
To be published in the 9th IEEE/IFIP International Conference on Integrated
Management, May 15-19, 2005, Nice, France.

Copyright 2005, IEEE

Quartermaster—A Resource Utility System

S. Singhal, M. Arlitt, D. Beyer, S. Graupner, V. Machiraju, J. Pruyne, J. Rolia, A.
Sahai, C. Santos, J. Ward, X. Zhu
HP Laboratories
1501 Page Mill Road, MS 1125
Palo Alto, CA 94304
USA
{sharad.singhal, martin.arlitt, dirk.beyer, sven.graupner, vijay.machiraju,
jim.pruyne, jerry.rolia, akhil.sahai, cipriano.santos, jward, xiaoyun.zhu}@hp.com

Abstract
Utility computing is envisioned as the future of enterprise IT environments.
Achieving utility computing is a daunting task, because enterprise users have diverse
and complex needs. In this paper we describe Quartermaster, an integrated set of
tools that addresses some of these needs. Quartermaster supports the entire lifecycle
of computing tasks - including design, deployment, operation, and decommissioning
of each task. Although individual components of this lifecycle have been addressed
in earlier work, Quartermaster integrates them in a unified framework using model-
based automation. All tools within Quartermaster are integrated using models based
on the Common Information Model (CIM), an industry-standard model from the
Distributed Management Task Force (DMTF). The paper discusses the
Quartermaster implementation, and describes two case studies using Quartermaster.

Keywords
Utility computing, resource allocation, policy-based resource composition, CIM

1. Introduction
The increasing complexity of IT environments has made them difficult to manage in
a cost effective manner. This has led to a push within enterprises for consolidating IT
environments into shared pools of resources, which are partitioned dynamically to
provide resources to applications. Within this context, we define utility computing as
the ability to provide complex computing environments on-demand to IT users.
Achieving utility computing is difficult because the needs of enterprise users are
complex. Each application running within the enterprise has unique assumptions,
each enterprise has different policies that are associated with its applications, and
each user brings a different set of requirements to the application. Providing
infrastructure that supports these diverse requirements is not a straightforward task.
While techniques such as virtualization or load-balancing are necessary for utility
computing, they are not sufficient. To be successful, a utility computing system must
support design, deployment, and management of arbitrary applications while dealing
with their frequently competing requirements for resources; accommodate both user
and operator policies on how infrastructure is used; deal with upgrades of both the

2

infrastructure and the applications; and maintain a high level of automation to reduce
errors and manage costs.

We address utility computing from the perspective of IT administrators. That is,
given user-specified requirements for a complex application, how can the
corresponding system specification be automatically created and the system provided
to the user on-demand? Our goal is to provide the administrators with tools that
support the entire lifecycle of a computing task—including the design, deployment,
operation, and decommissioning of that task while maintaining flexibility, agility,
and cost efficiency within the utility through automation. Our approach is using
model-based automation—creating models of the IT environment and the desired
application and creating a set of tools that use those models to automate IT tasks. In
this paper, we describe Quartermaster, an integrated set of tools and technologies
targeted at this problem.

The remainder of the paper is organized as follows: Section 2 describes the
functionality provided by Quartermaster, and discusses the various tools that provide
those functions. Section 3 presents the Quartermaster software architecture and
describes how the tools are integrated using a model-based approach. Section 4
provides two case studies where we are currently using Quartermaster. Section 5
describes related work, and we conclude the paper with a summary of our
contributions in Section 6.

2. Quartermaster Tools

Capacity
management

Resource
assignment

Resource
composition

Service
deployment

Operations
control

Resource
pool

Resource
type &

inventory
repository

Quartermaster

Figure 1: Overall architecture of Quartermaster

Figure 1 shows the overall functional architecture of Quartermaster. A repository
maintains models of the different resources known to Quartermaster, as well as an
inventory of resource instances available to Quartermaster. It provides Quartermaster
tools with a uniform way of interacting with the resources. IT operators and users
can interact with Quartermaster tools using either visual or programmatic interfaces.
Currently, the tools provide users with the ability to compose IT resources into
desired configurations, to manage the capacity of the underlying resource pools, and
to schedule and allocate resources to applications. The Quartermaster tools can be
integrated with service deployment capabilities offered by other technologies [1] as

3

well as with management tools that provide operations management and control
capabilities [2] to provide an end-to-end view of resource management within the
data center. In the next few subsections, we describe the capabilities offered by the
tools in more detail.

2.1. Policy-driven Resource Composition
A variety of rules need to be followed during system configuration to ensure correct
operation. For example, when operating systems are loaded on a host, it is necessary
to validate that the processor architecture assumed in the operating system is indeed
the architecture on the host. Similarly, when an application tier is composed from a
group of servers, it may be necessary to ensure that all network interfaces are
configured to be on the same subnet or that the same version of the application is
loaded on all machines in the tier. To ensure correct behavior of a reasonably
complex application, several hundred such rules may be necessary. This is further
complicated by the fact that a large fraction of these rules are not inherent to the
resources or the application, but depend on preferences (policies) provided by the
system operator. The resource composition tool provides users with the capability to
generate system configurations that comply with such rules.

Type
Database

Request

Configuration Generator

Policy
Engine

Grounded
Request

Deployment
System

Figure 2: Resource configuration process

The tool is exposed to the user as a “drag-and-drop” graphical user interface (GUI),
which can be used to design complex environments "on-the-fly" from components
such as software, servers, and storage devices. The tool allows operators to define
templates for a broad range of resources and provide them to users as resource
templates on the GUI. The user can then select components from the palette and
design the desired environment. For example, the user can simply drag in the icon
representing an e-commerce site into the design panel, add policy constraints
representing specific requirements (e.g., the number of transactions per second the
site must be capable of supporting, the size of the database, etc.), and ask the tool to
generate a configuration based on the template.

Figure 2 shows the high level structure of the composition tool. The tool treats the
user’s request (which may be minimally specific) and the policy rules embedded in
the request as a goal to be achieved. It fetches the component model definitions from
the model repository and selects both classes and attribute values within those
classes such that all configuration rules are satisfied. This generates a “grounded”
request specification containing an instance-level description that is handed to the

4

deployment system [1] for instantiation. Additionally, deployment activities are also
modeled as classes, and the tool selects the appropriate activities to generate a
workflow [5] for deployment.

The policy engine [3] in the composition tool treats system configuration as a
constraint satisfaction problem [4]. Complex environments requested by users are
treated as higher-level resources that are composed from other resources.
Configuration rules are embedded as constraints in the various resource models,
specified by the operators of the resource pool, or by users as part of the requests for
resources. The constraints consist of predicates represented in first order logic with
linear arithmetic. The policy engine and the configuration processes are described in
more detail in [3], [5].

2.2. Proactive Capacity Management
Once a configuration has been generated, the user submits the design to a capacity
manager [6]. Managing capacity of large resource pools in enterprise environments
is a challenging problem because, unlike batch environments, applications in
enterprise environments are long running but have time-varying resource demands.
The capacity manager ensures that sufficient capacity is available to support the
longer term aggregate demands of applications.

reservation
request

admission
control

capacity
management

resource
allocation

resource
schedules &
capacity data

resource
assignment

resource
arbitration

resource
policing

resource
request

monitoring tools

Figure 3: Capacity management process

The capacity manager includes scheduling and capacity management algorithms
[7], [8], [9] that can take such fluctuations into account. The algorithms rely on
historical traces of application demand to forecast future resource requirements. If no
historical information is available, the application can be initially provisioned for its
anticipated peak demand, and its behavior can be characterized over time. As shown
in Figure 3, the capacity manager includes several components: admission control,
capacity management, resource allocation, policing, arbitration, and assignment.
These components address the following questions: which applications should be
admitted (i.e., permitted to make resource reservations), how much resource capacity
must be set aside to meet their needs, which applications are currently entitled to
resource capacity on-demand, which requests for resource capacity will be satisfied,
and which units of resource capacity should be assigned to each application.

Admission control and resource acquisition processes are illustrated on the left in
Figure 3. Admission control decides whether an application will be accepted. It relies
on the resource allocation system to determine which resource pools have sufficient

5

capacity to satisfy the demands of the application. Once specific resource pools are
chosen, reservations are made and reflected in the capacity management plan. Note
that individual resources within the pool are not assigned to the application at this
time (see Section 2.3). Requests for resource capacity from admitted applications are
illustrated on the right in Figure 3. Resource capacity requests are batched by the
capacity manager so that tradeoffs can be made regarding which requests for
resource capacity are satisfied. Policing mechanisms verify that an application’s
request for capacity is within the bounds of its SLA. If it is, then the request is
entitled to the capacity. If demand exceeds supply, then arbitration mechanisms are
used to decide which requests are satisfied. Requests that are to be satisfied are
assigned resources. This is discussed in more detail in the next Section.

2.3. Optimized Resource Assignment
If capacity is available, the capacity manager works with a resource assignment

system [10], [11] to assign the actual instances of resources for the application.
Manual (or simple heuristic) approaches to resource assignment work when all
resources are equivalent (e.g., in a cluster), or when the resource pool is small. With
complex topologies, it is easy to create bottlenecks in the shared resources when
using such approaches, resulting in failure to meet application requirements even
when capacity is available in the data center. The assignment system automates
selection of the servers within the data center fabric for deployment of the
application.

Current
Resource

Model

Application
Model

GAMS
Modeler

CPLEX
Solver

Feasible
?

Infrastructure
Monitor

Composition
Tool

Application
Monitor

Placement
Decision

Deployment
System

Reject

(Online)

(Initial)

Placement Solver

Yes

No

Figure 4: Resource assignment process

Figure 4 shows the process used by the assignment system. The solver requires two
models as input: a resource model and an application model. The resource model
describes the fabric topology and the resource capacities. The application model
defines the application topology and its resource requirements. The infrastructure
monitor tracks the resource inventory, including the connection topology and
available capacity. The monitor maintains an up-to-date model of the current state of
the environment using information from the resource inventory and monitoring tools
(such as OpenView). The composition tool (Section 2.1) maps the application’s
high-level QoS goals into an initial application model that represents the low-level
processing, communication and storage requirements on the physical resources. The

6

constraints and the objective function required by the solver are dynamically
generated from these parameters using the modeling language GAMS [12], and fed
into the CPLEX solver [13]. The latter checks the feasibility of the problem, and
finds the optimal solution among all feasible solutions. The detailed models required
by the assignment solver are described in [11].

3. Quartermaster Software Architecture
All tools within Quartermaster are integrated through an information model that
describes management concepts such as resources, relationships between resources,
and policies that apply to them. Figure 5 shows the software architecture for
Quartermaster. Core to the architecture is a model repository that stores the
information model as well as an inventory of managed elements that conform to that
model. Surrounding the repository are tools that are necessary to manage the model
and the inventory. Model instances and metrics are populated using a provider
framework that integrates both monitoring data and instance discovery from
management frameworks such as OpenView. Quartermaster tools are layered on top
of the model repository.

RDBMS

CIM Object
Layer

MOF
compiler

Model
browser Provider Framework

OpenView
provider

Tool Adapters

Policy-based
designer

Capacity
manager

Assignment
solver

User Interfaces

•••

Figure 5: Quartermaster software architecture

3.1. Information Model
Central to Quartermaster is a common information model that is shared among the

tools. The information model captures the concepts and terminology required for
managing systems in a standard manner, thereby allowing individual tools to
interoperate through the model. In other words, the model serves as the “integration
bus” as one tool updates the model and another tool reads from it.

We have chosen to use the Common Information Model (CIM) [14] defined by
Distributed Management Task Force (DMTF) [15] as the basis for the information
model in Quartermaster. CIM is an object-oriented model that defines how managed
elements - ranging from physical devices and computer systems to applications -
must be modeled to facilitate integration between management systems. Not all
management concepts that were required by the Quartermaster tools were modeled in
CIM. In particular, we had to augment the CIM model with the following concepts –
policies or constraint rules as required by the policy-based composition tool, contexts
to represent potential, future, and alternative choices for configuring systems, and
metric providers to represent information about sources of measurement data
available from managed systems. These three additions were made by defining new

7

classes conformant to the CIM meta-model as described below. In the discussion,
classes defined as part of the standard CIM model are shown with a prefix of
“CIM_”, while those added in Quartermaster are prefixed with “QM_”.

Caption : string
Description : string
ElementName : string

Id : string {key}
Language : string
Assertions : string[]
AssociatedClass : string

Id : string {key}
Language : string
Assertions : string[]

Enabled : uint16 = 1 {enum}

CIM_PolicySetAppliesToElement

*

*

Figure 6: Policy extensions to CIM model

A policy in Quartermaster, as explained in Section 2.1, is a constraint attached to a
class defined in the information model or to an instance of a class. A model
describing these two concepts is shown in Figure 6. Policies attached to a class have
to be obeyed by all instances of that class (as well as any refined classes derived
from that class). We call them class scoped policies. Policies attached to an instance
have to be obeyed by that instance alone and are called instance scoped policies.

 The AssociatedClass property in QM_ClassScopedPolicy defines the
class in the information model that is referred to by the policy. The association
between CIM_PolicySet and CIM_ManagedElement defines the instances to
which an instance scoped policy is attached.

Figure 7: Context extension to CIM model

CIM classes usually model managed elements that are present in the environment.
This is not always the case, however, with Quartermaster tools. For instance, the
policy-based composition tool may be used to design a database that may or may not
be implemented. Similarly, the capacity management tool may be used to perform a
what-if analysis on a set of servers that are non-existent. Because tools communicate
using the models, such scenarios require that managed elements are instantiated in
the repository only as part of a fictitious context, but not as part of the real
environment. In other words, we need the capability to represent alternative
configurations - that may or may not have realizations - at the same time in the
repository. To solve this problem, we have defined a new class called QM_Context

8

that groups all the managed elements relevant to a particular context. All tools in
Quartermaster operate on a given context and manipulate managed elements only
within that context. Figure 7 shows the model for a context.

Figure 8: Metric provider extension to CIM model

Our third extension to CIM models was to model a metric provider. CIM defines
what metrics are available on a given managed element. However, it does not define
how to obtain those metrics. Since some of the tools in Quartermaster rely on traces
of metrics collected by instrumentation sources (e.g., CPU and memory utilization
data collected every 5 minutes on every server), we had to augment the CIM model
with metric providers. This allowed Quartermaster tools to pull the required metric
traces automatically whenever needed. Figure 8 shows the metric provider model.

CIMOM

OpenView
Provider 1

OpenView
Provider 2

Custom
Provider

OpenView
Repository 1

OpenView
Repository 2

Custom
Repository

Figure 9: Integrating existing sources of instance data into CIMOM

All the classes defined in CIM, along with the above three extensions, are loaded
into a repository - usually referred to as CIM Object Manager or CIMOM. We have
implemented a CIMOM using a relational database (MySQL). The API on CIMOM
can then be used to manipulate the model or its instances. Information about
instances is made available to the CIMOM through a series of instance providers that
adapt data from discovery tools such as OpenView as shown in Figure 9.

3.2. Integrating Quartermaster Tools
Each tool in Quartermaster operates on a portion of the information model. This

raises two issues: First, how does Quartermaster integrate a tool that does not
understand CIM (and our extensions), and second, how do multiple tools integrate
with each other?

9

Quartermaster communicates with tools in a loosely-coupled manner. The tools
expect information (and provide output) in tool-specific formats. Each tool is
integrated using a tool manager, which uses an output adapter to convert model
information from the Quartermaster repository to the format required by the tool, and
converts the tool output using an input adapter to a form appropriate for the model
repository. An example of this software pattern is shown in Figure 10, where the
interaction with the resource assignment system is shown. The placement tool
manager (the Placement Designer) is asked to place an entity (the grounded request).
It uses the output adapter to retrieve information required for the placement (see 2.3,
[11]) from the repository and converts it into an XML format required by the
placement tool. It then uses an HTTP POST operation to send the information
through a web server to the CPLEX solver. The assignment information is received
by the Placement Designer in an XML format, and used by the input adapter to make
the appropriate associations in the repository.

Output Adapter

Input Adapter

Placement Designer WebServerModel APIs

1. PlaceEntity(Entity)

2. Entity.getAssociatedEntities ()

3. POST(xml)

4. Write input files

CPLEX

5. Trigger Engine

6. Read input and
generate output

7. read output
files

8. Result(xml)

9. Entity.createAssociatedEntity(new Entitity)

Orchestrator

Figure 10: Interaction with resource assignment tool

To explain how multiple tools integrate with each other, let us take an example.
Say, we have to design an e-commerce site and allocate resources to run that site.
This is accomplished in Quartermaster through the use of two tools – policy-based
system composition tool to design the e-commerce site and the resource assignment
tool to allocate compute resources to each of the components of that design.

To use the policy-based system composition tool, models of the e-commerce site
have to be created by operators along with the policies that govern how such a site
may be constructed to meet the given objectives. The user then inputs instance-
specific constraints (e.g., number of transactions/sec required) as part of the request.
This request is embedded in a context that contains an instance of the e-commerce
site class (without the associated class hierarchy, or attribute values filled in). All the
desired objectives are expressed as instance-scoped policies on this instance. The
composition tool uses this context and outputs a transformed context containing a
fully expanded instance of the e-commerce site with the values for attributes and
composition structure filled in. The input to the assignment tool is a context that
contains two instances – one representing the topology of the infrastructure and the
other representing the topology of the application (the expanded e-commerce site
instance from the composition tool). The assignment tool transforms this context by
adding the “hosted on” relationships between application topology nodes and
infrastructure topology nodes. To summarize, each tool operates on and transforms a

10

context. Multiple tools integrate with each other by taking the results from one
context and using them as inputs in a different context.

There are several benefits to our approach of tool integration. The whole design
and assignment of resources in the above example is grouped into individual
contexts. This means that an operator can inspect the design resulting from the
composition tool, try different designs, and compare the results. Similarly, the
operator can inspect the assignment made by the assignment tool for each alternate
design, and keep the ones he/she liked. Throwing away the results of a tool is as
simple as deleting a context (which also deletes all class instances contained in that
context). This provides flexibility in chaining tools as well as in trying multiple
alternatives, which is particularly important in decision-making tools such as those in
Quartermaster.

4. Experience using Quartermaster
We have integrated the components within Quartermaster into a test-bed that we are
using to further explore the component algorithms in our research. We have used this
test-bed in a number of initiatives to understand its capabilities within service
deployment, configuration, and lifecycle management scenarios. We briefly mention
two of these initiatives below, as examples of problems that may be tackled by
Quartermaster technologies.

HP’s Shared Application Server Utility (SASU): Like many large companies, HP
maintains and operates hundreds of internal business applications. Each of these
applications has traditionally required its own server. HP IT is currently
consolidating its J2EE servers into a shared utility that will support the needs of
J2EE applications, and provide the application server platform as a utility to groups
within HP. This would reduce the licensing, support, management, and hardware
costs associated with these applications.

The service is hosted on clusters of HP-UX servers and exploits HP-UX workload
management features [25] to co-host multiple applications on the same server while
providing them with resource guarantees. The capacity management components of
Quartermaster are being used as part of this process. The Quartermaster capacity
manager supports admission control exercises, recommends which server(s) are best
suited for supporting a new application, indicates which services should share
servers, and guides the setting of configuration parameters needed for the workload
manager that controls the fine grain assignment of server CPU shares to the services.

Figure 11 shows a typical analysis output from the capacity management tool. The
output shown is based on three months of data from two production servers, each
with 16 CPUs. The servers host 37 applications with 17 applications assigned to
server 1 and 20 to server 2. As shown in Figure 11, if the servers were sized based on
the peak demands of each application, a total of 42.7 and 36.7 CPUs would be
necessary to support the applications, respectively. The figure shows that by sharing,
the servers require only 11.0 and 13.7 CPUs respectively.

Next, we consider adding a new application to these servers. The application is
projected to have a peak demand of 2.9 CPUs and a mean demand of 0.3 CPUs.

11

CPU Requirements

0
5

10
15
20

25
30

35

40

45

Peak Provisioning Required Provisioning

N
um

be
r o

f C
PU

s

Server 1

Server 2

Figure 11: Typical analysis output of capacity management tool for SASU

Figure 12 shows the result of the planning exercise. Assigning the application to
server 1 increases its required number of CPUs from 11.0 to 11.4. Assigning it to
server 2 increases its required number of CPUs from 13.7 to 13.8 CPUs. Though the
new application achieves better sharing on server 2, the capacity manager assigns the
application workload to server 1 to better balance the workloads.

Capacity Planning Scenario

0

2

4

6

8

10

12

14

16

Original Load Allocate to Server 1 Allocate to Server 2

Projected Workload

N
um

be
r o

f C
PU

s

Server 1
Server 2

Figure 12: Typical capacity planning scenario within SASU

Financial Services IT Consolidation Initiative: We are currently working with one

of HP’s large financial services customers on an IT consolidation initiative. As part
of this initiative, we are exploring how PC users could be moved to terminal-based
“virtualized” desktops hosted within centralized compute clusters and storage
facilities. For testing purposes, we have replicated this environment within our lab
using bladed servers. We are using Quartermaster tools within this test environment
to create an integrated model-based view of the entire system, including the
resources, services, and clients using the environment. Using these models, we plan
to explore how resources could be automatically configured and scheduled for
clients.

Figure 13 shows response times measured on our test-bed for typical office tasks
for the virtualized desktop when different numbers of virtual machines are hosted on

12

a server. Response times from these and other applications are captured in the
resource templates used to generate configurations for the virtual desktops, and to
decide the number of virtual machines that can be hosted on a server. This in turn
frees operators to simply specify user requirements in terms of the mix of
applications required by a user and the acceptable application-level performance
needed.

Average Response Times for Office Tasks

0

500

1000

1500

2000

2500

E
xc

el
C

ha
rt

E
xc

el
-

Fi
le

 O
pe

n

E
xc

el
-

S
av

e
A

s

O
ut

lo
ok

-
C

lo
se

S
ta

rt
O

ut
lo

ok
 -

S
ta

rt
W

in
w

or
d

W
or

d-
ov

er
w

rit
e

Task

R
es

po
ns

e
Ti

m
e

(m
s) 3 VMs

 5 VMs

 8 VMs

10 VMs

Figure 13: Typical times observed for various office tasks in a virtualized

desktop using different number of virtual machines

In both case studies, feedback from the system operators has been positive. In
particular, operators have found that Quartermaster tools provide an integrated view
of the system that is otherwise not available, and focus attention on data that is at the
right level of abstraction. For example, within the virtualized desktop, operators can
define policies associated with different classes of users, and schedule resources
based on the user class. Additionally, operators have found the framework useful
because it enables them to quantify improvements (e.g., utilized capacity or time-to-
deployment of applications) that are otherwise difficult to evaluate. Within the
SASU environment, operators have found approximately 25% time savings for
capacity management exercises.

5. Related Work
Many of the individual problems tackled within Quartermaster have been described
in the literature. System composition has been explored within the artificial
intelligence [16] and software engineering [17] communities. A rich literature exists
on problems of scheduling resources to applications in the computer science
community, as well as in the high performance computing community [21].
Similarly, the statistics [22] and operations research communities [23] have studied
algorithms for modeling time varying quantities and optimization algorithms
respectively. Finally, system modeling has been subject to much research within the
software engineering field [24]. Quartermaster brings together knowledge from these
diverse fields into tools that can be applied to solve IT automation problems.

The use of CIM in policy validation is described in [18]. A facility for handling
rules within a CIMOM is described in [20]. Automation of change management

13

processes using optimization is described in [19]. Quartermaster differs from such
previous work in its effort to bring together diverse tools in a model-based approach
to integration and its focus on design-time tasks required by operators, as opposed to
run-time management.

6. Summary
Quartermaster seeks to create an IT resource utility, where complex applications can
be provisioned for IT users on-demand. Quartermaster contains an integrated set of
tools that provide users with the ability to compose complex environments, manage
capacity within resource pools, and allocate resources from those resource pools to
applications and users. The tools are integrated using a model-based approach that
relies on the CIM standard for modeling the environment. Individual tools
communicate by changing the elements within a shared model.

We are using these tools in a number of initiatives both within HP and with HP
customers to test their applicability within different use cases, to obtain feedback and
experience from their use, and to refine the tools using this experience. In addition,
based on user feedback from our case studies, we plan to include other capabilities
that would provide Quartermaster with:

• the ability to measure the behavior of the designed system at run-time and
automatically adapt the design to maintain it within user-specified bounds;

• measurements of application behavior to enable iterative improvement and
refinement of the component types; and

• real-time data from the resource pool to our resource allocation and placement
algorithms, so that inaccuracies in the parameters specified in the design do
not accumulate in practice.

The Quartermaster architecture provides us a framework within which these (and
other) capabilities are integrated.

References
[1] SmartFrog http://www.smartfrog.org/
[2] OpenView http://openview.hp.com/
[3] A. Sahai, S. Singhal, V. Machiraju, R. Joshi, “Automated Policy-Based

Resource Construction in Utility Computing Environments,” 2004 IEEE/IFIP
Network Operations and Management Symposium, Seoul, Korea, April 2004.

[4] C. Flanagan, R. Joshi , X. Ou,, J. Saxe, “Theorem Proving Using Lazy Proof
Explication,” In Lecture Notes in Computer Science, Springer-Verlag
Heidelberg, Volume 2725, pp. 355-367, Jul 2003.

[5] A. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated Generation of
Resource Configurations through Policies,” IEEE 5th International Workshop
on Policies for Distributed Systems and Networks, YorkTown Heights, June
2004.

[6] J. Pruyne and V. Machiraju, “Quartermaster: Grid Services for Data Center
Resource Reservation,” Global Grid Forum Workshop on Designing and
Building Grid Services, October 8, 2003, Chicago, Illinois, USA

14

[7] J. Rolia, X. Zhu, M. Arlitt and A. Andrzejak, “Statistical Service Assurance for
Applications in Utility Grid Environments,” IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunications
Systems, Ft. Worth TX, October 2002.

[8] J. Rolia, X. Zhu and M. Arlitt, “Resource Access Management for a Resource
Utility for Commercial Applications,” IEEE/IFIP Int. Symposium on Integrated
Network Management, Colorado Springs, CO, March 2003.

[9] J. Rolia, A. Anderzejak, and M. Arlitt, “Automating Enterprise Application
Placement in Resource Utilities,” IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management, LCNS 2867, M. Brunner and
A. Keller (eds), pp. 118-129.

[10] X. Zhu and S. Singhal, “Optimal Resource Assignment in Internet Data
Centers,”- IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunications Systems, Cincinnati, OH,
August 2001.

[11] X. Zhu, C. Santos, J. Ward, D. Beyer, S. Singhal, “Resource Assignment for
Large Scale Computing Utilities using Mathematical Programming,” HPL Tech.
Rep. HPL-2003-243, November 2003.

[12] GAMS, www.gams.com
[13] CPLEX, www.ilog.com
[14] CIM Modeling http://www.dmtf.org/standards/standard_cim.php
[15] DMTF: http://www.dmtf.org
[16] F. Brazier, C. Jonker, J. Treur, “Principles of Compositional Multi-Agent

System Development,” Proc. of the IFIP’98 Conference IT&KNOWS’98, J.
Cuena (ed.), Chapman and Hall, 1998

[17] C. Lucas and P. Steyaert. “Research topics in composability,” Proc. of the CIOO
Workshop at ECOOP, Linz, July 1996

[18] L. Lymberopoulos, E. Lupu, M. Sloman, “PONDER policy validation in a CIM
and differentiated services framework,” Proc. of the IFIP/IEEE Network
Operations and Management Symposium, Seoul, Korea, 2004, pp. 31-44.

[19] A. Keller et. al., “The CHAMPS System: Change Management with Planning
and Scheduling,” Proc. of the IFIP/IEEE Network Operations and Management
Symposium, Seoul, Korea, 2004, pp. 395-408.

[20] S. Nakadai, M. Kudo, K. Konishi, “Rule-based CIM Query Facility for
Dependency Resolution,” Proc. of the 15th IFIP/IEEE International Workshop
on Distributed Systems, Davis, CA, 2004, pp. 245-256.

[21] S. Chang, J. A. Stankovic and K. Ramamritham, “Scheduling algorithms for
hard real-time systems: a brief survey,” in J. A. Stankovic and K. Ramamritham
(eds), Hard Real-Time Systems: Tutorial, IEEE, 1988, pp. 150-173.

[22] S. Levinson, “Statistical modeling and classification,” in Survey of the State of
the Art in Human Language Technology, Cambridge University Press, 1996.

[23] C. Harvey, “Operations Research: An Introduction to Linear Optimization and
Decision Analysis,” Elsevier Science, 1979

[24] A. Felfernig, G. E. Friedrich et al. UML as a domain specific knowledge for the
construction of knowledge based configuration systems. In the Proceedings of
SEKE'99 Eleventh International Conference on Software Engineering and
Knowledge Engineering, 1999.

[25] HP Workload manager http://h30081.www3.hp.com/products/wlm/

