
Using Object-Oriented Constraint Satisfaction for
Automated Configuration Generation

Tim Hinrich, Nathaniel Love, Charles Petrie

Stanford University, CA, USA

Lyle Ramshaw, Akhil Sahai, Sharad Singhal

HP Laboratories, Palo -Alto, CA, USA
{asahai@hpl.hp.com}

Abstract. In this paper, we describe an approach for automatically generating
configurations for complex applications. Automated generation of system co n-
figurations is required to allow large -scale deployment of custom applications
within utility computin g environments. Our approach models the co nfiguration
management problem as an Object -Oriented Constraint Satisfaction Problem
(OOCSP) that can be solved efficiently using a resolution -based theorem-
prover. We outline the approach and discuss both the bene fits of the approach
as well as its limitations, and hig hlight certain unresolved issues that require
further work. We demonstrate the viability of this a pproach using an e -
Commerce site as an example, and provide results on the complexity and time
required to solve for the co nfiguration of such an applic ation.

1 Introduction

Automated resource configuration has gained more importance with the advent of
utility computing initiatives such as HP’s Utility Data Centerproduct, IBM’s “on -
demand” computing init iative, Sun’s N1 vision, Microsoft’s DSI initi ative and the
Grid initiative within the Global Grid Forum. All of these require large r esource
pools that are apportioned to users on demand. Currently, the r esources that are
available to these resource management systems are “raw” computing resources
(servers, storage, or ne twork capacity) or simple clusters of machines. The user still
has to manually install and configure applications, or rely upon a ma naged service
provider to obtain pre-configured systems.

Creating custom environments is usually not possible because every user has di f-
ferent requirements. Managed service providers rely on a small set of pre -built (and
tested) application environments to meet user needs. However, this limits the ability
of users to ask for applications and resources that have been sp ecially configured for
them. In our research, we are focusing on how complex application environments
(for example, an e-Commerce site) can be automatically “built -to-order” for users

from resources represented as hierarchies of objects. In order to create a custom sol u-
tion that satisfies user requirements, many different considerations have to be taken
into account. Typically, the underlying resources have technical constraints that need
to be met in order for valid operations —not all operating systems will run on all
processors, and not all application servers will work with all databases. In addition,
system operators may impose constraints on how they desire such compositions to be
created. Finally, the users themselves have requirements on how they want the sy s-
tem to behave, and can specify these as arbitrary constraints in the same language
the system operators do. These rich and diverse constraints make automating the
design, deployment and con figuration of such complex environments a hard prob-
lem.

In the course of investigating this problem, we encountered a powerful formalism
able to model configuration management problems that are inherently object -
oriented: the Object-Oriented Constraint Sat isfaction Problem (OOCSP). As noted
above, the utility computing environment is significantly compl icated by allowing
the customers to arbitrarily constrain the systems produced —there are no set number
of dials they can adjust, they in fact have complete freedom to dictate all aspects of
the system configuration. In the case of these arbitrary object -oriented configuration
management problems, the OOCSP formalism offers a domain -independent method
for producing solutions. This paper explains the result o f our work on two para llel
goals: solving utility computing instances with OOCSPs, and using utility computing
to investigate the capabilites of the forma lism.

2 Problem Definition

A number of languages/standards [1] [2] exist which can be used to describe resource
configurations. Of these, the Common Information Model (CIM) of the Distributed
Management Task Force (DMTF) [3] is widely used in the industry to represent
resource configurations. In CIM, the type model captures the resource types, and the
inheritance, aggregation, and association relationships that exist between them. A
cooresponding instance model describes the Instances of the classes with the attribute
values filled in. Typically, the resource types deal with a large number of classes,
because the models have to describe not only the “raw” resources, but also those that
can be composed out of those resource types.

When resources are combined to form other higher-level resources, a variety of
rules need to be followed. For example, when operating systems are loaded on a host,
it is necessary to validate that the proce ssor architecture assumed by the operating
system is indeed the architecture of the host. S imilarly, when an application tier is
composed from a group of servers, it may be necessary to ensure that all network
interfaces are configured to be on the same subnet or that the same version of the
application is loaded on all machines in the tier. To ensure correct behavior of a
reasonably complex application, several hundred such rules may be necessary. This
is further complicated by the fact that a large fraction of these rules are not inherent

to the resources, but depend on preferences (policies) p rovided by the system oper a-
tor or indeed, by the customer as part of the request itself.

The current CIM meta-model does not provide the capability to capture such
rules. To accommodate these rules, we have extended the CIM meta -model to associ-
ate policies with the resource types. These policies capture the tec hnical constraints
and choices made by the operators or administrators that need to be obeyed by every
instance of the associated class. By capturing the constraints on what is possible (or
permitted) for the values of the model attributes within an instance of policy that is
attached to the resource type (as opposed to within the model itself), it becomes po s-
sible to customize the configurations that are valid without co nstantly extending the
models. The users can request customization of particular resources from the avai l-
able resource types by specifying additional constraints 1 on their attribute values and
on their arrangement in the system. These requests could be for instances of “raw”
resources or for composite resources. Our goal is to automatically generate a system
configuration by selecting the appropriate resource classes and assigning values to
their attributes so that all constraints specified in the underlying resource models are
satisfied.

3 A Running Example

We will start by describing a particular utility computing problem that will be used
for illustration throughout the paper. We will be using a more compact represent a-
tion [4] for MOF specifications and th eir associated constraints. In all that follows
we represent a constraint on a particular MOF specification by surroun ding it with
the keyword satisfy and including it within the specification itself. The example in
question models a collection of hardware and software components that can be a s-
sembled to build an e-Commerce site. The objects themselves can be defined hiera r-
chically with e-Commerce at the top. An e -Commerce site includes three tiers of
servers, including web, database, and applications serve rs; additional resources i n-
clude a variety of operating systems, software applications, computers, and networ k-
ing components. The class definitions in this environment contain the expected
compositional constraints, like restricting mySQL to Linux servers. The example
also contains mathematical constraints—resources have cost attributes with values
constrained to be the sum of the costs of the objects contained within the r esource.
One portion of a class definition from this example —the DatabaseServer class—
appears below. It is the compressed version of the example in Section 2.

class DatabaseServer
{

type: String;
server: Server;
swImage: InstalledSoftware;
satisfy (swImage.name == “Database”);

1 The terms policy, constraint, and rule are frequently used interchangeably. From this point

forward we will use only the term constraint.

satisfy ((type == “Oracle”) ∨ (type == “mySQL”));
satisfy ((type == “Oracle”) ⇒ (swImage.version ==

9));
satisfy ((type == “mySQL”) ⇒ (server.osImage.name ==

“Linux”));
}

User requests in our example consist of a distinguished target class usually called
main, which contains a variable of type eCommercesite. Any user requirements ap-
pear as constraints on that variable. For example, the request

main {
 ecomm: eCommercesite;
 satisfy (ecomm.tier1.numservers >= 10);
 satisfy (ecomm.tps == 5000);
}

asks for an instance of an e -Commerce site with at least ten servers in tier1, support-
ing 5,000 transactions per second. A solution is simply an instance of an eCo m-
mercesite object, represented just as DatabaseServer is represented above. Thus ge n-
erating an e-Commerce configuration amounts to building an instance of the eCo m-
mercesite class.
The full example includes around twenty of these class definitions, ranging in co m-
plexity from an e-Commerce site down to specifications for a particular type of co m-
puter. Snippets from this problem will show up repeatedly in what follows a s illustra-
tion, but the principles illustrated will be applicable to a broad range of configur ation
management problems.

4 Configuration Management as an OOCSP

As shown above, configuration management problems such as utility computing can
often be modeled as a hierarchy of class definitions with embedded constraints. A b-
stracting away from the details of any particular problem can allow a more compr e-
hensive understanding of not only the problem but also the possible routes for sol u-
tion. Paltrinieri [10] outlines the notion of an Object -Oriented Constraint Satisfac-
tion Problem (OOCSP), which turns out to be a natural abstraction for a broad class
of configuration management problems. Similarly, Alloy [6] uses an object oriented
specification for describing and analyzing software models.

An OOCSP is defined by a set of class definitions, a set of enumerations, and a
distinguished target class, much like main in a JAVA program. Each class definition
includes an ordered set of variables, each with a declared type, and a set of co n-
straints on those variables; each class also has a name, a set of super classes, and a
function Dot (.) that gives access to its variables. An en umeration is simply a set of
values; declaring a variable as an enumeration forces the variable to be assigned to
one of the elements in that set. A solution to an OOCSP is an instance of the target
class. In an OOCSP, the constraints are embedded hiera rchically so that if an object
is an instance of the target class (i.e. it satisfies all the constraints within the class) it
includes instances of all the target’s subclasses, which also satisfy all constraints
within those classes. In this view of the problem, the sources of the constraints —

from customers, administrat ors, or system designers—is no longer important, and
any solution must satisfy all constraints, regardless of or igin. The production of
constraints forms a user interface problem that is outside the scope of this invest iga-
tion.

The OOCSP for the e-Commerce example includes class definitions for eCo m-
mercesite, DatabaseServer, Server, and InstalledSoftware among others. The class
definitions contain a set of variables, each with a declared type. DatabaseServer
includes (in order) a String variable type, a variable server of type Server, and a
variable swImage of type InstalledSoftware. One of the constraints requires the
name component of swImage to be “Database”. It has no superclasses, and the fun c-
tion Dot is defined implicitly.

While it is clear how to declare variables within a class, many options exist for
how to the express constraints on those variables. In our examples we use standard
logical connectives, like ∨ and ⇒, to mean exactly the same thing they do in pr oposi-
tional and first-order logic. We have formally defined the language chosen for repr e-
senting constraints both by giving a logician a particular vocabulary and by giving a
grammar; these definitions are virtually identical.
The constraint language includes all quan tifier-free first-order formulas over the
following vocabulary.

1. r is a relation constant iff r is the name of a class, equality or an inequality symbol
2. f is a function constant iff f is the binary Dot or a mathematical function
3. v is a variable iff v is declared as a variable or starts with a letter from the end of
the alphabet, e.g. x, y, z
4. c is an object constant iff c is an atomic symbol and not one of the above

The constraints seen in the DatabaseServer example are typical and have been e x-
plained elsewhere. Two types of constraints that do not appear in our example d e-
serve special mention. Consider the fo llowing snippet of a class defin ition.
 x: DatabaseServer;
 y: DatabaseServer;
 x == y;

We define equality to be syntactic; two objects are equal exactly when all their proper-
ties are equal. That means that two objects that happen to have all the same pro perties
are treated as essentially the same object. The exception to this interpretation of equa l-
ity is arithmetic. Not only is 7==7 satisfied, but so is 2*2==4 , as one would hope,
even though syntactically 4 is different than 2*2.

The other type of notable constraint is more esoteric; consider the fo llowing.

x: Any;
 y: Any;
 satisfy (DatabaseServer(“Oracle”, x, y));
This constraint requires x and y to have values so that Database-

Server(“Oracle”, x, y) is a valid instance of DatabaseServer. These co nstraints
become valuable when one wants to define an object of arb itrary size, like a linked
list:

class List {
data: Any;

tail: Any;
satisfy ((tail == nil) ∨ List(tail.data,

tail.tail));
 }

This List class is recursively defined, with a base case given by the disjunct tail ==
nil; the recursive case is the second disjunct, which requires tail itself to be a List
object. Our constraint language a llows us to define these complex objects and also
write constraints on those objects.

Given what it means to satisfy a constraint we can precisely describe what it
means for an object to be an instance of a particular class. An instance of a class T is
an ordered set of objects, one for each variable, such that (1) the object assigned to a
variable of type R is an instance of R and (2) the constraints of T are satisfied. The
base case for this recursive definition is the enumerations, which are effectively ob-
jects without subcomponents. Objects are instances of an enumeration if they are one
of the values listed in that en umeration.

To illustrate, an instance of a DatabaseServer is an object with three components:
an instance of String, an instance of Server , and an instance of InstalledSoftware.
Those components must satisfy all the co nstraints in the DatabaseServer class. The
instance of Server must likewise include some number of comp onents that together
satisfy all the constraints within Server. The same applies to InstalledSoftware.

This section has detailed how one can formulate configuration management pro b-
lems as OOCSPs2. The next section confronts building a system to solve these co n-
figuration management problems.

5 Solving Configuration Management Problems by Solving
OOCSPs

Our approach to solving configuration management problems is based on an OOCSP
solver. The two main components of the system communicate through the OOCSP
formalism. The first component includes a model of the utility computing environ-
ment at hand. It allows administrators to change and expand that model, and it a l-
lows users to make requests for specific types of sy stems without worrying too much
about that model. The second component is an OOCSP solver based on a first -order
resolution-style [12] theorem prover Epilog, provided by the Stanford Logic Group.
It is treated as a black box that takes an OOCSP as input and returns a solution if one
exists. The rest of this paper focuses on the design and implementation of the
OOCSP solver and discusses the benefits and drawbacks in the context of configur a-
tion management.

The architecture of the OOCSP solver can be broken down into four parts. Given
a set of class defin itions, a set of enumerations, and a target class, a set of first -order
logical sentences is generated. Next, those logical sentences are converted to what is

2 We believe the notion of an OOCSP is equivalent to a Context Free Grammar in which each

production rule i ncludes constraints that restrict when it can be applied.

known as clausal form, a requirement for all resolution -style theorem provers. Third,
a host of optimizations are run on the resulting clauses so that Epilog can mo re eas-
ily find a solution. Lastly, Epilog is given the result of the third step and asked to
find an instantiation of the analog of the target class. If such a solution exists, Epilog
returns an object that represents that i nstantiation, which by necessity includes in-
stantiations of all subcomponents of the target class, instanti ations of all the subcom-
ponents’ subcomponents, and so on. Epilog also has the ability to return an arb itrary
number of solutions or even all solutions. Because the conversion to cl ausal form is
mechanical and the optimizations are Epilog-specific, we will discuss in detail only
the translation of an OOCSP to first -order logic, the results of which can be used by
any first-order theorem prover.

Consider the class definition for Datab aseServer. Recall we can represent an i n-
stance of a class with a term, e.g.

Database-
Server(“Oracle”, Server(...),InstalledSoftware(...))

Notice this is intended to be an actual instance of a DatabaseServer object. It includes
a type, Oracle, and instances o f the Server class and the InstalledSoftware class. To
define which objects are instances of DatabaseServer given our representation for
such instances we begin by requiring the arguments to the Databa seServer term be of
the correct type.

DatabaseServer.instance(DatabaseServer(x, y, z)) ⇐

String.instance(x) ∧
Server.instance(y) ∧
InstalledSoftware.instance(z) ∧ ...

But because a DatabaseServer cannot be composed of any String, any Server i n-
stance, and any InstalledSoftware instance this sentence is inco mplete. The missing
portion of the rule represents the constraints that appear within the DatabaseServer
class definition. These constraints can almost be copied directly from the original
class definition giving the sentence shown below.

DatabaseServer.in stance(DatabaseServer(x, y, z)) ⇐

(String.instance(x) ∧
 Server.instance(y) ∧
 InstalledSoftware.instance(z) ∧

 z.name == “Database” ∧
 ((x == “Oracle”) ∨ (x == “mySQL”)) ∧

 ((x == “Oracle”) ⇒ (z.version == 9)) ∧
 ((x == “mySQL”) ⇒ (y.osImage.nam e == “Linux”)))

Similar translations are done for all class definitions in the OOCSP.
Once these translations have been made for all classes and enumerations in the

OOCSP to first-order logic, the conversion to clausal form is entirely mechanical and
a standard step in theorem -proving. For any particular class definition these first two
steps operate independently of all the other class definitions; cons equently, if an
OOCSP has been translated once to clausal form and changes are made to a few
classes, only those altered classes must undergo this transform ation again.

Once the OOCSP has been converted into clausal form the result is a set of rules
that look very similar to the sentence defining DatabaseServer above. Several alg o-

rithms are run on these rul es as optimizations. These algorithms prune unnecessary
conjuncts, discard unusable rules, and manipulate rule bo dies and heads to improve
efficiency in the final step. Doing all this involves reasoning about both syntactic
equality and the semantics of th e object-oriented Dot function. These algorithms
greatly reduce the number and lengths of the rules, consequently reducing the search
space without eliminating any possible solutions. Some of these optimizations are
global, which means that if any changes are made to the OOCSP those algorithms
must be run again. Because one of the optimizations pushes certain types of co n-
straints down into the hierarchy, it is especially important to apply it once a new
query arrives.

The final step invokes Epilog by askin g for an instantiation of the (translated) ta r-
get class. If the target class were DatabaseServer, the query would ask for an instance
x such that DatabaseServer.instance(x) is entailed by the rules left after optimization,
i.e. x must be an instance of Dat abaseServer. Moreover one can ask for an arb itrary
number of these instances or even all the instances.

6 Consequences of Our Approach

We have made many choices in modeling and solving problems in the configur a-
tion management domain, both in how we represen t a configuration management
problem as an OOCSP and in how we solve the resulting OOCSP. This section e x-
plores those choices and their consequences.

6.1 Modeling Configuration Management Problems

The choice of the object-oriented paradigm is natural for c onfiguration manage-
ment--coupling this idea with constraint satisfaction leads to easier maintenance and
adaptation of the problem so modeled. Our particular choice of language for expres s-
ing these constraints has both benefits and drawbacks and our decisi on to define
equality syntactically may raise further questions.

Benefits

Modeling a configuration management problem as an OOCSP gives benefits sim i-

lar to those gained by writing software in an object -oriented language. Class defin i-
tions encapsulate the data and the constraints on that data that must hold for an
object to be an instance of the class. One class can inherit the data and co nstraints of
another, allowing specializations of a more general class to be done efficiently. Co n-
figuration management naturally involves reasoning about these hierarchically d e-
signed objects; thus it is a natural fit with the object -oriented paradigm.

Modeling configuration management as a constraint satisfaction problem also has
merits, mostly because stating a CSP is done declaratively instead of imperatively.

Imperative programming requires e xplaining how a change in one of an object’s
fields must change the data in its other fields to ensure the object is still a valid i n-
stance. Doing this declaratively requires only explaining what the relationship be-
tween the fields must be for an object to be a valid instance. How those relationships
are maintained is left unspecified. An imperative program describes a computational
process, while the declarative version describes t he results of that computational
process.

Design configuration problems have previously been addressed in three primary
ways. The first is as a standard CSP problem. The OOCSP has the obvious adva n-
tage that configuration problems are easier to formulate a s a set of component classes
and constraints among them. In particular, a CSP requires the e xplicit enumeration
of every possible variable that could be assigned and the OOCSP does not.

Design configuration has also been attempted with expert systems [12] but do-
main knowledge rules are too difficult to manage because of implicit control depen d-
encies, so the approach does not scale. The OOCSP has the advantage that the fo r-
malism is clear and the ordering of the domain knowledge h as no impact on the set
of possible solutions. A third approach has been to add search control as heuristics to
a structure of goals and constraints [8] [9], but this approach is more complex and
slower than the OOCSP approach.

Limitations

The choices outlined above do have drawbacks. In particular first -order logic is very
expressive, so using it as our constraint language comes at a cost: first -order logic is
fundamentally undecidable—there is no algorithm that can ensure it will always give
the correct answer and at the same time halt on all inputs. If there is a solution it will
be found in a finite amount of time; otherwise the algorithm may run forever. We
have not yet determined the decidabilit y and complexity of the subset of first -order
logic we are using in our research. Simpler languages might lead immediately to
certain complexity bounds, but as mentioned above we are interested in solving pro b-
lems where we are selecting both the classes th at need to be instantiated, as well as
the number of instances of those classes based on arbitrary constraints. We have
chosen to start with a language that is expressive enough to write such co nstraints
and a natural fit for the utility computing problem, but as currently written it may be
too expressive. We can restrict this language further if decidabi lity or complexity
become practical issues for particular applications. Certain subclasses of OOCSPs
are polynomial, others are NP -Complete, and others even worse; our approach en-
compasses a range of results, and the right balance between expressivity and co m-
putability must be carefully considered when scaling to more complex utility compu t-
ing instances.

6.2 Solving OOCSPs by Translation to First -Order Logic

Once a configuration problem has been modeled as an OOCSP, several options
are available for building a configuration that meets the requirements embedded in
that OOCSP. We have chosen to find such configurations by first translating the
OOCSP into first-order logic sentences and then invoking a resolution -based theo-
rem prover. To rehash the system’s architecture, the input to the system is an
OOCSP. That input is first translated into first -order logic, which is in turn tran s-
lated to a form suitable for r esolution-style theorem provers; this form is then opt i-
mized for execution in Epilog.

Benefits

Translating an OOCSP into first order logic can be done very quickly, in time
linearly proportional to the number of class definitions. Both this translation an d the
one from first-order logic to clausal form can be performed incrementally; each class
definition is translated independently of the others. The bulk of the o ptimization step
can also be run as each class is converted, but the global optimiz ations can be run
only once the user gives the system a particular query. These optimizations aggre s-
sively manipulate the set of constraints so it is tailored for the query at hand.

Using Epilog as the reasoning engine provides capabilities common to first -order
theorem provers. Epilog can both produce one answer and all answers. More inte r-
estingly it can produce a function that with each successive call returns a new sol u-
tion, giving us the ability to walk through as much or as little of the search space as
needed to find the solution we desire. As we will discuss in Section 7, Epilog can at
times find solutions very rapidly.

Limitations

While the translation from an OOCSP into first -order logic requires time linearly
proportional to the size of the OOCSP, our use of a resolution-based theorem prover
requires those first-order sentences be converted into clausal form. There may be an
exponential increase in the number of sentences when doing this co nversion; thus
not only the time but also the space requirements can become problematic.
Another source of discontent is the number of solutions found by Epilog. Many the o-
rem provers treat basic mathematics, addition, multiplication, inequality, etc ., with
procedural attachments. This means that if one of the constraints requires x < 5,
the theorem prover will find solutions only in those branches of the search space
where x is bound to a number that happens to be less than five. If x is not assigned a
value the theorem prover will not arbitrarily choose one for it. Our th eorem prover,
Epilog, has these same limitations.

Yet another problem with using first -order logic is derived from one of the ben e-
fits mentioned in Section 6.1. It is as expressive as any programming language, i.e.
first-order logic is Turing complete. Th at means answering queries about a set of

first-order sentences is formally undecidable; if the query can be answered positively,
Epilog will halt. If the query cannot be answered positively Epilog may run forever.
This problem is common to all algorithms and systems that soundly and completely
answer queries about first -order sentences. But it seems undecidability may also be a
property of OOCSPs; our conversion to first order logic may not be overcomplicating
the problem of finding a solution at all. Theo retically our approach to solving
OOCSPs may turn out to be the right one; however, from a pragmatic standpoint
many OOCSPs will simply be hierarchical representations of CSPs, which means
such OOCSPs are decidable.

7 Experimental Results and Future Work

The OOCSP solver architecture is a fairly simple one, and for our running example
results are promising, even at this early stage. Translating the OOCSP with eighteen
classes into clausal form requires four to five minutes and results in about 1150
rules. The optimization process finishes in five seconds and r educes the rule count to
around 620. Those eighteen class definitions and the user request allow for roughly
150 billion solutions; in other words, our example is under -constrained. That said,
Epilog finds the first solution in 0.064 seconds; it can find 39000 solutions in 147
seconds before filling 100 MB of memory, which is a rate of 1000 solutions every 3 -4
seconds. If we avoid the memory pro blem by not storing any solutions but only
walking over them, it takes 114 seconds to find those same 39000 answers --the
number of answers returned by Epilog is entirely up to the user. These are results for
a single example. More complicated examples are the su bject of future work3.

The limitations discussed in Sec tion 6 present a host of problems: possible und e-
cidability, exponential blowup when converting to clausal form, inexpressiveness of
syntactic equality, incompleteness of math ematical operators. Undecidability might
be dealt with by restricting the constrai nt language significantly. Clausal form is
fundamental to using a resolution -based theorem prover; changing it to eliminate the
accompanying conversion cost would require building an entirely new system. Sy n-
tactic equality, while less expressive than we mi ght like, may be sufficient for sol v-
ing the class of problems we want to solve.

The system configuration problem, however, is not the only problem to be solved
when building an automatic configuration management service. In order to use one
of the configurations the system has pr oduced, that configuration must be coupled
with a workflow—a structured set of activities—that will bring the configur ation on
line [10]. We plan to use situation calculus [11], which has been explored and e x-
panded for 35 years. The convenient part is that an OOCSP is e xpressive enough to
embed these carefully crafted sentences. Thus one need only write the correct
OOCSP to produce both a configuration and a workflow. We are cu rrently investi-
gating this idea.

3 These statistics are for a 500 MHz PowerPC G4 processor with 1 GB of RAM and Epilog

running on MCL 5 .0.

8 Conclusion

In this paper, we have described an approach to automated configuration manag e-
ment that relies on an Object-Oriented Constraint Satisfaction Problem (OOCSP)
formulation. By posing the problem as an OOCSP, we can specify system configura-
tion in a declarative form and apply well -understood techniques to rapidly search for
a configuration that meets all specified constraints. We discussed both the benefits
and limitations of this approach.

References

1. Unified Modeling Language (UML) http://www.uml.org/
2. SmartFrog http://www.smartfrog.org/
3. CIM http://www.dmtf.org/standards/cim/
4. A. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated Policy -Based Re-

source Construction in Utility Environments” Proceedings of the IEEE/IFIP
NOMS, Seoul, Korea, Apr. 19 -23, 2004

5. M. Paltrinieri, “Some Remarks on the Design of Constraint Satisfaction
Problems,” Second International Workshop on the Principles and Practice
of Constraint Programming , pp. 299-311, 1994.

6. Alloy http://sdg.lcs.mit.edu/alloy/
7. J. A. Robinson, “A machine -oriented logic based on the resolution pri nci-

ple,” Journal of the Association for Computing Machinery , 12:23-41, 1965.
8. S. Mittal and A. Araya. “A Knowledge-Based Framework for Design,”

Proceedings of the 5th AAAI , 1986.
9. C. Petrie, “Context Maintenance,” Proceedings AAAI-91, pp. 288-295,

1991.
10. A. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated Generation of R e-

source Configurations through Policy,” to appear in Proceedings of the
IEEE 5th International Workshop on Policies for Distributed Systems and
Networks, YorkTown Heights, NY, June 7 -9, 2004

11. J. McCarthy and P. J. Hayes. Some philosophical problems from the stan d-
point of artificial intelligence. Machine Intelligence 4 , pp. 463-502, 1969.

12. M. R. Hall, K. Kumaran, M. Peak, and J. S. Kaminski, “DESIGN: A
Generic Configuration Shell,” Proceedings 3rd International Conference
on Industrial & Engineering Applications of AI and Expert Systems , 1990.

