

Adaptive Entitlement Control of Resource
Containers on Shared Servers

X. Liu X. Zhu, S. Singhal, M. Arlitt
Univ. of Illinois at Urbana Chamapaign Hewlett-Packard Laboratories
201 N. Goodwin Ave 1501 Page Mill Road
Urbana, IL, USA Palo Alto, CA, USA
xueliu@cs.uiuc.edu {xiaoyun.zhu,sharad.singhal,
 martin.arlitt}@hp.com

Abstract
In this paper, we describe the design of online feedback control algorithms to
dynamically adjust entitlement values for a resource container on a server shared by
multiple applications. The goal is to determine the minimum level of entitlement for
the container such that its hosted application achieves desired performance levels.
Classic control theory is used for both model identification and controller design.
Specific implementation issues that affect the closed-loop system performance are
discussed A self-tuning adaptive controller is also presented to handle limited
variations in the workload. The controllers were implemented and evaluated on a
testbed using the HP-UX PRM as the resource container and the Apache Web server
as the hosted application in the container. In all experiments, our controller was able
to quickly converge to the proper level of CPU entitlement for the Web server to track
its performance target. By using our entitlement control system, shared servers can
potentially reach much higher resource utilization while meeting service level
objectives for the hosted applications under changing operating conditions.

Keywords
utility computing, resource containers, resource entitlement, adaptive control

1. Introduction
Server consolidation is important for reducing infrastructure and management costs
and increasing return on IT investment in enterprise data centers. Because
applications sharing the same server may compete for system resources such as CPU,
memory, and disk bandwidth, performance degradation and service level agreement
(SLA) violations can occur under overload conditions. Two classes of technologies
exist on the market today to provide isolation between co-hosted applications: server
partitioning and server virtualization. For instance, HP’s Process Resource Manager
(PRM) [9] and IBM’s Application Workload Manager [15] can partition a shared
server to ensure each partition’s entitlement to system resources under overload
conditions. Similarly, server virtualization technologies [22][25] allow multiple

virtual servers to be created on the same physical machine and encapsulate
applications inside different virtual servers. In this paper, we do not distinguish
between these two technologies, and use the general term “resource container” to
refer to a partition of a server that has certain entitlement to shared resources on the
server.

Resource containers provide performance isolation and service differentiation for
applications on shared servers. However, current practices typically rely on offline
capacity planning tools to statically determine the resource entitlement of each
container before production, which does not fully utilize the benefit of statistical
multiplexing between applications’ resource demands. This is especially important for
enterprise applications where static entitlement is difficult because resource demands
vary over time due to changes in workloads. For resource containers that host such
enterprise applications, we need to guarantee that the container always has enough
resources to meet the performance goals of the hosted application.. At the same time,
over-provisioning of resources should be prevented so that more applications can be
hosted on the same server. So the key question is, what is the minimum amount of
system resource an application needs in order to meet its performance objective? This
problem can be solved effectively using a feedback control approach, as illustrated in
Figure 1. A controller periodically takes performance measurements of the application
from a monitoring agent, compares it with the desired performance, and adjusts
entitlement values for the resource container to meet the application’s performance
goal. The changes to the entitlement can be effected through exposed APIs or
configuration utilities provided by the container. The performance data may be
provided to the controller by the application, or through a proxy agent that computes
performance metrics from monitoring data.

Figure 1. Entitlement control for a resource container using feedback

Most existing technologies for realizing this feedback loop online rely on policies or
heuristics [10][15]. They require expert knowledge, and therefore are typically
domain specific. In addition, they do not provide stability guarantees, and may lead to
large oscillations in certain metrics. In this paper, we propose a more systematic
approach using control theory as the foundation for designing the feedback loop in
Figure 1. This provides useful guidelines for managing tradeoffs between system
stability and performance. The system identification process utilizes a black-box

Entitlement
setting

API

Performance
monitoring

agent

 Application

Controller

performance
feedback

Resource
Container

resource
entitlement

performance
goal

approach to infer models from measurement data. The models are updated online in
an adaptive control system. This is especially useful in environments where system
operating conditions cannot be predicted accurately in advance. By using short-term
dynamic models to predict system behavior, our approach can quickly react to
changes in application requirements or system conditions, in complement to offline
planning or policy-based online adjustments that typically work at longer time scales.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 describes the architecture of the entitlement control system and the
setup of our testbed. Section 4 demonstrates how a dynamic model can be inferred
from experimental data using standard system identification techniques. Section 5
describes offline design of a PI controller under a fixed workload, and discusses
implementation issues and resolutions. Section 6 introduces the design of an adaptive
controller and its online operation. Section 7 presents performance evaluation results
for both the fixed controller and the adaptive controller. Finally, Section 8 offers
conclusions and discusses future research directions.

2. Related Work
The concept of a Resource Container [4] was first proposed as a new operating
system abstraction which separates a protection domain from a resource principal,
thus enabling fine-grained resource management in servers. Our notion of resource
containers is broader in the sense that it is agnostic of the specific technology used to
create the container and how resource entitlement is enforced. In addition, the
implementation of the resource container in [4] requires modification of both the
kernel and the server applications, while our entitlement control system exploits
externally exposed APIs or simple configuration utilities for the containers, and does
not require a change in the applications running inside the containers.

The Rialto operating system [12] and Resource Kernels [23] provide operating
system support for resource reservation, monitoring, and enforcement on shared
servers. These resource reservation frameworks require that the resource entitlement
for each application be determined a-priori. This is not appropriate for enterprise
applications whose exact resource demands are unknown in advance, and typically
fluctuate over time. Reservation for peak load typically leads to low resource
utilization. In this paper, we focus on designing feedback control algorithms that
dynamically adjust an application’s entitlement to resources based on its real-time
resource needs during execution in order to meet its performance goals.

Server partitioning or virtualization technology vendors also provide workload
management tools for controlling application performance using feedback. Both the
IBM z/OS workload manager [16] and the HP-UX Workload Manager [10] let the
users define performance goals and priorities for applications, and automatically
determine the amount of CPU and/or storage required for each application to meet the
goals. The latter implements a proportional (P) controller that contains a number of
parameters that have to be tuned by the users to achieve optimal performance of the
controller. In this paper, we use control theory for designing such feedback control

algorithms, thus minimizing hand-tuning required by the user.
Control theory has also been successfully applied to controlling performance or

quality of service (QoS) for a variety of computer systems and software. Chapter 1 in
[11] gives an extensive summary of related work in this area. The systems being
controlled include Lotus Notes email server [7][8], Apache Web server [1][5][6][19],
Squid proxy server [20], Lustre file system [13], as well as a 3-tier e-commerce site
[14]. The output metrics include system-level metrics, such as CPU and memory
utilization [1][6], cache hit ratio [20], and server queue length [5][8], application level
metrics such as response time and throughput [13][14][19], or business level metrics
such as profits [7]. Control mechanisms used include admission control or request
throttling [5][13][14], Web content adaptation [1], application parameter tuning
[6][7], resource allocation [19][20], and middleware [17][24]. The types of control
algorithms used include variations of proportional, integral, and derivative (PID)
control [1][5][8][17], pole placement [6], linear quadratic regulator (LQR) [6], fuzzy
control [7][17], model predictive control (MPC) [1], and adaptive control
[13][14][20]. Adaptive control, in particular, has received much interest due to its
self-tuning capability that allows the controller to adapt to changes in operating
conditions and workloads automatically.

Our work is distinguished from prior work in that we propose a generic, non-
intrusive approach for dynamically controlling resource entitlements that relies upon
existing server partitioning or virtualization technologies and application capabilities.
Our approach can be applied to any resource container and any application hosted
inside the container on shared servers. Furthermore, we designed and implemented an
adaptive controller that self-tunes its parameters based on online estimates of the
system model and validated its effectiveness on a real system testbed.

3. Control System Architecture and Testbed Setup
In this section, we introduce a case study that uses the HP-UX PRM [9] as an
example of a resource container technology and the Apache Web server [2] as an
example of an application running inside a resource container. Figure 2 illustrates the
block diagram of the entitlement control system in our study. The subsections that
follow explain in detail each block in the diagram.

3.1 Resource container and actuator
In our case study, we use the HP-UX PRM as the resource container technology.
PRM is a resource management tool that allows system administrators to fine-tune
how system resources such as CPU, physical memory, and disk bandwidth on a server
are shared by multiple users or applications. PRM controls the allocation of these
resources to PRM groups. Each PRM group is a conceptual partition of the system’s
resources, therefore a resource container. Because this partitioning is accomplished in
the operating system, it can be changed at any time, even while the system is in use.
During system overload conditions, PRM guarantees a minimum entitlement to
system resources by each PRM group. Optionally, if CPU or memory capping is

enabled on a PRM group, PRM ensures the group’s usage of CPU or memory does
not exceed the cap regardless of whether the system is fully utilized.

-

y

+

d

Sensor
(httperf log)

Actuator
(PRM CPU
scheduler)

Container
(PRM group
for Apache)

Controller
(Module C)

Workload
(httperf)

r e

Sensor
(Module S)

u

r(k) = RTref

k y(k) = MRTk u(k) = CEPk e(k) = RTref
k - MRTk

Figure 2. Architecture of resource entitlement control system
In this paper, we focus on CPU as the key system resource for applications. We

rely on the CPU scheduler in PRM as the actuator for our control system to enforce
the CPU entitlement value for a PRM group. We define the CPU entitlement
percentage, CEP (u), as the entitlement to a percentage of CPU cycles used by all the
Apache processes belong to the same PRM group.

3.2 Workload generator and sensor
We use httperf (ftp://ftp.hpl.hp.com/pub/httperf), a scalable client workload generator,
to continuously send HTTP requests to the Apache Web server. We chose client-
perceived mean response time, MRT (y), as the performance metric for the Web
server. We modified httperf 0.8 to log the response time of every request. The
resulting httperf log serves as our first sensor module for application performance
(see Figure 2). We have programmed another sensor module S to compute the MRT
of all the requests completed during each sampling interval. The sampled MRT is fed
into the controller as an input. Because the workload mix and intensity affect the
degree of how system resources are stressed by the application, the workload also
serves as a disturbance (d) to the control system.

3.3 Controller
The goal of the controller is to compute the proper level of CPU entitlement for the
Web server in order to maintain the measured MRT around the desired response time.
The latter is referred to as the reference signal in control theory, therefore denoted by
RTref. The settings for RTref can be based on the SLA between the service/application
provider and its users. At every sampling instant k, the measured MRTk (y(k)) for the
previous sampling interval is compared to the current reference RTref

k (r(k)), and the
difference e(k) is fed into the a controller module C. The controller module computes
a new CPU entitlement value, CEPk (u(k)), and feeds it into the actuator, PRM’s CPU
scheduler, which reallocates the CPU cycles during the current sampling interval.

3.4 Testbed setup
All experiments including system identification and control were conducted on a
testbed of two computers connected by 100 Mbps Ethernet. The client machine runs
httperf, the sensor module S, and the controller module C. The client machine has a
500 MHz Pentium III processor and 512 MB RAM. It runs Red Hat Linux 7.3 with
kernel version 2.4.18. The server machine runs the Apache Web server 2.0.48 on HP-
UX B11.00. It is an HP9000-R server with one 180 MHz PA-8000 processor and 512
MB RAM. The experimental setup is as follows.
• Server application: We chose the Apache Web server release 2.0.48 as the

application to be hosted inside a resource container. By implementing a thread
model, the Apache 2.x releases are able to serve a large number of requests with
less system resources than the previous process-based server in the Apache 1.3.x
releases, yet still retaining the stability of a process-based server by keeping
multiple processes available, each with a variable number of threads ready to
serve incoming requests. During all the experiments, we use the default Apache
server settings and configuration parameters recommended by the Apache group.

• Client workload: Two sets of workloads were generated and tested in our
experiments. For both sets, only static content was used. This prevents the system
memory from being a bottleneck. In addition, the total size of each working file
set is small enough to fit in the file system buffer cache so that minimum disk
activity was involved. The first set, WL1, consists of a sequence of static HTTP
requests for the same URL, but at a different rate of requests per second. The
second set, WL2, uses a working set of 540 distinct files that have sizes ranging
from 1KB to 90 KB. In WL2, We used the ‘–wsesslog’ option of httperf to
generate the workload. The corresponding session log file was generated such
that each session fetches a file that is randomly chosen out of the 540 files with a
burst length of 10 requests per connection. The session rate is exponentially
distributed with a mean of 30 sessions per second. The purpose of the second set
of workloads will be explained in the performance evaluation section.

• PRM: We use the version of PRM inside the HP-UX B11.00 kernel. For the
purpose of our experiment, all the Apache related users and processes are placed
in one PRM group called “WEBSV”. This serves as the resource container for
the Web server. The CPU entitlement for the WEBSV PRM group is modified
every time a new CEP is calculated. We enable CPU capping so that CEP also
acts as an upper bound on the percentage of CPU cycles used by the WEBSV
group. In addition, the real CPU utilization by the WEBSV group is measured
every second and recorded in a log file to be analyzed after each experiment.

• Sensor and controller: Both the sensor module S and the controller module C
are implemented in Perl. For the ease of parsing the httperf log, we placed both
of them on the client machine.

4. Model Identification
In this section, we establish the open-loop dynamic model for the mapping between

the WEBSV PRM group’s CPU entitlement percentage (CEPk) and the mean response
time (MRTk). Complex behavior of the Web server makes it difficult to obtain such
models using first-principles. We treat it as a black-box and infer the model from
externally observable metrics using standard system identification techniques [17].

A single-input-single-output (SISO) model is used, where the input of the system
u(k)= CEPk, and the output y(k)=1/MRTk for each sampling interval. The reason why
the inverse of MRT is used as the output is that the MRT is roughly inversely
proportional to the Web server’s throughput, while the latter is proportional to the
CPU entitlement. Therefore, the MRT is roughly inversely proportional to the CEP.
Using the inverse of MRT allowed us to find a simple linear model as the basis for the
controller design, while no such models could be found if the MRT were the output.

For our system identification experiments, we used the fixed workload WL1 at a
rate between 300 and 600 requests/second to stress the server’s CPU at a certain level.
For full excitation of the system, we varied CEPk using a pseudo-random sequence
uniformly distributed in the interval [CPULOW, CPUHIGH]. We set CPULOW=20%
and CPUHIGH=90% as the minimum and maximum CEP settings for both system
identification and control. At the beginning of each sampling interval k, u(k) was
randomly chosen and fed into PRM, and y(k) was measured by the sensor module S
from the httperf log. The experiment lasted 30 minutes, resulting in a time series of
120 input-output pairs (u(k), y(k)). We used the first 60 samples for identification, and
the remaining 60 samples for validation. The experiment was repeated at different
settings of the request rate, with different sampling intervals.

After experimenting with various linear parametric models using the Matlab
System Identification Toolbox [21], we have two observations. First, a longer
sampling interval leads to a better fit of the model in general, while a shorter
sampling interval produces data that is too noisy to be fit using a simple linear model.
On the other hand, the controller may be too slow when the sampling interval is too
long. We chose a sampling interval of 15 seconds as the result of the tradeoff. The
second observation is that the following first-order auto-regressive (AR) model [17]
provides reasonably good prediction for the inverse of MRT for all the request rates:

)()()1(10 kyakubky +=+ (1)

The corresponding z-transform of the transfer function from u(k) to y(k) follows:

1
1

1
0

1

0

1)(
)()(

−

−

−
=

−
==

za
zb

az
b

zU
zYzG . (2)

Notice that the system has a one-sample delay in the response of y(k) from u(k).
Four potential factors contribute to this delay: first, the Web server itself may have a
delayed change in the response time when its CPU allocation changes; second, y(k) is
an average measure, which incurs up to one-sample delay from the real response
time; third, it takes time for the CEPk command to be sent from the client machine to
the server and be written into the PRM configuration file; fourth, the actuator (PRM’s
CPU scheduler), which enforces the real CPU utilization of the WEBSV group to
obey the entitlement value, requires some time for the enforcement to take effect.

Models with different parameter values were applied to the validation data, and
the model-predicted output was compared to the measured output (inverse of MRT).
One such comparison is shown in Figure 3, for data collected at the rate of 600
requests/second. The parameter values we chose are: b0=0.17, and a1=0.46. Among all
the models we evaluated, this model has the highest r2 value of 50.3%, where r2
denotes the percentage of variation in the measured output accounted for by the
model. Although r2 is not the only measure for picking the best model, we notice that
this model captures most of the fluctuations in the data with reasonable accuracy,
while missing some of the peaks due to simplicity of the model. The results for other
request rates are similar, with different values for b0 and a1.

900 1000 1100 1200 1300 1400 1500 1600 1700 1800
0.15

0.2

0.25

0.3

0.35

0.4

Time (seconds)

1
 /
 M

 R
 T

 (
 1

 /
 s

e
c
o
n
d
s
) measured output

simulated model output

Figure 3. Comparison of measured output vs. model prediction

5. Offline Controller Design and Implementation
We now apply control theory to design the CPU entitlement controller in the feedback
loop. The goal of the controller is to maintain the MRT around a given target by
dynamically adjusting the CEP at every sampling interval. This is referred to as a
regulation problem in the control literature.

The design criteria for choosing the controller algorithm and parameters are
driven by the desired properties of the closed-loop system. First, the closed-loop
system should be stable. More specifically, we want to minimize oscillation in the
controlled metric, MRT; in control theory, this requires that the poles of the closed-
loop transfer function be within the unit-circle. Second, the measured MRT should
converge to the given response time target; in control theory, this is referred to as zero
steady-state error. Finally, when the response time target changes, the measured MRT
should be able to track the change in a timely manner; in control theory, we use the
rise time tr and the settling time ts to measure the speed of the response, where the rise
time refers to the time it takes to reach 90% of the reference value, and the settling
time refers to the time it takes to settle within %5± of the reference value.

We chose Proportional-Integral (PI) controller for its simplicity and the ability to
achieve zero steady-state error. For a discrete-time system, it has the following form:

)1()()()1()(−−++−= keKkeKKkuku pip , (3)

where e(k)=r(k)-y(k) is the error between the reference value and the measured output.
For our system, we have kk

ref MRTRTke /1/1)(−= . Next we describe how the
controller is implemented in the feedback loop.

5.1. Controller implementation design
We experimented with three controller implementation designs in our testbed. Due to
space limitation, we only present one here. Interested readers are referred to [18] for
detailed discussions and results of all three implementation choices. In all the
experiments, the control interval is set to equal to the sampling interval, 15 seconds.

Figure 4 illustrates the timeline of our controller execution. We use a real-time
timer to kick off the controller every 15 seconds. Starting from the beginning of each
control interval Tk, instead of parsing the httperf log (by sensor S) immediately, a nap
module (denoted by block N) is first executed. An immediate parsing would miss
response time samples due to the buffered stream I/O in httperf for logging response
times of completed requests. This may cause performance degradation of the closed-
loop system, which we observed in our experiments [18]. By using the nap module,
the controller waits for httperf to finish logging the response times of all the requests
completed in the previous interval [Tk-1, Tk]. Note that simply turning off the streamed
I/O in httperf may greatly impact its performance due to the large volume of requests
seen by a typical Web server. We could also modify the httperf source code so that the
logging is synchronized with our sampling interval. However, this becomes an
intrusive approach and is not generic enough to be applied to all applications.

Figure 4. Controller execution timeline

The time to nap is a design parameter that should be chosen carefully such that a
complete sample can be obtained, and at the same time, the whole sequence of control
actions can be completed by the deadline (i.e. beginning of the next interval, Tk+1). In
our experiments, we found that a nap time of 3 seconds was a good choice, as all
requests were logged and no deadlines were missed.

The sensor module S follows the nap module N to do the parsing and outputs
MRTk. The controller module C then takes MRTk as input along with RTref

k for
computing control input CEPk. To reduce control jitter, we need to place the control
actuation time as close to the timer expiration time as possible. We achieve this by
withholding the control input CEPk calculated during the interval [Tk, Tk+1) until the
beginning of the next interval, Tk+1, as illustrated in Figure 4. So CEPk is
communicated to the server at time Tk+1, and will be subsequently actuated by PRM.

However, with the implementation proposed above, the controller algorithm in

 S C N S N C
Tk(CEPk-1) Tk-1 (CEPk-2) Tk+1(CEPk)

equation (3) needs to be revised to reflect the extra delay caused by holding the
control input till the next interval. This results in the following controller algorithm:

)1()()()()1(−−++=+ keKkeKKkuku pip . (4)

By choosing Kp=0.8 and Ki=0.95 based on our design criteria, we arrived at the
following transfer function for the controller:

)1(
46.0

75.1
)(
)(

)(
−

−
×==

zz
z

zE
zUzC . (5)

Analysis shows that the closed-loop system is stable, has zero steady-state error, and
has rise time tr=45 seconds (3 samples) and settling time ts=90 seconds (6 samples).

6. Adaptive Controller Design
The previous section described how a PI controller can be designed offline based on
the dynamic input-output model obtained through system identification experiments.
However, these experiments were conducted on the simple fixed workload WL1. As a
consequence, the offline controller is designed specifically to meet the resource needs
of that particular workload. In a real system, it is very difficult to find a single linear
model that characterizes the system’s behavior under all workload conditions. As the
workload changes, the best model to describe the system’s behavior changes
accordingly. This calls for the design of an adaptive controller, which repeatedly
estimates the dynamic model based on online input-output measurements, and
computes controller parameters online based on the current estimated model.

We implemented a simple indirect self-tuning regulator [3] on our entitlement
control testbed. One assumption we made was in spite of changes in the workload
condition, a first-order AR model was always appropriate for predicting the MRT for
the next sampling interval. This means, the input-output model has a fixed structure,
but the parameters are time-varying depending on the current workload in the system.
Therefore, equation (1) remains as the open-loop system’s model, and the PI
controller with one-step delay can still be used to regulate the Web server’s MRT.
Figure 5 shows a block diagram for the self-tuning regulator, which is a variation of a
general diagram in [3], but contains specific information on our system.

Figure 5. Block diagram of an indirect self-tuning regulator

(Kp, Ki)

e r u y
1

0

az
b
−

Pole
placement

)1(
)(

−

−+

zz
KzKK pip

Model
estimation

(a1, b0) Design criteria

-

We use the recursive least-squares (RLS) method [3] to estimate the two parameters
for the AR model. The parameter values are updated in every control interval and are
fed into a pole placement module. The latter chooses appropriate values for Kp and Ki
in the PI controller such that the closed-loop system poles are at desired locations.
The calculated gain values are then fed into the controller module for execution.

7. Performance Evaluation
In this section, we present the experimental results for the two controllers we
described earlier in terms of the closed-loop system performance.

First, we used the fixed workload WL1 with a rate varying between 300 and 600
requests/second as what we used for system identification, to test the PI controller
designed offline and its implementation. To avoid the starting phase of httperf, the
controller was turned on at 60 seconds after httperf started, and the test lasted 30
minutes (120 sampling intervals). To test the system’s response, we set RTref at 3, 5, 3
seconds during time intervals [0s-600s), [600s-1200s), [1200s-1800s), respectively.

Figure 6 shows the closed-loop system performance for workload WL1 at
rate=600 requests/second using the controller in (5). Figure 6(b) shows the measured
MRT and the RTref as a function of time. With a delay of 3-8 intervals, the controller
could track changes in RTref and maintain the MRT within %15± of the response
time target.

Figure 6(a) shows the control input CEPk and the measured CPU utilization of
the WEBSV group during the experiment. For each RTref setting, our controller was
able to quickly determine the correct level of CPU entitlement the WEBSV group
should receive in order to meet that target. For example, a MRT target of 3 seconds
requires a CPU entitlement of about 70-80%, while an MRT target of 5 seconds
requires a lower entitlement at around 40-50%. The feedback controller carried out
these adjustments automatically. The small gap between the two curves reflects both
the communication delay from the client machine to the server machine and the
inherent error (and delay) in the actuator, the PRM CPU scheduler. (Note that this gap
has been taken into account in our system model since the input data we used for
system identification was CEPk, not the real CPU utilization.)

Figure 6(c) shows the mean server throughput in each control interval in the
number of completed requests per second. Since the mean throughput is inversely
proportional to MRT, the control system regulates throughput the same way it does
response times. For example, a CPU entitlement of 40-50% produces a throughput of
about 200 requests/second, while a CPU entitlement of 70-80% produces a
throughput of about 300 requests/second.
Next, we tested the self-tuning adaptive controller against the variable workload
WL2. Figure 7 shows the result for a mean request rate = 30 sessions/second (with an
exponential distribution). In the earlier sections, we discussed how different rate
settings for even the simpler workload WL1 would lead to different parameter values
for the model, which means a single fixed controller may not work well for all the
rate settings. Since httperf does not allow the rate variable to be changed in the
middle of a run, we chose to use variation in the file size in this workload to mimic

the change in the CPU demand the workload places on the server during a single
experiment.

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

(a)

CPU entitlement
CPU utilization

0 200 400 600 800 1000 1200 1400 1600 1800
2

4

6

8

(b)

(s
e
c
o
n
d
s
)

measured MRT
RT reference

0 200 400 600 800 1000 1200 1400 1600 1800
100

200

300

400

(c)
Time (seconds)

(r
e
q
 /
 s

e
c
)

Mean throughput

Figure 6. Closed-loop system performance of the fixed PI controller

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

(a)

CPU entitlement
CPU utilization

0 200 400 600 800 1000 1200 1400 1600 1800
3

5

7

9

(b)

(s
e

c
o

n
d

s
) measured MRT

RT reference

0 200 400 600 800 1000 1200 1400 1600 1800
50

100

150

200

250

(c)
Time (seconds)

(r
e

q
 /

 s
e

c
)

Mean throughput

Figure 7. Closed-loop system performance of the adaptive controller

As we can see, for each fixed MRT target, the adaptive controller was able to
maintain the MRT within %20± of the target in spite of the variation in the
workload. When the MRT target changed over time, it was able to track the changes
within 5-9 sampling intervals and arrive at the proper levels of CPU entitlement for
different target settings. However, the measured MRT does converge slower to the
target value and has relatively more oscillations compared to the single controller
specifically designed for a given workload. This is due to online estimation of the
parameters. It seems to be a reasonable tradeoff considering the larger classes of
workload the adaptive controller is able to handle.

8. Conclusions and Future Work
In this paper, we described the problem of designing online feedback control
algorithms to dynamically adjust entitlement values for a resource container on a
shared server. A PI controller was designed offline for a fixed workload and a self-
tuning adaptive controller was described to handle limited variations in workloads.
Both controllers were able to quickly converge to the minimum level of entitlement
the container should receive in order for its hosted applications to achieve their
performance goals. This technique is particularly useful when multiple applications
are co-hosted on the same server, which is the key feature of today’s server
consolidation practices and utility computing environments. By using our entitlement
control system, shared servers can reach much higher resource utilization while
meeting service level objectives for the hosted applications. In future work, it will be
interesting to evaluate the scenario where multiple applications are competing for
resources on the shared server, and not all applications’ performance goals can be met
at the same time. In this case, policy-based or utility-driven prioritization schemes
may be incorporated so that entitlement values for individual applications can be
decided in a way that maximizes the overall benefit generated from the server.

As ongoing work, we are including dynamic content into our workload set so that
we can stress the memory of the resource container along with the CPU, and include
memory entitlement as another control input in our system. Further inclusion of
throughput as another measured output would result in a multiple-input-multiple-
output (MIMO) model for the controlled system. We intend to explore a broader set
of techniques for designing feedback controllers for such systems.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their comments and suggestions
that helped improve the quality of this paper.

References
[1] T.F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guarantees for Web

server end-systems: A control-theoretical approach,” IEEE Trans. on Parallel and
Distributed Systems, vol. 13, 2002.

[2] Apache Web server, http://www.apache.org/
[3] K.J. Astrom and B. Wittenmark, Adaptive Control, Prentice Hall, 1994.
[4] G. Banga, P. Druschel, and J.C. Mogul, “Resource containers: A new facility for

resource management in server systems,” 3rd USENIX Symposium on Operating
Systems Design and Implementation, February, 1999.

[5] P. Bhoj, S Ramanathan, and S. Singhal, “Web2K: Bringing QoS to Web servers,”
HP Labs Technical Report, HPL-2000-61, May 2000.

[6] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury, “MIMO control
of an Apache Web server: Modeling and controller design,” American Control
Conference, 2002.

[7] Y. Diao, J.L. Hellerstein, S. Parekh, “Using fuzzy control to maximize profits in
service level management,” IBM Systems Journal, Vol. 41, No. 3, 2002.

[8] S. Parekh, N Gandhi, JL Hellerstein, D Tilbury, TS Jayram, J Bigus, "Using
control theory to achieve service level objectives in performance management,"
Real Time Systems Journal, vol. 23, no. 1-2, 2002.

[9] HP Process Resource Manager,
http://h30081.www3.hp.com/products/prm/index.html.

[10] HP-UX Workload Manager,
http://h30081.www3.hp.com/products/wlm/index.html.

[11] J.L. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback Control of
Computing Systems, Wiley-Interscience, 2004.

[12] M.B. Jones, D. Rosu, and M.-C. Rosu, “CPU reservations and time constraints:
Efficient, predictable scheduling of independent activities,” 16th ACM Symposium
on Operating Systems Principles, October, 1997.

[13] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance isolation and
differentiation for storage systems,” 12th IEEE International Workshop on Quality
of Service, June, 2004.

[14] A. Kamra, V. Misra, and E.M. Nahum, “Yaksha: A self-tuning controller for
managing the performance of 3-tiered web sites,” 12th IEEE International
Workshop on Quality of Service, June, 2004.

[15] IBM Application Workload Manager,
http://www.ibm.com/servers/eserver/xseries/systems_management/director_4/aw
m.html

[16] IBM z/OS Workload Manager,
 http://www-1.ibm.com/servers/eserver/zseries/zos/wlm/
[17] B. Li and K. Nahrstedt, "A control-based middleware framework for quality-

of-service adaptations," IEEE Journal on Selected Areas in Communications, vol.
17, pp. 1632-1650, 1999.

[18] X. Liu, X. Zhu, S. Singhal and M. Arlitt, "Adaptive entitlement control of
resource containers on shared servers", HP Labs Technical Report, available at:
http://www.hpl.hp.com/techreports/2004/HPL-2004-178.pdf.

[19] C. Lu, T.F. Abdelzaher, J. Stankovic, and S. Son, “A feedback control approach
for guaranteeing relative delays in Web servers,” IEEE Real-Time Technology and
Applications Symposium, 2001.

[20] Y. Lu, C. Lu, T. Abdelzaher, and G. Tao, “An adaptive control framework for
QoS guarantees and its application to differentiated caching services,” 10th IEEE
International Workshop on Quality of Service, May 2002.

[21] System Identification Toolbox, http://www.mathworks.com/products/sysid/.
[22] Microsoft Virtual Server,

http://www.microsoft.com/windowsserversystem/virtualserver/default.mspx.
[23] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource Kernels: A

resource-centric approach to real-time and multimedia systems,” SPIE/ACM
Conference on Multimedia Computing and Networking, 1998.

[24] R. Zhang, C. Lu, T. Abdelzaher, J. Stankovic, “ControlWare: A middleware
architecture for feedback control of software performance,'' International
Conference on Distributed Computing Systems, Vienna, Austria, July, 2002.

[25] VMware, http://www.vmware.com.

