
Optimal Multivariate Control for Differentiated Services on a Shared
Hosting Platform

Xue Liu∗, Xiaoyun Zhu∗ Pradeep Padala†, Zhikui Wang∗, Sharad Singhal∗
∗Hewlett Packard Laboratories, Palo Alto, CA 94304, USA
{xue.liu, xiaoyun.zhu, zhikui.wang, sharad.singhal}@hp.com
†EECS, University of Michigan, Ann Arbor, MI 48109, USA

ppadala@eecs.umich.edu

Abstract— Today’s shared hosting platforms often employ
virtualization to allow multiple enterprise applications with
time-varying resource demands to share a common in-
frastructure in order to improve resource utilization. Meeting
application-level quality of service (QoS) goals becomes a
challenge in such an environment as enterprise applications
often have a multi-tier architecture and complex interactions
and dependencies among individual tiers. In addition, when
the shared infrastructure becomes overloaded, appropriate
resource control needs to be performed at these individual
tiers in a coordinated fashion in order to provide differentiated
services to co-hosted applications. In this paper, we present
an adaptive multivariate controller that dynamically adjusts
the resource shares to individual tiers of multiple applications
in order to meet a specified level of service differentiation.
The controller parameters are automatically tuned at runtime
based on a quadratic cost function and a system model that is
learned online using a recursive least-squares (RLS) method.
To evaluate our controller design, we built a testbed hosting two
instances of the RUBiS application, a multi-tier online auction
web site, using Xen virtual machines. Our results indicate that
our controller is able to meet given QoS differentiation targets
between co-hosted applications while the total demand from
these applications exceeds the capacities of the shared systems.

I. INTRODUCTION

Data centers today play a major role in providing on-
demand computing power to various enterprise applications
supporting different business processes such as supply chain,
e-commerce, human resource, payroll, customer relationship
management, etc. These applications often have different
needs for computing resources, and time varying resource
demands driven by changes in workload intensity and mix.
Data center operators face the challenge of provisioning suf-
ficient resources to these applications such that they can meet
their service level objectives (SLOs) while maintaining high
resource utilization. As a result, shared hosting platforms
are becoming more widely developed and deployed as an
alternative to the traditional silo-oriented architecture where
each application has its own dedicated servers. In a shared
hosting environment, all hardware resources are pooled into
a common shared infrastructure and applications share these
resources as their demands change over time [1]. The rapid
development of virtualization technologies in the past few
years has pushed this trend further by allowing multiple
virtual containers to be created on a single physical server,
each running its own operating system and applications.

When multiple enterprise applications share a common
infrastructure, meeting the application-level QoS goals be-
comes a nontrivial task due to the usual multi-tier architec-
ture of these applications and complex interactions among
individual tiers. For example, three-tier web applications
consist of a web server tier, an application server tier,
and a database server tier. On a shared hosting platform,
these individual tiers will be hosted inside different virtual
containers spread across multiple servers, which poses the
following challenges. First, the resource demands placed on
these separate tiers vary from one tier to another; e.g., the
web tier may consume mainly CPU and network bandwidth,
whereas the database tier consumes more I/O bandwidth the
web tier does. Second, the resource demands across tiers
are dependent and correlated to each other; for example, a
database tier only serves connections established through the
web tier. Finally, resource demands vary from one applica-
tion to another; e.g., for the same number of user sessions
served in the web tier, we may be seeing vastly different
resource demand profiles at the database tier for different
applications. As a result, dynamically adjusting resources to
an application component has to take into account not only
the local resource demands in the node where that component
is hosted, but also the resource demands in other nodes
hosting all the other components of the same application.

In this paper, we address the problem of dynamically
allocating resources to individual application components
of multiple, multi-tier enterprise applications in a shared
hosting environment. In particular, we focus on the goal of
service differentiation between co-hosted applications when
multiple shared servers are being overloaded. We develop
an optimal multivariate controller for allocating shared re-
sources to individual tiers of multiple application stacks in a
coordinated fashion that accounts for the dependencies and
interactions among these tiers. The controller is designed to
adapt to varying workloads such that a specified level of QoS
differentiation can be maintained. The controller parameters
are automatically tuned at runtime based on a quadratic cost
function and a system model that is learned online using a
recursive least-squares (RLS) method.

This work is built on top of our earlier work in [2] where
an adaptive resource controller is designed to dynamically
adjust resource shares for individual application components
sharing virtualized servers. The goal of that controller is to



maintain high resource utilization in the virtualized servers
while meeting application-level QoS objectives if possible.
If any of the nodes hosting multiple application components
becomes saturated, a SISO controller is used for arbitration
among these application components such that a desired level
of service differentiation can be achieved. Compared to the
techniques presented in [2], the main contributions of this
paper are two-fold. First, the SISO controller in the earlier
work does not deal with the situation where more than one
hosting nodes become saturated, yet our MIMO controller
here handles this situation by adjusting resource allocations
to individual tiers of multiple applications in a coordinated
manner in order to meet the differentiation goals for end-
to-end QoS metrics. Such goals will be hard to achieve
if multiple SISO controllers are run independently of one
another. Second, by using online estimation of the input-
output model for the controlled system, we eliminate the
need for extensive offline system characterization as was
done in [2]. Our controller parameters are also adapted
in real-time based on the estimated model parameters as
opposed to being manually tuned offline.

The adaptive optimal controller design we use here is an
extension of a similar design in [3], where it was used for
admission control of M different classes of worklaods to a
shared computing service. In this paper, the earlier controller
has been generalized to deal with dynamic resource alloca-
tion to components in M of N -tier applications. The system
model identified using the RLS algorithm not only has to
recognize interactions among the M components sharing a
single node, it also has to account for dependencies among
the N components for a single application. These interactions
and dependencies are used in the optimal controller to coor-
dinate resource allocation to all the individual components. In
addition, instead of penalizing on large control actions, we
added a term to the quadratic cost function that penalizes
large variations in the control actions. This helps improve
stability in the closed-loop system and reduces oscillations
in the output metric.

To test our controller design, we have built a testbed for
a small shared hosting platform using Xen virtual machines
[4], referred to as virtual containers. We encapsulate each
tier of an application in a virtual container and attempt to
control the resource allocation at the container level. We
experimented with a multi-tier application in our testbed:
a two-tier implementation of RUBiS [5], an online auction
web site. We than created workload conditions that put the
system in a state where multiple nodes hosting multiple
virtual containers are saturated, and tested the performance
of our controller under a changing control target as well
as time-varying workloads. Experimental evaluation of the
self-tuning optimal controller validates the following two
key results. First, the closed-loop control system can track
the specified level of service differentiation between the co-
hosted applications when both tiers of the applications be-
come a bottleneck. Second, our control system maintains the
desired level of service differentiation in spite of workload
variations in the applications.
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Fig. 1. A shared hosting platform for M multi-tier applications

The remainder of this paper is organized as follows. Sec-
tion II presents the architecture of a shared hosting platform
and explicitly defines the service differentiation problem. An
online system modeling approach as well as a self-tuning
optimal controller design are described in Section III. Sec-
tion IV presents the results from our experimental evaluation.
Section V discusses the related work. Finally, conclusions
and future work are discussed in Section VI.

II. PROBLEM STATEMENT

In this paper, we consider a shared hosting platform as
depicted in Figure 1. On such a platform, multiple multi-tier
applications share a common pool of server resources, and
each tier of each application is hosted inside a virtual con-
tainer on a shared physical server. A virtual container can be
a virtual machine (VM) provided by hypervisor technologies
including Xen [4] and VMWare or OS-level virtualization
like OpenVZ [6] and Linux VServer [7]. This shared in-
frastructure paradigm has gained interest in many enterprises
due to the reduction of infrastructure and operational costs
in data centers. Although the grouping of application tiers
on each physical server can be arbitrary in principle, we
specifically chose the design where the same tiers from
different applications are hosted on the same physical server,
as indicated in Figure 1. This is a natural choice for many
shared hosting platforms for potential savings in software
licensing costs.

Resource demands of enterprise applications vary depend-
ing on the number of concurrent users and workload mix.
Shared servers will become saturated, when the aggregate
demand from all the application components sharing the
server exceeds the total capacity of that server. This re-
source contention causes degraded applications performance
without explicit control of resources. However, on a shared
hosting platform, it is often the case that different appli-
cations be serviced with different levels of priority, de-
pending on their respective service level agreements (SLA).
Therefore, it is desirable to provide performance isolation
and differentiation among co-hosted applications in order
to maximize the overall business value generated by these
applications. This paper addresses this issue by designing
a closed-loop resource controller that dynamically adjusts
resource allocations for individual application components
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in a shared hosting environment such that a desired level of
QoS differentiation can be achieved.

Let the number of co-hosted applications be M , and each
application has N tiers. For example, N = 3 in Figure 1.
We focus on a specific setting where the ” N is also the
number of virtualized servers for hosting the applications. In
future work, we will also look at scenarios where the number
of servers is larger than the number of tiers, in which case
distributed algorithms may be needed. In addition, we focus
on CPU capacity as the shared resource in this paper, because
explicit control over CPU allocation is most widely available
across different virtualization technologies.

Let Cj be the total CPU capacity of server j, which
is usually normalized to 100%. We refer to the CPU ca-
pacity allocated to a virtual container as “resource enti-
tlement”, specified as a percentage of the server capac-
ity. Let ui,j denote the resource entitlement for tier j of
application i. Since

∑M
i=1 ui,j = Cj , 1 ≤ j ≤ N ,

there are a total of (M − 1) × N such independent vari-
ables. Hence, the inputs to the controlled system are u =
[u1,1, u1,2, · · · , u1,N , · · · , uM−1,1, uM−1,2, · · · , uM−1,N ]T .

Let Qi denote application i’s end-to-end QoS metric.
Examples of this metric include mean response time or
throughput over a time interval. We then define by yi =

Qi∑M

m=1
Qm

, 1 ≤ i ≤ M , which is the normalized QoS ratio

for application i. Since
∑M

i=1 yi = 1, only M − 1 of all the
yi’s are independent. As a result, the outputs of the controlled
system are y = [y1, · · · , yM−1]T . The goal of our resource
controller is to find appropriate values for ui,j , for all i’s and
j’s, such that yi = yref,i, where yref,i is the desired QoS
ratio for application i, 1 ≤ i ≤ M − 1.

III. A SELF-TUNING OPTIMAL CONTROLLER

In this section, we describe the design of a self-tuning
optimal resource controller for ensuring service differentia-
tion during system overload. A block diagram of the closed-
loop control system is shown in Figure 2. The controller
consists of two key modules: a model estimator that learns
and periodically updates a linear model between the resource
entitlements for individual application components and the
QoS ratios, and an optimal controller that computes the
optimal resource entitlements based on estimated model
parameters and a quadratic cost function.

A. Online Model Estimation

Let us use I = (M−1)×N to denote the input dimension,
and use O = (M−1) to denote the output dimension, where

M is the number of applications, and N is the number
of tiers in the applications. We use the following linear,
auto-regressive MIMO model to represent the input-output
relationship in the controlled system.

A(q−1)y(k) = B(q−1)u(k) + e(k), (1)

where A(q−1) and B(q−1) are matrix polynomials in the
backward-shift operator:

A(q−1) = I − A1q
−1 − . . . − Anq−n,

B(q−1) = B0q
−1 + . . . + Bn−1q

−n. (2)

Note that Al ∈ �O×O, Bm ∈ �O×I , 0 < l,m ≤ n,
where n is the order of the system. {e(k)} is a sequence of
independent, identically distributed O-dimensional random
vectors with zero means. It is further assumed that e(k) is
independent of y(k−j) and u(k−j) for j > 0. We use e(k)
to represent disturbances in the system that are not accounted
for by the model. The linear model is a local approximation
of the real system dynamics that is typically nonlinear.

The use of a MIMO model allows us to capture in-
teractions and dependencies among resource entitlements
for different application components. For example, reducing
resource entitlement for one application tier will increase
resource entitlements for other application components on
the same node, and may reduce the load coming into the
next tier of the same application. Such dependencies cannot
be captured by individual SISO models. In addition, a MIMO
model enables the controller to make tradeoffs between
different applications and their components when the system
does not have enough capacity to meet all individual needs.

We use offline system identification to estimate the or-
der of the system (n), which is usually low in computer
systems [8]. The coefficient matrices Al and Bm, where
0 < l,m ≤ n, are estimated online for the following reason.
The values of these parameters may or may not change as
system operating conditions and workload dynamics change,
depending on the specific situation. (See [9] for an example
of this behavior in a much simpler system.) If offline
experiments are to be used to identify a single model for
controller design, there is no simple way for us to test in
advance all combinations of different operating conditions
to be sure that our model is sufficiently representative of all
cases. Therefore, a self-learning approach is preferred where
model parameters are estimated online and updated whenever
new data has become available.

For convenience of notation, we rewrite the system model
in the following form, which we use in the rest of the paper:

y(k + 1) = Xφ(k) + e(k + 1), (3)

where

X = [B0 . . . Bn−1 A1 . . . An],
φ(k) = [uT (k) . . . uT (k − n + 1) yT (k) . . .

yT (k − n + 1)]T .

We use a recursive least squares (RLS) estimator with
directional forgetting [10] to estimate the parameter matrix



X , as defined by the following equations:

X̂(k + 1) = X̂(k) +
ε(k + 1)φT (k)P (k − 1)
λ + φT (k)P (k − 1)φ(k)

,

ε(k + 1) = y(k + 1) − X̂(k)φ(k) , (4)

P−1(k) = P−1(k − 1) + (1 + (λ − 1) ·
φT (k)P (k − 1)φ(k)

(φT (k)φ(k))2
)φ(k)φT (k) ,

where X̂(k) is the estimate of the true value of X , ε(k) is
the estimation error vector, P (k) is the covariance matrix,
and λ is the forgetting factor (0 < λ ≤ 1).

B. A Linear Quadratic Optimal Controller

For the controller design, we aim at minimizing the
following quadratic cost function:

J = E{‖W (y(k+1)−yref (k+1))‖2+‖Q(u(k)−u(k−1))‖2},
(5)

where W ∈ �O×O is a positive-semidefinite weighting
matrix on the tracking errors and Q ∈ �I×I is a positive-
definite weighting matrix on the control actions.

The goal of the controller is to steer the system into a
state of optimum reference tracking, while penalizing large
changes in the control variables. The W and Q weighting
matrices are commonly chosen as diagonal matrices. Their
relative magnitude provides a way to tradeoff tracking accu-
racy for better stability in the control actions.

In the following, we derive the optimal controller by
explicitly capturing the dependency of the cost function J
on u(k). We first define

φ̃(k) = [0 uT (k − 1) . . . uT (k − n + 1) yT (k) · · ·
· · · yT (k − n + 1)]T . (6)

Then we have,

J = E{‖W (y(k + 1) − yref (k + 1))‖2

+‖Q(u(k) − u(k − 1))‖2}
= E{‖W (X̂(k)φ̃(k) + B̂0u(k) + ε(k + 1)

−yref (k + 1))‖2} + ‖Q(u(k) − u(k − 1))‖2

= ‖W (X̂(k)φ̃(k) − yref (k + 1))‖2 + ‖WB̂0u(k)‖2

+2uT (k)B̂0
T
WT W (X̂(k)φ̃(k) − yref (k + 1))+

+‖Q(u(k)‖2 + ‖Q(u(k − 1)‖2

−2u(k − 1)T QT Qu(k) + E{‖Wε(k + 1)‖2} .

The cost function J is at its minimum where the following
derivative is zero.

∂J

∂u(k)
= 2(WB̂0)T W (X̂(k)φ̃(k) − yref (k + 1))

+2(WB̂0)T WB̂0u(k) + 2QT Qu(k)
−2QT Qu(k − 1) = 0. (7)

Solving for u(k) gives us the following optimal control law:

u∗(k) = ((WB̂0)T WB̂0 + QT Q)−1[(WB̂0)T W

(yref (k + 1) − X̂(k)φ̃(k)) + QT Qu(k − 1)]. (8)

Note that X̂(k) and B̂0 are estimates of the model parameters
obtained using the RLS estimator (4). The derivation of the

control law here is adapted from the controller synthesis
in [3] and [11]

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation
results of our controller design on a two-tier testbed, as
an example of the shared hosting platform presented in
Section II.

A. A Two-Tier Testbed

The testbed consists of five HP Proliant servers, each
with two processors, 4 GB of RAM, one Gigabit Ethernet
interface, and two local SCSI disks. Two servers are used
to host two instances of the RUBiS application [5], an
online auction prototype. We use a two-tier implementation
consisting of an Apache web server and a MySQL database
(DB) server. Each tier of an application is hosted inside a
Xen virtual machine (or domain in Xen’s terminology). One
server node is used to host two “web domains” (referred to
as the web node), and the other node is used to host two
“DB domains” (referred to as the DB node). The hardware
resources on each node are shared between the two domains
that host the application components and the host domain
(dom0). In our experiments, we restrict the two application
component domains to share a designated CPU and direct
dom0 to use the other CPU to prevent interference.

Two other nodes are used to generate client requests to the
two applications. The RUBiS clients are configured to submit
workloads of different mixes as well as workloads of time-
varying intensity. We use a workload mix called the browsing
mix that consists primarily of static HTML page requests
that are served by the web server (see [5] for more details).
Each RUBiS client also provides a sensor that measures the
client-perceived QoS metrics such as average response time
and throughput over a period of time.

We use the credit-based CPU scheduler in the hypervisor
of Xen 3.0.3 unstable branch [12] to realize resource enti-
tlements to individual domains. It implements weighted fair
sharing of the CPU capacity among multiple domains, by
dividing CPU time into fixed-length intervals and allocating
each domain a certain share of the time in each interval.
Since these shares can be changed at run time, the scheduler
serves as an actuator in our control loop. We use the capped
mode of the credit scheduler, where a domain cannot use
more than its share of the CPU time, even if there are CPU
cycles available. This mode allows us to explicitly control
how much resource a domain has access to, thus providing
better performance isolation between multiple application
components sharing the same node.

The Xen hypervisor also provides a sensor to measure how
many of the entitled CPU cycles are actually consumed by
each domain in a given period of time. This data will be
included in all of our experimental results to reveal resource
utilization levels of individual domians hosting different
application components.

Finally, the last node runs our feedback-driven resource
controller that communicates with the sensors and actuators
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Fig. 3. Application QoS metrics as the reference for QoS ratio changes

and makes appropriate resource allocation decisions on a
periodic basis.

B. Parameter Settings

With this testbed, M = 2, N = 2, and the controlled
system is a two-input-one-output system. The input variables
are u = [u11 u12]T , where u1j denotes the resource entitle-
ment for tier j of application 1, j = 1, 2. In particular, tier
1 is the web tier and tier 2 is the DB tier. The resource
entitlement for tier j of application 2 can be determined by
u2j = Cj−u1j , where Cj is the total CPU capacity of server
node j. By experimenting with the RUBiS workload, we
notice that having 500 concurrent users for each application
would creat a total CPU demand of more than 100% on the
web node and more than 40% on the DB node. Therefore,
by making C1 = 100% and C2 = 40%, we create a scenario
where both the web node and the DB node are saturated,
in which case our resource controller is needed to provide
service differentiation between the two RUBiS applications.

We choose a control interval (or sampling interval) of
Ts = 20 seconds, which offers a good balance between
responsiveness of the controller and predictability of the
measurements. For the RUBiS applications, we choose mean
response time per interval as the QoS metric. Let RTi be
the measured mean response time for application i, and
yi be the normalized RT ratio for application i, i.e., yi =
RTi/(RT1+RT2). We let y = y1 be the output of our control
system, and yref be the desired level of QoS differentiation
between the two applications.

In the next two subsections, we evaluate the performance
of our resource controller using two different experiments.
For the results shown, a first order (n = 1) ARX model is
used in the model estimator, along with a forgetting factor of
λ = 0.95. W = 1 and Q = diag(1, 1) are used in the optimal
controller. Different values for the controller parameters have
been tested. Interestingly, the resulting performance is either
worse or comparable to that from using the default settings,
therefore is not shown here.
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C. Performance in Reference Tracking

First, we fix all the other parameters, and let the control
target, yref , vary from 0.3 to 0.5 then to 0.7. Each reference
value is used for a period of 60 control intervals.

Figure 3 shows the measured per-interval throughput in
requests per second (top) and the mean response time (mid-
dle) for the two applications, as well as the normalized RT
ratio y1 against its reference value (bottom) over a period
of 180 control intervals (one hour). The vertical dashed
lines indicate when there is a step change in the reference
value. As we can see, the controlled output is able to track
the changes in its reference pretty closely. The rising time
is always within two intervals from the time when a step
change occurs. The respective performance metrics for both
applications are also behaving as we expected. For example,
a yref value of 0.3 gives preferential treatment to application
1, where application 1 achieves higher throughput and lower
average response time than application 2 does. When yref

is set at 50%, both applications achieve comparable perfor-
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Fig. 6. Application QoS metrics with workload variation

mance. Finally, as yref is increased to 70%, application 2 is
able to achieve a higher level of performance than application
1 does, which is consistent with our expectation.

Figure 4 demonstrates effectiveness of our model es-
timation. The top figure shows the estimated values of
the three parameters in the first order ARX model. The
values converged fairly quickly (in less than 10 intervals)
at the beginning, and stayed relatively stable afterwards. In
steady states, the response time of a given application is a
monotonic non-increasing function of the CPU entitlements
to the containers hosting the application. That’s why we feed
y2 = 1 − y1 into the RLS algorithm such that the estimated
values for B0 = [b01, b02] are positive. The middle figure
compares the measured values of y2 to the model-predicted
values. Excluding the first 10 samples where the model was
converging, the calculated r2 value between the two time
series is 86%. This means the model is able to capture most
of the variation in the data in spite of its simplicity. The
bottom figure shows the prediction error, which stays within
±0.1 most of the time. These results suggest that a first-order
linear model is sufficient for characterizing the input-output
relationship in our system.

To give more insights to the behavior of our control
system, we show in Figure 5 the corresponding CPU en-
titlements and resulting CPU consumptions of individual
application components. As we can see, as yref goes from
0.3 to 0.5 to 0.7, our controller allocates less and less CPU
resource to both tiers in application 1, and more resource to
application 2.

D. Performance with Varying Workloads

In the second experiment, we fix the target RT ratio
at yref = 0.7. We vary the intensity of the workload
for application 1 from 300 to 500 concurrent users, while
application 2’s workload stays at 500 users throughout. This
effectively creates varying resource demand in both tiers of
application 1, and the controller needs to react accordingly
to maintain the normalized RT ratio at a fixed value.
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Figure 6 shows the measured throughput (top) and mean
response time (middle) for the two applications, as well
as the normalized RT ratio y1 against its reference value
(bottom) over a period of 180 control intervals. Again the
vertical dashed line indicates when there is a step change
in the workload. We can see that the controller is able to
maintain the specified level of QoS differentiation in spite
of workload changes in the applications. The reason why
the throughput for application 1 did not increase much after
the number of users increased from 300 to 500 is because of
the closed-loop nature of the RUBiS client. It always waits
for the reply to the previous request to return before sending
a new request. This means, when the response time goes up,
the offered load from the client side drops accordingly. Since
a 70% control target gives application 2 higher priority over
application 1, even as application 1’s workload increases, the
controller forces it to back off so that the additional load on
application 1 does not affect the performance of application
2, which is a validation of the performance isolation and
differentiation provided by our controller.

Figure 7 shows the CPU entitlements and resulting CPU
consumptions of all four application components. We see that
application 2 gets allocated much higher CPU entitlements
in both the web and the DB tiers. As the workload changes
from 300 users to 500 users in application 1, the level of
differentiation between the two applications at the resource
level changes accordingly, in order to maintain the QoS ratio
at a fixed level.

V. RELATED WORK

Control theory has recently been applied to computer
systems for resource management and performance control
[13], [14], [15], [16]. The application areas include web
server performance guaranteees[17], dynamic adjustment of
the cache size for multiple request classes [18], guaranteed
relative delays in web servers by connection scheduling [19],
CPU and memory utilization control in web servers [20],
and to adjust the resource demands of virtual machines



based on resource availability [21]. In this paper we focus
on coordinated resource allocation across different tiers of
multiple multi-tier applications, whereas most of previous
works study either front-end admission control (i.e. lack of
coordination across different tiers) or resource allocation to
single-tier applications. Our controller can adjust the the
allocation of system resources to application components in
response to system and workload changes. Our approach also
has the advantage that it does not require any application
modifications as we only use sensors and actuators provided
in the virtualization layer along with external application
QoS sensors.

Dynamic resource management in a cluster environ-
ment has been studied with goals such as QoS aware-
ness, performance isolation and higher resource utiliza-
tion [22],[23],[24],[25]. It is formulated as an online opti-
mization problem in [22] using periodic utilization measure-
ments and resource allocation is implemented via request
distribution. In [23], resource provisioning for large clusters
hosting multiple services is modeled as a “bidding” process
in order to save energy. The active server set of each service
is dynamically resized adapting to the offered load. In [24],
an integrated framework is proposed combining a cluster-
level load balancer and node-level class-aware scheduler to
achieve both overall system efficiency and individual re-
sponse time goals. In [25], resource allocation is formulated
as a two-dimensional packing problem, enforced through
dynamic application instance placement in response to vary-
ing resource demands. In this paper, we study more fine-
grained dynamic resource allocation in a virtualized server
environment where application components are hosted inside
individual virtual machines as opposed to individual nodes
in a server cluster, and resource allocation is implemented
through a fair share scheduler at the hypervisor level.

There are other efforts on dynamic resource allocation in
shared data centers. In [26], time series analysis techniques
are applied to predict workload parameters, and allocation
involves solving a constrained nonlinear optimization prob-
lem based on estimation of resource requirements. A recent
study is described in [27] for dynamic provisioning of multi-
tier web applications. With the estimation of the demand in
each tier, the number of servers are dynamically adjusted
using a combination of predictive and reactive algorithms.
In this paper, the kernel scheduler in the virtual machine
monitor is used as the actuator for resource control. The
resource demand of a workload is assumed to be time-
varying which may or may not be predictable. Dynamic re-
source allocation is done with tunable time granularity based
on the measured VM utilization and application-level QoS
metrics. No estimation is required for the workload demand,
and the controller adapts to the changing demand from the
workload automatically. Moreover, our controller can deal
with resource contention between multiple applications and
achieve a desired level of performance differentiation.

In our prior work, we have developed a suite of dynamic
allocation techniques for virtualized servers, including adap-
tive control of resource allocation under overload condi-

tions [28], nonlinear adaptive control for dealing with non-
linearity and bimodal behavior of the system [9], and nested
control for a better tradeoff between resource utilization
and application-level performance [29]. These approaches
are suitable for applications that are hosted inside a single
virtual machine. In this paper, we present a dynamic resource
allocation system for multi-tier applications with individual
components hosted in different virtual machines.

Traditional work on admission control to prevent com-
puting systems from being overloaded has focused mostly
on web servers. Recent work has focused on multi-tier web
applications. A “gatekeeper” proxy developed in [30] accepts
requests based on both online measurements of service times
and offline capacity estimation for web sites with dynamic
content. Control theory is applied in [31] for the design of a
self-tuning admission controller for 3-tier web sites. In [32],
a self-tuning adaptive controller is developed for admission
control in storage systems based on online estimation of
the relationship between the admitted load and the achieved
performance. These admission control schemes are comple-
mentary to the dynamic allocation approach we describe in
this paper, because the former shapes the incoming resource
demand into the system whereas the latter adjusts the supply
of resources for handling the demand.

Proportional share schedulers allow reserving CPU ca-
pacity for applications [33], [34], [35]. In additional to
enforcing the desired CPU shares, our controller can also
dynamically adjust these share values based on application-
level QoS metrics. It is similar to the feedback controller
in [36] that allocates CPU to threads based on an estimate
of thread’s progress, but our controller operates at a much
higher layer based on end-to-end QoS metrics that span
multiple tiers in a given application. Other work includes
resource overbooking in shared cluster environments which
leverages application profiles [37] and calendar patterns (e.g.,
time of day, day of week) [38] to provide weak, statistical
performance guarantees. However, these approaches require
application demand profiles to be relatively stable and do
not provide performance differentiation under overload sit-
uations. In contrast, our controller can cope with workload
variations, even short term unanticipated changes and pro-
vides performance differentiation.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we address the problem of providing service
differentiation between co-hosted applications when multiple
shared servers are being overloaded on a shared hosting
platform. Experimental evaluation of the self-tuning optimal
control design validates that the closed-loop control system
can track a specified level of service differentiation between
the two co-hosted applications when both tiers of the appli-
cations become a bottleneck. And this can be achieved in
spite of workload variations.

We identified the following topics for future research.
First, in this study, the multiple applications are homoge-
neous in terms of running on the same set of stages. We
would like to extend our approach to handle heterogeneous



applications where different applications can run on different
set of stages. Second, we have focused on CPU as the only
resource shared among different applications. In practice,
there are other resources, such as memory, network band-
width and disk I/O, that may also be shared and may become
bottlenecks and degrade end-to-end application performance.
As ongoing work, we are experimenting with actuators pro-
vided by various virtualization technologies and will design
more comprehensive feedback controllers that can coordinate
the scheduling and allocation of multiple types of resources
on a shared hosting platform. Finally, we are also interested
in building a larger testbed with more than two applications
to demonstrate the scalability of this approach, and study
the general optimization problem where more resource and
performance constraints could be considered.
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