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Abstract 
Utility computing is envisioned as the future of enterprise IT environments.  
Achieving utility computing is a daunting task, because enterprise users have diverse 
and complex needs.  In this paper we describe Quartermaster, an integrated set of 
tools that addresses some of these needs.  Quartermaster supports the entire lifecycle 
of computing tasks - including design, deployment, operation, and decommissioning 
of each task.  Although individual components of this lifecycle have been addressed 
in earlier work, Quartermaster integrates them in a unified framework using model-
based automation. All tools within Quartermaster are integrated using models based 
on the Common Information Model (CIM), an industry-standard model from the 
Distributed Management Task Force (DMTF). The paper discusses the 
Quartermaster implementation, and describes two case studies using Quartermaster. 
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1. Introduction 
The increasing complexity of IT environments has made them difficult to manage in 
a cost effective manner. This has led to a push within enterprises for consolidating IT 
environments into shared pools of resources, which are partitioned dynamically to 
provide resources to applications. Within this context, we define utility computing as 
the ability to provide complex computing environments on-demand to IT users. 
Achieving utility computing is difficult because the needs of enterprise users are 
complex. Each application running within the enterprise has unique assumptions, 
each enterprise has different policies that are associated with its applications, and 
each user brings a different set of requirements to the application. Providing 
infrastructure that supports these diverse requirements is not a straightforward task. 
While techniques such as virtualization or load-balancing are necessary for utility 
computing, they are not sufficient. To be successful, a utility computing system must 
support design, deployment, and management of arbitrary applications while dealing 
with their frequently competing requirements for resources; accommodate both user 
and operator policies on how infrastructure is used; deal with upgrades of both the 
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infrastructure and the applications; and maintain a high level of automation to reduce 
errors and manage costs. 

We address utility computing from the perspective of IT administrators. That is, 
given user-specified requirements for a complex application, how can the 
corresponding system specification be automatically created and the system provided 
to the user on-demand? Our goal is to provide the administrators with tools that 
support the entire lifecycle of a computing task—including the design, deployment, 
operation, and decommissioning of that task while maintaining flexibility, agility, 
and cost efficiency within the utility through automation. Our approach is using 
model-based automation—creating models of the IT environment and the desired 
application and creating a set of tools that use those models to automate IT tasks. In 
this paper, we describe Quartermaster, an integrated set of tools and technologies 
targeted at this problem.  

The remainder of the paper is organized as follows: Section 2 describes the 
functionality provided by Quartermaster, and discusses the various tools that provide 
those functions.  Section 3 presents the Quartermaster software architecture and 
describes how the tools are integrated using a model-based approach. Section 4 
provides two case studies where we are currently using Quartermaster. Section 5 
describes related work, and we conclude the paper with a summary of our 
contributions in Section 6.  

2. Quartermaster Tools 
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Figure 1: Overall architecture of Quartermaster 

Figure 1 shows the overall functional architecture of Quartermaster. A repository 
maintains models of the different resources known to Quartermaster, as well as an 
inventory of resource instances available to Quartermaster. It provides Quartermaster 
tools with a uniform way of interacting with the resources. IT operators and users 
can interact with Quartermaster tools using either visual or programmatic interfaces. 
Currently, the tools provide users with the ability to compose IT resources into 
desired configurations, to manage the capacity of the underlying resource pools, and 
to schedule and allocate resources to applications. The Quartermaster tools can be 
integrated with service deployment capabilities offered by other technologies [1] as 
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well as with management tools that provide operations management and control 
capabilities [2] to provide an end-to-end view of resource management within the 
data center. In the next few subsections, we describe the capabilities offered by the 
tools in more detail. 

2.1. Policy-driven Resource Composition 
A variety of rules need to be followed during system configuration to ensure correct 
operation. For example, when operating systems are loaded on a host, it is necessary 
to validate that the processor architecture assumed in the operating system is indeed 
the architecture on the host. Similarly, when an application tier is composed from a 
group of servers, it may be necessary to ensure that all network interfaces are 
configured to be on the same subnet or that the same version of the application is 
loaded on all machines in the tier. To ensure correct behavior of a reasonably 
complex application, several hundred such rules may be necessary. This is further 
complicated by the fact that a large fraction of these rules are not inherent to the 
resources or the application, but depend on preferences (policies) provided by the 
system operator. The resource composition tool provides users with the capability to 
generate system configurations that comply with such rules. 
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Figure 2: Resource configuration process 

The tool is exposed to the user as a “drag-and-drop” graphical user interface (GUI), 
which can be used to design complex environments "on-the-fly" from components 
such as software, servers, and storage devices. The tool allows operators to define 
templates for a broad range of resources and provide them to users as resource 
templates on the GUI. The user can then select components from the palette and 
design the desired environment. For example, the user can simply drag in the icon 
representing an e-commerce site into the design panel, add policy constraints 
representing specific requirements (e.g., the number of transactions per second the 
site must be capable of supporting, the size of the database, etc.), and ask the tool to 
generate a configuration based on the template. 

Figure 2 shows the high level structure of the composition tool. The tool treats the 
user’s request (which may be minimally specific) and the policy rules embedded in 
the request as a goal to be achieved. It fetches the component model definitions from 
the model repository and selects both classes and attribute values within those 
classes such that all configuration rules are satisfied. This generates a “grounded” 
request specification containing an instance-level description that is handed to the 
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deployment system [1] for instantiation. Additionally, deployment activities are also 
modeled as classes, and the tool selects the appropriate activities to generate a 
workflow [5] for deployment. 

The policy engine [3] in the composition tool treats system configuration as a 
constraint satisfaction problem [4]. Complex environments requested by users are 
treated as higher-level resources that are composed from other resources. 
Configuration rules are embedded as constraints in the various resource models, 
specified by the operators of the resource pool, or by users as part of the requests for 
resources. The constraints consist of predicates represented in first order logic with 
linear arithmetic. The policy engine and the configuration processes are described in 
more detail in [3], [5].  

2.2. Proactive Capacity Management 
Once a configuration has been generated, the user submits the design to a capacity 
manager [6]. Managing capacity of large resource pools in enterprise environments 
is a challenging problem because, unlike batch environments, applications in 
enterprise environments are long running but have time-varying resource demands. 
The capacity manager ensures that sufficient capacity is available to support the 
longer term aggregate demands of applications.  
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Figure 3: Capacity management process 

The capacity manager includes scheduling and capacity management algorithms 
[7], [8], [9] that can take such fluctuations into account. The algorithms rely on 
historical traces of application demand to forecast future resource requirements. If no 
historical information is available, the application can be initially provisioned for its 
anticipated peak demand, and its behavior can be characterized over time. As shown 
in Figure 3, the capacity manager includes several components: admission control, 
capacity management, resource allocation, policing, arbitration, and assignment. 
These components address the following questions: which applications should be 
admitted (i.e., permitted to make resource reservations), how much resource capacity 
must be set aside to meet their needs, which applications are currently entitled to 
resource capacity on-demand, which requests for resource capacity will be satisfied, 
and which  units of resource capacity should be assigned to each application. 

Admission control and resource acquisition processes are illustrated on the left in 
Figure 3. Admission control decides whether an application will be accepted. It relies 
on the resource allocation system to determine which resource pools have sufficient 
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capacity to satisfy the demands of the application. Once specific resource pools are 
chosen, reservations are made and reflected in the capacity management plan. Note 
that individual resources within the pool are not assigned to the application at this 
time (see Section 2.3). Requests for resource capacity from admitted applications are 
illustrated on the right in Figure 3. Resource capacity requests are batched by the 
capacity manager so that tradeoffs can be made regarding which requests for 
resource capacity are satisfied. Policing mechanisms verify that an application’s 
request for capacity is within the bounds of its SLA. If it is, then the request is 
entitled to the capacity. If demand exceeds supply, then arbitration mechanisms are 
used to decide which requests are satisfied. Requests that are to be satisfied are 
assigned resources. This is discussed in more detail in the next Section. 

2.3. Optimized Resource Assignment 
If capacity is available, the capacity manager works with a resource assignment 

system [10], [11] to assign the actual instances of resources for the application. 
Manual (or simple heuristic) approaches to resource assignment work when all 
resources are equivalent (e.g., in a cluster), or when the resource pool is small. With 
complex topologies, it is easy to create bottlenecks in the shared resources when 
using such approaches, resulting in failure to meet application requirements even 
when capacity is available in the data center. The assignment system automates 
selection of the servers within the data center fabric for deployment of the 
application. 
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Figure 4: Resource assignment process 

Figure 4 shows the process used by the assignment system. The solver requires two 
models as input: a resource model and an application model.  The resource model 
describes the fabric topology and the resource capacities. The application model 
defines the application topology and its resource requirements. The infrastructure 
monitor tracks the resource inventory, including the connection topology and 
available capacity. The monitor maintains an up-to-date model of the current state of 
the environment using information from the resource inventory and monitoring tools 
(such as OpenView). The composition tool (Section 2.1) maps the application’s 
high-level QoS goals into an initial application model that represents the low-level 
processing, communication and storage requirements on the physical resources. The 
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constraints and the objective function required by the solver are dynamically 
generated from these parameters using the modeling language GAMS [12], and fed 
into the CPLEX solver [13]. The latter checks the feasibility of the problem, and 
finds the optimal solution among all feasible solutions. The detailed models required 
by the assignment solver are described in [11]. 

3. Quartermaster Software Architecture 
All tools within Quartermaster are integrated through an information model that 
describes management concepts such as resources, relationships between resources, 
and policies that apply to them. Figure 5 shows the software architecture for 
Quartermaster. Core to the architecture is a model repository that stores the 
information model as well as an inventory of managed elements that conform to that 
model. Surrounding the repository are tools that are necessary to manage the model 
and the inventory. Model instances and metrics are populated using a provider 
framework that integrates both monitoring data and instance discovery from 
management frameworks such as OpenView. Quartermaster tools are layered on top 
of the model repository.  
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Figure 5: Quartermaster software architecture 

3.1. Information Model 
Central to Quartermaster is a common information model that is shared among the 

tools. The information model captures the concepts and terminology required for 
managing systems in a standard manner, thereby allowing individual tools to 
interoperate through the model. In other words, the model serves as the “integration 
bus” as one tool updates the model and another tool reads from it. 

We have chosen to use the Common Information Model (CIM) [14] defined by 
Distributed Management Task Force (DMTF) [15] as the basis for the information 
model in Quartermaster. CIM is an object-oriented model that defines how managed 
elements - ranging from physical devices and computer systems to applications - 
must be modeled to facilitate integration between management systems. Not all 
management concepts that were required by the Quartermaster tools were modeled in 
CIM. In particular, we had to augment the CIM model with the following concepts – 
policies or constraint rules as required by the policy-based composition tool, contexts 
to represent potential, future, and alternative choices for configuring systems, and 
metric providers to represent information about sources of measurement data 
available from managed systems. These three additions were made by defining new 
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classes conformant to the CIM meta-model as described below. In the discussion, 
classes defined as part of the standard CIM model are shown with a prefix of 
“CIM_”, while those added in Quartermaster are prefixed with “QM_”. 

Caption : string
Description : string
ElementName : string

Id : string {key}
Language : string
Assertions  : string[]
AssociatedClass : string

Id : string {key}
Language : string
Assertions  : string[]

Enabled : uint16 = 1 {enum}

CIM_PolicySetAppliesToElement

*

*

 
Figure 6: Policy extensions to CIM model 

A policy in Quartermaster, as explained in Section 2.1, is a constraint attached to a 
class defined in the information model or to an instance of a class. A model 
describing these two concepts is shown in Figure 6. Policies attached to a class have 
to be obeyed by all instances of that class (as well as any refined classes derived 
from that class). We call them class scoped policies. Policies attached to an instance 
have to be obeyed by that instance alone and are called instance scoped policies.  

 The AssociatedClass property in QM_ClassScopedPolicy defines the 
class in the information model that is referred to by the policy. The association 
between CIM_PolicySet and CIM_ManagedElement defines the instances to 
which an instance scoped policy is attached. 

 
Figure 7: Context extension to CIM model 

CIM classes usually model managed elements that are present in the environment. 
This is not always the case, however, with Quartermaster tools. For instance, the 
policy-based composition tool may be used to design a database that may or may not 
be implemented. Similarly, the capacity management tool may be used to perform a 
what-if analysis on a set of servers that are non-existent. Because tools communicate 
using the models, such scenarios require that managed elements are instantiated in 
the repository only as part of a fictitious context, but not as part of the real 
environment. In other words, we need the capability to represent alternative 
configurations - that may or may not have realizations - at the same time in the 
repository. To solve this problem, we have defined a new class called QM_Context 
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that groups all the managed elements relevant to a particular context. All tools in 
Quartermaster operate on a given context and manipulate managed elements only 
within that context. Figure 7 shows the model for a context. 

 
Figure 8: Metric provider extension to CIM model 

Our third extension to CIM models was to model a metric provider. CIM defines 
what metrics are available on a given managed element. However, it does not define 
how to obtain those metrics. Since some of the tools in Quartermaster rely on traces 
of metrics collected by instrumentation sources (e.g., CPU and memory utilization 
data collected every 5 minutes on every server), we had to augment the CIM model 
with metric providers. This allowed Quartermaster tools to pull the required metric 
traces automatically whenever needed. Figure 8 shows the metric provider model. 
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Figure 9: Integrating existing sources of instance data into CIMOM 

All the classes defined in CIM, along with the above three extensions, are loaded 
into a repository - usually referred to as CIM Object Manager or CIMOM. We have 
implemented a CIMOM using a relational database (MySQL). The API on CIMOM 
can then be used to manipulate the model or its instances. Information about 
instances is made available to the CIMOM through a series of instance providers that 
adapt data from discovery tools such as OpenView as shown in Figure 9. 

3.2. Integrating Quartermaster Tools 
Each tool in Quartermaster operates on a portion of the information model. This 

raises two issues: First, how does Quartermaster integrate a tool that does not 
understand CIM (and our extensions), and second, how do multiple tools integrate 
with each other? 
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Quartermaster communicates with tools in a loosely-coupled manner. The tools 
expect information (and provide output) in tool-specific formats. Each tool is 
integrated using a tool manager, which uses an output adapter to convert model 
information from the Quartermaster repository to the format required by the tool, and 
converts the tool output using an input adapter to a form appropriate for the model 
repository. An example of this software pattern is shown in Figure 10, where the 
interaction with the resource assignment system is shown. The placement tool 
manager (the Placement Designer) is asked to place an entity (the grounded request). 
It uses the output adapter to retrieve information required for the placement (see 2.3, 
[11]) from the repository and converts it into an XML format required by the 
placement tool. It then uses an HTTP POST operation to send the information 
through a web server to the CPLEX solver. The assignment information is received 
by the Placement Designer in an XML format, and used by the input adapter to make 
the appropriate associations in the repository. 
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4. Write input files
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Figure 10: Interaction with resource assignment tool 

To explain how multiple tools integrate with each other, let us take an example. 
Say, we have to design an e-commerce site and allocate resources to run that site. 
This is accomplished in Quartermaster through the use of two tools – policy-based 
system composition tool to design the e-commerce site and the resource assignment 
tool to allocate compute resources to each of the components of that design. 

To use the policy-based system composition tool, models of the e-commerce site 
have to be created by operators along with the policies that govern how such a site 
may be constructed to meet the given objectives. The user then inputs instance-
specific constraints (e.g., number of transactions/sec required) as part of the request. 
This request is embedded in a context that contains an instance of the e-commerce 
site class (without the associated class hierarchy, or attribute values filled in). All the 
desired objectives are expressed as instance-scoped policies on this instance. The 
composition tool uses this context and outputs a transformed context containing a 
fully expanded instance of the e-commerce site with the values for attributes and 
composition structure filled in. The input to the assignment tool is a context that 
contains two instances – one representing the topology of the infrastructure and the 
other representing the topology of the application (the expanded e-commerce site 
instance from the composition tool). The assignment tool transforms this context by 
adding the “hosted on” relationships between application topology nodes and 
infrastructure topology nodes. To summarize, each tool operates on and transforms a 
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context. Multiple tools integrate with each other by taking the results from one 
context and using them as inputs in a different context. 

There are several benefits to our approach of tool integration. The whole design 
and assignment of resources in the above example is grouped into individual 
contexts. This means that an operator can inspect the design resulting from the 
composition tool, try different designs, and compare the results. Similarly, the 
operator can inspect the assignment made by the assignment tool for each alternate 
design, and keep the ones he/she liked. Throwing away the results of a tool is as 
simple as deleting a context (which also deletes all class instances contained in that 
context). This provides flexibility in chaining tools as well as in trying multiple 
alternatives, which is particularly important in decision-making tools such as those in 
Quartermaster. 

4. Experience using Quartermaster 
We have integrated the components within Quartermaster into a test-bed that we are 
using to further explore the component algorithms in our research. We have used this 
test-bed in a number of initiatives to understand its capabilities within service 
deployment, configuration, and lifecycle management scenarios. We briefly mention 
two of these initiatives below, as examples of problems that may be tackled by 
Quartermaster technologies. 

HP’s Shared Application Server Utility (SASU): Like many large companies, HP 
maintains and operates hundreds of internal business applications. Each of these 
applications has traditionally required its own server. HP IT is currently 
consolidating its J2EE servers into a shared utility that will support the needs of 
J2EE applications, and provide the application server platform as a utility to groups 
within HP. This would reduce the licensing, support, management, and hardware 
costs associated with these applications. 

The service is hosted on clusters of HP-UX servers and exploits HP-UX workload 
management features [25] to co-host multiple applications on the same server while 
providing them with resource guarantees. The capacity management components of 
Quartermaster are being used as part of this process. The Quartermaster capacity 
manager supports admission control exercises, recommends which server(s) are best 
suited for supporting a new application, indicates which services should share 
servers, and guides the setting of configuration parameters needed for the workload 
manager that controls the fine grain assignment of server CPU shares to the services. 

Figure 11 shows a typical analysis output from the capacity management tool. The 
output shown is based on three months of data from two production servers, each 
with 16 CPUs. The servers host 37 applications with 17 applications assigned to 
server 1 and 20 to server 2. As shown in Figure 11, if the servers were sized based on 
the peak demands of each application, a total of 42.7 and 36.7 CPUs would be 
necessary to support the applications, respectively. The figure shows that by sharing, 
the servers require only 11.0 and 13.7 CPUs respectively. 

Next, we consider adding a new application to these servers. The application is 
projected to have a peak demand of 2.9 CPUs and a mean demand of 0.3 CPUs. 
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Figure 11: Typical analysis output of capacity management tool for SASU 

Figure 12 shows the result of the planning exercise. Assigning the application to 
server 1 increases its required number of CPUs from 11.0 to 11.4. Assigning it to 
server 2 increases its required number of CPUs from 13.7 to 13.8 CPUs. Though the 
new application achieves better sharing on server 2, the capacity manager assigns the 
application workload to server 1 to better balance the workloads. 
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Figure 12: Typical capacity planning scenario within SASU 

 
Financial Services IT Consolidation Initiative: We are currently working with one 

of HP’s large financial services customers on an IT consolidation initiative. As part 
of this initiative, we are exploring how PC users could be moved to terminal-based 
“virtualized” desktops hosted within centralized compute clusters and storage 
facilities. For testing purposes, we have replicated this environment within our lab 
using bladed servers. We are using Quartermaster tools within this test environment 
to create an integrated model-based view of the entire system, including the 
resources, services, and clients using the environment. Using these models, we plan 
to explore how resources could be automatically configured and scheduled for 
clients. 

Figure 13 shows response times measured on our test-bed for typical office tasks 
for the virtualized desktop when different numbers of virtual machines are hosted on 
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a server. Response times from these and other applications are captured in the 
resource templates used to generate configurations for the virtual desktops, and to 
decide the number of virtual machines that can be hosted on a server. This in turn 
frees operators to simply specify user requirements in terms of the mix of 
applications required by a user and the acceptable application-level performance 
needed.  
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Figure 13: Typical times observed for various office tasks in a virtualized 

desktop using different number of virtual machines 

In both case studies, feedback from the system operators has been positive. In 
particular, operators have found that Quartermaster tools provide an integrated view 
of the system that is otherwise not available, and focus attention on data that is at the 
right level of abstraction. For example, within the virtualized desktop, operators can 
define policies associated with different classes of users, and schedule resources 
based on the user class. Additionally, operators have found the framework useful 
because it enables them to quantify improvements (e.g., utilized capacity or time-to-
deployment of applications) that are otherwise difficult to evaluate. Within the 
SASU environment, operators have found approximately 25% time savings for 
capacity management exercises. 

5. Related Work 
Many of the individual problems tackled within Quartermaster have been described 
in the literature. System composition has been explored within the artificial 
intelligence [16] and software engineering [17] communities. A rich literature exists 
on problems of scheduling resources to applications in the computer science 
community, as well as in the high performance computing community [21]. 
Similarly, the statistics [22] and operations research communities [23] have studied 
algorithms for modeling time varying quantities and optimization algorithms 
respectively. Finally, system modeling has been subject to much research within the 
software engineering field [24]. Quartermaster brings together knowledge from these 
diverse fields into tools that can be applied to solve IT automation problems.  

The use of CIM in policy validation is described in [18]. A facility for handling 
rules within a CIMOM is described in [20]. Automation of change management 
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processes using optimization is described in [19]. Quartermaster differs from such 
previous work in its effort to bring together diverse tools in a model-based approach 
to integration and its focus on design-time tasks required by operators, as opposed to 
run-time management. 

6. Summary 
Quartermaster seeks to create an IT resource utility, where complex applications can 
be provisioned for IT users on-demand. Quartermaster contains an integrated set of 
tools that provide users with the ability to compose complex environments, manage 
capacity within resource pools, and allocate resources from those resource pools to 
applications and users. The tools are integrated using a model-based approach that 
relies on the CIM standard for modeling the environment. Individual tools 
communicate by changing the elements within a shared model. 

We are using these tools in a number of initiatives both within HP and with HP 
customers to test their applicability within different use cases, to obtain feedback and 
experience from their use, and to refine the tools using this experience. In addition, 
based on user feedback from our case studies, we plan to include other capabilities 
that would provide Quartermaster with: 

• the ability to measure the behavior of the designed system at run-time and 
automatically adapt the design to maintain it within user-specified bounds; 

• measurements of application behavior to enable iterative improvement and 
refinement of the component types; and  

• real-time data from the resource pool to our resource allocation and placement 
algorithms, so that inaccuracies in the parameters specified in the design do 
not accumulate in practice. 

The Quartermaster architecture provides us a framework within which these (and 
other) capabilities are integrated. 
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