
Capacity and Performance Overhead in Dynamic
Resource Allocation to Virtual Containers

Zhikui Wang1 Xiaoyun Zhu1 Pradeep Padala2 Sharad Singhal1
1Hewlettt Packard Laboratories

Palo Alto, CA 94304, USA
{zhikui.wang, xiaoyun.zhu, sharad.singhal} @hp.com

2University of Michigan
Ann Arbor, MI 48105, USA

ppadala@eecs.umich.edu

Abstract—Today’s enterprise data centers are shifting towards a
utility computing model where many business critical
applications share a common pool of infrastructure resources
that offer capacity on demand. Management of such a pool
requires having a control system that can dynamically allocate
resources to applications in real time. Although this is possible by
use of virtualization technologies, capacity overhead or actuation
delay may occur due to frequent re-scheduling in the
virtualization layer. This paper evaluates the overhead of a
dynamic allocation scheme in both system capacity and
application-level performance relative to static allocation. We
conducted experiments with virtual containers built using Xen
and OpenVZ technologies for hosting both computational and
transactional workloads. We present the results of the
experiments as well as plausible explanations for them. We also
describe implications and guidelines for feedback controller
design in a dynamic allocation system based on our observations.

I. INTRODUCTION
Utility computing is a new computing paradigm that has

attracted a great deal of interest and support across the
information technology (IT) industry. As a result, there is a
trend in today’s enterprise data centers to consolidate business
critical applications from individual dedicated servers onto a
shared pool of servers that offer capacity on demand, as
illustrated in Figure 1. Each physical machine in the pool can
consist of a number of virtual containers, each of which can
host one or more applications. These containers can be realized
using various virtualization technologies, including HP VSE
[3], IBM Enterprise Workload Manager [4], OpenVZ [5],
Solaris Zones [6], VMware [7], Xen [9], etc. .

On the other hand, enterprise applications typically have
resource demands that vary over time due to changes in
business conditions and user demands. Figure 2(a) and 2(b)
show the CPU consumption of two servers in an enterprise data
center for a week. Each server has 8 CPUs, and we can see that
the CPU utilization for both servers is lower than 15% most of
the time. Server A has a peak demand of 2.3 CPU and a mean
demand of 0.2 CPU. Server B has a peak demand of 2.8 CPU
and a mean demand of 0.9 CPU. Therefore, we can move the
applications running on these two servers into two virtual
containers hosted on a single physical machine, where each
virtual container can be provisioned with its peak demand. This
would require a total of 5.1 CPUs, hence a 6-way machine to
host these two virtual containers. However, it is obvious that
the peaks in server A and server B are not synchronized. Figure

2(c) shows the sum of the consumptions from both servers,
which is always below 4 CPUs. Therefore, if a resource
allocation system could allocate and de-allocate resources to
each virtual container based on its need in real time, we would
only need a 4-way server to host these two virtual containers.

Figure 2. An example of server CPU consumptions in a data center

0 20 40 60 80 100 120 140 160
0

1

2

3

(a) CPU consumption of server A (in number of CPUs) Time (Hour)

Time (Hour)

Time (Hour)

0 20 40 60 80 100 120 140 160
0

1

2

3

(b) CPU consumption of server B (in number of CPUs)

0 20 40 60 80 100 120 140 160
0

1

2

3

4

(c) Sum of CPU consumptions from server A & B (in number of CPUs)

App 1

Server 1

App 2

App 1

Server 1

App 2

Server 2

App 3

Server 3

App 4

Server 4

(a) dedicated resources

App 3

Server 2

App 4

(b) a shared pool of resources

Server Pool

Figure 1. Data center resource consolidation

This poses new challenges to systems and application
management that did not exist in dedicated environments.
Because each of the hosted applications can have a resource
demand that changes over short time scales (e.g., seconds or
minutes), there needs to be a control system that can
dynamically allocate the server's capacity to the virtual
containers in real time. The benefit of doing this is that it
allows statistical multiplexing between resource demands from
co-hosted applications so that shared servers can reach higher
resource utilization. At the same time, the control system
should be responsive enough to ensure that application level
service level objectives (SLOs) can be met. Such a closed-loop
control system was presented in [8] to manage resource
utilization of a virtual container hosting an Apache Web server.

One important element in this type of control loop is an
actuator that can dynamically allocate a portion of the total
capacity of certain system resource (CPU, memory, I/O
bandwidth) to an individual container. Indeed, most
virtualization technologies that exist today do contain a
scheduler that implements some form of fair share scheduling
(FSS) for CPU capacity, and provide APIs for communication
with the scheduler so that resource allocation to a virtual
container can be varied at run time. However, the scheduler
itself may not be originally designed to handle frequent
variation of resource allocation. Because re-allocation involves
re-scheduling in the kernel or the hypervisor that requires extra
computation, it may have the following impact on the system
and the hosted applications:

• Capacity overhead: Loss of total capacity in the system.

• Performance overhead: Loss of capacity in the virtual
container, hence degradation of application-level
performance.

To the best of our knowledge, there has been no published
work that systematically evaluates the capacity and
performance overhead due to dynamic allocation of virtualized
resources. The most related work is in [2] where a load
balancer was designed to partition the DB2 memory pool
dynamically in order to optimize the application performance.
In particular, they estimated the cost of memory re-allocation
and specifically incorporated the “cost of control” into the
design of the controller.

This paper aims to evaluate the potential overhead of a
dynamic allocation scheme relative to static allocation. We
choose Xen [9] and OpenVZ [5] as representatives of the two
main types of virtualization technologies today --- hypervisor-
based (Xen) and OS-level (OpenVZ) virtualization. We use
them to set up virtual containers for running both
computational and transactional workloads. We compare the
achieved system performance using either dynamic or static
resource allocation, and present the results of the experiments
while answering the following questions:

1. Is there a capacity or performance overhead?

2. How is the overhead related to the switching frequency as
well as the switching magnitude?

3. Is the overhead comparable between different types of
workloads or virtualization technologies?

4. What are plausible explanations for the overhead?

Finally, we discuss implications for tradeoffs in the feedback
controller design in a dynamic allocation system based on our
observations. We conclude by describing a number of future
research directions.

II. TESTBED SETUP AND EXPERIMENT DESIGN
In this section, we describe the setup of our testbed and the

design of the experiments.

A. Testbed Architecture

Figure 3. Testbed architecture

Figure 3 shows the architecture of our testbed, where a
physical server is shared by two or more virtual containers,
each running an independent workload. The virtualization layer
contains a scheduler that can allocate a portion of the total
resource capacity to each virtual container according to a
specified share. In addition, a resource counter (or sensor) is
running in the host that measures how much of the allocated
capacity is consumed by individual containers.

A resource controller running on another computer sends
SSH calls to the scheduler periodically to change the resource
shares for all the virtual containers. We refer to the period
when these changes occur as the control interval. At the same
time, each workload also has a sensor that measures its
performance (in terms of the amount of work done per unit
time) during each control interval. A performance analyzer is
also running on another computer to collect both the resource
consumption and the performance measurements in order to
calculate the possible capacity and performance overhead
caused by frequent tuning of the resource shares.

In this paper, we focus on CPU capacity as the resource
being shared by the two containers. However, the above
architecture should be generally applicable to studying
overhead in other resources, such as memory and I/O
bandwidth.

Virtualized Server

Scheduler

Resource Controller Performance Analyzer

Container 2
(workload 2)

Container 1
(workload 1)

Virtualization layer

resource shares consumption

Sensor Host

measured
performance

B. Two Virtualization Technologies
We have used the following two virtualization technologies

to create virtual containers in our experiments.

1) Xen: Xen is a hypervisor-based paravirtualization
technology [1]. It enables multiple Xen domains, i.e., virtual
machines, to be created on a single physical server, each having
its own guest OS. The Xen hypervisor provides a software
virtualization layer between the guest OS and the underlying
hardware. It also provides a credit cheduler that implements
weighted fair sharing of the CPU capacity between multiple
domains. This scheduler allows each domain to be allocated
certain share of CPU time during a period of time. The
scheduler can work in a capped (or non-work-conserving) or
non-capped (or work-conserving) mode. In the former, a
domain cannot use more than its share of the total CPU time,
even if there are idle CPU cycles available, whereas in the
latter, a domain can use extra CPU time beyond its share if
other domains do not need it.

2) OpenVZ: OpenVZ is a Linux-based OS-level
virtualization technology. It can create isolated, secure virtual
private servers (VPSs) on a single physical server enabling
better server utilization and ensuring a certain degree of
isolation between applications. Each VPS performs and
executes exactly like a stand-alone server. They can be
rebooted independently and have root access, users, IP
addresses, memory, processes, files, applications, system
libraries and configuration files [5]. The OpenVZ CPU
scheduler implements the FSS strategy, and each VPS’s CPU
share can be capped.

We refer to both a Xen domain and an OpenVZ VPS as a
virtual container. We chose these two virtualization
technologies because they are both open source projects that
have a lot of developer support. And since hypervisor-based
and OS-level virtualization technologies offer different levels
of isolation between virtual containers, they may have different
overheads associated with dynamic allocation of system
resources, which is a subject of our study.

Both Xen and OpenVZ provide a uni-processor kernel as
well as an SMP kernel. For our experiments in this paper, we
use the SMP kernel for both types of virtualized systems so that
we can allocate the full capacity of one CPU to the virtual
containers (excluding the host). In addition, the capped mode
of the CPU scheduler is used in either case because it provides
better performance isolation between different containers.

C. Two Types of Workloads
We studied two types of workloads in our experiments. One

consists of a series of compute-intensive jobs, for which the
performance metric is the average number of tasks completed
per second. We wrote the job execution program in a multi-
threaded fashion such that whenever CPU capacity is available,
it is able to utilize it. The other is an online transaction
processing workload, where a continuous stream of HTTP
requests is submitted to an Apache Web server for processing.
The requests are generated using a client workload generator

httperf (ftp://ftp.hpl.hp.com/pub/httperf). For each request, the
Web server executes a CGI script to generate the response and
sends it back to the client. The performance metric in this case
is the throughput (number of completed requests per second).
Both workloads were intentionally designed to be CPU
intensive so that CPU is the only potential bottleneck resource
in the system. The reason for studying a transactional workload
in addition to the simple computational one is that the former
often has more variable performance due to the queuing
behavior in the server.

D. Experiment Design
We designed the following experiments to evaluate the

potential capacity and performance overhead associated with
dynamic resource allocation to virtual containers.

Using the CPU scheduler, the resource controller
periodically switches the CPU share of each virtual container
between a low value El and a high value Eh, where El+Eh=1
in the case of two containers. For example, a container may be
allocated 0.3 or 0.7 CPU in alternate control intervals. The
shares for the two containers are exactly out of phase such that
when one container receives El, the other receives Eh, and vice
versa. This way they are always allocated one CPU’s capacity
in total. Let T be the control interval, then the switching
frequency is f = 1/T. The exact value of the [El, Eh] pair is
referred to as the switching magnitude. For example, [0.4, 0.6]
has a smaller switching magnitude than [0.2, 0.8]. Each
experiment is run for a period of 360 seconds so that short term
noise is smoothed out over time. The CPU consumption of
each virtual container and the workload performance are
measured in every second, and are then fed into the
performance analyzer for evaluation.

The experiment is repeated for different control intervals,
including T = 6, 10, 15, 20, 30 seconds. For every given T, it is
also repeated for different switching magnitude, including [El,
Eh] = [0.4, 0.6], [0.3, 0.7], [0.2, 0.8]. For comparison to static
allocation, we also test a baseline where each container is
statically allocated 0.5 CPU with no switching over time.
Because a container whose allocated capacity alternates
between El and Eh has effectively an average capacity of 0.5
CPU over a period of time, this baseline allows us to quantify
the capacity loss due to frequent re-scheduling of the CPU. The
goal of the experiments is to gain insight into whether dynamic
control causes overhead, and if so, how the overhead is related
to both the switching frequency and magnitude.

The experiments are run on four HP Proliant DL385 G1
servers, each with two 2.6GHz AMD Opteron processors and
8GB memory. The OpenVZ node uses an OpenVZ-enabled
2.6.9 SMP kernel. The Xen node uses a Xen-enabled 2.6.16
SMP kernel. Both OpenVZ and Xen virtual containers use the
stock Fedora core images. On the Xen node, Dom-0 has access
to the capacity of both CPUs, and its overhead is measured
independently of work done in the virtual containers. We test
two modes of operation for the other Xen domains. In the
pinned mode, we pin all the domains to one physical CPU
using an API provided by Xen, and no such restriction is in
place in the unpinned mode. OpenVZ does not have the
pinning capability, therefore only the unpinned mode is used.

III. EXPERIMENTAL RESULTS

A. Scenario I: Computational Workloads in Xen Containers
In this section, we focus on using Xen virtual containers for

running computational workloads. We test four configurations
using two options: two vs. four containers, and pinned vs.
unpinned mode for the CPU scheduler.

1) Two-container, unpinned:
First, we present experimental results from running two

Xen containers (Dom-1 and Dom-2) in the unpinned mode. In
this case, both containers can use idle cycles from both CPUs
up to their caps, but the sum of the caps is maintained at one
CPU. The results are shown in Figure 4-8.

Figure 4 shows an example of the results for T = 30
seconds and [El, Eh] = [0.3, 0.7]. Figure 4(a) and 4(b) show the
control variable (CPU allocation determined by the controller),
CPU consumption and workload performance (number of
completed tasks per second) for Dom-1 and Dom-2,
respectively. Figure 4(c) shows the CPU consumption for
Dom-0. Note that all these metrics are sampled at 1-second
intervals, and that the CPU control and consumption numbers
are multiplied by 1000 (applicable to similar figures later on).
The legend in Figure 4(c) applies to all the three subfigures.

For each container, there is a small delay (1-2 seconds) in
switching from low CPU consumption to high consumption
when the allocation shifts from 0.3 to 0.7, and vice versa. With
some measurement noise, the workload performance oscillates
in proportion to the CPU usage. At the same time, we see a
clear spike in Dom-0 CPU usage (from roughly 0.04 to 0.25
CPU) whenever switching occurs, indicating a loss in available
capacity due to dynamic re-allocation of the CPU resource.

0 30 60 90 120

500

1000

1500

(a) Dom-1

0 30 60 90 120

500

1000

1500

(b) Dom-2

0 30 60 90 120

250

500

750

1000

(c) Dom-0

CPU Control (x1000)
CPU Consumption (x1000)
Performance (Tasks/sec)

Sec

Sec

Sec

Figure 4. CPU consumption and workload performance for T = 30s, and

[El, Eh] = [0.3, 0.7] (Xen, comp., 2-container, unpinned)

Another example is shown in Figure 5 for the same
switching magnitude but a control interval of 6 seconds. The
same observations can be made on the CPU consumption and
workload performance for the two containers. The spike in
Dom-0 CPU usage has about the same magnitude, but occurs
more frequently due to a shorter control interval.

Figure 6(a) and 6(b) show the measured average
performance for Dom-1 and Dom-2, respectively, as the
switching frequency changes from 1/30 to 1/6. The four curves
correspond to the baseline (0.5) and [El, Eh] = [0.4, 0.6], [0.3,
0.7], [0.2, 0.8], respectively. As we can see, except for a few
outliers, the switching frequency does not have a significant
impact on the workload performance. However, the
performance is worse with higher switching magnitude. Figure
6(c) shows the sum of the measured performance from both
containers. The performance overhead due to dynamic
allocation increases with the switching magnitude and reaches
3% ((2038 – 1980)/2038) of the baseline performance when
[El, Eh] = [0.2, 0.8].

0 30 60 90 120

500

1000

1500

(a) Dom-1

0 30 60 90 120

500

1000

1500

(b) Dom-2

0 30 60 90 120

250

500

750

1000

(c) Dom-0

CPU Control (x1000)
CPU Consumption (x1000)
Performance (Tasks/sec)

Sec

Sec

Sec

Figure 5. CPU consumption and workload performance for T = 6s, and

[El, Eh] = [0.3, 0.7] (Xen, comp., 2-container, unpinned)

1/30 1/20 1/15 1/10 1/6
980

1000

1020

(a) Dom-1

1/30 1/20 1/15 1/10 1/6
980

1000

1020

(b) Dom-2P
e

rfo
rm

an
ce

(T
a

sk
s/

se
c)

1/30 1/20 1/15 1/10 1/6
1960

1980

2000

2020

2040

(c) Dom-1 + Dom-2

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

(Sec-1)

(Sec-1)

(Sec-1)

Figure 6. Workload performance vs. switching frequency for both

containers (Xen, comp., 2-container, unpinned)

Figure 7 shows the corresponding results for the CPU
consumption. Figure 7(a) and 7(b) show the average CPU
consumption for the two individual containers, and Figure 7(c)
shows the total CPU consumption from both containers.
Similar to workload performance, we observe that the loss in
capacity due to dynamic allocation goes up as the switching
magnitude increases, but there is no clear impact by the
switching frequency. With static allocation, both containers

together can consume close to 100% of one CPU’s capacity.
With dynamic allocation switching between 0.2 and 0.8 CPU,
the two containers can only consume a total of 97% of one
CPU, resulting in a capacity loss of 3%, consistent with the
workload performance loss we observed from Figure 6.

In Figure 7(d), Dom-0 CPU usage is shown for different
test conditions. As we can see, Dom-0 consumes an average of
0.042 CPU even with static allocation, due to basic
virtualization overhead and sensor overhead. With dynamic
allocation, as the switching frequency increases from 1/30 to
1/6, Dom-0 consumption grows linearly from 0.049 to 0.077
CPU, reaching a maximum overhead of 0.035 CPU compared
to the static case for T = 6 seconds. This result is consistent
across different switching magnitudes, which is why we only
see one line for all the three magnitudes. This overhead has two
potential sources: processing of the SSH call from the
controller and processing of the two API calls (one per
container) to the scheduler. We ran a separate experiment
where the controller submits only SSH calls to Dom-0 without
re-allocation. The resulting Dom-0 CPU consumption is also
shown in Figure 7(d) (middle line). We can see by comparison
that approximately 30% of the capacity loss in dynamic
allocation is due to processing of the SSH call, and the
remaining 70% is due to re-allocation. In both cases, the
overhead seems fairly constant at each occurrence, resulting in
a linear relationship between the overall observed overhead for
a given period of time and the switching frequency.

1/301/201/15 1/10 1/6
0.475

0.48

0.485

0.49

0.495

0.5

(a) Dom-1

o

f C
P

U

1/301/201/15 1/10 1/6
0.475

0.48

0.485

0.49

0.495

0.5

(b) Dom-2

o

f C
P

U

1/301/201/15 1/10 1/6
0.95

0.96

0.97

0.98

0.99

1

(c) Dom-1+Dom-2

of

 C
P

U

1/301/201/15 1/10 1/6

0.04

0.06

0.08

0.1

0.12

0.14

(d) Dom-0

of

 C
P

U

 0.5
0.6/0.4
0.7/0.3
0.8/0.2
SSH Only

(Sec
-1

)

(Sec-1
)(Sec-1)

(Sec
-1

)

Figure 7. CPU consumption vs. switching frequency for all the containers

(Xen, comp., 2-container, unpinned)

To explain why performance overhead increases with the
switching magnitude, we show in Figure 8 the control variable,
CPU consumption and workload performance for Dom-1 for a
period of 60 seconds, for different switching magnitudes. It
seems that that loss of average capacity to the container
(therefore performance degradation) is due to a slower response
of the container consumption as the allocation increases
compared to when it decreases, shown as asymmetry in the
front and back edges of the square-waves in the figure. For
example, Figure 8(d) corresponds to the switching magnitude
of [0.2, 0.8], where this asymmetry is the most visible. This is
consistent with our earlier observation that performance
overhead is the highest at this switching magnitude.

0 30 60

500

1000

1500

2000

(a) No tunning, E=0.5

CPU Control (x1000)
CPU Consumption (x1000)
Performance (Tasks/sec)

0 30 60

500

1000

1500

2000

(b) [El, Eh] = [0.4, 0.6]

0 30 60

500

1000

1500

2000

(c) [El, Eh] = [0.3, 0.7]

0 30 60

500

1000

1500

2000

(d) [El, Eh] = [0.2, 0.8]

(sec)

(sec)(sec)

(sec)

Figure 8. Dom-1 CPU consumption and workload performance for T=10s

at different switching magnitudes (Xen, comp., 2-container, unpinned)

1/301/201/15 1/10 1/6
2000

2050

2100

2150

2200

(a) Performance of Dom-1+...+Dom-4

T
as

ks
/s

e
c

1/301/201/15 1/10 1/6
1

1.02

1.04

1.06

1.08

(b) CPU Consumption of Dom-1+...+Dom-4

o

f C
P

U

1/301/201/15 1/10 1/6

0.04

0.06

0.08

0.1

0.12

0.14

(c) CPU Consumption of Dom-0

of

 C
P

U

0 30 60 90 120

0.2

0.4

0.6

0.8

1

(d) CPU Consumption of Dom-0
(T=6sec, [el, Eh]=[0.15, 0.35])

of

 C
P

U

CPU Consumption

 0.25
0.2/0.3
0.15/0.35
0.1/0.4

 0.25
0.2/0.3
0.15/0.35
0.1/0.4

 0.25
0.2/0.3
0.15/0.35
0.1/0.4

(sec-1)

(sec)
(sec-1)

(sec-1)

Figure 9. Workload performance and CPU consumption vs. switching
frequency for all the containers (Xen, comp., 4-container, unpinned)

2) Four-container, unpinned:
We run similar experiments using four Xen containers

(Dom-1 to Dom-4) in the unpinned mode, and the results are
summarized in Figure 9. Note that with four containers, the
baseline is when each container is allocated with a fixed
capacity of 0.25 CPU, and the three switching magnitudes
tested become [0.2, 0.3], [0.15, 0.35], [0.1, 0.4], respectively.
Figure 9(a) shows total workload performance from the four
containers as a function of switching frequency for different
switching magnitudes. The average performance still does not
depend on the switching frequency. It does change with the
switching magnitude, but the relationship is no longer
monotonic, as in the 2-container case. The observed
performance overhead is the largest at 6.7% ((2195-
2050)/2195) of the baseline performance for a magnitude of
either [0.2, 0.3] or [0.1, 0.4]. Figure 9(b) shows the total CPU
consumption of all the containers. At the baseline, although
each container is statically allocated 0.25 CPU, the total
consumption from the four containers exceeds one CPU by
almost 8%. This indicates that capping of per-container

consumption is not strictly enforced in the unpinned mode of
the CPU scheduler when there are more containers. Similar to
workload performance, the capacity loss due to dynamic
allocation is the maximum at 6.7% of the baseline consumption
for a magnitude of either [0.2, 0.3] or [0.1, 0.4].

Figure 9(c) shows Dom-0 CPU consumption as a function
of switching frequency. The behavior is similar to that for the
2-container case, as shown in Figure 7(d). The differences are:
(i) Baseline consumption for the 4-container case (0.075 CPU)
is higher than that for the 2-container case (0.042 CPU); (ii)
Capacity overhead due to dynamic allocation for the 4-
container case reaches 0.055 (0.13 – 0.075) CPU for T = 6
seconds, higher than the overhead for the 2-container case
(0.035 CPU). Figure 9(d) shows an example of the Dom-0
CPU consumption over time for T = 6 seconds and [El, Eh] =
[0.15, 0.35]. We can see that the spikes in Dom-0 consumption
during re-allocation have a higher magnitude (from 0.075 to
roughly 0.4 CPU) than that for the 2-container case. This is
because the controller has to make four instead of two API
calls to the CPU scheduler during each re-allocation. These
observations are consistent with our expectation that both
performance and capacity overheads of dynamic allocation
grows with the number of virtual containers.

1/301/201/15 1/10 1/6
1900

1950

2000

2050

(a) Performance of Dom-1+Dom-2

T
a

sk
s/

se
c

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

1/301/201/15 1/10 1/6
0.95

0.96

0.97

0.98

0.99

1

(b) CPU Consumption of Dom-1+Dom2

#
 o

f C
P

U

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

1/301/201/15 1/10 1/6

0.04

0.06

0.08

0.1

0.12

0.14

(c) CPU Consumption of Dom-0

of

 C
P

U

0 30 60 90 120
0

0.2

0.4

0.6

0.8

1

(d) CPU Consumption of Dom-0
 (T=6sec, [El, Eh]=[0.3, 0.7])

of

 C
P

U

0.5
0.6/0.4
0.7/0.3
0.8/0.2
SSH Only

CPU Consumption

(sec-1)

(sec)
(sec

-1
)

(sec-1)

Figure 10. Workload performance and CPU consumption vs. switching
frequency for all the containers (Xen, comp., 2-container, pinned)

3) Two-container, pinned:
We then repeat the 2-container experiments using the

pinned mode of the CPU scheduler where both containers are
pinned to a particular physical processor. Figure 10 shows the
resulting total workload performance and CPU consumption
from all the containers as a function of switching frequency for
different switching magnitudes as well as an example of Dom-
0 CPU consumption for T = 6 seconds and [El, Eh] = [0.3, 0.7].
The results are similar to the unpinned case. The differences
are: (i) The average loss in workload performance (Figure
10(a)) or container capacity (Figure 10(b)) reaches a maximum
of roughly 4% for [El, Eh] = [0.2, 0.8], slightly higher than the
3% in the unpinned case; (ii) Overhead in Dom-0 CPU
consumption (Figure 10(c)) reaches a maximum of roughly
0.054 CPU at T = 6 seconds, higher than the 0.035 CPU
overhead in the unpinned case.

0 30 60

500

1000

1500

2000

(a) No tunning, E=0.5

0 30 60

500

1000

1500

2000

(b) [El, Eh] = [0.4, 0.6]

0 30 60

500

1000

1500

2000

(c) [El, Eh] = [0.3, 0.7]

0 30 60

500

1000

1500

2000

(d) [El, Eh] = [0.2, 0.8]

CPU Control (x1000)
CPU Consumption (x1000)
Performance (Tasks/sec)

(sec) (sec)

(sec) (sec)
Figure 11. Dom-1 CPU consumption and workload performance for T =
10s at different switching magnitudes (Xen, comp., 2-container, pinned)

Similar to Figure 8, Figure 11 provides an explanation for
why the loss in container capacity (and workload performance)
increases with the switching magnitude. For example, with the
pinned mode of the CPU scheduler, when the CPU capacity
allocated to a container jumps from 0.2 to 0.8 CPU, it
sometimes cannot fully utilize the allocated capacity, as can be
seen from the second square-wave in Figure 11(d), which is
smaller than the other square-waves. This causes the overall
CPU consumption per container with dynamic allocation to be
lower than the baseline. By repeating the experiment multiple
times and examining the time domain traces for the three
switching magnitudes, we observe that this under-utilization
occurs more frequently with a higher switching magnitude,
therefore resulting in higher loss in workload performance.

4) Four-container, pinned:
Finally, we test the configuration with four Xen containers

using the pinned mode of the scheduler, and the results are
shown in Figure 12. In this case, there is little overhead in
either total workload performance or total container CPU
consumption due to dynamic allocation, except for [El, Eh] =
[0.15, 0.35]. For this particular magnitude, the average loss in
workload performance (Figure 12(a)) or container capacity
(Figure 12(b)) is roughly 2% of the baseline, independent of
the switching frequency. Overhead in Dom-0 CPU
consumption (Figure 12(c)) reaches a maximum of 0.06 CPU
at T = 6 seconds, only slightly higher than the 2-container,
pinned case, or the 4-container, unpinned case.

We provide some intuition behind why the loss in container
capacity (and workload performance) is the highest for [El, Eh]
= [0.15, 0.35] in the 4-container, pinned case in Figure 13. As
can be seen from Figure 13(c), when a container is allocated
0.35 CPU, it is not able to fully utilize the allocated capacity
during some intervals, causing loss in workload performance.
This behavior is not seen for [El, Eh] = [0.2, 0.3] or [0.1, 0.4].
We have repeated the experiment multiple times, and the
results are similar. Finding a source for this anomalous
behavior would require further understanding of the scheduler
implementation, which is outside the scope of this paper.

1/301/201/15 1/10 1/6
1900

1950

2000

2050

(a) Performance of Dom-1+...+Dom-4

T
as

ks
/s

ec

1/301/201/15 1/10 1/6
0.95

0.96

0.97

0.98

0.99

1

(b) CPU Consumption of Dom-1+...+Dom-4

of

 C
P

U

1/301/201/15 1/10 1/6

0.04

0.06

0.08

0.1

0.12

0.14

(c) CPU Consumption of Dom-0

of

 C
P

U

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

(d) CPU Consumption of Dom-0
(T=6sec, [El, Eh]=[0.15, 0.35])

of

 C
P

U

 0.25
0.2/0.3
0.15/0.35
0.1/0.4

 0.25
0.2/0.3
0.15/0.35
0.1/0.4

 0.25
0.2/0.3
0.15/0.35
0.1/0.4

(sec-1)

(sec)
(sec-1)

(sec-1)

Figure 12. Workload performance and CPU consumption vs. switching
frequency for all the containers (Xen, comp., 4-container, pinned)

0 30 60

500

1000

(a) No tunning, E=0.5

CPU Control (x1000)
CPU Consumption (x1000)
Performance (Tasks/sec)

0 30 60

500

1000

(b) [El, Eh] = [0.2, 0.3]

0 30 60

500

1000

(c) [El, Eh] = [0.15, 0.35]

0 30 60

500

1000

(d) [El, Eh] = [0.1, 0.4]

(sec) (sec)

(sec)(sec)

Figure 13. Dom-1 CPU consumption and workload performance for T =
10s at different switching magnitudes (Xen, comp., 4-container, pinned)

B. Senario II: Transactional Workloads in Xen Containers
In this section, we present the results from experiments of

two Xen virtual containers (Dom-1 and Dom-2), each running
a transactional workload, as shown in Figure 14-17.

Figure 14(a) and 14(b) show the total workload throughput
(requests per second) and CPU consumption from both
containers as a function of switching frequency for different
switching magnitudes. We see that losses in both metrics due to
dynamic allocation increase more or less with the switching
frequency. The total capacity loss also increases with the
switching magnitude as shown in Figure 14(b). We do not see
the same relationship between the performance loss and the
switching magnitude from Figure 14(a). In the most significant
case, the total performance loss is 13% (170-148)/170) of the
baseline performance for T = 6 seconds and [El, Eh] = [0.2,
0.8], whereas the total capacity loss is only about 3% for the
same configuration. It suggests that average performance loss
of a transactional workload is no longer proportional to average
capacity loss of the virtual container hosting the workload.

Figure 14(c) shows an average consumption of 0.07 CPU in
Dom-0 for static allocation. Dom-0 capacity overhead due to

dynamic allocation has similar behavior as that for the
computational workload, where it is a linear function of the
switching frequency, but is independent of the switching
magnitude. The maximum overhead observed is roughly 0.04
(0.11 – 0.07) CPU for T = 6 seconds. Figure 14(d) shows
spikes in Dom-0 CPU usage when capacity re-allocations occur
similar to those observed in Scenario I, with a peak
consumption of about 0.3 CPU. Compared to Figure 7(d) for
the case of the computational workload, Dom-0 consumes
more CPU when the containers are hosting the transactional
workloads, for both static and dynamic allocations. This
additional capacity overhead is due to more intensive I/O
operations in Dom-0 for servicing the transactions.

1/301/20 1/15 1/10 1/6
120

130

140

150

160

170

180

(a) Performance of Dom-1+Dom-2

T
as

ks
/s

ec

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

1/30 1/201/15 1/10 1/6
0.95

0.96

0.97

0.98

0.99

1

(b) CPU Consumption of Dom-1+Dom-2

of

 C
P

U

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

1/301/20 1/15 1/10 1/6

0.04

0.06

0.08

0.1

0.12

0.14

(c) CPU Consumption of Dom-0

of

 C
P

U

0.5
0.6/0.4
0.7/0.3
0.8/0.2

0 30 60 90 120

0.2

0.4

0.6

0.8

1

(d) CPU Consumption of Dom-0
(T=6sec, [El, Eh]=[0.3, 0.7])

of

 C
P

U

(sec-1)

(sec-1)
(sec)

(sec-1)

Figure 14. Workload performance and CPU consumption vs. switching

frequency for all the containers (Xen, trans., 2-container, unpinned)

0 30 60

50

100

150

200

250

(a) No tunning, E=0.5

0 30 60

50

100

150

200

250

(b) [El, Eh] = [0.4, 0.6]

0 30 60

50

100

150

200

250

(c) [El, Eh] = [0.3, 0.7]

0 30 60

50

100

150

200

250

(d) [El, Eh] = [0.2, 0.8]

CPU Control (x100)
CPU Consumption (x100)
Performance (Reqs/sec)

(sec)

(sec)(sec)

(sec)

Figure 15. Dom-1 CPU consumption and workload performance for T =

20s at different switching magnitudes (Xen, trans., 2-container, unpinned)

Figure 15 offers some explanation for the discrepancy
observed between Figure 14(a) and 14(b), by showing the time
series of the CPU allocation, CPU consumption and workload
performance for one container for different switching
magnitudes. We see much higher variability in the throughput
of the transactional workload compared to that of the
computational workload, especially when the allocated
capacity is above 0.5 CPU. Even for a fixed capacity as in

Figure 15(a), the throughout is oscillating heavily, yet the CPU
consumption is much more stable and matches the CPU
allocation most of the time. As a result, charactering workload
performance for a transactional workload requires more metrics
(e.g., variance) in addition to its mean.

Figure 16 shows the performance and capacity losses when
the two Xen containers are pinned to one physical CPU.
Compared with the unpinned case shown in Figure 14, both
losses are increasing with the switching magnitudes, but neither
has an explicit dependency on the switching frequency. In the
most significant case where T = 10 seconds and [El, Eh] = [0.2,
0.8], the performance loss due to dynamic allocation is about
24% (170-130)/170) of the baseline performance, as shown in
Figure 16(a). This is consistent with the capacity loss of about
23% (1-0.77) as seen in Figure 16(b). The Dom-0 CPU
overhead shown in Figure 16(c) and 16(d) are comparable to
that for the pinned case.

1/301/201/15 1/10 1/6
120

130

140

150

160

170

180

(a) Performance of Dom-1+Dom-2

R
eq

s/
se

c

1/301/201/15 1/10 1/6
0.75

0.8

0.85

0.9

0.95

1

(b) CPU Consumption of Dom-1+Dom-2

of

 C
P

U

1/301/201/15 1/10 1/6

0.04

0.06

0.08

0.1

0.12

0.14

(c) CPU Consumption of Dom-0

o

f C
P

U

0 30 60 90 120
0

0.2

0.4

0.6

0.8

1

(d) CPU Consumption of Dom-0
(T=6sec, [El, Eh]=[0.3, 0.7])

o

f C
P

U

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

0.5
0.6/0.4
0.7/0.3
0.8/0.2

(sec-1)

(sec)
(sec-1)

(sec-1)

Figure 16. Workload performance and CPU consumption vs. switching

frequency for all the containers (Xen, trans., 2-container, pinned)

0 30 60

50

100

150

200

250

(a) No tunning, E=0.5

0 30 60

50

100

150

200

250

(b) [El, Eh] = [0.4, 0.6]

0 30 60

50

100

150

200

250

(c) [El, Eh] = [0.3, 0.7]

0 30 60

50

100

150

200

250

(d) [El, Eh] = [0.2, 0.8]

CPU Control (x100)
CPU Consumption (x100)
Performance (Reqs/sec)

(sec)

(sec) (sec)

(sec)

Figure 17. Dom-1 CPU consumption and workload performance for T =
20s at different switching magnitudes (Xen, trans., 2-container, pinned)

Figure 17 shows why the performance loss is more
consistent with the capacity loss in the pinned case than in the

unpinned case when the switching magnitude changes. For
fixed allocation (Figure 17(a)) or a small switching magnitude
(Figure 17(b)), the CPU consumption of a container matches
the CPU allocation almost exactly. However, for larger
switching magnitudes as in Figure 17(c) and 17(d), a container
is not always able to consume all of its allocated capacity. This
issue is consistently observed when the containers are pinned to
one physical CPU and each container’s capacity is capped,
either with the computational workload (Figure 11(d)) or the
transactional workload (Figure 17(d)). This behavior has to do
with the specific implementation of the fair share scheduler.
With the capped and pinned mode of the credit scheduler, when
the capacity of the shared CPU is used up by all the containers,
it may be difficult for the scheduler to add capacity to one
container. We have experimented with different CPU
schedulers in Xen. With the SEDF scheduler included in earlier
Xen releases, we notice that total CPU consumption by all the
virtual containers is capped at 95% whenever the capped mode
is enabled. The 5% of CPU capacity might have been reserved
for handling extra overhead, in which case we do not see the
under-utilization phenomenon as seen with the credit scheduler
that does not reserve this 5% capacity. More experimentation
and further analyses are needed to validate these arguments.

C. Scenario III: Computational Workloads in OpenVZ
Containers
In this scenario, we test two OpenVZ containers (VPS1 and

VPS2), each running a computational workload. The results are
shown in Figure 18-19. Note that we use the capped and
unpinned mode for the CPU scheduler.

Figure 18(a) shows the sum of the workload performance
from the two containers as a function of switching frequency.
We observe some loss in performance with dynamic allocation
relative to static allocation. For dynamic allocation, the total
performance goes up as either the switching frequency or the
switching magnitude increases. This is the opposite of what we
expect in either case, and is different from what we observe in
the Xen system. The maximum loss in performance is observed
for T = 30 seconds and [El, Eh] = [0.4, 0.6], where it is only
0.5% ((2072.5-2062.5)/2072.5) of the baseline, which is much
smaller than that in the Xen case.

Figure 18(b) shows the total CPU consumption from the
two containers. In all cases, the two VPSs together can
consume slightly more than 100% of the one CPU’s capacity,
possibly due to noise in the sensor or inaccuracy of the
scheduler. The total consumption goes up linearly with the
switching frequency, and decreases slightly as the switching
magnitude increases. For most conditions tested, the total CPU
consumption is higher with dynamic allocation than in the
static case. This behavior is not totally consistent with what we
see in workload performance, suggesting that not all of the
consumed CPU capacity is used for workload processing.

Figure 18(c) shows CPU consumption by system processes
(measured by subtracting consumption of the two containers
from total consumption of the server). Similar to the Xen case,
the loss of capacity due to dynamic allocation goes up linearly
with the switching frequency, and is slightly higher for a larger
switching magnitude. The line marked “SSH only” indicates

that roughly half of that lost capacity is used for processing
SSH calls from the controller, and the remaining half is used
for re-allocating CPU capacity between the two containers.

Figure 18(d) provides some intuition for why the total CPU
consumption by both containers increases linearly with the
switching frequency. For T = 6 seconds and [El, Eh] = [0.3,
0.7], we see a spike in the total consumption whenever re-
allocation occurs. And this is observed for all switching
frequencies and magnitudes. Similar to our observation from
Figure 18(b), it seems to imply that a small portion of the
container-consumed capacity is used for processing related to
re-allocation of CPU capacity.

1/301/201/15 1/10 1/6
2050

2055

2060

2065

2070

2075

2080

(a) Performance of VPS1+VPS2

T
as

ks
/s

ec

1/301/201/15 1/10 1/6
1

1.005

1.01

1.015

1.02

(b) CPU Consumption of VPS1+VPS2

#
 o

f C
P

U

1/301/201/15 1/10 1/6
0

0.005

0.01

0.015

0.02

0.025

(c) CPU Consumption of SYS

of

 C
P

U

0 30 60 90 120
0.98

1

1.02

1.04

1.06

(d) CPU Consumption of VPS1+VPS2
 (T=6sec, [El, Eh]=[0.3, 0.7])

of

 C
P

U

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

0.5
0.6/0.4
0.7/0.3
0.8/0.2
SSH Only

CPU Consumption

(sec-1)

(sec)
(sec-1)

(sec-1)

Figure 18. Workload performance and CPU consumption vs. switching

frequency for all the containers (OpenVZ, comp., 2-container)

1/301/201/15 1/10 1/6
2050

2055

2060

2065

2070

2075

2080

(a) Performance of VPS1+...+VPS4

T
as

ks
/s

ec

1/301/201/15 1/10 1/6
1

1.005

1.01

1.015

1.02

(b) CPU Consumption of VPS1+...+VPS4

of

 C
P

U

1/301/201/15 1/10 1/6
0

0.005

0.01

0.015

0.02

0.025

(c) CPU Consumption of SYS

of

 C
P

U

0 30 60 90 120
0.98

1

1.02

1.04

1.06

(d) CPU Consumption of VPS1+...+VPS4
 (T=6sec, [El, Eh]=[0.3, 0.7])

of

 C
P

U

 0.25
0.2/0.3
0.15/0.35
0.1/0.4

 0.25
0.2/0.3
0.15/0.35
0.1/0.4

 0.25
0.2/0.3
0.15/0.35
0.1/0.4 CPU Consumption

(sec-1)

(sec)
(sec-1)

(sec
-1

)

Figure 19. Workload performance and CPU consumption vs. switching

frequency for all the containers (OpenVZ, comp., 4-container)
Figure 19 shows similar results from running four OpenVZ

containers with computational workloads. Compared to the 2-
container case, the differences are: (i) With both static and
dynamic allocations, the total workload performance from all
the containers (Figure 19(a)) is lower in the 4-container case,
and the system-level CPU consumption (Figure 19(c)) is
higher in the 4-container case, both indicating a higher
virtualization overhead with more containers; (ii) We no longer

see performance overhead due to dynamic allocation in the 4-
container case (Figure 19(a)); (iii) The relationship between the
total CPU consumption by the virtual containers and the
switching magnitude is no longer monotonic, and the extra
consumption in the containers due to re-allocation is slightly
higher in the 4-container case (Figure 19(b and 19(d))); (iv) For
dynamic allocation, the system-level CPU consumption is
almost constant across different switching magnitudes for a
given control interval (Figure 19(c)). We do not yet have
explanations for all of the observed differences. However, for
OpenVZ, neither performance overhead nor capacity overhead
due to dynamic allocation is significant to be of major concern.

D. Scenario IV: Transactional Workloads in OpenVZ
Containers
We repeat the same experiments with two OpenVZ virtual

containers, each running a transactional workload. The results
are summarized in Figure 20.

1/301/201/15 1/10 1/6
160

165

170

175

180

(a) Performance of VPS1+VPS2

R
eq

s/
se

c

1/301/201/15 1/10 1/6
0.9

0.92

0.94

0.96

0.98

1

(b) CPU Consumption of VPS1+VPS2

#
 o

f C
P

U

1/301/201/15 1/10 1/6
0

0.005

0.01

0.015

0.02

0.025

(c) CPU Consumption of SYS

of

 C
P

U

0 20 40 60
0

50

100

150

200

(d) Control, Consumption and Performance
(VPS1, T=20sec, [El, Eh]=[0.3, 0.7])

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

 0.5
0.6/0.4
0.7/0.3
0.8/0.2

0.5
0.6/0.4
0.7/0.3
0.8/0.2

CPU Control (x100)
CPU Consumption (x100)
Performance (Reqs/sec)

(sec-1)
(sec-1)

(sec-1)
(sec)

Figure 20. Workload performance and CPU consumption vs. switching

frequency for all the containers (OpenVZ, trans., 2-container)

Figure 20(a) shows the total throughput from the two Web
servers in VPS1 and VPS2. It is an increasing function of the
switching magnitude, but it does not depend explicitly on the
switching frequency. Figure 20(b) shows the total CPU
consumption of the two containers, which shows similar
dependencies on the switching frequency and magnitude. For
all the switching frequencies and magnitudes tested, the
maximum CPU consumption of both containers is about 0.955
CPU, 4.5% lower than the allocate capacity of one CPU. To
explain why this happens, Figure 20(d) shows the time series of
CPU allocation, consumption and workload throughput for T =
6 seconds and [El, Eh] = [0.3, 0.7]. We can see that the CPU
consumption is slightly below the allocation most of the time.
The containers with static allocation consume the least capacity
(0.915 CPU). For some reason, larger switching magnitudes
allow the containers to use more CPU capacity, resulting in
higher workload throughput. In the most significant case where
T = 6 seconds and [El, Eh] = [0.2, 0.8], the two containers
together consume 4% more CPU compared to the static case,
while the total workload throughput increases by 6% ((173-
163)/163) over the baseline.

Compared to the case of the computational workload shown
in Figure 18(c), OpenVZ system processes consume an
additional 0.005 (0.0125 – 0.0075) CPU for the transactional
workload as shown in Figure 20(c). This is not surprising due
to more I/O operations for the transactional workload.
Compared to the results from the Xen system as shown in
Figure 14, the system processes in the OpenVZ case consume
much less capacity (0.01-0.02 CPU) than Dom-0 does in the
Xen case (0.07-0.11 CPU).

IV. CONSLUSION AND IMPLICATION FOR CONTROLLER DESIGN
In conclusion, we have made the following observations on

the impact of dynamic resource allocation in a virtualized
server, as well as on their implications for the design of a
resource control system.

1. We have observed both degradation of workload
performance as well as loss of system capacity due to
dynamic allocation of CPU capacity.

2. Both performance and capacity overheads are higher in the
Xen system than in the OpenVZ system. The overheads in
the OpenVZ system (below 1% over the static case) are
not significant to be of major concern.

3. In the Xen system, both performance and capacity
overheads are higher for transactional workloads than for
computational workloads. The former is due to higher
variability in performance of a transactional workload for a
given capacity. The latter is because of more intensive
network I/O operations for servicing the transactions.

4. Performance overhead in the Xen system is a function of
the switching magnitude for the computational workload,
and is a function of the switching frequency for the
transactional workload. It ranges between 0-13% of the
baseline performance for all the frequencies and
magnitudes tested.

5. Capacity overhead in either Xen Dom-0 or OpenVZ kernel
grows linearly with the switching frequency, and is below
7% of a CPU for all the configurations tested. Note that
this is on top of the existing virtualization overhead, and
we have seen that it goes up with the number of containers.

Both performance and capacity overheads result in
tradeoffs between quicker controller response and less
performance or capacity loss. A dynamic resource controller
needs to be aware of these tradeoffs and to choose design
parameters (e.g., control interval, actuator bounds) accordingly.

V. FUTURE WORK
In general, our experience with the virtualization

technologies for data center consolidation indicates that there is
a lot to be improved in these technologies. We would like more

flexible and powerful knobs to control resource allocation to
each virtual container. More work needs to be done to improve
accuracy and reduce overheads in sensors and actuators. Our
dynamic control paradigm requires the designers of these
technologies to re-think certain code-paths (e.g., scheduling
code) to optimize for control at a higher frequency.

Moreover, the following problems are of particular interest
to us in our future research.

First, as indicated in Section IV, we currently do not have
the explanations for all the behavior we have observed in the
experiments. More experiments to gain insights, more
advanced system monitoring tools to provide finer details on
resource usage in various parts of the system, as well as better
understanding of the scheduler implementation will be of great
help.

Second, we have focused on the CPU resource in this
paper. We are interested in designing similar experiments to
evaluate the impact of dynamic allocation of other resources,
including memory, network I/O and disk I/O bandwidth.

Third, we would like to include other virtualization
technologies into our evaluation study, such as VMware,
Solaris Zones, and new emerging virtualization platforms.

Finally, using control theoretical approaches including the
one in [2], we will specifically incorporate the tradeoffs we
concluded in Section IV into the design of a closed-loop
controller that is part of the management system for virtualized
resources in data centers.

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Nergebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), October, 2003.

[2] Y. Diao, J.L. Hellerstein, A. Storm, M. Surendra, S. Lightstone, S.
Parekh and C. Garcia-Arellano, “Incorporating cost of control into the
design of a load balancing controller,” invited paper, Real-Time and
Embedded Technology and Application Systems Symposium, 2004.

[3] D. Herington and B. Jacquot, The HP Virtual Server Environment:
Making the Adaptive Enterprise Vision a Reality in Your Datacenter,
Prentice Hall, September, 2005.

[4] IBM Enterprise Workload Manager,
http://www-03.ibm.com/servers/eserver/zseries/zos/ewlm/

[5] OpenVZ, http://openvz.org/
[6] D. Price and A. Tucker, “Solaris Zones: Operating system support for

consolidating commercial workloads,” in Proceedings of 18th Large
Installation System Administration Conference (LISA), November, 2004.

[7] VMware, http://www.vmware.com
[8] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-based control

for dynamic sizing of resource partitions,” 16th IFIP/IEEE Distributed
Systems: Operations and Management, October, 2005.

[9] Xen Virtual Machine, http://www.xensource.com

