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Chapter 5 

A Prototype USS 
 

“God help us; we’re in the hands of engineers.” 

Ian Malcolm, Jurassic Park 

This chapter presents the implementation of a prototype USS based on the design described in 
the previous chapter.  A full implementation of the design would take a considerable amount 
of time, far in excess of that available to the author.  Therefore only those components (or 
parts thereof) that were required to demonstrate the architecture’s key points were 
implemented. 

The feasibility of implementing a scheduler on top of a general-purpose operating system is 
explored with the implementation of a solution to the real-time VE displays problem.  This is 
followed by a description of the platforms upon which the prototype was designed to run. 

The USS implementation details begin with an examination of networking in a heterogeneous 
network, proceeded by configuration control and an implementation of a UML interpreter.  
Following details on each system component, the chapter concludes with a list of 
improvements that can be made to the prototype. 

5.1 Real-Time in the Real World 
The QNX operating system (QNX Software Systems Ltd., Ontario) was used by the author to 
develop the VE Support System (VESS) for experimental work undertaken in the VEL, 
University of Edinburgh.  QNX is a Portable Operating System Interface (POSIX1) compliant, 
multi-tasking, distributed, real-time operating system (OS).  It provides a priority-driven, 
preemptive scheduler which is certainly suitable for a soft real-time system and with great care 
can be used in a system with static hard real-time constraints.  Part of VESS’s functionality 
was enforcing the constant update rate of the CIG displays.  The implementation of this 
solution is presented in this section and was used to explore the viability of implementing a 
scheduler-based prototype USS. 

                                                 

1 The ’X’ would appear to have been added to reflect the fact that the interface is based heavily upon the UNIX 
variants. 
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Section 4.3 presented a taxonomy of real-time scheduling algorithms.  In the field of VR, 
many systems claim to be real-time and can indeed be classified as soft real-time systems.  
The service degradation option for ensuring a constant VE display update rate discussed in 
section 3.3.3.1 requires a deadline scheduler.  Unfortunately, implementing such a scheduler 
on top of a normal multi-tasking OS such as UNIX is problematic.  Most OSs are not suited to 
real-time purposes, i.e. they do not provide ways of guaranteeing response times for certain 
events such as interrupts, IPC and disk I/O, etc.  Those real-time systems that do provide such 
guarantees often use static schedulers.  A VE system is dynamic and therefore a scheduler is 
required that can also cope with changing existing deadlines and the introduction/removal of 
new tasks.  Since a dynamic deadline scheduler was not available it was decided to adopt the 
worst-case operation solution (section 3.3.3.2). 

5.1.1 Real-Time Displays 

There are a number of operations and pieces of information that a visuals manager needs to 
enforce a fixed frame rate in the CIG: 

1. Manual control over buffer swapping 
2. The time between one display refresh cycle and the next. 
3. The amount of time that the rest of the system components need to complete their 

work for the next simulation update. 

5.1.1.1 Manual buffer swapping 

This is essential to the task at hand.  Double-buffered systems will display the last rendered 
image until the current one has been finished.  At this point the new image is displayed and 
the next image is rendered into the other buffer.  The switch actually happens during the next 
vertical retrace (or flyback) phase.  On displays such as monitors, this is when the electron gun 
makes its way from the bottom-right corner of the tube (as the viewer sees it) to the top-left, 
ready to start drawing the next picture.  To achieve a constant frame rate we must be able to 
choose which vertical retrace is used to switch display buffers. 

5.1.1.2 Inter Refresh Time (IRT) 

The IRT is the time it takes to draw one picture on the display including the vertical retrace 
period.  For example, say that a 640x480 resolution image is refreshed at 60 Hz.  This means 
that the IRT is 1000 / 60 = 16.66 ms.  The refresh rate varies depending on the resolution of 
the video signal, e.g. an 800x600 pixel image is often refreshed at 72 Hz, and different display 
devices can handle different ranges of refresh rates. 

The refresh rate may be provided as a parameter at run-time or, alternatively, this information 
may be obtained from the CIG which is the approach adopted here.  Each time the CIG 
generates a vertical retrace it also generates an interrupt which is intercepted by the host 
machine and the time stored.  The next time an interrupt is caught, the time difference is 
calculated and this gives us the IRT. 
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This technique will only work if the host machine has a clock that can provide nanosecond 
accuracy and the interrupt latency2 is bounded.  The latter point is by no means certain in non-
real-time operating systems such as UNIX and was one of the main reasons QNX was used. 

5.1.1.3 Inter Update Time (IUT) 

The total processing time required for one simulation update is provided by the scheduler and 
the IUT is the nearest multiple of the IRT to the given time.  In other words, the total work 
time can be expressed as a number of display refreshes.  For example, if the IRT is 16.66 ms 
and the work takes 40 ms, the IUT would be 49.99 ms, i.e. the work may be done within 3 
refreshes of the display. 

                                                 

2The time between the interrupt being generated and the process on the host machine being notified of the event. 
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Figure 5.1  Simulation cycle scheduling. 
a) buffer swaps happen at unpredictable times during the next 
simulation cycle in a variable-rate system; b) controlled buffer 
swapping in a single CPU fixed-rate system; c) a multiprocessor 
fixed-rate system permits the calculation stage to be done in 
parallel and in advance of the rendering stage resulting in a faster 
update rate. 
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5.1.1.4 A comparison of paradigms 

Figure 5.1 shows the various ways of scheduling the work to be done each frame.  There are 
three basic stages: calculate, render and display.  Figure 5.1a shows how these stages fit 
together in a variable-rate system and how they relate to the display refresh cycle.  The time at 
which the frame may be displayed varies and rarely coincides with a vertical retrace, which 
means that the actual buffer swap happens sometime during the next cycle.  As shown in the 
diagram, most of the time the calculation stage may progress immediately and by the time this 
is finished, the buffers have been swapped and the render stage is ready to continue.  
However, the last complete cycle in Figure 5.1a shows that it may be necessary for the render 
stage to wait until the buffers have been swapped.  This is because the buffer that will be filled 
next is currently being displayed. 

The scheduling of the work in a fixed frame rate system is shown in Figure 5.1b.  The time 
between the end of the rendering stage and the display will vary depending on how long it 
takes to render the scene.  Pseudo-code for this process is given in Figure 5.2. 

Both these examples assume that all work is being done by one CPU.  If the image generation 
can be dedicated to another CPU or the system is equipped with a separate graphics 
subsystem, then time may be saved by scheduling the calculate and render stages such that 
they overlap as shown in Figure 5.1c.  This is best achieved by starting the redraw as soon as 

// Step 1: Initialise key variables

Calculate IRT
Calculate IUT based on totalWorkTime
Enable manual buffer swapping
displayTime = 0

// Step 2: Synchronise loop with display

Wait for refresh

// Step 3: Enter main processing cycle

While simulation not complete
{

// Step 3.1: Calculate state

displayTime = displayTime + IUT
Calculate state of VE for displayTime

// Step 3.2: Draw new image but don’t display

Redraw display

// Step 3.2: Display image exactly on time

Wait for end of IUT period
Swap buffers

}

Figure 5.2  Pseudo-code for the fixed frame rate, worst-case simulation cycle. 
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possible (since it will take the longest time to complete).  In order that we are rendering the 
most up-to-date state possible, the calculation stage is done before the end of the previous 
frame.  By performing these two stages in parallel it also means that more time can be spent 
on the simulation dynamics.  Obviously, failure to complete either of these stages before the 
designated refresh occurs is a system failure. 

Regardless of technique, it is important to understand how the CIG works and the latency that 
it introduces into the process since not all CIGs work the same way.  For example, an SGI 
RealityEngine/2™ introduces a one frame latency whilst the Real World Simulation 
Reality3™ PC card produces a two frame latency.  The latter system was used in this 
implementation and, to compensate for this latency, state calculations must be done two 
updates before the image needs to be displayed. 

This method of controlling double-buffering can be applied to most CIGs with few problems 
since it utilises existing functionality.  It may be necessary, however, for the API to be 
modified to gain access to this functionality. 

5.1.1.5 Further improvements 

It is quite common for the render stage (even in its worst-case) to complete before the time 
that the display stage needs to run (as shown in Figure 5.1c).  If this is the case then the start 
of the state calculation, which includes input device sampling and the render stage, may be put 
back such that there is even less delay between calculation and display (Figure 5.3a). 

A more advanced technique is the controlled increase or decrease of update rate.  It would be 
possible to detect whether the CIG is capable of going faster, e.g. making the change between 
30 Hz and 60 Hz, by maintaining a history of its execution time for each update.  If, after a 
small period of time, this new potential performance was sustained then the other stages could 
be rescheduled, if possible, and the switch made (Figure 5.3b).  In a similar way, by 
monitoring the performance profile, a slow increase in workload could be detected and a 
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Figure 5.3  Improved simulation cycle scheduling. 
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decision made to extend the deadline.  Once a decision is taken to change the deadline, no 
further changes must be made for a reasonable period of time, e.g. a couple of seconds, or 
things would quickly degenerate into a variable-rate system.  Such an enhancement could also 
help overcome the fact that the worst-case approach assumes that the environment is quite 
static and does not cope well with the dynamic creation or destruction of objects. 

Some multiprocessor CIGs already monitor image complexity to aid in processor load 
balancing.  For example, the Reality3™ system, uses knowledge of the changing complexity 
of each scan-line to predict the load distribution for the next update.  With additional 
functionality in the API, these calculations could be used in the decision-making process.  It is 
true that simple decision-making logic could be flawed by fast increases or decreases in 
workload, but the potential increase in system fidelity makes it worthy of more investigation. 

A deadline-based approach also provides the framework for the application of object priority 
systems within the CIG as well as the visuals manager.  Objects may be drawn, partially 
drawn or skipped depending on their priority (as in Holloway’s Viper system). 

5.1.2 Conclusions 

The problem of presenting a temporally correct view of a VE has implications throughout the 
whole support system architecture.  The most important (and often the most expensive) 
component of a VE system is the CIG.  Most CIGs provide some kind of service degradation 
in the form of LOD (section 3.3.3.1), but this is insufficient and improvements must be 
implemented via the API. 

The implementation presented above has been used effectively over a number of years in the 
VEL.  However, its utilisation is not as simple as “plug and play” since its performance is 
highly dependent on the other processes used to simulate the VE.  For example, if data 
logging is added to the simulation then this introduces an execution path that passes through 
the filing system manager and the hard disk device driver.  Each of these processes have their 
own timing constraints, are dependent on a number of interrupts and must therefore be 
accounted for in the schedule.  Other changes that can have large effects on reliability are: 
communicating with a machine via the (dedicated) network, increasing the complexity of the 
visual database being used, adding another input device, synchronising with an external 
device, etc. 

Even under QNX, which supports POSIX 1003.1b Real-Time Draft Standard Process 
Scheduling, getting an application to schedule every component to meet worst-case deadlines 
can be quite time consuming.  The possibility of doing the same under a heavyweight OS such 
as System V Release 4 UNIX is very low.  In addition, general OSs use virtual memory and 
have unbounded interrupt latency to name but two confounding features.  Since it was the 
intention to demonstrate USS running on different machines and operating systems (albeit 
UNIX variants), it was decided not to attempt a real-time implementation. 

a) shifting the calculate and render stages to reduce system latency; b) 
performance profiling permits the increase/decrease of the update rate in a 
controlled manner. 
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5.2 Target Platforms 
From the outset it was intended that the prototype should be portable to a number of different 
platforms.  It was planned to use QNX during initial development; so it was a natural 
progression to use other platforms with similar operating system functionality, preferably with 
some POSIX compliance.  These platforms are briefly described in this section whilst specific 
details are dealt with in section 6.2.  The choice of an Implementation Language, IL, is also 
discussed. 

5.2.1 IBM Personal Computer Compatibles 

Three PC compatibles on a dedicated network within the VEL were available to the author, 
each running QNX.  One of these machines acted as a gateway to the Internet thus opening up 
the possibility of connecting multiple USSs on a heterogeneous network.  Each machine had 
between 16 and 24 Mbytes of main memory and ranged in power from an Intel 486/50 MHz 
to an Intel Pentium/90 MHz.  The memory capacity is important because QNX does not use 
virtual memory.  Additional resources included a dedicated CIG and sound generation 
equipment. 

5.2.2 Cray T3D 

Originally it was intended to use the Edinburgh Parallel Computing Centre’s  (EPCC) Cray 
T3D super-computer as the second platform to run the prototype.  The T3D was installed with 
160 nodes, each with 2 DEC Alpha 21064 processors running at 150 MHz and 128 Mbytes of 
memory (64 per processor).  The T3D is connected to the real world via a Cray Y-MP host 
running UNICOS, a POSIX compliant OS.  Unfortunately use of the Cray had to be 
abandoned for a number of reasons: 

1. Despite having an 8 MByte “microkernel”, no IPC mechanism is provided - only 
shared memory operations are available.  To ease this problem, three messaging 
libraries are available: 

a) Portable Virtual Machine (PVM - Geist & Sunderam, 1991).  This library 
makes use of a central server process which runs on the T3D host.  
Unfortunately the central server process does not fit with the USS design. 

b) Message Passing Interface (MPI, 1993).  This is an attempt to standardise 
on an IPC mechanism incorporating features of many such libraries, 
including PVM.  However, it is very rigid and imposes requirements on 
how the programs must be structured that conflict with USS design. 

c) Fast Messaging (FM - Karamcheti and Chien, 1994).  This unsupported 
library provides a low-level IPC mechanism using shared memory 
routines which provides latency an order of magnitude lower than PVM.  
This would be the library of choice but even this could not overcome the 
other problems detailed below. 



123 

2. A process runs on one physical processor.  There is no multi-threading support 
and this can only be achieved by using a large conditional statement in a 
monolithic program to select alternative execution paths.  To port a multi-
process system to a one process per processor architecture would have involved 
major changes and be grossly inadequate.  The other alternative would be to 
have one system component running on each processor and treat the whole 
machine as one node.  This would, of course, be absurdly inefficient since many 
processes, such as entities, are inactive for a large proportion of their life. 

3. The Cray C++ compiler does not support exceptions which were used 
extensively in the prototype (section 5.2.5).  Removing exception handling code 
from a program requires a total re-design and re-write. 

4. Whilst it was possible to communicate from the T3D to the outside world 
through the Y-MP host using a “message-routing” process, the author was 
advised against trying.  The host was so heavily used any such routing process 
would have to wait a long time to gain access to the CPU thus shattering any 
hope of reasonable real-time performance. 

5.2.3 Sun SPARCcenter 

The Sun SPARCcenter 1000E met all of the required criterion and was used to develop the 
prototype in parallel with the QNX version.  SunOS v5.4 supports some of the POSIX 
standards which made porting relatively straight forward.  However, this machine is used by 
many in the University as a compute server and therefore could not be used to evaluate system 
performance. 

5.2.4 SGI RealityStation 

A network of three SGIs arrived in the Department of Computer Science half way through the 
final year of this project.  The most powerful of the machines was a RealityStation which is 
populated with 128 Mbytes of main memory and runs the IRIX OS (v5.3) which uses virtual 
memory.  Unfortunately a suitable C++ compiler was not installed until a couple of months 
before submission, limiting work on this platform to a minimum. 

5.2.5 Implementation Language 

Development of the prototype started under QNX which supported ANSI C and C++ with 
exceptions and templates.  In general, the code generated by a C++ compiler is as efficient as 
a C compiler and since object-oriented techniques lend themselves well to the task at hand, 
C++ was chosen as the implementation language.  The availability of templates eased 
development and exception handling helped produce an easier to understand implementation.  
Watcom C++ v9.52 was used under QNX and Sun Professional C++ v3.0.1 was used to 
initially develop the prototype under SunOS.  Later, compatibility with GNU C++ v2.7.0 was 
tested as a precursor to the SGI port and to aid debugging (section 6.2.1). 



124 

5.3 Networking 
The actual organisation of USSs need bear no relation to the physical location of the nodes or 
their internetworking.  Figure 5.4 shows three possible configurations of a USS, all of which 
are connected to the same backbone network.  System Enterprise is constructed from three 
nodes interconnected by a dedicated network with one node acting as a gateway to the 
backbone.  System Voyager only has one node whilst Defiant has two nodes but its local 
communications must share the bandwidth with all of the other traffic on the backbone.  
Whilst this last configuration is not efficient, it is functionally valid. 

There is no required medium or protocol for interconnecting systems.  In this example, 
however, all the nodes use Ethernet as their communications medium.  It is possible that the 
medium used within USS Enterprise could be totally different provided that an Ethernet link 
to the other systems was still maintained.  This would be the situation in a multiprocessor 
system where each processor could correspond to a node. 

Each OS has its own mechanism for sending messages to processes within its domain of 
control.  On a single processor system this means sending messages between logical processes 
running on the same processor and may be implemented as either sharing or copying memory.  
This is also true in some multiprocessor systems where memory is shared, in others 
communications may use high-speed links between processors.  In distributed systems the 
message may also be sent between physical machines over a high-speed LAN connection.  
The one criterion that links all these different domains is that the recipient is directly 
addressable by the operating system. 

USS Enterprise

Gateway

ServerPentium

SGI

USS Voyager

Neeps Tatties

USS Defiant

System

Node

Ethernet

 
 

Figure 5.4  Example network configurations of three USSs. 
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5.3.1 IPC Mechanisms 

Most operating systems provide their own method of lightweight message-passing, e.g. QNX,  
but others rely on more heavyweight methods such as TCP/IP, e.g. IRIX.  Under QNX, 
multiple machines may be networked together into one virtual machine and the system’s IPC 
mechanism works between processes on different nodes as if they were on the same physical 
machine.  It can coexist in an Ethernet network with other protocols but cannot be used to 
communicate with systems that are not running QNX.  In order to communicate with 
processes outside the native domain of control it is necessary to use a different delivery 
system, such as TCP/IP.  This also means that a different addressing method must be used. 

To localise the impact of these differences (and those of other OSs), a Process Management 
Layer (PML) is incorporated into each system component which sits in between the operating 
system and the component implementation (Figure 5.5).  This process layer provides a set of 
services (presently just IPC) which are independent of the underlying operating system.  
Where more than one delivery system is available the layer chooses the right mechanism for 
the right job.  How these decisions are made is platform and implementation specific.  There 
is only one requirement, of course: the message delivery must be reliable.  The prototype 
supports QNX IPC, TCP/IP and the framework for supporting a shared memory IPC 
mechanism is present but not fully implemented.  UNIX domain sockets (which are faster) 
were not used instead of TCP/IP because QNX does not support them and they would 
complicate system performance comparisons (section 6.4). 

5.3.2 Addresses 

Each process within the system has an address which is unique throughout all USSs.  The 
address is made up of three components: the system ID (SID), the node ID (NID) within that 
system and the process ID (PID) within that node (Table 5.1). 

Current sizes are signed 16 bit integers for both the SID and NID, with an unsigned 32 bit 
integer allocated for the PID.  Valid SIDs and NIDs are positive integers - negative values are 
used during the process’ initialisation phase.  This provides a unique address for 32768 
systems, each with up to 32768 nodes, each of which may have 232 processes running on 
them.  This is truly overkill for the prototype but offers a realistic address range when large-
scale distribution is a goal. 

Component Functionality

Process Management Layer

Operating System

Hardware  

Figure 5.5  Position of the Process Management Layer within the 
system software. 



126 

When each system is defined in the systems’ configuration file (section 5.4), it is allocated a 
unique SID.  Likewise, each USS definition contains a number of USN definitions which 
specify a NID that is unique within that system.  The PID is different because the number used 
is unique within the given node.  It is used to reference the process that the message is 
intended for (or sent by), but how it is used to locate the relevant process is implementation 
and thus node dependent.  When using QNX IPC, messages are indeed addressed using the 
operating system’s process identifier, whereas an implementation using TCP/IP uses the 
socket number associated with the process.  A shared memory implementation would use the 
address of the memory block holding the message queue. 

5.3.3 Messages 

All communications between the components of the USS use a number of pre-defined 
messages whose basic structure is shown in Table 5.2. 

The address of the sender and the intended recipient are the first two fields in the message 
header.  The recipient field is necessary because the message may be routed through one or 
more other processes before it arrives at its destination.  The message ID number is used by all 
system components to determine whether to deal with the message and, if so, how to decode 
the data (if there is any).  The desired method of transportation to the recipient is also recorded 
in the message. 

The size of the associated message data is given in bytes.  The interpretation of the data 
depends on the message ID.  A list of the defined message types and their purpose is given in 
Table 5.4.  Message IDs are often reused for slightly different purposes, the exact meaning 
depending on the receiver, e.g. entity, manager, etc.  In addition, many messages share the 
same physical structure with regards to data contents (Table 5.3).  For example, all messages 
that contain UML information (binary or ASCII) use the same structure: 7. 

USS ID USN ID Process ID 
16 bits 

(signed) 
16 bits 

(signed) 
32 bits 

(unsigned) 

 
Table 5.1  Message address structure. 

From To Message ID† Transport ID† Length Data  
8 bytes 8 bytes 1 byte 1 byte 4 bytes optional 

 
† Aligned on a 2 byte boundary, i.e. requires one padding byte. 

Table 5.2  Message header structure. 
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5.3.4 Hardware Differences 

Sending messages between machines in a homogeneous environment requires no additional 
effort.  However, in a heterogeneous network there are hardware architecture differences. 

5.3.4.1 Byte Order 

The byte ordering used in CPUs may be classed as either little-endian or big-endian.  A little-
endian CPU, such as those produced by Intel, places the least significant byte of a word first.  
Conversely, a big-endian CPU places the most significant byte first.  The reasons behind the 
choice of one ordering over another will not be discussed here but recently some CPUs have 
been built such that the byte ordering used can be selected by setting a bit in one of the CPU’s 
registers, e.g. Motorola 88110 (Motorola, 1992). 

5.3.4.2 Floating-Point Representation 

5.3.4.3 Another difference may be the representation of floating-point 
numbers: single-precision (32 bit), double-precision (64 bit) and extended 
precision (64 bit and upwards).  This is less of a problem since most general-
purpose CPUs conform to IEEE 854 (IEEE, 1987) although they may, of course, 
have a different byte order. 

5.3.4.4 Memory Alignment 

Some architectures also require certain data types to be aligned on given byte boundaries.  For 
example, a 32 bit integer may have to start on a 4 byte boundary.  If not required then often 
operations are performed more efficiently if aligned on these boundaries.  In these cases the 
alignment is enforced by the compiler or provided as an option (Watcom, 1995). 

Type Name Size Description 
-1 - 0 All information required is in the message header. 
0 String n Used to send variable length textual information. 
1 Notify 4 Holds reason for process termination. 
2 Ping 28 Holds flag indicating whether receiver issued ping or is being pinged 

and timestamp information. 
3 Profile 16+ Holds a variable length RP. 
4 UPID 48 Room for both the name and UPID of a process. 
5 UPID2 16 Contains just two unnamed UPIDs. 
6 Status 4 Details the status of a previously requested service. 
7 UML 24+ Holds either an ASCII UML definition or binary state data. 

 
Table 5.3  Description of the nine physical message structures. 
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5.3.4.5 Transfer Format 

Message                            Type Purpose 
GET_UPID 4 Sent to the UM to obtain the sender’s UPID. 
SET_UPID 4 Sent by the UM, containing the recipient’s UPID. 
PING  2 Test connection/measure round-trip time to a given process. 
NOTIFY 1 Inform the UM why this process is terminating. 
RPROFILE_NOTIFICATION 3 Holds a process or node RProfile. 
RPROFILE_REQUEST 3 Sent by a process wanting a process or node RProfile. 
LOCATE_REQ 0 Ask the UM to locate a process based on the specified search 

criterion. 
LOCATE_RESP 4 UPID of the located process returned by the UM. 
STATUS 6 Success/reason for failure of the specified message. 
ACTIVATE_UM -1 Notify the MUM that this node is active. 
DEACTIVATE_UM -1 Notify the MUM that this node is disconnecting/ tell slave 

node to terminate. 
ACTIVATE_USS -1 Notify the master USS that this system is active. 
DEACTIVATE_USS -1 Notify the master USS that this system is disconnecting/tell 

slave system to terminate. 
TERMINATE -1 Sent by UMs to force termination of any given process. 
CREATE_ENT 0 Execute the given process on the recipient UM’s node. 
CREATE_ENT_ACK -1 Sent by SUM to MUM when an entity has been created. 
DESTROY_ENT 0 Terminate the given process on the recipient UM’s node. 
DESTROY_ENT_ACK -1 Sent by SUM to MUM when an entity has been destroyed. 
UML 7 Holds valid UML code to be parsed by the recipient. 
UML_INIT -1 Request the sender’s UML definition from the UM. 
UML_INIT_DEF 7 New, complete UML definition sent by the UM. 
UML_CONSTRUCT 7 Execute entity’s Construct function/entity’s initial state 

information. 
UML_UPDATE 7 Execute entity’s Update function/send state updates. 
UML_DESTRUCT -1 Execute entity’s Destruct function. 
UML_MONITOR 0 Manager’s registration of interest in part of the UML 

definition. 
UML_MONITOR_ACK -1 Sent by the UM to confirm acception of a monitor request 

and inform entities of dependency. 
UML_SYNC 0 Request current list of UML dependencies. 
UML_UPDATE_NOTIFY -1 Notify entities that they should update and managers that 

they should expect UML_UPDATE messages. 
UML_UPDATE_COMPLETE -1 Notify managers that all entities have updated. 
MIGRATION_NOTIFICATION 5 Informs receiver that a migration has occured - contains the 

process’ old and new addresses. 
MIGRATION_REQUEST 4 Sent by a RM to the MUM to request an entity migration. 
MIGRATION_STATE_REQ -1 Sent to an entity to obtain a complete copy of its state. 
MIGRATION_STATE 7 Complete entity state sent from source to target entity. 
MIGRATION_STATE_ACK -1 Used to inform the MUM that state transfer was successful. 

 
Table 5.4  Summary of message types and their use. 
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The External Data Representation (XDR) library of functions are used to represent data 
structures in a machine-independent form (Bloomer, 1992).  This library is available on most 
machines running UNIX and can be used to encode dynamic data structures as well as just 
handling the primitive types.  Due to this level of functionality it is also quite a bulky library 
with respect to both memory requirements and the API.  Even the low-level code used by 
Snowdon (1995) produced a significant overhead. 

Of the platforms available for use by the author, two used big-endian ordering, one used little-
endian and all of them used the same single and double-precision floating-point formats.  
Since the UML data structure traversal routines had already been written and the number of 
messages types sent between machines was relatively low, it was decided to provide hand-
coded byte-swapping routines.  In addition, although XDR is a popular library, it may not be 
available on all systems which would cause problems porting USS. 

The chosen format for sending messages was little-endian because the big-endian machines 
had more powerful CPUs and could better accommodate the overheads involved in 
encoding/decoding.  The byte-swapping code was conditionally compiled into big-endian 
systems to minimise code size and maximise execution speed on little-endian machines.  As 
the process layer receives messages, it encodes/decodes those that are destined for/received 
from other nodes. 

5.3.5 Layer Implementation 

Each process in a USS is both a provider and a consumer of services.  A service is requested 
by sending a message to the provider which performs some processing and then possibly 
sends a result back to the consumer.  Information flows between processes freely and it is 
possible for two processes to be each other’s consumers and providers.  The PML provides the 
nuts and bolts that can support this functionality and avoid deadlock. 

5.3.5.1 Asynchronous 

Synchronous message transmission is a convenient mechanism for issuing service requests but 
can leave the sender waiting for a response when it could be doing other work.  In USS, 
therefore, all processes send a message and then continue immediately with other processing.  
Some time in the future they may receive a response to their original request which must be 
associated with it in some way.  This may be explicit by including a reference in the response 
or implicitly because it could only have come from one message. 

5.3.5.2 QNX 

Messages are sent between QNX processes using a three stage procedure: Send-Receive-
Reply.  Figure 5.6 shows the sequence of these stages and what happens to the state of each 
process.  After a message has been sent, the sending process blocks until it receives a reply 
from the message’s recipient.  Similarly, when a process enters the receive state it blocks until 
it is sent a message at which point it can do some processing and then must issue a reply.  It is 
possible to poll for a message but continuous use of this service will seriously degrade system 
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performance.  To minimise the time that the sender is blocked, a reply is issued immediately 
after receiving the message. 

Sending a message to another node in a QNX network requires the establishment of a virtual 
circuit between the sender and receiver.  The identifier assigned to this circuit is then used 
when sending the message instead of the PID in the message address.  After the reply has been 
received the virtual circuit is deleted.  It would be more efficient to leave the virtual circuit in 
place and re-use it the next time - an operation supported by QNX.  However, the burden 
placed on the operating system by the potentially large number of circuits could degrade 
system performance.  The buffer used for sending messages within the operating system 
grows as needed but it is also possible to send multi-part messages which keeps the required 
buffer size at a minimum. 

5.3.5.3 TCP/IP 

Each process obtains a socket number which is used throughout its lifetime as the PID 
component of the UPID.  Whilst the contents of the PID field in the message address is 
enough to send a message under QNX, TCP/IP also requires a hostname to establish a socket 
connection.  If the recipient is on the same node then the node’s hostname can be obtained 
from the operating system.  Any message destined for another node is sent through the UM 
which maintains a routing table3 for each node in the system.  If it is the MUM then it also 
stores a route for its counterpart in each system.  A table entry is composed of the SID, NID 
and hostname. 

The sequence of events required to send a message using TCP/IP as implemented in the 
process layer is shown in Figure 5.7.  TCP/IP requires a connection to be established before 

                                                 

3 Stored in and administered by the PML. 

Process A Process B

Send()

Receive()

Reply()

Process blocks
until reply is

received.

Process blocks
until message

received.

qnx_vc_attach()*

qnx_vc_detach()*

* Only when sending to another node.  

Figure 5.6  Send-Receive-Reply procedure for sending messages under QNX. 
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data transfer may commence.  A similar phase is the creation of virtual circuits in QNX, but 
whereas QNX provides OS support for maintaining virtual circuits, it is up to the application 
to keep track of established socket connections.  Each connection has to be periodically polled 
to check for incoming messages compared to issuing a single call to Receive()4.  Since 
this would introduce unwanted complexity and a considerable overhead in the prototype, 
socket connections are established and closed each time a message is sent. 

5.3.5.4 Deadlock 

A problem common to both of these implementations is that of deadlock.  If process A should 
send a message to B at the same time as B sends a message to A then both will be blocked 
waiting for the other to receive the message.  A solution is to split the layer into two 
processes.  The first process holds all the components functionality and receives messages as 
per normal.  When it wishes to send a message, it is passed to the second child process which 
actually sends it.  Therefore only the child process ever becomes send-blocked leaving the 
parent process to accept incoming service requests and perform its usual work (Figure 5.8). 

The overheads of this solution can be minimised by using threads (lightweight processes) 
which share both code and data, with a separate stack (Milenkovic, 1992).  Messages could 
then be passed from parent to child by exchanging memory pointers.  Unfortunately threads 
have not been implemented on all of the chosen platforms.  A beta version of a threads library 
was available in QNX but was found by the author to be unreliable and so this option was 
ruled out. 

                                                 

4 These overheads would not be incurred if an unreliable datagram (connectionless) mechanism were used. 

Process A Process B

connect()

accept()

write()

Process blocks
until connection

established. Process blocks
until message

received.
Process blocks
until message
read and then

closes its end of
the connection.

read()

close()close()

Process closes
its end of the
connection.

 

Figure 5.7  Message transmission sequence using TCP/IP. 
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The ability to create a child process using fork() is a common feature in UNIX-based 
systems.  The child is, in effect, a duplicate of the parent process, sharing code but taking a 
separate copy of the data and stack.  Although not strictly an IPC mechanism, pipes are 
commonly used to send data between two processes on UNIX-based systems.  Pipes fall under 
the jurisdiction of the filing system but that does not require them to occupy disk space and 
may reside totally in memory.  Since both these features were available on the target platforms 
this method of implementation was chosen.  To reduce the often considerable memory 
overheads that fork() produces through duplication of data and stack, the child process, 
once created, is replaced by a lightweight mailer.  This program simply reads messages from 
the pipe and sends them to their intended destination. 

5.3.5.5 Initialisation 

The PML is the first software element to be initialised when a process is created.  Its first task 
is to determine the UPID of the process it is executing in.  If it is a UM then initialisation is 
temporarily paused whilst the configuration file is parsed and then restarted when the node’s 
SID and NID are known (section 5.4).  The PID of the UM is the actual process identifier 
under QNX or a pre-defined port when using TCP/IP, i.e. 34000. 

If the process is not a UM then it must locate its UM and send it a GET_UPID message.  
Location of the UM using TCP/IP is simply a case of connecting to the pre-defined port 
address.  Under QNX the operating system’s name server is used to locate the process 
identifier of the UM using a pre-defined name. 

Upon reception, the UM allocates a UPID and returns it in a SET_UPID message which is 
subsequently processed and thus completes the layer initialisation. 

5.3.5.6 Multiple Mechanisms 

The layer can be initialised to handle both QNX and TCP/IP IPC.  If so, connections on each 
mechanism are polled for, in turn, until one is established.  This is a CPU intensive procedure 
if done continuously, but it is commonplace for each component to poll once for any messages 
before continuing with the outstanding work (section 0).  Consequently, multiple mechanisms 
may be handled with only slightly more overhead than just one. 

Component Functionality

Process Management Layer

Mailer

Logical Process

 

Figure 5.8  Structure of a logical process consisting of two physical processes. 
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When there is a choice of methods for communication, the mechanism specified in the 
message is used.  If this is left undefined then the best choice is used - the prototype will use 
QNX IPC in preference of TCP/IP.  It is, however, uncommon for a message’s transportation 
ID to be left blank, since it is accepted practice to respond using the same method that the 
request was sent with. 

5.3.6 Networking Summary 

In order to simplify the transfer of messages between processes and facilitate porting to 
different platforms, each software component has a process management layer.  The interface 
to this layer, the message format and message addressing are the same regardless of the OS.  
In a heterogeneous environment, a common binary format must be agreed upon to enable 
machines with different hardware architectures to communicate.  In the present day, these 
differences are far fewer and a compromise was found quite easily.  As messages are sent they 
are encoded into the common format (if necessary) and decoded upon receipt (if necessary).  
To avoid deadlock the PML requires two processes to be used per logical process: one with 
the component-specific functionality and a small mailer process used to send messages.  The 
PML’s first action during initialisation is to ascertain its UPID, either through a configuration 
file or by communication with the node’s UM.  Once initialised, the network of PMLs can 
handle message transmission between nodes using different IPC mechanisms. 

5.4 Configuration Control 
Some of the components in a USS need configuration information when they are created.  
This section presents a simple language that is used to help fulfil this task and is followed by 
an example of its application: system configuration. 

5.4.1 Universal Configuration Language (UCL) 

This minimalist language provides a way of structuring simple information in a hierarchical 
manner.  UCL is used by those processes that need configuration information upon creation.  
The UCL parser constructs a small internal data structure which may be read, manipulated by 
the process and then output again.  Currently, this information is stored in files which are read 
by each process but there is no reason why this information could not be sent by the UM. 

The basic building blocks of UCL are Components and Variables.  A variable is given a type 
of Real, Integer, String or Boolean and lists may have mixed types.  Every variable is required 
to have a value, but if this is not needed an empty string may be specified ("").  A component 
can contain variables and zero or more other components which form a hierarchy, of which 
there may be many in each file.  Figure 5.9 shows a contrived example of a UCL description 
that contains one of each possible construct. 
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Components are identified by a type name which is followed by an optional name that can be 
used for reference purposes during parsing and when accessing the information described 
therein. 

UCL permits structuring of non-complex data in which ever way is most suitable for the task 
at hand.  In order for a UCL file to be recognised by different programs, the type names of 
components and their structure must be made concrete.  Such a process was undertaken to 
provide a configuration file for USSs. 

5.4.2 System Configuration 

Figure 5.10 shows how UCL is used to describe the configuration of the USS Enterprise 
shown in Figure 5.4.  The node that has the MUM is indicated by the presence of the MASTER 
variable which is used as a flag.  Likewise, one of the systems in the configuration file must 
be designated as the master system, similar entries would be made for the two other systems 
(section 5.6.2).  The SID of the first system description in the configuration file is 1, the 
second system is allocated a SID of 2, and so on. 

The HOST variable specifies the hostname of the node and its NID.  It is necessary to describe 
the location of the systems/nodes in some meaningful way and the hostname’s format is 
dependent upon the protocol used to interconnect systems.  In the prototype, TCP/IP is used 
and the hostname is therefore given in Domain Name Server (DNS) form.  The IPC 
mechanisms supported by the node are also listed, two of the nodes only use QNX IPC whilst 
the Gateway node also supports TCP/IP.  Since this node is the link to the other systems it is 
also designated as the master. 

The remaining entries correspond to the managers that run on each node.  All nodes have a 
resource manager entry which takes a file containing its initialisation parameters.  The only 
special manager in this system is VIS which runs on the machine with the CIG.  However, one 
node does have the system console attached for the administrator’s use. 

Container containerName
{

SubContainer componentName
{

aString "hello"
aReal 1.0
anInteger 2
aBoolean FALSE

}

mixedList 1, 2.0, TRUE, "goodbye"
}

Figure 5.9   The basic elements of UCL. 
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5.5 A UML Interpreter 
Before examining each system component it is important to understand how the UML 
interpreter works because it has had considerable influence on their implementation.  There 
are four stages to interpreting a UML description: 

1. Lexical analysis. 
2. Syntactical and grammatical verification. 
3. Construction of the interpreter’s internal data structure. 
4. Semantic validation of that data structure. 

The first stages were accomplished by using the lex and yacc tools (Levine et al., 1992).  
The product of these tools was combined with a series of C++ classes to form a UML 
interpreter library which could be linked into any program requiring that ability.  Manipulation 
of the interpreter is possible through the library’s API. 

There are two phases when building the data structure: first of all the data definition is parsed 
and then all instruction code is compiled into an intermediate byte-code.  This section 
describes the general structure of this library and outlines the processes of interpretation. 

USS Enterprise
{

MASTER "" // Master system

USN Pentium
{

HOST "haggis.psy", 2 // Host name and NID
IPC "QNX" // Uses QNX IPC
RM "resnode2.ucl" // Has a Resource Manager
VISM "" // Has a VIS Manager

}

USN Server
{

HOST "haggis.psy", 1 // Different node
IPC "QNX"
RM "resnode1.ucl"
CONSOLE "" // Has a console attached

}

USN Gateway
{

MASTER "" // Master node
HOST "haggis.psy", 3
IPC "QNX", "TCPIP"
RM "resnode3.ucl"

}
}

Figure 5.10  Example USS configuration file. 
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5.5.1 Overall Structure 

At the highest level, the structure of UML may be conceptualised as a list of universe and 
entity definitions.  Each of these definitions may be linked to one another by inheritance or 
they may just be peers with a common ancestor.  Every universe definition is itself a hierarchy 
of other components: elements, constants, properties, etc.  Each entity is derived from one of 
the universe definitions and contains a number of scope levels with functions, variables, etc., 
forming yet another tree structure. 

Each component of UML has been implemented as a C++ class which are all derived from a 
common base class called UMLComponent (Figure 5.11).  The base class holds data 
structures that are essential to each component class.   

The UML object5 acts as the top-level interface to the interpreter and the data structure 
representing the UML description.  The other objects correspond exactly to the UML 
constructs described in section 4.4. 

5.5.2 Interpreting the Data Definition 

When a component description is encountered, its position within the data structure is first 
determined.  At the top-level the parser may encounter any component - all but the universe 
and entity definitions use the dot notation.  If the component is a universe then it is added to 
the UML object whilst an entity description results in its definition being added to the object.  
All other components require their corresponding stub declaration to be located and their 
description modified.  Nested component definitions may be added to the relevant component 
data structure directly. 

After all UML statements have been successfully parsed, the data structure undergoes a 
validation process.  Universes may be derived from other universes and elements from other 
elements.  If a component is derived from another, then that parent component is sought for 
and a link is made between the two components.  An entity description is always derived from 
a universe and a similar link is made between the entity and the host universe.  Failure to 

                                                 

5 Instancing the UML class creates the interpreter and therefore there is only one UML object per process. 

UMLComponent

UMLUniverse

UML

UMLConstant

UMLElement

UMLProperty

UMLFunction

UMLConverter

UMLEntity  

Figure 5.11  Core UML C++ class hierarchy. 
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locate a parent component is a fatal error and parsing ceases.  When an element is specified as 
the type of a property then a similar search is made and a link established. 

The search for a given component starts in the current scope and, if it is not found, progresses 
outwards.  If the host universe/element has a parent then this is also thoroughly searched and 
its ancestors, if necessary, until a result is obtained.  Failure to locate the host component 
results in an interpreter error. 

The way that the data structure is modified is affected by the current mode of operation, i.e. 
insert, replace or delete (section 4.4.3.1.9).  By using these mode directives as stream 
modifiers it is possible to modify the UML definition in the course of usual interpretation 
rather than through the library API.  At the completion of the interpretation, a single unified 
data structure has been built which holds all the UML descriptions passed to the interpreter, 
regardless of original physical location. 

5.5.3 Instancing 

At this stage no space has actually been allocated for any data.  First an instance of the 
relevant portion of the data structure must be created.  This could be the whole structure, e.g. 
instancing a universe, or just one element or built-in type, e.g. instancing a property. 

When a compiler, e.g. C++, builds a map of any given data structure, each component is 
allocated a chunk of memory contiguous to the previous allocation.  Storing all instance data 
together in such a container is a sensible thing to do since the data structure is static and will 
not change at run-time.  The same technique is used in many interpreters for the same reason.  
However, this technique will not work with UML since the structure is dynamic and may be 
altered at any time. 

One possible solution would be to use the same contiguous allocation of memory but store 
pointers to the relevant chunks in the UML data structure.  In other words, each component 
would know whereabouts its instance data is in the container.  When a change is made, e.g. a 
new component added, then a new container would be allocated and the existing components’ 
data copied into it, inserting the new data in the process.  A complementary technique could 
be used for deletion.  Obviously this solution would require an amount of container memory 
greater in size (for the insertion case) than the existing instance data to be allocated before the 
process could commence.  If a complex component was being altered then this could 
potentially be very large and at the very least result in a considerable amount of time spent 
copying data from one container to another. 

A better approach would be to scrap the idea of storing all instance data in one place and 
instead store it individually.  Whilst this requires a larger overhead in both memory and 
processing time to locate the instance data, it does mean that modifications to the UML 
structure do not require large memory allocations or copying.  All instance data is kept 
associated with their definition as indicated in Figure 5.12.  In this example there is one 
instance of the Outer element and two of Inner, one for the innerInst property and the 
other for the local function variable.  Whilst the property instance will exist as long as that 
property is part of the universe definition, the variable instance will be created when the 
function is entered and destroyed when it has completed. 
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The process of instancing may be directly applied to a universe, property or function variable.  
In fact, for all intents and purposes, a variable and a property are functionally equivalent.  
Instancing a universe actually results in each of the universe’s properties being instanced.  If 
the universe has no properties then it has no state.  Each property has an instance list which 
maintains a record of each instance of that property and they are distinguished through the use 
of an instance identifier (IID).  An IID is a signed 32 bit integer, thus supporting 2147483648 

UNIVERSE Simple
{

ELEMENT Outer
{

ELEMENT Inner
{

PROPERTY number : INTEGER;
}
PROPERTY innerInst : Inner;

}
PROPERTY outerInst : Outer;

FUNCTION Access
{

VAR local : Outer.Inner;

local.number = 1;
outerInst.innerInst.number = 2;

}
}

ELEMENT Inner

Element list

Property list

Function list

Constant list

Converter list
UNIVERSE Simple

Element list

Property list

Function list

Constant list

Converter list

ELEMENT Outer

Element list

Property list

Function list

Constant list

Converter list

FUNCTION Access

Variable list

Key

Definition links

Instance links

PROPERTY outerInst

Instance list
PROPERTY innerInst

Instance list

PROPERTY number

Instance list

INTEGER

Code list

VAR local

Instance list

 

Figure 5.12  UML code fragment and the internal data structure used to 
represent it. 
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instances during the life time of the universe6.  IIDs are allocated to each component in the 
order in which they are instanced.  If the property’s type is an element then that element’s 
properties are also instanced and so on until the bottom of the component tree is reached.  For 
example, outerInst would have an IID of 1, innerInst would be 2, number would be 
3 and local is 4.  When a list is instanced each entry is assigned a unique IID. 

Consider the case when the definition is altered by the insertion of a new property - vector - 
as shown in Figure 5.13.  After the data structure has been modified and validated, instancing 
merely requires allocating IIDs and memory for 3 real numbers and adding links to them in 
the instance list.  The rest of the data structure has not been modified in any way and the 
original contents of the instance data for Outer have been preserved.  Similarly, if 
innerInst was deleted then vector would be unaffected. 
                                                 

6 Negative values are used for internal purposes. 

ELEMENT Outer
{

ELEMENT Inner
{

PROPERTY number : INTEGER;
}
PROPERTY vector : REAL[3];
PROPERTY innerInst : Inner;

}

Key

Definition links

Instance links

ELEMENT Outer

Element list

Property list

Function list

Constant list

Converter list

PROPERTY innerInst

Instance list

PROPERTY number

Instance list

INTEGER

ELEMENT Inner

Element list

Property list

Function list

Constant list

Converter list

PROPERTY vector

Instance list

REAL

REAL

REAL

 

Figure 5.13  Insertion of vector property into element. 
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In the absence of an initialiser for any given property, the default values assigned are: zero for 
real and integers, false for booleans, and strings are empty.  This assignment is also repeated 
within any element that a property may instance. 

State indexing (section 4.4.3.2.5) was not implemented but would require adding an extra 
dimension to the instance list of each property that used the feature. 

5.5.4 Component Dependencies 

A key feature of UML is the ability to establish a dependency on a particular part of the 
definition (section 4.5.4.6).  The functionality to handle dependencies is defined in the class 
from which all components are derived - UMLComponent.  Figure 5.14 shows its structure 
and that of a skeleton dependency.  Just as each of the UML components are derived from 
UMLComponent, so each application uses UMLDependency as a basis for the information 
it needs to store for each dependency.  An example of this specialisation is given in section 
5.6.3.1 which describes how the UM uses this data structure. 

Dependencies are made on different components with respect to the dependent’s needs.  This 
mechanism is used internally to detect when functions which access a given component may 
need to be re-interpreted.  It is also used by managers to keep track of changes in the values of 
properties, among other things. 

Each dependency may be given the state of active (default) or inactive.  A monitor may 
deactivate a dependency to avoid the overhead of removing it and then re-establishing it later 
on.  A count of the active dependencies is maintained in the component.  After a new 
dependency has been added or an old one removed, the monitor typically builds a dependency 
list.  This list is usually used to process each interest in turn and perform some (often 
recursive) operation.  If we had already registered interest in innerInst and now we 
became interested in outerInst, it could, at least, result in a duplication of effort and at 
worst, end in processing innerInst twice.  There are therefore two ways of building a 
dependency list.  A full list includes all components with dependencies, whereas a partial list 
does not include any component which is inherited from another component in the UML 
hierarchy with an active dependency (i.e. below an active dependency). 

UMLComponent

 Name

 Dependency list

 Active count

UMLDependency

 Name

 State

 

Figure 5.14  UMLComponent structure with dependency. 
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5.5.5 Interpreting Instruction Code 

The part of the interpreter that deals with instruction code was given a low implementation 
priority due to time constraints.  The author felt that the exact features of the programming 
language should be carefully considered.  Also, further exploration of existing byte-code 
engines would be required to derive a sufficiently efficient interpreter.  Furthermore, 
implementation was not necessary to prove the viability of the system architecture.  
Consequently the instruction code interpreter has not been implemented.  However, some of 
the implementation issues are presented here for consideration by the reader. 

There are two common methods for interpreting code.  The first performs syntax and 
grammatical analysis each time, effectively interpreting the ASCII statements in their raw 
form.  The second compiles those same statements into an intermediate code which is then 
executed by an automata.  The overhead of parsing the original statements at execution time is 
large in relation to the execution of a set of pre-compiled instructions.  It is true that less 
memory is required for the storage of intermediate code than the original ASCII text, but this 
must also be kept in some form if future re-interpretation becomes necessary. 

For these reasons UML instruction code is first compiled into an intermediate byte-code 
which is stored in the data structure and may be executed by a byte-code engine at any time.  
During the compilation various components will be referenced, either in variable declarations, 
i.e. elements, or expressions modifying state, e.g. properties.  If these components do not exist 
or there are any syntactical or grammatical faults then an error is flagged.  Accesses to 
instance data refer directly to the data itself and therefore do not require any data structure 
traversal.  References to properties are translated so that the instance data is accessed directly 
and therefore data structure traversal is not necessary.  This means that any additions to the 
element will not require the code to be automatically re-interpreted.  Deletions, however, can 
cause havoc. 

The removal of an element or any component within an element that is depended on by code 
requires the re-interpretation of that code.  How the functionality of the code has been affected 
by the change in structure cannot be ascertained without some form of artificial intelligence.  
Even then, comprehension of how this code segment fits into the larger picture is far more 
complex and would require human intervention.  Consider the expression a = b * c.  If 
component b is deleted from the definition we are  left with a = c.  This may still be valid 
or it may be wrong, only within the context of the rest of the code can a decision be made.  
Faced with the possibility of receiving dozens - if not hundreds - of requests for help from the 
UML interpreter, it seems sensible to at least provide some tool to aid the process.  The best 
that can be offered is an arbitrary component expression eliminator that would remove 
references to the deleted component(s) whilst still retaining syntactic and grammatical 
correctness.  The resultant code could be offered to the modifier as a potential solution and 
then rejected/accepted as required. 

The code may, of course, be changed at any time through the API.  The origin of these 
changes may be from a human or another program within the system.  Thankfully this is a 
straight-forward task to complete since it is identical to the process undertaken when parsing 
the original code as detailed above. 
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5.5.6 Interpreter Embedding 

As development of the simulation progresses, some definitions and associated code will be 
reused over and over again.  The Read and Write routines declared in section 4.4.3.1.3 for 
managing visual information could potentially be used in every entity.  Translation of such 
UML code into the native IL would be sensible for performance reasons.  Access to the 
interpreter’s data structures is possible via the library API and the execution of native machine 
code (rather than UML) will be transparent to the application.  The IL routines are usually 
placed in a library and linked in with each application that needs them.  The ability for an 
entity to migrate to other nodes need not be affected if: 

1. The destination node has its own native version of these routines. 

2. The original UML code is at hand and may be used when native code is not 
available. 

Permitting the interpreter and ILs to interact provides a powerful basis with which simulations 
may be developed.  UML code may be used for lightweight tasks and rapid prototyping of 
more complex functions which, when finalised, may be coded in the IL. 

5.5.7 Persistence 

Since the complete definition is either represented by a data structure (in the case of the data 
definition) or by the original text (in the case of the instruction code), it is possible to output 
any part of a UML definition at any time.  This ability is very useful when changes have been 
made at run-time and the original definition is now incorrect. 

To migrate an entity requires the transfer of its essence from one place, i.e. the UML 
definition and its current state.  Fortunately the definition can always be reconstructed from 
the state so it is only necessary to send the latter.  The same process is also required in order to 
save the current state of an entity to backing storage so that it may be reloaded in the future. 

The state is the sum of all the instance data and packaging it, by necessity, involves the 
manipulation of binary data.  If this package will be sent to another node then, in a 
heterogeneous network, it may not share the same architecture.  Following the decision made 
in section 5.3.4, three routines are defined in the IL for every component: size, pack and 
unpack.  The size routine traverses the given definition and estimates the size of each of 
its components, producing a grand total at the end.  This figure is used to allocate a buffer into 
which pack stores the data by once again traversing the data structure.  Each component’s 
instance data is preceded by a small header providing vital information to aid its extraction by 
unpack.  When packing or unpacking the data on a little-endian machine no binary 
conversion is necessary, overheads are only incurred on big-endian systems. 

5.6 Universe Manager 
There are three main stages to the execution of the UM.  First of all the UM’s node must be 
initialised, at which point it is ready to join the network of other nodes comprising the system.  
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Once this connection has been established, it enters an event loop which processes service 
requests that are sent to it and also generated internally. 

5.6.1 Node Initialisation 

As the first process to start, the UM is responsible for configuring its node and if it is the 
MUM, organise the system.  After the PML has paused its initialisation, the first action taken 
is to process the configuration file.  Its local node and the master node information is located, 
as well as location information for the other systems if it is the MUM.  As each node/system is 
processed the UM builds a routing table for those systems that are connected via TCP/IP.  
Now that the SID, NID and PID are known, the PML completes the initialisation of the IPC 
mechanisms. 

At this point the execution paths differ for SUMs and MUMs.  If it is running on the master 
node then the location of the UML definition7 is verified and interpreted.  All SUMs locate 
their MUM and send it an ACTIVATE_UM message.  Afterwards, all UMs create any 
managers that are configured for their node, starting with the RM and then the specialised 
managers.  The creation of a console is initiated by the administrator and may be performed at 
any time. 

5.6.2 System Initialisation 

After manager creation, system initialisation is completed.  The MUM waits for activation 
messages from each SUM which it acknowledges.  This acknowledgement changes the node’s 
state to alive.  When all nodes are alive the system itself is deemed to be alive. 

In the prototype a multi-level hierarchical system organisation is not supported, rather a 
simple master/slave structure has been adopted.  In the same way that there is one master node 
in a system, there is one master system (MUSS) and zero or more slave systems.  Any 
communications that must be sent to other systems are sent directly to the MUSS which routes 
them to all the other systems.  Therefore, after the MUM has initialised its system, the address 
of the MUSS is sought and stored explicitly for future use. 

5.6.2.1 Load Balancing 

Rather than obtain a full RP from each RM, the prototype uses a simple CPU rating in the 
current load-balancing algorithm to determine on which node the declared entities in the 
universe definition should execute.  Each time an entity is created, the optimum distribution of 
processes between nodes is recalculated and the entity is allocated to the node that has the 
largest difference to its optimum load.  Table 5.5 shows the debugging output from the load-
balancing algorithm.  The figures inside brackets represent the ideal number of entities for 
each node if another entity is created, whilst those outside are the current distribution of 
entities. 

                                                 

7 The filename is passed as a command line parameter. 
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The first row of the table shows that the first entity was allocated to Pentium.  The fastest and 
least loaded node is always chosen for the target when the next entity is created, which in this 
case means Gateway with a predicted loading of 0.224.  This result is confirmed by the second 
row in the table which also shows that the next entity will be allocated to Server and so on.  
When there are ten entities the home for the new entity is Gateway.  This is because Pentium 
is overloaded by 0.275, Server can only handle 0.04 more entities and Gateway has room for 
0.235 entities.  A total of the entities active on each node is kept at all times. 

Currently there is no way of associating an RP with a specific entity so each entity is allocated 
an initial default profile. 

5.6.2.2 Entity Creation 

Originally it was planned for the MUM to extract the relevant portion of the UML definition 
and send it to the destination node’s UM.  However, if an entity should migrate to a node that 
does not have the entity’s definition it must be sent prior to the migration, thus increasing the 
time taken to complete this operation.  Therefore each UM has a complete copy of the UML 
definition.  Since the instruction code part of UML has not been implemented, the entity’s 
functionality is written in the implementation language and executed in place of interpreted 
code (section 5.8.1).  Normally there would be one generic entity process with a built-in UML 
interpreter to start, but because functionality may differ between entities, a specific executable 
must be identified.  The prototype takes the name of the entity and translates this into the 
name of an executable that exists within the search path of each UM8.  A CREATE_ENT 
message is then sent by the MUM to the target node indicating the name of the executable.  
On receipt of this message the process is started, indication of success is sent back in a 
                                                 

8 This path can be modified using the ENTPATH variable in the node’s configuration section. 

Current 
Entities 

Entities on 
Server 

Entities on 
Gateway 

Entities on 
Pentium 

1 0 (0.204) 0 (0.224) 1 (0.572)   
2 0 (0.408) 1 (0.447) 1 (1.145)   
3 1 (0.612) 1 (0.671) 1 (1.718)   
4 1 (0.816) 1 (0.894) 2 (2.290)   
5 1 (1.020) 1 (1.118) 3 (2.863)   
6 1 (1.224) 1 (1.341) 4 (3.435)   
7 1 (1.427) 2 (1.565) 4 (4.008)   
8 2 (1.631) 2 (1.788) 4 (4.580)   
9 2 (1.835) 2 (2.012) 5 (5.153)   

10 2 (2.040) 2 (2.235) 6 (5.725)   
11 2 (2.243) 3 (2.459) 6 (6.298) 

 
Loading was based on CPU ratings of 260, 285 & 730 respectively. 
Figures in brackets represent the new optimum load for each node to 
3 sig. fig. 

Table 5.5  Sample entity distribution over three nodes. 
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CREATE_ENT_ACK message and entity execution continues as usual (section 5.8).  Of 
course, if the entity is executed locally then the process is merely started and the MUM moves 
onto the next entity. 

5.6.3 Managing Processes 

Information about each process running on the node is held by the local UM in a process list.  
The structure of a process entry is shown in Figure 5.15.  Every process is allocated one of six 
types: RM, ENT, MAN (special manager), MUM, SUM and CON (console).  There are three 
states that processes progress through during their lifetime.  After execution has started, but 
before the process has been allocated a UPID, it is allocated the state of genesis.  When the 
initial handshaking is over and the process is ready to satisfy service requests it is said to be 
alive.  During the termination process, after it has ceased to function in the simulation per se, 
the process is said to be dead.  When termination is complete the entry and its dependent 
structures are removed from the list.  

Any given UM holds information about every entity and manager running on its node; if it is 
the MUM, information on any SUMs is also held; if it is a SUM, its MUM’s details are 
stored.  Treating parent and child UMs as processes running on its node simplifies certain 
procedures that the UM must perform, e.g. dependency management (described below).  

5.6.3.1 Component Monitoring 

When a manager wishes to monitor a given UML component, its absolute name (using dot 
notation) is sent within a UML_MONITOR message.  After verifying that this component 
actually exists the manager’s information is found within the process list, a new dependency is 
created and added to the process’ dependency pool.  The pool is essentially a fixed size array 
which provides fast entry lookup.  As dependencies are removed, gaps appear but these are 
filled as new dependencies are added. 

The UMDependency information is derived from UMLDependency as described in section 
0 and adds a pointer back to the owner’s process entry (Figure 5.15).  This organisation 
permits any process to locate all of the components it is dependent on and any component to 
determine which processes are dependent on it.  Although the framework is here to support 
dependencies on any component, only monitoring of properties is currently implemented. 

The monitor ID returned to the manager is actually the component’s index in the process’ 
dependency pool.  The UM must now inform all relevant processes that a new dependency has 
been established using a UML_MONITOR_ACK message.  As each entity is processed a new 
dependency is also added to their pool; its index provides the monitor ID to be used in 
communications with this entity.  Both the MUM and the SUMs are also informed using the 
original message sent by the manager.  Each add a dependency to the sending UM’s process 
entry and inform the sender of the monitor ID to be used in further transactions regarding this 
component.  Without keeping a process entry for parent/child UMs, this procedure would be 
far more complex than necessary.  If an entity is created after all dependencies have been 
established then a current list is sent as a stream of separate messages. 
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5.6.3.2 Component Updates 

When an entity sends a state update to the UM, its process information is retrieved and the 
dependency pool entry described by the monitor ID in the message is extracted.  From this 
point a list of those processes dependent on this state is available.  Each dependent’s unique 
monitor ID is extracted from their pool and placed into the message before it is forwarded to it 
by the UM.  Figure 5.16 presents an example where the component state has an ID of 1 when 
it is sent to the UM, but has the values of 4 and 2 when forwarded to the two interested 
managers. 

No extra space is required to store each monitor ID because it is the index into the dependency 
pool.  The only computational overhead incurred is a simple pool lookup as each dependent is 
processed.  Constraint functions were not implemented because they rely upon the UML 
instruction code interpreter which was also not implemented. 

UMLDependency

 Process Entry

 Name

 Type

 UPID

 Dependency pool
 State

 Update flag

UMLComponent

 Name

 Dependency list

 Active count

 Name

 State
UMDependency

Process

 

Figure 5.15  Structure of the information held for each process. 
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ManagerEntity

UM

ID = 1 ID = 2

ID = 4

 

Figure 5.16  A state update uses a different monitor ID when 
sent to each dependent. 
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5.6.4 Processing Service Requests 

Two features common to all component implementations are the event loop and the action 
queue.  When an internal function wishes to perform more than one action, e.g. send a 
message, or can/needs to spread its work over a period of time, then it enqueues a token 
representing the pending action (with parameters) in the action queue.  The event loop checks 
if there are any external service requests which it processes first to maintain responsiveness.  
If there is not a message waiting then it dequeues the next action and performs it.  If there are 
not any actions to perform then the process simply blocks until a service request arrives.  It is 
not uncommon for one action to enqueue another during its execution. 

One action that must be performed in the initial stages of a UMs lifetime is waiting for all 
entities and managers to complete initialisation, the specifics of which are described in the 
following sections.  When all entities and managers are alive the simulation loop is entered 
which sends a UML_UPDATE_NOTIFICATION message to each entity and manager.  After 
all entities have updated, a UML_UPDATE_COMPLETE message is sent to all managers and 
after they have updated the next notification message is sent and so on.  The state update 
process triggered as each entity completes its update has already been described and the 
following sections discuss this and the managers actions in more detail.  Other service 
requests/actions that are intermingled with this sequence are location requests, entity 
executions, synchronisation requests, etc. 

If an entity should terminate abnormally and a destruct message has not been issued then the 
UM will do so on behalf of the late entity.  This ensures that the simulation does not become 
full of zombie entities whose state copies are still being maintained by managers. 

5.6.5 Entity Migration 

In order for entity migration to be implemented it is necessary to have some basis upon which 
to make decisions about node loading.  This was done through the use of CPU consumption 
alone.  However, without a fixed time frame to relate these measurements to, a CPU usage is 
useless.  This fixed period would normally be provided by the scheduler and equate to one 
simulation step, but since a full scheduler was not implemented a simple step duration 
threshold was used for the migration test presented in section 6.5.4.  The intention is to keep 
the simulation step duration below the threshold through use of migration.  Each step, the RM 
totals the amount of CPU used by the entities and if it exceeds the threshold the migration 
mechanism is be triggered.  In this prototype the MUM does not decide when migrations 
should take place but relies upon each RM to volunteer entities. 

When the mechanism is invoked, the entity with the largest CPU usage is identified and its 
UPID sent to the MUM in a MIGRATION_REQUEST message.  The requests, of which there 
may be more than one generated by different nodes each step, are enqueued and then 
processed at the end of the current simulation step.  The source node of each request is 
excluded from selection in the load-balancing algorithm and the optimum distribution is 
calculated as if the system has one less node.  Once a suitable target node has been found, an 
entry is added to the MUM’s migration list which details those entities in the process of 
migrating and their current status;  specifically, their name, source node, target node and 
source UPID. 
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The next stage is to create a copy of the entity on the target node using the normal creation 
procedure.  Once this has been done, a MIGRATION_STATE_REQUEST is sent to the 
original entity which packs up its entire state and returns it to the MUM in a 
MIGRATION_STATE message.  This is then forwarded by the MUM to the newly created 
entity which unpacks it and, upon success, sends a MIGRATION_STATE_ACK back to the 
MUM.  Finally the original entity is terminated by sending a DESTROY_ENT message to the 
entity’s UM, MIGRATION_NOTIFICATION messages are sent to all managers (including 
SUMs) and the entity’s migration list entry is removed.  The notification message simply 
contains the old and new UPIDs for the entity and enables the managers to update their 
internal data structures accordingly.  The UM on the source node uses this information to re-
route any messages that are sent by processes unaware of the migration.  After forwarding the 
message, the UM sends the originator a migration notification message so that this does not 
happen again. 

Currently any error that occurs during the entity migration, e.g. failure to create the target 
entity, is treated as fatal and the migration request is ignored. 

5.6.6 System Interaction 

The multi-system functionality that has been implemented is limited to group initialisation, 
termination and the transmission of changes in the UML definition.  Inter-system user 
functionality has not been implemented, e.g. shadow entities, because it is hard to demonstrate 
in a thesis and was therefore given a low priority. 

5.6.7 System Termination 

A system termination is invoked from the MUM by first sending termination messages to each 
SUM.  The MUM and SUMs then send termination messages to their local managers and 
destruct messages to all their entities.  Once all processes on a slave node have terminated the 
slave informs the MUM that the node is shutting down with a DEACTIVATE_UM message.  
Finally, when all the local processes on the MUM and its slaves have terminated, the MUM 
ends execution. 

5.7 Resource Manager 
The implementation of the RM is quite simple because there is no scheduler.  Subsequently 
the RM keeps track of the resource utilisation for its node and makes rudimentary judgements 
about its loading. 

5.7.1 Resource Consumption 

Each resource has been implemented as a class derived from one base class (Figure 5.17a).  
An RP is composed of these different types: a list of CPU consumption (for multiprocessor 
systems), a list of memory usage (used in those systems with special memory architectures) 
and a record of space used on different storage devices.  The totals of each of these are also 
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stored and is supplemented by the network usage (Figure 5.17b).  The prototype actually only 
makes use of the CPU information. 

The RM maintains a resource history for each process (Figure 5.17c) which contains the 
process’ last RP, its current profile and a prediction of future resource requirements (currently 
unused). 

5.7.2 Initialisation 

Each node’s resources are detailed in a file (written in UCL) which is passed as a command-
line parameter to the RM when it is started.  Figure 5.18 shows an example configuration of 
the Pentium node which details the CPU type (an Intel Pentium/90), the total system 
memory, backing storage and network link bandwidth.  For the migration tests a CYCLE 
variable was used at the top level to specify the threshold duration of the simulation step in 
milliseconds. 

5.7.3 Services 

After the configuration information has been processed, the main event loop is entered.  Initial 
work usually consists of processing the RPs sent by each entity as it is created and keeping the 
UMs informed of the current loading.  During the period before the system goes live it is not 
possible for an entity to overload a node since it has been carefully allocated by the MUM.  
However, as soon as the entity starts executing it may provide modifications to its RP based 
on its expected resource consumption.  Since a full scheduler was not implemented, this 
detailed information was not needed.  For the same reasons, the RM does not keep the MUM 
informed of node loading.  Instead the RM tells the MUM when load balancing is necessary. 

Since this prototype instills the progression of the simulation with the MUM rather than the 
scheduler in the RM, an UPDATE_NOTIFICATION message is sent to the RM at the end of 
each simulation step.  This is the RM’s cue for assessing CPU usage and when this is 
complete an UPDATE_COMPLETE message is sent back to the UM.  The simplest 
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Figure 5.17  Resource consumption representation. 
a) class hierarchy; b) Resource Profile structure; c) Resource History structure. 
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information on a process’ execution time under UNIX-based operating systems is provided in 
the form of user and system times.  These represent the total CPU used by the process when 
executing system calls (system) and when executing application code (user).  The current RM 
adds these figures together to get a CPU usage figure for each process.  By monitoring the 
previous usage the process’ consumption for the last simulation step can be ascertained. 

When the migration mechanism is being used, the total of these times is used to decide 
whether the entity with the highest CPU usage should be migrated.  Currently the CPU 
thresholds are not used, instead the step duration variable (CYCLE) is consulted for the desired 
time.  If the total CPU time used by all entities exceeds this time then a migration request is 
sent to the MUM.  The RM is informed of a successful migration with a 
MIGRATION_NOTIFICATION and subsequently removes the entity from its calculations. 

5.8 Entity Library 
The core entity functionality has been placed in a library which works on two levels.  Once 
initialised, its event loop enables it to correctly interact with other processes in the system and, 
through the use of a function call-back mechanism, can be tailored for a specific purpose.  The 
source code of an example entity can be found in Appendix B. 

RM
{

CPU Pentium_90MHz
{

Manufacturer "Intel"

Integer 0.849 // BYTEMark integer index
FloatingPoint 0.881 // BYTEMark floating index
ICache 8 // Kb
DCache 16 // Kb
IntThreshold 90.0 // %
FPThreshold 90.0 // %

}

MEMORY Main
{

Size 24576 // Kb
Access 70 // ns
Threshold 80.0 // %

}

STORAGE Primary
{

Size 524288 // Kb
Access 12 // ms
Threshold 95.0 // %

}

NETWORK Ethernet
{

Bandwidth 6.0 // Mbps (Effective)
Threshold 40.0 // %

}
}

Figure 5.18  Example node resource configuration used by a RM. 
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5.8.1 Initialisation 

Following PML initialisation, the call-back table is reset and specific call-backs may be 
registered.  An entity handles all the UML messages in addition to those dealing with RPs, 
location responses and monitor acknowledgements.  The first message processed by the entity 
is its RP which can then be modified.  After locating the RM, the RP is sent to it and a request 
is made for the entity’s UML definition. 

Normally entity behaviour would be exhibited through execution of UML code, but since the 
instruction code interpreter has not been implemented, functions written in the IL must be 
used.  Typically the only call-back used is that for the UML_INIT_DEF message which is 
used to send the entity its definition.  At this point the entity’s UML Construct, Update 
and Destruct function declarations are located and defined as embedded IL routines as 
opposed to UML code.  When these functions are executed by the UML interpreter, the IL 
routine is called.  Access to the state information is obtained through the UML API. 

5.8.2 Service Requests 

The first external events received by the entity are indications of monitored components in the 
form of UML_MONITOR_ACK messages.  Unlike the UM, the only information that the entity 
need keep track of for each dependency is the monitor ID contained in the message.  This 
dependency list is rebuilt each time a new monitor notification is received. 

Upon receipt of a construct message the UML interpreter is instructed to construct the entity’s 
state.  On completion an instance ID is returned which is used in all further accesses to the 
state information.  The Construct function is then executed, thus initialising the state and 
is followed by the enqueuing of the action to send initial state updates to the UM.  Receipt of 
an update results in the same execution-action sequence.  The current component dependency 
list is used to determine which state updates to send.  Asides from executing the destruct 
function, no further action is taken when an entity destructs.  The PML, by default, informs 
the UM of the process termination and whether it did so naturally or not. 

When a MIGRATION_STATE_REQ message is received by the entity, it packages up its 
complete state and sends it back to the UM in a MIGRATION_STATE message.  Upon 
termination the entity destructs as normal.  When the target node is sent the state message it 
instances its definition and unpacks the state into the newly created instance.  The construct 
function is not called and a UML_CONSTRUCT message is not sent to the UM.  From this 
point on, however, the target entity takes over all processing from the original and operates 
normally, issuing state updates as necessary. 

5.9 Manager Library 
The manager functionality has been structured in a similar manner to that of an entity.  On its 
own, the library will interact correctly with the other process’ in the system but does not 
perform any special manager-specific tasks.  This higher-level functionality is added through 
the call-back mechanism.  Appendix B contains an example of this library’s use. 
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5.9.1 Initialisation 

Following the usual process initialisation, the manager is sent the complete UML definition 
and (through a call-back) registers interest in the specific components it uses.  Each manager 
maintains a monitor list with an entry for each component it is monitoring (Figure 5.19).  An 
entry consists of a pointer to the relevant portion of the UML data structure for that 
component and the monitor ID used in communications with the UM.  The three other 
essential call-backs are those for UML_CONSTRUCT, UML_UPDATE and UML_DESTRUCT.  
It is within these functions that the heart of the special manager’s functionality is embodied.  
An example of their use is given in section 5.10.  

At the lowest level the manager keeps an entity list.  An entry is added to this list on receipt of 
a construct message, modified by an update message and removed when an entity destructs.  
An entry exists for each monitored component held by each entity.  When a construct message 
is received for a component, that part of the UML data structure is instanced and the contents 
of the message unpacked into the state instance.  The instance ID is stored in the entity list 
entry along with the entity’s UPID and a pointer to the relevant entry in the monitor list.  This 
enables the location of all state information related to a specific entity with minimal 
redundancy. 

5.9.2 Simulation Loop 

Each simulation step starts with the reception of a UML_UPDATE_NOTIFY which can be 
used via a call-back to perform preliminary work for each update.  When an update message is 
received the monitor entry is located using the message’s monitor ID.  Then the component’s 
state is located by searching the entity list using the entity’s UPID and the monitor entry as 
keys.  The new state is then unpacked into the instance and the update call-back executed if 
present.  When a UML_UPDATE_COMPLETE is sent by the UM the simulation step has 

 Monitor Entry

 Property

 Monitor ID

 Entity Entry

 UPID

 Instance ID

 Monitor

Entity List

Monitor List
 

Figure 5.19  Structures used to keep track of entities and their 
component dependencies. 
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concluded and the manager may perform (via call-back) any final calculations before the next 
step.  The return of a status message to the UM indicates that the manager has completed its 
work.  This start/stop message system is necessary because an entity will not send an update 
unless that component has been modified.  Therefore there is no way for a manager to 
determine whether all updates it should be sent, have been sent.  A destruct message results in 
the deletion of that entity’s component instance and then the removal of the relevant entry 
from the entity list. 

When a MIGRATION_NOTIFICATION is received, the manager locates the old entity’s 
entry in the entity list and replaces the UPID stored therein with the new address in the 
message.  No other action is needed. 

5.10 Visual Manager 
The prototype VIS implementation does not interface to a CIG since it was not deemed 
necessary in order to demonstrate the effectiveness of the USS architecture. In fact, it is not 
used when evaluating the system’s performance in the next chapter, but it is presented here as 
an example of a special manager implementation. 

The code used to explore the viability of real-time VE displays was available for use (section 
5.1.1) but was not utilised for two reasons.  Firstly, there is no way to satisfactorily 
demonstrate such a feature in a thesis.  Secondly, graphics and API speed is totally CIG 
dependent and would only confuse any analysis of the manager’s performance.  Therefore, 
everything apart from the actual calls to the CIG’s API was implemented. 

5.10.1 Initialisation 

Following the standard manager initialisation the prototype VIS registers interest in the 
Base.models.visual and Base.models.position properties (section 5.10).  At 
this point the CIG would also be initialised and initial parameters set, e.g. viewpoint position, 
etc. 

VIS registers call-backs for all construct, update, destruct and update-complete messages.  As 
each entity constructs, VIS receives a stream of construct messages which are acted upon by 
the call-back function.  This is responsible for creating the initial visual representation of the 
entity in the CIG database. 

5.10.2  Simulation Loop 

As updates are sent to VIS, the update call-back is executed which is used to move the entity’s 
representation and if necessary, modify it.  On receipt of an update complete notification the 
new scene is rendered and the manager has finished its work for the current step.  Destruct  
messages result in the removal of the representation from the CIG database. 



154 

5.10.3 Entity Enhancement 

The extra functionality needed by any entity wishing to manipulate its visual representation is 
provided in the form of a library.  Whereas this could be provided as importable UML code, it 
is currently IL code which is linked into the ENT executable.  The Read and Write function 
definitions (section 4.4.3.1.3) are supplemented with internal routines which may be used to 
manipulate the Visual element data structure. 

Therefore, an entity’s construct call-back function will build the visual representation, either 
from file or by code.  The update call-back modifies the state as necessary and the destruct 
call-back closes the library. 

5.10.4 VIS Summary 

The current VIS implementation is very basic but it performs the essential operations required 
of it.  Since all the complex operations are hidden in the manager library, the developer can 
concentrate on what the manager should be doing and implement it with the minimal coding. 

5.11 Console 
The console implementation is a hybrid of a manager and an entity in that it receives most 
messages in order that it may keep track of the system’s status.  A command-line interface 
provides the opportunity to display this information and issue simple commands.  An entity 
creation, destruction or migration request may be sent to the UM from the console, as can 
UML code.  The console keeps an up-to-date copy of the complete universe definition 
although it does not maintain any instance data.  The current functionality is quite limited and 
was used for testing purposes only. 

5.12 Further Improvements 
At this stage, it is apparent that a number of enhancements can be made to the prototype. 

5.12.1 Configuration 

The configuration information required by child processes, e.g. the RM, is currently passed to 
them as a filename in their execution parameters.  This has two disadvantages: firstly, it 
introduces a dependency on backing storage and, secondly, it increases the process 
initialisation time.  If this information was passed to them by the UM, both these problems 
could be overcome.  This would not require changing the current configuration file format and 
could be sent in its native ASCII format. 

5.12.2 Multi-part Messages 

Presently the PML relies on the operating system to break large messages into smaller packets 
for transmission.  This ability is not supported by all IPC mechanisms and therefore the 
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addition of PML controlled multi-part messages would be advantageous.   This would also 
reduce the amount of buffer space required to send a message and permit the construction of 
messages whose total length is not known when the first part is sent. 

5.12.3 State Encoding 

With the ability to gradually build a message, the estimation of state size prior to encoding 
may be removed.  Instead the state may be encoded directly into a multi-part message thus 
substantially reducing the time taken to send state updates. 

Alternatively, memory could be allocated during packing, building a linked list which is then 
traversed when copying the state into the fixed size message buffer.  This, at least, removes 
the need to estimate size initially. 

5.12.4 Persistence 

The current implementation assumes that a simulation will run to completion before the 
system terminates.  Therefore no provision is made for state persistence such that a simulation 
may be saved and reloaded at a later date.  In order to realise this, an entity could be sent a 
TERMINATE message before destruction which would be its queue to save its state to backing 
storage.  Upon restarting a simulation the entities would be created as before (but possibly not 
on the same node) and during construction their state loaded from backing storage.  Managers 
can rebuild their internal data structures from the events that would take place upon restarting 
the simulation, e.g. entity creation, initial state transmissions, etc.  It may be necessary, 
however, that those structures unique to each manager are also saved for use when the 
manager re-initialises. 

5.12.5 Message Elimination 

The three messages UML_CONSTRUCT, UML_UPDATE and UML_DESTRUCT sent to an 
entity should be replaced by a UML message which simply executes the Construct, 
Update or Destruct function respectively.  The resulting state updates generated by these 
calls would be returned in a standard state message which would include the name of the 
function that generated the data.  All such remote code executions would operate in the same 
manner.  The current shortcut was taken because the UML interpreter was not complete. 

5.12.6 Entity Synchronisation 

Synchronising an entity involves the transmission of multiple messages detailing individual 
monitor notifications.  In this special case it would be preferable to send a single message 
containing all notifications, thus reducing the UM’s overhead for this operation. 
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5.12.7 Function Access 

At present, anybody may execute a function in an entity if it knows its name.  This could be 
changed by providing a function hiding mechanism, e.g. a PRIVATE keyword to be used in 
the function declaration (not definition).  Any attempt by a remote process to execute a private 
function would result in an appropriate exception generated by the interpreter. 

This technique could be generalised by ensuring that any private function cannot be executed 
outside its scope.  In Figure 5.20, unprotected may call protected since it is in the 
same scope but control may only call Inner.unprotected. 

5.13 Summary 
Before the details of the prototype USS were given, the implementation of a simple worst-
case scheduler was described which has been used to enforce a constant-rate display.  The 
experience gained by the author during this implementation and its subsequent use indicated 
that implementing scheduler functionality at the application level was not practical.  The USS 
prototype implementation presented therefore did not make use of the scheduling aspects 
detailed in the design. 

A layer of abstraction is introduced in the form of the PML in order to shield the USS 
processes from each operating system’s idiosyncrasies.  Presently it is only used to provide a 
messaging service between both local and remote processes.  The simple configuration 
language was then described and a typical example of its use presented in the form of the USS 
configuration file.  The structure of the UML interpreter was described in terms of the data 
definition and instruction code sections.  This included a detailed explanation of the complex 
data structure used to hold the model description and its instance data. 

Each of the required system processes were dealt with in turn, describing the implementation 
of the basic operations they perform and services they provide.  Special attention was given to 
the important data structures and how they are utilised at run-time.  Most of the UM’s 
functionality was implemented including an elementary migration and load-balancing 
mechanism (using a minimal RM).  The bi-directional data structure used by the UM permits 
the location of all components that a given process is dependent upon and vice versa.  The 
operations involving state transmissions and monitor IDs were described in conjunction with 
details of the relevant parts of the manager and entity implementations.  The core entity and 

ELEMENT Outer
{

ELEMENT Inner
{

FUNCTION unprotected;
FUNCTION protected PRIVATE;

}

FUNCTION control; // Can’t access protected
}

Figure 5.20  Example use of the PRIVATE keyword to reduce function 
access through scope. 
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special manager functionality is provided as libraries which are specialised through the use of 
UML code and call-backs.  An example of this is given with reference to the Visual Manager. 

The chapter concluded with a few improvements that may be made to the current 
implementation.  These functional changes will be supplemented by performance enhancing 
suggestions in the next chapter.  
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