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Abstract—Today’s enterprise data centers are shifting towards a 
utility computing model where many business critical 
applications share a common pool of infrastructure resources 
that offer capacity on demand. Management of such a pool 
requires having a control system that can dynamically allocate 
resources to applications in real time. Although this is possible by 
use of virtualization technologies, capacity overhead or actuation 
delay may occur due to frequent re-scheduling in the 
virtualization layer. This paper evaluates the overhead of a 
dynamic allocation scheme in both system capacity and 
application-level performance relative to static allocation. We 
conducted experiments with virtual containers built using Xen 
and OpenVZ technologies for hosting both computational and 
transactional workloads. We present the results of the 
experiments as well as plausible explanations for them. We also 
describe implications and guidelines for feedback controller 
design in a dynamic allocation system based on our observations. 

I. INTRODUCTION 
Utility computing is a new computing paradigm that has 

attracted a great deal of interest and support across the 
information technology (IT) industry. As a result, there is a 
trend in today’s enterprise data centers to consolidate business 
critical applications from individual dedicated servers onto a 
shared pool of servers that offer capacity on demand, as 
illustrated in Figure 1. Each physical machine in the pool can 
consist of a number of virtual containers, each of which can 
host one or more applications. These containers can be realized 
using various virtualization technologies, including HP VSE 
[3], IBM Enterprise Workload Manager [4], OpenVZ [5], 
Solaris Zones [6],  VMware [7], Xen [9], etc. .  

On the other hand, enterprise applications typically have 
resource demands that vary over time due to changes in 
business conditions and user demands. Figure 2(a) and 2(b) 
show the CPU consumption of two servers in an enterprise data 
center for a week. Each server has 8 CPUs, and we can see that 
the CPU utilization for both servers is lower than 15% most of 
the time. Server A has a peak demand of 2.3 CPU and a mean 
demand of 0.2 CPU. Server B has a peak demand of 2.8 CPU 
and a mean demand of 0.9 CPU. Therefore, we can move the 
applications running on these two servers into two virtual 
containers hosted on a single physical machine, where each 
virtual container can be provisioned with its peak demand. This 
would require a total of 5.1 CPUs, hence a 6-way machine to 
host these two virtual containers. However, it is obvious that 
the peaks in server A and server B are not synchronized. Figure 

2(c) shows the sum of the consumptions from both servers, 
which is always below 4 CPUs. Therefore, if a resource 
allocation system could allocate and de-allocate resources to 
each virtual container based on its need in real time, we would 
only need a 4-way server to host these two virtual containers.  

 
Figure 2. An example of server CPU consumptions in a data center 
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Figure 1. Data center resource consolidation 



This poses new challenges to systems and application 
management that did not exist in dedicated environments. 
Because each of the hosted applications can have a resource 
demand that changes over short time scales (e.g., seconds or 
minutes), there needs to be a control system that can 
dynamically allocate the server's capacity to the virtual 
containers in real time. The benefit of doing this is that it 
allows statistical multiplexing between resource demands from 
co-hosted applications so that shared servers can reach higher 
resource utilization. At the same time, the control system 
should be responsive enough to ensure that application level 
service level objectives (SLOs) can be met. Such a closed-loop 
control system was presented in [8] to manage resource 
utilization of a virtual container hosting an Apache Web server. 

One important element in this type of control loop is an 
actuator that can dynamically allocate a portion of the total 
capacity of certain system resource (CPU, memory, I/O 
bandwidth) to an individual container. Indeed, most 
virtualization technologies that exist today do contain a 
scheduler that implements some form of fair share scheduling 
(FSS) for CPU capacity, and provide APIs for communication 
with the scheduler so that resource allocation to a virtual 
container can be varied at run time. However, the scheduler 
itself may not be originally designed to handle frequent 
variation of resource allocation. Because re-allocation involves 
re-scheduling in the kernel or the hypervisor that requires extra 
computation, it may have the following impact on the system 
and the hosted applications: 

• Capacity overhead: Loss of total capacity in the system. 

• Performance overhead: Loss of capacity in the virtual 
container, hence degradation of application-level 
performance. 

To the best of our knowledge, there has been no published 
work that systematically evaluates the capacity and 
performance overhead due to dynamic allocation of virtualized 
resources. The most related work is in [2] where a load 
balancer was designed to partition the DB2 memory pool 
dynamically in order to optimize the application performance. 
In particular, they estimated the cost of memory re-allocation 
and specifically incorporated the “cost of control” into the 
design of the controller.  

This paper aims to evaluate the potential overhead of a 
dynamic allocation scheme relative to static allocation. We 
choose Xen [9] and OpenVZ [5] as representatives of the two 
main types of virtualization technologies today --- hypervisor-
based (Xen) and OS-level (OpenVZ) virtualization. We use 
them to set up virtual containers for running both 
computational and transactional workloads. We compare the 
achieved system performance using either dynamic or static 
resource allocation, and present the results of the experiments 
while answering the following questions: 

1. Is there a capacity or performance overhead?  

2. How is the overhead related to the switching frequency as 
well as the switching magnitude?  

3. Is the overhead comparable between different types of 
workloads or virtualization technologies?  

4. What are plausible explanations for the overhead? 

Finally, we discuss implications for tradeoffs in the feedback 
controller design in a dynamic allocation system based on our 
observations. We conclude by describing a number of future 
research directions. 

II. TESTBED SETUP AND EXPERIMENT DESIGN 
In this section, we describe the setup of our testbed and the 

design of the experiments.  

A. Testbed Architecture 

 
Figure 3. Testbed architecture  

Figure 3 shows the architecture of our testbed, where a 
physical server is shared by two or more virtual containers, 
each running an independent workload. The virtualization layer 
contains a scheduler that can allocate a portion of the total 
resource capacity to each virtual container according to a 
specified share. In addition, a resource counter (or sensor) is 
running in the host that measures how much of the allocated 
capacity is consumed by individual containers. 

A resource controller running on another computer sends 
SSH calls to the scheduler periodically to change the resource 
shares for all the virtual containers. We refer to the period 
when these changes occur as the control interval. At the same 
time, each workload also has a sensor that measures its 
performance (in terms of the amount of work done per unit 
time) during each control interval. A performance analyzer is 
also running on another computer to collect both the resource 
consumption and the performance measurements in order to 
calculate the possible capacity and performance overhead 
caused by frequent tuning of the resource shares.  

In this paper, we focus on CPU capacity as the resource 
being shared by the two containers. However, the above 
architecture should be generally applicable to studying 
overhead in other resources, such as memory and I/O 
bandwidth. 
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B. Two Virtualization Technologies 
We have used the following two virtualization technologies 

to create virtual containers in our experiments. 

1) Xen: Xen is a hypervisor-based paravirtualization 
technology [1]. It enables multiple Xen domains, i.e., virtual 
machines, to be created on a single physical server, each having 
its own guest OS. The Xen hypervisor provides a software 
virtualization layer between the guest OS and the underlying 
hardware. It also provides  a credit cheduler that implements 
weighted fair sharing of the CPU capacity between multiple 
domains. This scheduler allows each domain to be allocated 
certain share of CPU time during a period of time. The 
scheduler can work in a capped (or non-work-conserving) or 
non-capped (or work-conserving) mode. In the former, a 
domain cannot use more than its share of the total CPU time, 
even if there are idle CPU cycles available, whereas in the 
latter, a domain can use extra CPU time beyond its share if 
other domains do not need it. 

2) OpenVZ: OpenVZ is a Linux-based OS-level 
virtualization technology. It can create isolated, secure virtual 
private servers (VPSs) on a single physical server enabling 
better server utilization and ensuring a certain degree of 
isolation between applications. Each VPS performs and 
executes exactly like a stand-alone server. They can be 
rebooted independently and have root access, users, IP 
addresses, memory, processes, files, applications, system 
libraries and configuration files [5]. The OpenVZ CPU 
scheduler implements the FSS strategy, and each VPS’s CPU 
share can be capped. 

We refer to both a Xen domain and an OpenVZ VPS as a 
virtual container. We chose these two virtualization 
technologies because they are both open source projects that 
have a lot of developer support. And since hypervisor-based 
and OS-level virtualization technologies offer different levels 
of isolation between virtual containers, they may have different 
overheads associated with dynamic allocation of system 
resources, which is a subject of our study.  

Both Xen and OpenVZ provide a uni-processor kernel as 
well as an SMP kernel. For our experiments in this paper, we 
use the SMP kernel for both types of virtualized systems so that 
we can allocate the full capacity of one CPU to the virtual 
containers (excluding the host). In addition, the capped mode 
of the CPU scheduler is used in either case because it provides 
better performance isolation between different containers. 

C. Two Types of Workloads 
We studied two types of workloads in our experiments. One 

consists of a series of compute-intensive jobs, for which the 
performance metric is the average number of tasks completed 
per second. We wrote the job execution program in a multi-
threaded fashion such that whenever CPU capacity is available, 
it is able to utilize it. The other is an online transaction 
processing workload, where a continuous stream of HTTP 
requests is submitted to an Apache Web server for processing. 
The requests are generated using a client workload generator 

httperf (ftp://ftp.hpl.hp.com/pub/httperf). For each request, the 
Web server executes a CGI script to generate the response and 
sends it back to the client. The performance metric in this case 
is the throughput (number of completed requests per second). 
Both workloads were intentionally designed to be CPU 
intensive so that CPU is the only potential bottleneck resource 
in the system. The reason for studying a transactional workload 
in addition to the simple computational one is that the former 
often has more variable performance due to the queuing 
behavior in the server. 

D. Experiment Design 
We designed the following experiments to evaluate the 

potential capacity and performance overhead associated with 
dynamic resource allocation to virtual containers.  

Using the CPU scheduler, the resource controller 
periodically switches the CPU share of each virtual container 
between a low value El and a high value Eh, where El+Eh=1 
in the case of two containers. For example, a container may be 
allocated 0.3 or 0.7 CPU in alternate control intervals. The 
shares for the two containers are exactly out of phase such that 
when one container receives El, the other receives Eh, and vice 
versa. This way they are always allocated one CPU’s capacity 
in total. Let T be the control interval, then the switching 
frequency is f = 1/T. The exact value of the [El, Eh] pair is 
referred to as the switching magnitude.  For example, [0.4, 0.6] 
has a smaller switching magnitude than [0.2, 0.8]. Each 
experiment is run for a period of 360 seconds so that short term 
noise is smoothed out over time. The CPU consumption of 
each virtual container and the workload performance are 
measured in every second, and are then fed into the 
performance analyzer for evaluation. 

The experiment is repeated for different control intervals, 
including T = 6, 10, 15, 20, 30 seconds. For every given T, it is 
also repeated for different switching magnitude, including [El, 
Eh] = [0.4, 0.6], [0.3, 0.7], [0.2, 0.8]. For comparison to static 
allocation, we also test a baseline where each container is 
statically allocated 0.5 CPU with no switching over time. 
Because a container whose allocated capacity alternates 
between El and Eh has effectively an average capacity of 0.5 
CPU over a period of time, this baseline allows us to quantify 
the capacity loss due to frequent re-scheduling of the CPU. The 
goal of the experiments is to gain insight into whether dynamic 
control causes overhead, and if so, how the overhead is related 
to both the switching frequency and magnitude.  

The experiments are run on four HP Proliant DL385 G1 
servers, each with two 2.6GHz AMD Opteron processors and 
8GB memory. The OpenVZ node uses an OpenVZ-enabled 
2.6.9 SMP kernel. The Xen node uses a Xen-enabled 2.6.16 
SMP kernel. Both OpenVZ and Xen virtual containers use the 
stock Fedora core images. On the Xen node, Dom-0 has access 
to the capacity of both CPUs, and its overhead is measured 
independently of work done in the virtual containers. We test 
two modes of operation for the other Xen domains. In the 
pinned mode, we pin all the domains to one physical CPU 
using an API provided by Xen, and no such restriction is in 
place in the unpinned mode. OpenVZ does not have the 
pinning capability, therefore only the unpinned mode is used.  



III. EXPERIMENTAL RESULTS 

A. Scenario I: Computational Workloads in Xen Containers 
In this section, we focus on using Xen virtual containers for 

running computational workloads. We test four configurations 
using two options: two vs. four containers, and pinned vs. 
unpinned mode for the CPU scheduler.  

1) Two-container, unpinned:  
First, we present experimental results from running two 

Xen containers (Dom-1 and Dom-2) in the unpinned mode. In 
this case, both containers can use idle cycles from both CPUs 
up to their caps, but the sum of the caps is maintained at one 
CPU. The results are shown in Figure 4-8.  

Figure 4 shows an example of the results for T = 30 
seconds and [El, Eh] = [0.3, 0.7]. Figure 4(a) and 4(b) show the 
control variable (CPU allocation determined by the controller), 
CPU consumption and workload performance (number of 
completed tasks per second) for Dom-1 and Dom-2, 
respectively. Figure 4(c) shows the CPU consumption for 
Dom-0. Note that all these metrics are sampled at 1-second 
intervals, and that the CPU control and consumption numbers 
are multiplied by 1000 (applicable to similar figures later on). 
The legend in Figure 4(c) applies to all the three subfigures.  

For each container, there is a small delay (1-2 seconds) in 
switching from low CPU consumption to high consumption 
when the allocation shifts from 0.3 to 0.7, and vice versa. With 
some measurement noise, the workload performance oscillates 
in proportion to the CPU usage. At the same time, we see a 
clear spike in Dom-0 CPU usage (from roughly 0.04 to 0.25 
CPU) whenever switching occurs, indicating a loss in available 
capacity due to dynamic re-allocation of the CPU resource.  
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Figure 4. CPU consumption and workload performance for T = 30s, and 

[El, Eh] = [0.3, 0.7] (Xen, comp., 2-container, unpinned) 

Another example is shown in Figure 5 for the same 
switching magnitude but a control interval of 6 seconds. The 
same observations can be made on the CPU consumption and 
workload performance for the two containers. The spike in 
Dom-0 CPU usage has about the same magnitude, but occurs 
more frequently due to a shorter control interval.  

Figure 6(a) and 6(b) show the measured average 
performance for Dom-1 and Dom-2, respectively, as the 
switching frequency changes from 1/30 to 1/6. The four curves 
correspond to the baseline (0.5) and [El, Eh] = [0.4, 0.6], [0.3, 
0.7], [0.2, 0.8], respectively. As we can see, except for a few 
outliers, the switching frequency does not have a significant 
impact on the workload performance. However, the 
performance is worse with higher switching magnitude. Figure 
6(c) shows the sum of the measured performance from both 
containers. The performance overhead due to dynamic 
allocation increases with the switching magnitude and reaches 
3% ((2038 – 1980)/2038) of the baseline performance when 
[El, Eh] = [0.2, 0.8]. 
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Figure 5. CPU consumption and workload performance for T = 6s, and 

[El, Eh] = [0.3, 0.7] (Xen, comp., 2-container, unpinned) 
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Figure 6. Workload performance vs. switching frequency for both 

containers (Xen, comp., 2-container, unpinned) 

Figure 7 shows the corresponding results for the CPU 
consumption. Figure 7(a) and 7(b) show the average CPU 
consumption for the two individual containers, and Figure 7(c) 
shows the total CPU consumption from both containers. 
Similar to workload performance, we observe that the loss in 
capacity due to dynamic allocation goes up as the switching 
magnitude increases, but there is no clear impact by the 
switching frequency. With static allocation, both containers 



together can consume close to 100% of one CPU’s capacity. 
With dynamic allocation switching between 0.2 and 0.8 CPU, 
the two containers can only consume a total of 97% of one 
CPU, resulting in a capacity loss of 3%, consistent with the 
workload performance loss we observed from Figure 6. 

In Figure 7(d), Dom-0 CPU usage is shown for different 
test conditions. As we can see, Dom-0 consumes an average of 
0.042 CPU even with static allocation, due to basic 
virtualization overhead and sensor overhead. With dynamic 
allocation, as the switching frequency increases from 1/30 to 
1/6, Dom-0 consumption grows linearly from 0.049 to 0.077 
CPU, reaching a maximum overhead of 0.035 CPU compared 
to the static case for T = 6 seconds. This result is consistent 
across different switching magnitudes, which is why we only 
see one line for all the three magnitudes. This overhead has two 
potential sources: processing of the SSH call from the 
controller and processing of the two API calls (one per 
container) to the scheduler. We ran a separate experiment 
where the controller submits only SSH calls to Dom-0 without 
re-allocation. The resulting Dom-0 CPU consumption is also 
shown in Figure 7(d) (middle line). We can see by comparison 
that approximately 30% of the capacity loss in dynamic 
allocation is due to processing of the SSH call, and the 
remaining 70% is due to re-allocation. In both cases, the 
overhead seems fairly constant at each occurrence, resulting in 
a linear relationship between the overall observed overhead for 
a given period of time and the switching frequency. 
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Figure 7. CPU consumption vs. switching frequency for all the containers 

(Xen, comp., 2-container, unpinned) 

To explain why performance overhead increases with the 
switching magnitude, we show in Figure 8 the control variable, 
CPU consumption and workload performance for Dom-1 for a 
period of 60 seconds, for different switching magnitudes. It 
seems that that loss of average capacity to the container 
(therefore performance degradation) is due to a slower response 
of the container consumption as the allocation increases 
compared to when it decreases, shown as asymmetry in the 
front and back edges of the square-waves in the figure. For 
example, Figure 8(d) corresponds to the switching magnitude 
of [0.2, 0.8], where this asymmetry is the most visible. This is 
consistent with our earlier observation that performance 
overhead is the highest at this switching magnitude. 
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Figure 8. Dom-1 CPU consumption and workload performance for T=10s 

at different switching magnitudes (Xen, comp., 2-container, unpinned) 
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Figure 9. Workload performance and CPU consumption vs. switching 
frequency for all the containers (Xen, comp., 4-container, unpinned) 

2) Four-container, unpinned:  
We run similar experiments using four Xen containers 

(Dom-1 to Dom-4) in the unpinned mode, and the results are 
summarized in Figure 9. Note that with four containers, the 
baseline is when each container is allocated with a fixed 
capacity of 0.25 CPU, and the three switching magnitudes 
tested become [0.2, 0.3], [0.15, 0.35], [0.1, 0.4], respectively. 
Figure 9(a) shows total workload performance from the four 
containers as a function of switching frequency for different 
switching magnitudes. The average performance still does not 
depend on the switching frequency. It does change with the 
switching magnitude, but the relationship is no longer 
monotonic, as in the 2-container case. The observed 
performance overhead is the largest at 6.7% ((2195-
2050)/2195) of the baseline performance for a magnitude of 
either [0.2, 0.3] or [0.1, 0.4]. Figure 9(b) shows the total CPU 
consumption of all the containers. At the baseline, although 
each container is statically allocated 0.25 CPU, the total 
consumption from the four containers exceeds one CPU by 
almost 8%. This indicates that capping of per-container 



consumption is not strictly enforced in the unpinned mode of 
the CPU scheduler when there are more containers. Similar to 
workload performance, the capacity loss due to dynamic 
allocation is the maximum at 6.7% of the baseline consumption 
for a magnitude of either [0.2, 0.3] or [0.1, 0.4]. 

Figure 9(c) shows Dom-0 CPU consumption as a function 
of switching frequency. The behavior is similar to that for the 
2-container case, as shown in Figure 7(d). The differences are: 
(i) Baseline consumption for the 4-container case (0.075 CPU) 
is higher than that for the 2-container case (0.042 CPU); (ii) 
Capacity overhead due to dynamic allocation for the 4-
container case reaches 0.055 (0.13 – 0.075) CPU for T = 6 
seconds, higher than the overhead for the 2-container case 
(0.035 CPU). Figure 9(d) shows an example of the Dom-0 
CPU consumption over time for T = 6 seconds and [El, Eh] = 
[0.15, 0.35]. We can see that the spikes in Dom-0 consumption 
during re-allocation have a higher magnitude (from 0.075 to 
roughly 0.4 CPU) than that for the 2-container case. This is 
because the controller has to make four instead of two API 
calls to the CPU scheduler during each re-allocation.  These 
observations are consistent with our expectation that both 
performance and capacity overheads of dynamic allocation 
grows with the number of virtual containers. 
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Figure 10. Workload performance and CPU consumption vs. switching 
frequency for all the containers (Xen, comp., 2-container, pinned) 

3) Two-container, pinned:  
We then repeat the 2-container experiments using the 

pinned mode of the CPU scheduler where both containers are 
pinned to a particular physical processor. Figure 10 shows the 
resulting total workload performance and CPU consumption 
from all the containers as a function of switching frequency for 
different switching magnitudes as well as an example of Dom-
0 CPU consumption for T = 6 seconds and [El, Eh] = [0.3, 0.7]. 
The results are similar to the unpinned case. The differences 
are: (i) The average loss in workload performance (Figure 
10(a)) or container capacity (Figure 10(b)) reaches a maximum 
of roughly 4% for [El, Eh] = [0.2, 0.8], slightly higher than the 
3% in the unpinned case; (ii) Overhead in Dom-0 CPU 
consumption (Figure 10(c)) reaches a maximum of roughly 
0.054 CPU at T = 6 seconds, higher than the 0.035 CPU 
overhead in the unpinned case.  
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Figure 11. Dom-1 CPU consumption and workload performance for T = 
10s at different switching magnitudes (Xen, comp., 2-container, pinned) 

Similar to Figure 8, Figure 11 provides an explanation for 
why the loss in container capacity (and workload performance) 
increases with the switching magnitude. For example, with the 
pinned mode of the CPU scheduler, when the CPU capacity 
allocated to a container jumps from 0.2 to 0.8 CPU, it 
sometimes cannot fully utilize the allocated capacity, as can be 
seen from the second square-wave in Figure 11(d), which is 
smaller than the other square-waves. This causes the overall 
CPU consumption per container with dynamic allocation to be 
lower than the baseline. By repeating the experiment multiple 
times and examining the time domain traces for the three 
switching magnitudes, we observe that this under-utilization 
occurs more frequently with a higher switching magnitude, 
therefore resulting in higher loss in workload performance. 

4) Four-container, pinned:  
Finally, we test the configuration with four Xen containers 

using the pinned mode of the scheduler, and the results are 
shown in Figure 12. In this case, there is little overhead in 
either total workload performance or total container CPU 
consumption due to dynamic allocation, except for [El, Eh] = 
[0.15, 0.35]. For this particular magnitude, the average loss in 
workload performance (Figure 12(a)) or container capacity 
(Figure 12(b)) is roughly 2% of the baseline, independent of 
the switching frequency. Overhead in Dom-0 CPU 
consumption (Figure 12(c)) reaches a maximum of 0.06 CPU 
at T = 6 seconds, only slightly higher than the 2-container, 
pinned case, or the 4-container, unpinned case. 

We provide some intuition behind why the loss in container 
capacity (and workload performance) is the highest for [El, Eh] 
= [0.15, 0.35] in the 4-container, pinned case in Figure 13. As 
can be seen from Figure 13(c), when a container is allocated 
0.35 CPU, it is not able to fully utilize the allocated capacity 
during some intervals, causing loss in workload performance. 
This behavior is not seen for [El, Eh] = [0.2, 0.3] or [0.1, 0.4]. 
We have repeated the experiment multiple times, and the 
results are similar. Finding a source for this anomalous 
behavior would require further understanding of the scheduler 
implementation, which is outside the scope of this paper. 
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Figure 12. Workload performance and CPU consumption vs. switching 
frequency for all the containers (Xen, comp., 4-container, pinned) 
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Figure 13. Dom-1 CPU consumption and workload performance for T = 
10s at different switching magnitudes (Xen, comp., 4-container, pinned) 

B. Senario II: Transactional Workloads in Xen Containers 
In this section, we present the results from experiments of 

two Xen virtual containers (Dom-1 and Dom-2), each running 
a transactional workload, as shown in Figure 14-17. 

Figure 14(a) and 14(b) show the total workload throughput 
(requests per second) and CPU consumption from both 
containers as a function of switching frequency for different 
switching magnitudes. We see that losses in both metrics due to 
dynamic allocation increase more or less with the switching 
frequency. The total capacity loss also increases with the 
switching magnitude as shown in Figure 14(b). We do not see 
the same relationship between the performance loss and the 
switching magnitude from Figure 14(a). In the most significant 
case, the total performance loss is 13% (170-148)/170) of the 
baseline performance for T = 6 seconds and [El, Eh] = [0.2, 
0.8], whereas the total capacity loss is only about 3% for the 
same configuration. It suggests that average performance loss 
of a transactional workload is no longer proportional to average 
capacity loss of the virtual container hosting the workload. 

Figure 14(c) shows an average consumption of 0.07 CPU in 
Dom-0 for static allocation. Dom-0 capacity overhead due to 

dynamic allocation has similar behavior as that for the 
computational workload, where it is a linear function of the 
switching frequency, but is independent of the switching 
magnitude. The maximum overhead observed is roughly 0.04 
(0.11 – 0.07) CPU for T = 6 seconds. Figure 14(d) shows 
spikes in Dom-0 CPU usage when capacity re-allocations occur 
similar to those observed in Scenario I, with a peak 
consumption of about 0.3 CPU. Compared to Figure 7(d) for 
the case of the computational workload, Dom-0 consumes 
more CPU when the containers are hosting the transactional 
workloads, for both static and dynamic allocations. This 
additional capacity overhead is due to more intensive I/O 
operations in Dom-0 for servicing the transactions.  
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Figure 14. Workload performance and CPU consumption vs. switching 

frequency for all the containers (Xen, trans., 2-container, unpinned) 
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Figure 15. Dom-1 CPU consumption and workload performance for T = 

20s at different switching magnitudes (Xen, trans., 2-container, unpinned) 

Figure 15 offers some explanation for the discrepancy 
observed between Figure 14(a) and 14(b), by showing the time 
series of the CPU allocation, CPU consumption and workload 
performance for one container for different switching 
magnitudes. We see much higher variability in the throughput 
of the transactional workload compared to that of the 
computational workload, especially when the allocated 
capacity is above 0.5 CPU. Even for a fixed capacity as in 



Figure 15(a), the throughout is oscillating heavily, yet the CPU 
consumption is much more stable and matches the CPU 
allocation most of the time. As a result, charactering workload 
performance for a transactional workload requires more metrics 
(e.g., variance) in addition to its mean. 

Figure 16 shows the performance and capacity losses when 
the two Xen containers are pinned to one physical CPU. 
Compared with the unpinned case shown in Figure 14, both 
losses are increasing with the switching magnitudes, but neither 
has an explicit dependency on the switching frequency. In the 
most significant case where T = 10 seconds and [El, Eh] = [0.2, 
0.8], the performance loss due to dynamic allocation is about 
24% (170-130)/170) of the baseline performance, as shown in 
Figure 16(a). This is consistent with the capacity loss of about 
23% (1-0.77) as seen in Figure 16(b). The Dom-0 CPU 
overhead shown in Figure 16(c) and 16(d) are comparable to 
that for the pinned case. 
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Figure 16. Workload performance and CPU consumption vs. switching 

frequency for all the containers (Xen, trans., 2-container, pinned) 

0 30 60

50

100

150

200

250

(a) No tunning, E=0.5

 

 

0 30 60

50

100

150

200

250

(b) [El, Eh] = [0.4, 0.6]

 

 

0 30 60

50

100

150

200

250

(c) [El, Eh] = [0.3, 0.7]

 

 

0 30 60

50

100

150

200

250

(d) [El, Eh] = [0.2, 0.8]

 

 

CPU Control (x100)
CPU Consumption (x100)
Performance (Reqs/sec)

(sec)

(sec) (sec)

(sec)

 
Figure 17. Dom-1 CPU consumption and workload performance for T = 
20s at different switching magnitudes (Xen, trans., 2-container, pinned)  

Figure 17 shows why the performance loss is more 
consistent with the capacity loss in the pinned case than in the 

unpinned case when the switching magnitude changes. For 
fixed allocation (Figure 17(a)) or a small switching magnitude 
(Figure 17(b)), the CPU consumption of a container matches 
the CPU allocation almost exactly. However, for larger 
switching magnitudes as in Figure 17(c) and 17(d), a container 
is not always able to consume all of its allocated capacity. This 
issue is consistently observed when the containers are pinned to 
one physical CPU and each container’s capacity is capped, 
either with the computational workload (Figure 11(d)) or the 
transactional workload (Figure 17(d)). This behavior has to do 
with the specific implementation of the fair share scheduler. 
With the capped and pinned mode of the credit scheduler, when 
the capacity of the shared CPU is used up by all the containers, 
it may be difficult for the scheduler to add capacity to one 
container. We have experimented with different CPU 
schedulers in Xen. With the SEDF scheduler included in earlier 
Xen releases, we notice that total CPU consumption by all the 
virtual containers is capped at 95% whenever the capped mode 
is enabled. The 5% of CPU capacity might have been reserved 
for handling extra overhead, in which case we do not see the 
under-utilization phenomenon as seen with the credit scheduler 
that does not reserve this 5% capacity. More experimentation 
and further analyses are needed to validate these arguments.  

C. Scenario III: Computational Workloads in OpenVZ 
Containers 
In this scenario, we test two OpenVZ containers (VPS1 and 

VPS2), each running a computational workload. The results are 
shown in Figure 18-19. Note that we use the capped and 
unpinned mode for the CPU scheduler. 

Figure 18(a) shows the sum of the workload performance 
from the two containers as a function of switching frequency. 
We observe some loss in performance with dynamic allocation 
relative to static allocation. For dynamic allocation, the total 
performance goes up as either the switching frequency or the 
switching magnitude increases. This is the opposite of what we 
expect in either case, and is different from what we observe in 
the Xen system. The maximum loss in performance is observed 
for T = 30 seconds and [El, Eh] = [0.4, 0.6], where it is only 
0.5% ((2072.5-2062.5)/2072.5) of the baseline, which is much 
smaller than that in the Xen case. 

Figure 18(b) shows the total CPU consumption from the 
two containers. In all cases, the two VPSs together can 
consume slightly more than 100% of the one CPU’s capacity, 
possibly due to noise in the sensor or inaccuracy of the 
scheduler. The total consumption goes up linearly with the 
switching frequency, and decreases slightly as the switching 
magnitude increases. For most conditions tested, the total CPU 
consumption is higher with dynamic allocation than in the 
static case. This behavior is not totally consistent with what we 
see in workload performance, suggesting that not all of the 
consumed CPU capacity is used for workload processing.  

Figure 18(c) shows CPU consumption by system processes 
(measured by subtracting consumption of the two containers 
from total consumption of the server). Similar to the Xen case, 
the loss of capacity due to dynamic allocation goes up linearly 
with the switching frequency, and is slightly higher for a larger 
switching magnitude. The line marked “SSH only” indicates 



that roughly half of that lost capacity is used for processing 
SSH calls from the controller, and the remaining half is used 
for re-allocating CPU capacity between the two containers.  

Figure 18(d) provides some intuition for why the total CPU 
consumption by both containers increases linearly with the 
switching frequency. For T = 6 seconds and [El, Eh] = [0.3, 
0.7], we see a spike in the total consumption whenever re-
allocation occurs. And this is observed for all switching 
frequencies and magnitudes. Similar to our observation from 
Figure 18(b), it seems to imply that a small portion of the 
container-consumed capacity is used for processing related to 
re-allocation of CPU capacity. 
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Figure 18. Workload performance and CPU consumption vs. switching 

frequency for all the containers (OpenVZ, comp., 2-container) 
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Figure 19. Workload performance and CPU consumption vs. switching 

frequency for all the containers (OpenVZ, comp., 4-container) 
Figure 19 shows similar results from running four OpenVZ 

containers with computational workloads. Compared to the 2-
container case, the differences are: (i) With both static and 
dynamic allocations, the total workload performance from all 
the containers (Figure 19(a)) is lower in the 4-container case, 
and the system-level CPU consumption (Figure 19(c))  is 
higher in the 4-container case, both indicating a higher 
virtualization overhead with more containers; (ii) We no longer 

see performance overhead due to dynamic allocation in the 4-
container case (Figure 19(a)); (iii) The relationship between the 
total CPU consumption by the virtual containers and the 
switching magnitude is no longer monotonic, and the extra 
consumption in the containers due to re-allocation is slightly 
higher in the 4-container case (Figure 19(b and 19(d))); (iv) For 
dynamic allocation, the system-level CPU consumption is 
almost constant across different switching magnitudes for a 
given control interval (Figure 19(c)). We do not yet have 
explanations for all of the observed differences. However, for 
OpenVZ, neither performance overhead nor capacity overhead 
due to dynamic allocation is significant to be of major concern. 

D. Scenario IV: Transactional Workloads in OpenVZ 
Containers 
We repeat the same experiments with two OpenVZ virtual 

containers, each running a transactional workload. The results 
are summarized in Figure 20. 
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Figure 20. Workload performance and CPU consumption vs. switching 

frequency for all the containers (OpenVZ, trans., 2-container) 

Figure 20(a) shows the total throughput from the two Web 
servers in VPS1 and VPS2. It is an increasing function of the 
switching magnitude, but it does not depend explicitly on the 
switching frequency. Figure 20(b) shows the total CPU 
consumption of the two containers, which shows similar 
dependencies on the switching frequency and magnitude. For 
all the switching frequencies and magnitudes tested, the 
maximum CPU consumption of both containers is about 0.955 
CPU, 4.5% lower than the allocate capacity of one CPU. To 
explain why this happens, Figure 20(d) shows the time series of 
CPU allocation, consumption and workload throughput for T = 
6 seconds and [El, Eh] = [0.3, 0.7]. We can see that the CPU 
consumption is slightly below the allocation most of the time.  
The containers with static allocation consume the least capacity 
(0.915 CPU). For some reason, larger switching magnitudes 
allow the containers to use more CPU capacity, resulting in 
higher workload throughput. In the most significant case where 
T = 6 seconds and [El, Eh] = [0.2, 0.8], the two containers 
together consume 4% more CPU compared to the static case, 
while the total workload throughput increases by 6% ((173-
163)/163) over the baseline. 



Compared to the case of the computational workload shown 
in Figure 18(c), OpenVZ system processes consume an 
additional 0.005 (0.0125 – 0.0075) CPU for the transactional 
workload as shown in Figure 20(c). This is not surprising due 
to more I/O operations for the transactional workload. 
Compared to the results from the Xen system as shown in 
Figure 14, the system processes in the OpenVZ case consume 
much less capacity (0.01-0.02 CPU) than Dom-0 does in the 
Xen case (0.07-0.11 CPU). 

IV. CONSLUSION AND IMPLICATION FOR CONTROLLER DESIGN 
In conclusion, we have made the following observations on 

the impact of dynamic resource allocation in a virtualized 
server, as well as on their implications for the design of a 
resource control system. 

1. We have observed both degradation of workload 
performance as well as loss of system capacity due to 
dynamic allocation of CPU capacity.  

2. Both performance and capacity overheads are higher in the 
Xen system than in the OpenVZ system. The overheads in 
the OpenVZ system (below 1% over the static case) are 
not significant to be of major concern. 

3. In the Xen system, both performance and capacity 
overheads are higher for transactional workloads than for 
computational workloads. The former is due to higher 
variability in performance of a transactional workload for a 
given capacity. The latter is because of more intensive 
network I/O operations for servicing the transactions. 

4. Performance overhead in the Xen system is a function of 
the switching magnitude for the computational workload, 
and is a function of the switching frequency for the 
transactional workload. It ranges between 0-13% of the 
baseline performance for all the frequencies and 
magnitudes tested. 

5. Capacity overhead in either Xen Dom-0 or OpenVZ kernel 
grows linearly with the switching frequency, and is below 
7% of a CPU for all the configurations tested. Note that 
this is on top of the existing virtualization overhead, and 
we have seen that it goes up with the number of containers. 

Both performance and capacity overheads result in 
tradeoffs between quicker controller response and less 
performance or capacity loss. A dynamic resource controller 
needs to be aware of these tradeoffs and to choose design 
parameters (e.g., control interval, actuator bounds) accordingly. 

V. FUTURE WORK 
In general, our experience with the virtualization 

technologies for data center consolidation indicates that there is 
a lot to be improved in these technologies. We would like more 

flexible and powerful knobs to control resource allocation to 
each virtual container. More work needs to be done to improve 
accuracy and reduce overheads in sensors and actuators. Our 
dynamic control paradigm requires the designers of these 
technologies to re-think certain code-paths (e.g., scheduling 
code) to optimize for control at a higher frequency.  

Moreover, the following problems are of particular interest 
to us in our future research. 

First, as indicated in Section IV, we currently do not have 
the explanations for all the behavior we have observed in the 
experiments. More experiments to gain insights, more 
advanced system monitoring tools to provide finer details on 
resource usage in various parts of the system, as well as better 
understanding of the scheduler implementation will be of great 
help. 

Second, we have focused on the CPU resource in this 
paper. We are interested in designing similar experiments to 
evaluate the impact of dynamic allocation of other resources, 
including memory, network I/O and disk I/O bandwidth. 

Third, we would like to include other virtualization 
technologies into our evaluation study, such as VMware, 
Solaris Zones, and new emerging virtualization platforms. 

Finally, using control theoretical approaches including the 
one in [2], we will specifically incorporate the tradeoffs we 
concluded in Section IV into the design of a closed-loop 
controller that is part of the management system for virtualized 
resources in data centers. 
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