above form. The above assumptions on
link bandwidth may not hold for all applications, but they
are good approximations for generic multi-tier Web
applications that we consider here. We will talk about
relaxations to these assumptions at the end of the paper.

4. The Optimization Problem

Now we are ready to define the optimization problem

for resource assignment. On one hand, the servers
assigned to an application should meet the attribute
requirements of the application, and the amount of traffic
the application generates should not exceed the
corresponding bandwidth on individual links. On the
other hand, the objective of the optimization depends on
the needs of each application. For example, from a data
center management point of view, physical locality of the
servers for a single application may be preferred, while
for application performance, it is desirable to minimize
the average communication delay inside the service core
to improve the response time. The latter is adopted in this
paper, that is, to minimize the total amount of network
traffic between the servers weighted by the lengths of
individual communication paths. The objective function is
similar to the notion of “communication traffic” used in
[9]. The details are discussed further in Section 4.3.

4.1. Decision variable

We need to determine which server node should be

assigned to which tier. This can be represented by a
MD × matrix variable X, where

01E

12E

23E

T11 T12 T1C 1

T21 T22 T2C 2

T3C 3 T32 T31

Tier 2

Tier 3

VLAN 1

VLAN 2

VLAN 3

10E

21E

T0

Tier 1

Tier 0

32E

Figure 2. Configuration of an application

�
�
�

=
otherwise.

ith tier; the toassigned nodeserver jth

,0
,1

ijX

4.2. Constraints

The following constraints are posed on the decision
variable. Due to limited space we only present the final
matrix representation of the constraints. Most of the
derivation that is omitted is fairly straightforward.
• The number of servers allocated to the ith tier is iC .

.1 CX M = (1)
• Each server can only be assigned at most once.

MDX 11 ≤′ . (2)
• Attribute values for each server assigned satisfy the

upper and lower bound conditions.
XUAXXL DK ′≤⊗≤′ ×)1(. (3)

• The bandwidth constraints for all the links that
connect the servers to the rack switches are

NOO BEX ≤′ , 4)
NII BEX ≤′ . 5)

• Now let’s consider the bandwidth constraints for the

links that connect the rack switches to the edge
switches. The outgoing traffic at the qth rack switch
should be the total amount of traffic generated by all
the connected servers under this switch reduced by
the traffic sent directly to the same group of servers.
And it is subject to the bandwidth limit of the
corresponding outgoing link. Therefore, we get

RORNRNORN BEXHXHdiagEXH ≤
′′−′)(. (6)

Similarly, the bandwidth constraints for the incoming
links at the rack switches are

 RIRNRNIRN BEXHXHdiagEXH ≤
′′−′)(. (7)

• With a similar derivation, we can get the bandwidth
constraints for all the outgoing and incoming links
that connect the edge switches to the mesh switches:

 EOENENOEN BEXHXHdiagEXH ≤
′′−′)(, (8)

 EIENENIEN BEXHXHdiagEXH ≤
′′−′)(. (9)

4.3. Objective Function

The goal of the optimization is to minimize the average
communication delay inside the service core for each
application without violating the above constraints. The
number of hops (hN) for each data packet to go through
is used as an estimate of the communication time. For the
traffic that only goes through a rack switch (RF),

2=R
hN ; if it has to go through an edge switch but not a

mesh switch (EF), 4=E
hN ; if it has to go through the

mesh switch (MF), 6=M
hN . It is desirable to give

preference to the server pairs that communicate more
frequently. Hence, we define the objective function as the
total amount of traffic going through all the switches
weighted by the corresponding number of hops, i.e.,

MM
h

EE
h

RR
h FNFNFNJ ++=ˆ . (*)

To simplify the notation, let EXXY ′= ,
′

= RNRNR YHHY , and
′

= ENENE YHHY . Y indicates
the amount of traffic going between all the server pairs,
while RY (EY) indicates the amount of traffic going
between all the rack (edge) switch pairs. By simple
calculation, we have)(2)(26ˆ ERO YTrYTrECJ −−′= ,

where OEC′ is the maximum amount of overall traffic
generated by all the servers. Since OEC′ is a constant,
instead of minimizing Ĵ , we can maximize J, where

).()(

)()(
′′+

′′=

+=

ENENRNRN

ER

EXHXHTrEXHXHTr

YTrYTrJ
(**)

In summary, the optimization problem we need to solve

is the following:

)()(max
′′+

′′ ENENRNRN

X
EXHXHTrEXHXHTr

s.t. CX M =1 , (1)
 MDX 11 ≤′ , (2)

 XUAXXL DK ′≤⊗≤′ ×)1(, (3)
NOO BEX ≤′ , (4)

NII BEX ≤′ , (5)
RORNRNORN BEXHXHdiagEXH ≤

′′−′)(, (6)

RIRNRNIRN BEXHXHdiagEXH ≤
′′−′)(, (7)

EOENENOEN BEXHXHdiagEXH ≤
′′−′)(, (8)

EIENENIEN BEXHXHdiagEXH ≤
′′−′)(. (9)

Since the objective function is quadratic and the

constraints contain quadratic inequalities, the optimization
involves constrained nonlinear programming, which
cannot be solved by directly applying conventional linear
programming packages. The binary constraint on the
decision variable adds to the complexity of the problem. It
is a hard problem due to its combinatoric nature. Next, we
propose an algorithm that combines a number of
techniques to reduce the complexity of the problem.

5. The Algorithm

In general, for a combinatorial problem, finding the

global optimum is not guaranteed unless an exhaustive
search method is employed. In the optimization problem
defined in the previous section, the decision variable X is a
matrix with MD × binary entries. A simple backtracking
algorithm on the row vectors of X can be used to
enumerate through all X that automatically satisfy the
constraints (1) and (2). Let Ω be the set of all such X, then

�−
=Ω

i
iD CMCCC

M
)!(!!!

!||
21 �

, which goes up

exponentially with M. If we refer to small, medium, and
large sized problems as those that deal with a service core
with M<10, 10<M<100, and M>100, respectively, then the
above enumeration is only feasible for small problems.
For medium and large sized problems, we need to develop
more intelligent search algorithms.

5.1. Identifying infeasible servers

A typical service core environment contains servers of
different types and capabilities. At the same time, different
tiers in the application can have different performance
requirements. Therefore, it is common that not every
server is feasible for every tier. The infeasible servers can
be identified based on constraints (3)-(5) and excluded
from the beginning of the search. If a server class is the set
of servers that have identical parameter values for the K
server attributes, then there are typically a small number
of server classes (W<10) in the service core. We can pre-
compute an attribute feasibility matrix AF (WD ×)
based on constraint (3), where 1=A

iwF means the wth
server class satisfies the attribute constraint of the ith tier,
and 0 otherwise. Similarly, a bandwidth feasibility matrix

BF (MD ×) can be computed based on constraints (4)
and (5). Let F be the combined feasibility matrix, then we
only need to search X that comply with F. Let FΩ be the
set of all such X, then |||| Ω<ΩF . The difference
depends on the number of infeasible servers for each tier.

5.2. Projection of the solution set

Another special property of the service core that we can
take advantage of is the symmetry in the topology of the
network, especially when each rack switch is connected to
a large number of servers, and when most of the servers
are still available for assignment. This property results in a
great deal of redundancy in the number of possible
combinations for assigning servers to different tiers. In
fact, what is important is the number of servers assigned to

each tier under each rack switch, which is captured in
′

== ′
RN

H

R XHXPX
RN

)(, where ′RNH
P can be

considered as a projection map. Let R
FΩ be the image set

of FΩ under this map. Then, the original optimization
problem can be simplified and reformulated as

)()(max
′′

+
′

Ω∈

ERRRERRR

X
HEXXHTrEXXTr

R
F

R

s.t. RORROR BEXXdiagEX ≤
′

−
′

)(, (6)’

RIRRIR BEXXdiagEX ≤
′

−
′

)(, (7)’

 EOERRRERORER BHEXXHdiagEXH ≤
′′

−
′

)(, (8)’

 EIERRRERIRER BHEXXHdiagEXH ≤
′′

−
′

)(. (9)’
Therefore, the search algorithm can be broken into two

steps. The first step solves the above optimization
problem and finds one *RX that maximizes J. The
second step converts *RX back to *X that determines
the optimal assignment for each server. This conversion is
in general a one-to-many mapping. The criterion used in
our algorithm is to assign more powerful, high-end
servers to tiers with more stringent requirements to
promote higher utilization of the servers.

As one way to compare the complexity of the
reformulated optimization problem with the original one,
we can compare the sizes of the two candidate solution
sets. In general, |||| Ω<<ΩR

F . How great the reduction
is depends on many parameters in the problem. Figure 3
compares || R

FΩ with || Ω for different values of M.

Figure 3. || Ω vs. || R
FΩ for

M = 20, 40, 60, 80, 100, and C = [3 4 2]

20 30 40 50 60 70 80 90 100
10

0

10
5

10
10

10
15

10
20

No. of server nodes

S
iz

e
of

 th
e

so
lu

tio
n

se
ts

o: |Ω|

*: |ΩF
R|

This figure clearly demonstrates the effectiveness of the
above two techniques in reducing the number of candidate
solutions. In this example, only the total number of servers
M is varied while all the other parameters remain fixed.
Other parameters that affect the complexity of the problem
include the number of tiers in the application (D), the
number of servers in each tier (C), the number of server
classes (W), the feasibility matrix of the servers (F), and
the mix of servers under each rack. As another example,
Table 2 shows how || Ω and || R

FΩ vary with C by
fixing other parameters (M = 40, D = 3, W = 3). The
number in the parenthesis in the first line is the total
number of servers to be assigned. As we can see, although

|| R
FΩ goes up with � iC , it grows at a much lower

speed than || Ω does. This again demonstrates how the
projection technique simplifies the problem. The effect of
other parameters is quite similar, hence is not shown here.

Table 1. Influence of C on || Ω and || R

FΩ

5.3. Partition of the service core

In the rest of the discussion, we focus on how to
efficiently solve the reformulated optimization problem in

RX . Let R
qX be the qth column vector in RX that

indicates the distribution of servers under the qth rack
switch. Again a backtracking algorithm can be employed,
which traverses the state space tree of all possible values
for each R

qX . The depth of the tree is 1+RN , and the

total number of leaves in the tree equals || R
FΩ , which is

generally exponential in RN , the number of rack
switches. A standard technique for reducing the size of the
state space tree in a backtracking algorithm is pruning. Its
success relies on the ability to identify nodes that belong
to infeasible or non-optimal solutions early on during the
search. This is indeed possible for the above problem. In
fact, constraint (6) can be rewritten as

RRO
q

R
q

R
q

OR
q NqBEXXEX ,,1 ,)()(�=≤′−′ , where

the constraint for each R
qX is independent. Therefore, the

qth inequality in constraint (6) can be checked right after
each R

qX value is generated. If it is not satisfied, then the
whole subtree below this particular node can be pruned.
The same idea applies to constraint (7) as well. Similarly,

let
′

= ENE XHX , whose each column E
pX represents the

distribution of servers under the pth edge switch. Then
constraints (8) and (9) can be rewritten as a set of
inequalities for individual edge switches that are mutually
decoupled, which means each inequality can be checked
for each specific E

pX independently.
Moreover, we can rewrite the objective function as

��
==

′+′=
ER N

p

E
p

E
p

N

q

R
q

R
q EXXEXXJ

11
)()(. Again there is no

coupling between different rack or edge switches. Let
E
p

E
p

E
p EXXJ ′=)(, and �

∈

′=
pQq

R
q

R
q

R
p EXXJ)(, where

pQ is the index set for all the racks under the pth edge

switch. Then �
=

+=
EN

p

R
p

E
p JJJ

1
)(. Hence, we can partition

the service core by individual edge switches, and further
partition the resources under each edge switch by rack
switches. The resulting algorithm will be referred to as the
layered partition and pruning (LPP) algorithm.
1. For ENp ,,1�= , do backtracking on E

pX , use
constraints (8) and (9) to prune infeasible nodes. In

the end, for each leaf EX , compute �
=

=
EN

p

E
p

E JJ
1

.

2. For each ENp ,,1�= , with each value of E
pX , do

backtracking on p
R
q QqX ∈, with �

∈
=

pQq

R
q

E
p XX .

Use constraints (6) and (7) to prune infeasible nodes.
Find the combination of feasible p

R
q QqX ∈, that

maximizes R
pJ , record p

R
q QqX ∈,* and *R

pJ .

3. Now for each value of EX , compute �
=

=
EN

p

R
p

R JJ
1

* ,

and ER JJJ += . Find *EX that maximizes J and
the corresponding *RX recorded earlier.

4. Convert *RX into *X .
Compared to a direct backtracking algorithm on RX

that searches in R
FΩ , the above algorithm has two main

advantages. First, by partitioning the network with
individual edge switches, the search of partially optimal

*R
qX becomes local under each edge switch. Second, by

separating the edge layer from the rack layer, many
evaluations only involve matrix multiplications with E

pX ,

C [3 4 2](9) [4 5 3](12) [5 6 4](15)
|| Ω 111045.3 × 141055.1 × 161054.2 ×
|| R

FΩ 300 729 1,385

which is of fairly low dimension. And since each E
pX

value corresponds to a set of R
qX values, infeasible

solutions are removed more quickly. All of these result in
a significant reduction in the total amount of computation.

5.4. Local clustering for large problems

The above LPP algorithm is able to find the global

optimal solution for medium to large sized problems with
certain configuration and parameter values. When the
problem becomes too large, we can aim at obtaining a
suboptimal solution via a local clustering scheme. The
idea is instead of searching through all the edge switches,
form a group of clusters each containing a number of
neighboring edge switches, pick the cluster with
potentially the best solution using some heuristics, and
only search inside this cluster. The reasoning behind this
is the connection between server locality and reduction in
the communication delay. We can imagine an assignment
with all the servers located in one rack to have a lower
communication delay than a distributed solution. As long
as all the constraints are met, it is more desirable to have
all the servers located closely. Since we use edge switches
as the basis of our partition algorithm, it is natural to use
them as a unit in the clustering. This approach is expected
to work well for typical service cores with significant
symmetry in the topology. At the early stage of
application deployment, most of the servers are available,
the optimization problem is large but the global optimum
is likely to be found in a local cluster due to the symmetry
property. As more and more servers are assigned to
applications, the service core becomes less symmetric. At
the same time, the optimization problem becomes smaller,
when the LPP algorithm can be easily applied.

6. Case Studies

The above algorithms were tested on various instances

of the problem with different parameter settings. Two
examples are shown in this section. Both contain 3 classes
of servers, with class 1, 2 and 3 represented by circles,
diamonds and stars, respectively. The mesh, edge and rack
switches are represented by squares. The lines represent
the links that connect the switches and the servers, with
the line width indicating the relative bandwidth. Both
examples assume the application that needs to be deployed
is a standard three-tier e-commerce application.

6.1. Example 1

Figure 4 shows the resulting optimal assignment in a
service core with 30 server nodes (M = 30), a switch
mesh, two edge switches and six rack switches. Each rack

contains five servers of one class. The three rack switches
under each edge switch are connected to servers of class
1, 2, and 3, respectively. The application requires 4, 5 and
3 servers for the 1st, 2nd, and 3rd tier, respectively.

Due to the small size of the service core, the LPP
algorithm found the optimal solution fairly easily.
Although the original solution set 12103976.2|| ×=Ω ,

the reduced set R
FΩ has only 18,774 elements after the

projection. Consistent with our intuition, the optimum
assignment demonstrates physical locality of the servers.
As enough bandwidth is available, all the servers lie under
the same edge switch so that communication between
servers does not need to go through the mesh switch. In
addition, since the 2nd tier needs to talk to both the 1st and
the 3rd tier, the 2nd tier servers are arranged to be close to
the servers on the other two tiers in a balanced way.

6.2. Example 2

The second example is a larger service core that

contains 200 server nodes (M = 200), connected via
twenty rack switches, four edge switches and one switch
mesh. Since it is impossible to show the whole service
core in detail, only part of it is displayed in Figure 5,
containing the first five rack switches under the first edge
switch. Each rack switch is connected to ten server nodes.
What is different here from the first example is that the
servers under each rack switch may or may not belong to
the same server class. For instance, the 3rd rack switch is
connected to 5 class-1 servers and 5 class-2 servers, and
similarly for the 4th rack switch. The server nodes that are
absent under the 1st and 2nd rack switches are servers that
are already assigned to another application. So this
simulates the deployment of subsequent applications. The
particular application has three tiers that require 5, 7, and
5 servers, respectively.

1 1 1 1 2 2 2 2 2 3 3 3

Figure 4. Optimal server assignment
in a small service core

In this example, the search space becomes too large.
Even the LPP algorithm fails to find a global optimum in a
reasonable time period. Therefore, local clustering is
applied, and the local optimum found inside the first
cluster is demonstrated in Figure 5. Again, servers in the
2nd tier are mixed with servers in the 1st or the 3rd tier in
most of the racks. The reason for the servers to spread out
under various rack switches is the bandwidth constraints
on the links that connect rack switches to edge switches.

In general, there is no guarantee that the above local
optimum is equal to the global optimum. Unfortunately,
our algorithm does not provide an estimate of this
difference. An alternative is to search through all the local
clusters and use the overall optimum as the solution,
which requires longer computation time. However, as we
discussed before, it suffices to look at one cluster when
there is a lot of symmetry in the topology. It is exactly the
case for this particular example, since it is the second
application to be deployed. In fact, to validate this claim,
we computed the local optima for all the clusters and our
original solution turned out to be one of the best.

7. Conclusions and Future Research

The automation and optimization of resource

management in large-scale Internet systems have become
increasingly important to the successful operation of such
systems. In this paper a particular resource assignment
problem in a new Internet data center environment
consisting of service cores is formulated as a constrained
optimization problem. The nonlinearity in both the
objective function and the constraints prevents the direct
use of conventional linear programming and integer
programming packages. However, the special structure of
the service core enabled us to develop specific techniques
for solving the problem, including projection of the
solution set onto a smaller set and a layered partition and
pruning scheme to further reduce the amount of the

computation. Local clustering is employed to find
suboptimal solutions for more complex problems. The
effectiveness of these techniques and the impact of
parameters are discussed together with some numerical
experiment results. In the end, two examples are shown to
demonstrate how different algorithms can be used to solve
problems of different scale and configuration.

It will be interesting to compare our algorithm with
other heuristic search methods, such as Tabu search,
simulated annealing, or genetic algorithms. In addition,
physical implementation in a laboratory test bed is
desirable to study the practical applicability of our
approach. Finally, there can be many extensions to the
resource and application models in this paper. For
example, not all applications have a tiered structure. If we
instead consider a general distributed application with a
set of servers with certain communication requirements,
then the three assumptions we made on the link
bandwidth requirements can be removed. Our
mathematical model still applies, except that the traffic
matrix E will be an arbitrary matrix with a much higher
dimension. The specific algorithm in this paper may not
be directly applicable in this case. However, similar ideas
may be exploited to develop efficient algorithms for the
new problem. All these are open questions that need
further investigation in our future research.

References

[1] G. Banga, P. Druschel and J.C. Mogul, “Resource
containers: A new facility for resource management in server
systems,” Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation, New Orleans, Feb. 1999.
[2] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik and
P. Wong, "Theory and practice in parallel job scheduling,"
Proceedings of IPPS/SPDP '97 Workshop. Lecture Notes in
Computer Science, April 1997, vol. 1291, pp. 1-34.
[3] Global Grid Forum, http://www.gridforum.org/.
[4] V. Kotov and H. Trinks, “Optimization of e-services
solutions with the Systems of Servers Library,” Proceedings of
MASCOTS 2000, San Francisco, Aug.-Sep., 2000, pp. 575-582.
[5] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for
allocating directed task graphs for multiprocessors,” ACM
Computing Surveys, Dec. 1999, vol. 31(4), pp. 406-471.
[6] D. Menasce, V. Almeida, R. Riedi, R. Flávia, R. Fonseca and
W. Meira Jr., “In search of invariants for e-business workloads,”
Proceedings of the 2nd ACM Conference on Electronic
Commerce, Minneapolis, Oct. 2000, pp. 56-65.
[7] J. Rolia, S. Singhal and R. Friedrich, “Adaptive Internet Data
Centers,” Proceedings of SSGRR 2000 Computer and eBusiness
Conference, L'Aquila, Italy, July-Aug., 2000.
[8] H. Stone, “Multiprocessor scheduling with the aid of
network flow algorithms,” IEEE Trans. on Software
Engineering, Jan. 1977, vol. SE-3, no. 1, pp. 85-93.
[9] B.-R. Tsai and K.G. Shin, “Communication-Oriented
assignment of task modules in hypercube multicomputers,”
Proceedings of the 12th International Conference on Distributed
Computing Systems, June 1992, pp. 38-45.

1 1 1 1 2 1 2 2 2 2 3 3 3 2 2 33
Figure 5. Suboptimal server assignment

in a large service core

	1. Introduction
	Related Work

	The Resource Model
	Notation
	Topology
	Attributes

	The Application Model
	Configuration
	Requirements

	The Optimization Problem
	Decision variable
	Constraints
	Objective Function

	The Algorithm
	Identifying infeasible servers
	Projection of the solution set
	Partition of the service core
	Local clustering for large problems

	Case Studies
	Example 1
	6.2. Example 2

	Conclusions and Future Research
	References

