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Abstract 

Interaction is the primary characteristic of a Virtual Environment and update rate is normally 
taken as an index or measure of the interactivity of the system.  The speed of many systems is 
dictated by the slowest component which is often the Computer Image Generator (CIG).  It is 
common for the workload of the CIG to vary and hence the performance of the system.  This 
paper shows how a variable update rate can produce undesirable results.  Two solutions to 
this problem are presented: service degradation and worst-case.  In the case of the CIG, 
service degradation would require the quality of the image to be reduced such that the time 
taken never exceeds a given deadline.  The worst-case technique works by finding the longest 
time taken to render any view and then uses that as the deadline for completion.  The support 
of predictive methods is one of several benefits of this approach.  An implementation of the 
worst-case technique is described which takes finer control over the CIG than usual and may 
be applied to many existing systems with little modification. 
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1 Introduction 

Virtual Environment (VE) systems consist of one or more hardware or software components.  
Figure 1 shows the basic hardware and software elements of an imaginary driving simulator.  
The driver uses the steering wheel, brake and accelerator pedals to control their movement 
through the VE.  The environment is presented to the driver via a monitor which is driven by 
a Computer Image Generator (CIG) and through the force feedback applied to the steering 
wheel.  The pedals and the steering wheel are managed by separate processes or components.  
The values from these input devices are fed into the dynamics model for the car and a change 
in position and speed is reflected by instructing the CIG to render a new view of the VE and 
adjusting the force feedback on the steering wheel. 

Each component has a particular function and offers a number of services which may be used 
by the other components.  For example, the pedal component's sole service is to provide any 
interested party the current position of the brake and accelerator.  The steering wheel 
component performs a similar task, in addition it can apply a given torque to the motor linked 
to the wheel.  The consumer of all of these services, and those offered by the CIG, is the 



Published in Virtual Reality: Research, Applications & Design, Volume1, Issue 2. 

 2 

dynamics component which must read the current state of the input devices before it can 
perform its calculations.  Only after these have been completed can it instruct the CIG to 
redraw the display. 

The time taken to complete a given service has a best and worst case which is dependent not 
only on the nature of the service, but also on how the other components in the system are 
performing.  Current VE systems are based around a processing cycle that issues service 
requests which are satisfied as fast as possible.  Typically there is always one component that 
performs worse than the others and becomes a bottleneck.  In a distributed system this may be 
the network interface which is bound by both the speed of the transport medium and the 
communications protocol being used.  In most systems, especially isolated ones, the 
bottleneck can often be the Computer Image Generator (CIG) which can vary in performance 
quite drastically depending on visual scene content.  This is also the most likely case in our 
example simulator.  In this paper our attention is concentrated on the CIG and how it may be 
better managed. 

 

Brake &  
Accelerator 

Dynamics 

CIG 

Steering  
Wheel 

 

Fig. 1. The basic elements of a driving simulator.  Software components are shown in 
the shaded box on the left and their ties to the real world on the right. 

Most components take a variable amount of time to complete their processing, so the duration 
of the processing cycle varies which inevitably means that the displays are updated erratically.  
Consequently, at the very least, the viewer is presented with incorrect information and, at 
worst, interaction with the VE is impossible.  Adding another component, such as a head 
tracker, would permit us to head-slave the display such that head movements, when parking 
for example, would cause a change in the view rendered by the CIG.  It would also increase 
the length of the processing cycle and further destabilise the update rate.  In addition, a 
variable update rate can also present problems if external devices are to be synchronised with 
the displays. 

This paper examines the benefits of ensuring that the update rate of VE displays is constant.  
Two possible approaches to achieving this goal are described and an implementation of one 
of these solutions used within the Virtual Environment Laboratory (VEL) is presented. 

2 Why do we need a constant update rate? 
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In this section we present an example of the effects that a variable update rate has on 
interactivity.  This is quantified by the application of a visual perception theory.  The other 
benefits of a constant update rate are also discussed. 

2.1 Display artifacts 

Consider a virtual ball moving straight towards you at a constant velocity of 1 m/s.  It starts 
its journey 10 metres from you and you are attempting to catch it.  Let us assume that a 
simulation of this will use a typical variable-rate CIG and a monitor (showing the catchers 
view) with a refresh rate of 60 Hz.  When the ball is in the distance and hence quite small, the 
CIG manages to generate a new frame 30 times a second.  This means that every 2 monitor 
refreshes a new picture will appear. 

If the CIG maintains this frame rate then the velocity of the ball will indeed be constant.  
However, if the CIG should manage to complete it's work within a 60th of a second then the 
ball's velocity will appear to have doubled to 2 m/s!  On the other (more likely) hand, if the 
CIG's workload takes longer than 33.3 ms to complete and hence only produces a new frame 
every 3 monitor refreshes, then the velocity of the ball will appear to reduce by 1/3 to 0.66 
m/s. 

If the frame rate was to go up or down each time an image was being rendered1 then catching 
the ball will be made more difficult.  In this case we are likely to see a drop in update rate 
because as the ball comes towards us, it expands.  If the ball was textured and the background 
blank, this would mean that there are more pixels to fill and hence more work to do.  
Certainly, we are not seeing what the designer of this simulation wanted us to see. 

Another more practical example is that of a driving simulator.  Given the task of following a 
vehicle and ensuring that you do not crash into it would be made difficult if the vehicle would 
seemingly slow down and speed up quite uncharacteristically. 

2.2 Judging time-to-contact 

Lee (1976) presented the Tau theory which suggests that our ability to judge our time to 
contact with a given target is based upon the rate of expansion of the target on the retina.  
This may be applied to our ability to catch balls as well as how we control our deceleration, 
among other tasks (Lee, 1993). 

The time-to-contact (TTC) of the virtual ball may be expressed as: 

TTC = Distance / Velocity 

Fig. 2a shows the TTC assuming that we maintain a constant update rate of 30 Hz which 
gives us a perceived constant velocity of 1 m/s.  The impact of a variable update rate is shown 
in Fig. 2b.  Each time the update rate changes so does the TTC, forcing the catcher to 
continuously readjust.  In this case, the catcher will probably catch the ball because the update 
rate has slowed down so much that the perceived velocity of the ball at 5 Hz is 0.16 m/s, 

                                                 
1 The word ‘render’ is used in this paper to embrace both of the classical geometrical and rendering stages used 
to produce an image. 
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making the task trivial.  They are unlikely, however, to be using TTC information to help 
them catch. 
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Fig. 2. The effect of update rate on time-to-contact (TTC = distance / velocity): a) with 
a constant update rate TTC decreases correctly at a fixed rate (top), b) a variable 
update rate causes a continuous readjustment of TTC (bottom). 

2.3 Affects on latency 
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If the time between sampling input devices and updating the display is too long it can 
contribute to simulator sickness (Pausch et al, 1992).  Just how long is too long is not clear, 
additionally it is not clear whether the systems used provided a constant or variable display 
update rate.  There is evidence to suggest that humans can adapt to a constant degree of lag 
(providing that it is not too great) after a reasonable period of time, but how effective the 
interaction is depends on the task being performed.  If the lag varies then adaptation is less 
likely and it is possible that this will add to simulator sickness. 

2.4 Predictive techniques 

There are methods for reducing the impact of lag on the participant.  Kalman filters can be 
used to compensate for the effects of lags within the system (Friedman et al, 1992, Liang et al, 
1991, Dunnett et al, 1995).  Such filters have been used to predict the movement of 6 d.o.f. 
sensors attached to parts of the body, e.g. head and hands.  In the case of Head-Mounted 
Displays this means that the CIG can be asked to generate an image of the participant's 
viewpoint a short while in the future such that the image reaches the display at the right time.  
The effectiveness of these filters relies on the constancy of the lag and hence the update rate, 
without it the results of the filtering would be meaningless. 

If the progression of time happens at a known rate it is also possible to ensure that objects 
within the VE appear at their correct positions when the image is eventually displayed.  This 
is especially useful when trying to compensate for the single frame delay introduced in 
double-buffered CIG systems. 

2.5 External device synchronisation 

It may also be desirable to synchronise the VE display with an external data capture system.  
An example of such a device is the Ober/2™ infra-red eye-tracking system (Permobil 
Meditech, Inc., Sweden).  A lot of effort has been expended by the manufacturers to ensure 
that a fast, constant sample rate is achieved, to such an extent that the host machine is 
configured solely for the purpose of controlling the eye-tracker.  Sample rates over 1000 Hz 
may be achieved although 180 Hz is sufficient for tasks monitoring basic eye movements 
(Permobil, 1993).  In order to determine where the participant was looking within the VE 
display requires the meshing of two data sets, each with a different sample rate.  Whilst, on a 
variable rate system, it would be possible to record the update rate and then fit the eye-tracker 
data set to this, the result would be an uneven spread of data points over time.  With a 
constant update rate system the eye-tracker rate can be set at a multiple of the update rate 
which makes meshing much easier and produces a consistent number of data points per 
second. 

3 Variable and fixed rate systems 

3.1 The variable rate paradigm 

A typical simulation processing cycle is: 

1.  Sample input devices 
2.  Perform dynamics calculations 
3.  Update output devices 
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The VE system may consist of many components, both software and hardware.  With each 
component comes a response time, a best and worst case for receiving data, processing it and 
outputting a result.  Exactly where the bottleneck in the system is depends on the nature of the 
VE or application.  Typically the bottleneck is the CIG.  This is especially true in low-end 
systems where the CIG is more (or totally) dependent on the host processor to complete its 
task.  In this case, image generation often has to be scheduled along with input/output device 
handling and the dynamics calculations.  It is also quite typical for the workload of each 
component to vary.  This is especially the case in the CIG where scene complexity may vary 
drastically (Airey et al, 1990). 

3.2 A fixed rate paradigm 

In order to provide a constant update rate there are two possible approaches: 

1. Derive some predictive algorithms that will enable us to determine the workload 
of each component and thus the system as a whole. 

2. Restrict the update rate to the worst-case. 

Both these methods are working to complete the 3 steps in our simulation cycle before a given 
deadline.  Once this deadline has been met it is recycled and used again for the next VE 
display update. 

If we adopt the first approach then we may use the knowledge of each component's 
performance to degrade the services it offers such that the deadline for each component will 
be met.  Alternatively, we can demand less of the system such that, even in the worst-case, it 
always meets its deadline.  This inevitably means using some components at less than 
optimum performance.  Both of these techniques will now be discussed in further detail. 

3.2.1 Service degradation 

This technique requires a scheduler to determine acceptable time-frames within which each 
component in the system must complete its calculations.  The addition of a scheduler brings 
us one step closer to a real-time system.  Failure to meet a deadline will have different 
consequences depending on the application.  A visualisation may be content with simply 
providing a lower update rate (albeit constant) whereas a highly interactive application may 
treat failure to meet the deadline as a fatal condition.  These two types are essentially a soft 
and a hard real-time system respectively. 

It should be noted that some systems have decoupled the rate at which component services are 
requested and the update rate of the CIG (Shaw et al, 1992, Wloka, 1993, UVa, 1995).  
Therefore the simulation may progress as fast as possible, while the CIG generates images as 
fast as it can. 

However, CIG performance can still benefit from service degradation.  Holloway (1992) 
draws as much of the visual scene as possible whilst still attempting to meet the deadline.  To 
achieve this the Viper system uses a special feature in the Pixel-Planes PHIGS 
implementation which allows traversal of a particular part of the database hierarchy to be 
terminated based on a conditional check of a global flag.  In addition, visual objects were 
given either a high or low priority.  High priority objects were always drawn and low priority 
objects only if time allowed.  There is no guarantee that the image will be rendered within the 
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allotted time since Viper uses successive estimates to decide whether it has enough time to 
render any more and is at the mercy of the underlying operating system (OS). 

Wloka (1993) proposes a system for time-critical graphics which uses knowledge of the 
dynamics behaviour of the simulation and a modified graphics database model combined with 
a scheduler to implement this technique. 

As Wloka notes, few CIGs support service degradation techniques.  The nearest facility that 
most provide is Level Of Detail (LOD) which attempts to reduce workload by automatically 
substituting models of different visual complexity based on distance or screen pixel coverage 
(Reddy, 1995).  SGI's IRIS Performer™ goes one step further by providing a mechanism 
known as dynamic LOD scaling.  This provides enough basic information for Performer to 
decide which combination of LOD models will complete rendering within a certain amount of 
time (SGI, 1995).  The other work done in this area is at the application level as opposed to 
adding functionality to the CIG.  Airey et al use LOD along with other pre-processing 
techniques to support an adaptive refinement system that trades image realism for speed.  
Funkhouser and Séquin (1993) use cost and benefit heuristics to determine which LOD model 
should be used.  The cost of an object is the time it takes to render an object with a given 
LOD using a certain rendering algorithm, whilst the benefit is an estimate of the contribution 
of the model to human perception.  Encouraging results are obtained using this approach, 
however, even this technique is not sufficient to cope with extreme cases such as changing the 
view from looking at the sky to looking at a fully textured model of a town. 

Unfortunately, implementing such a system presents a number of problems.  Firstly, most 
operating systems are not suited to real-time purposes,  i.e. they do not provide ways of 
guaranteeing response times for certain events such as interrupts, Inter-Process 
Communication and disk I/O.  Those real-time systems that do provide such guarantees are 
often targeted at systems where the system load may be worked out a priori .  Clearly a VE 
system is dynamic and therefore an operating system is required that can cope with changing 
existing deadlines and the introduction/removal of new tasks and deadlines. 

3.2.2 Worst-case operation 

Establishing what the worst-case is for a given VE can be accomplished by either working out 
by hand the worst performance of each component or by "exercising" the VE over a period of 
time.  The latter method is very convenient and relatively effortless to perform, however its 
effectiveness is dependent on exercising the parts of the system that will present the worst 
performance, either on their own or combined with other components. 

A major advantage of this approach is that it may be used on existing systems and although 
scheduling still plays an important part, it is done on a decidedly pessimistic basis.  The price 
paid for this type of predictability is the under utilisation of the available services, which is 
sometimes quite extreme if there is a large bottleneck in the system. 

4 A Virtual Environment Support System (VESS) 

4.1 System requirements 

Our experimental work is in the area of visual perception, requiring us to measure human 
perception and motor responses which occur in a matter of milliseconds (Hawkes, 1993).  To 
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accurately respond to and measure the effects of such responses it is essential to provide an 
accurate representation of the VE at any instant in time.  In addition we must be able to 
quantify the side-effects of the experimental equipment, record them and take them into 
consideration when analysing the results.  Not only must we be sure that things look and 
behave correctly, but we also need to be able to say exactly when certain events occurred and 
for how long, e.g. that the input device was sampled 20 times a second, 10 ms after the last 
frame was displayed. 

A case in point is the simple driving simulator we use for some of our work.  Input devices 
that must be sampled include the brake pedal, throttle, gear stick and steering wheel.  Values 
from all the inputs are fed into a dynamics model which calculates the new position and 
orientation of the car, amongst other variables.  It also provides information which is used to 
adjust the force feedback on the steering wheel and the sound generated by the car. 
 

 
VEM  

VIS  AUD  

CIG  
Brake,   
Accelerator,   
Wheel, etc.  

Speakers Eye Tracker 

Application 
Level  
Device  
Level  

  Car  
Object 

 
 
 

Fig. 3.  Example configuration of the Virtual Environment Support System. 
 

4.2 System architecture 

There were three main reasons for not choosing the service degradation solution: 

1. The bottleneck in our system is the CIG which does not offer any way of 
controlling the time spent rendering. 

2. The success of this technique relies on the ability to meet application imposed 
deadlines.  However, most operating systems do not guarantee performance and 
can sabotage the best planned schedule. 

3. A general purpose system, whilst desirable, would take an unjustifiable amount 
of time to implement. 

Fig. 3 shows the basic components of VESS as they are configured for the driving simulator.  
The heart of the system is the Virtual Environment Manager (VEM) whose responsibility is to 
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co-ordinate and minimise the lags introduced by the other components.  These can be split 
into two categories: Managers and Objects.  The Managers provide services that complement 
those provided by the VEM whilst the Objects are the consumers of these services.  Two 
common Managers are the Visual Manager (VIS) and the Audio Manager (AUD). 

VIS provides a set of CIG independent services which are used by both the VEM and the 
Objects.  The VEM controls the update of the visuals (as described later) whilst the Objects 
may manipulate their own representation.  In a similar way, through AUD, background 
environment sounds are controlled by the VEM and each Object has complete control over its 
aural properties. 

The VEM is responsible for advancing simulation time and at the beginning of every time 
step, each Object is requested to update their state for the specified time.  In the case of the 
Car Object this requires the sampling of all the input devices, performing the dynamical 
calculations, updating the output devices and changing the relevant visual and aural 
properties.  Once all the necessary Objects have completed their update and the Managers 
have finished any important outstanding service requests, the displays are updated and 
simulation time is progressed.  For all our simulations, simulation time directly maps to real 
world time. 

4.3 Managing a CIG 

There are a number of operations and pieces of information that VIS needs to enforce a fixed 
frame rate in the CIG: 

1. Manual control over buffer swapping 

2. The time between one display refresh cycle and the next. 

3. The amount of time that the rest of the system components need to complete their 
work for the next simulation update. 

4.3.1 Manual buffer swapping 

This is essential to the task at hand.  Double-buffered systems will display the last rendered 
image until the current one has been finished.  At this point the new image is displayed and 
the next image is rendered into the other buffer.  The switch actually happens during the next 
vertical retrace (or flyback) phase.  On displays such as monitors, this is when the electron 
gun makes its way from the bottom-right corner of the tube (as the viewer sees it) to the top-
left, ready to start drawing the next picture.  To achieve our goal we must be able to choose 
which vertical retrace is used. 

4.3.2 Inter Refresh Time (IRT) 

The IRT is the time it takes to draw one picture on the display including the vertical retrace 
period.  For example, say that a 640x480 resolution image is refreshed at 60 Hz.  This means 
that the IRT is 1000 / 60 = 16.66_ms.  The refresh rate varies depending on the resolution of 
the video signal, e.g. an 800x600 pixel image is often refreshed at 72 Hz, and different display 
devices can handle different ranges of refresh rates. 
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The refresh rate may be provided as a parameter at run-time or, alternatively, this information 
may be obtained from the CIG.  This is the approach we have taken.  Each time the CIG 
generates a vertical retrace it also generates an interrupt which is intercepted by the host 
machine and the time stored.  The next time an interrupt is caught, the time difference is 
calculated and this gives us the IRT. 

This technique will only work if the host machine has a clock that can provide nanosecond 
accuracy and the interrupt latency2 is bounded.  The latter point is by no means certain in non-
real-time operating systems such as UNIX and was one of the main reasons we opted for a 
real-time system (QNX - QNX Systems, Ontario). 

4.3.3 Inter Update Time (IUT) 

The total processing time required for one simulation update (which includes the time VIS 
and the CIG needs to complete their work) is provided by the VEM.  VIS then finds the 
nearest multiple of the IRT to the given time which gives us the IUT.  In other words, the total 
work time can be expressed as a number of display refreshes.  For example, if the IRT is 
16.6_ms and the work takes 40 ms, the IUT would be 49.9_ms, i.e. the work may be done 
within 3 refreshes of the display. 

a)

b)

c)

Key 
Calculate state 
Render new frame
Display frame 

Deadline

t=0 t=1 t=2 

t=0 t=1 t=-1 t=2 

Refresh cycle 

 

Fig. 4. Simulation cycle scheduling: a) buffer swaps happen at unpredictable times 
during the next simulation cycle in a variable rate system, b) controlled buffer 
swapping in a single CPU fixed rate system, c) a multiprocessor fixed rate 

                                                 
2The time between the interrupt being generated and the process on the host machine being notified of the event. 
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system permits the calculation stage to be done in parallel and in advance of the 
rendering stage resulting in a faster update rate. 

4.4 A comparison of paradigms 

Fig. 4 shows the various ways of scheduling the work to be done each frame.  There are three 
basic stages: calculate, render and display.  4a shows how these stages fit together in a 
variable rate system and how they relate to the display refresh cycle.  The time at which the 
frame may be displayed varies and rarely coincides with a vertical retrace, which means that 
the actual buffer swap happens at sometime during the next cycle.  As shown in the diagram, 
most of the time the calculation stage may progress immediately and by the time this is 
finished, the buffers have been swapped and the render stage is ready to continue.  However, 
the last complete cycle in 4a shows that it may be necessary for the render stage to wait until 
the buffers have been swapped.  This is because the buffer that will be filled next is currently 
being displayed. 

The scheduling of the work in a fixed frame rate system is shown in 4b.  The time between 
the end of the rendering stage and the display will vary depending on how long it takes to 
render the scene.  Pseudo-code for this process is given in Fig 5. 

Both these examples assume that all work is being done by one CPU.  If the image generation 
can be dedicated to another CPU or the system is equipped with a separate graphics 
subsystem, then time may be saved by scheduling the calculate and render stages such that 
they overlap as shown in 4c.  This is best achieved by starting the redraw as soon as possible 
(since it will take the longest time to complete).  In order that we are rendering the most up-
to-date state possible, the calculation stage is done before the end of the previous frame.  By 
performing these two stages in parallel it also means that more time can be spent on the 
simulation dynamics.  Obviously, failure to complete either of these stages before the 
designated refresh occurs is a system failure. 

Regardless of technique, it is important to understand how the CIG works and the latency that 
it introduces into the process since not all CIGs work the same way.  For example, an SGI 
RealityEngine/2™ introduces a one frame latency whilst the Real World Simulation 
Reality3™ PC card produces a two frame latency.  We have used the latter system and to 
compensate for this latency, state calculations must be done two updates before the image 
needs to be displayed.  

This method of controlling double-buffering can be applied to most CIGs with few problems 
since it utilises existing functionality.  It may be necessary, however, for the Application 
Programmers Interface (API) to be modified to gain access to this functionality. 

// Step 1: Initialise key variables

Calculate IRT
Calculate IUT based on totalWorkTime
Enable manual buffer swapping
displayTime = 0

// Step 2: Synchronise loop with display

Wait for refresh
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// Step 3: Enter main processing cycle

While simulation not complete
{
// Step 3.1: Calculate state

displayTime = displayTime + IUT
Calculate state of VE for displayTime

// Step 3.2: Draw new image but don't display

Redraw display

// Step 3.2: Display image exactly on time

Wait for end of IUT period
Swap buffers
}
 

Fig. 5.  Pseudo code for the fixed frame rate, worst-case simulation cycle. 
 

4.5 Further improvements 

It is quite common for the render stage (even in its worst-case) to complete before the time 
that the display stage needs to run (as shown in Fig. 4c).  If this is the case then the start of the 
state calculation, which includes input device sampling, and the render stage may be put back 
such that there is even less delay between calculation and display (Fig. 6a). 

a)

b)

Key 
Calculate state 
Render new frame
Display frame 

Deadline

t=0 t=1 t=-1 t=2 

Refresh cycle 

t=22.5t=22 t=23 t=23.5 t=24.5t=21

 

Fig 6. Improved simulation cycle scheduling.  a) shifting the calculate and render stages 
to reduce system latency, b) performance profiling permits the increase/decrease 
of the update rate in a controlled manner. 
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A more advanced technique is the controlled increase or decrease of update rate.  It would be 
possible to detect whether the CIG is capable of going faster, e.g. making the change between 
30 Hz and 60 Hz, by maintaining a history of its execution time for each update.  If, after a 
small period of time, this new potential performance was maintained then the other stages 
could be rescheduled, if possible, and the switch made (Fig. 6b).  In a similar way, by 
monitoring the performance profile, a slow increase in workload could be detected and a 
decision made to extend the deadline.  Once a decision is taken to change the deadline, no 
further changes must be made for a reasonable period of time, e.g. a couple of seconds, or 
things would quickly degenerate into a variable rate system.  Such an enhancement could also 
help overcome the fact that the worst-case approach assumes that the environment is quite 
static and does not cope well with the dynamic creation or destruction of objects. 

Some multiprocessor CIGs already monitor image complexity to aid in processor load-
balancing.  For example, the Reality3™ system, uses knowledge of the changing complexity 
of each scan-line to predict the load distribution for the next update.  With additional 
functionality in the API, these calculations could be used in the decision-making process.  It is 
true that simple decision-making logic could be flawed by fast increases or decreases in 
workload, but the potential increase in system fidelity makes it worthy of more investigation. 

A deadline-based approach also provides the framework for the application of object priority 
systems within the CIG as well as the VEM.  Objects may be drawn, partially drawn or 
skipped depending on their priority (as in the Viper system).  Similarly, the VEM may request 
a reduced quality service from a lower priority Object to meet the deadline. 

5 Conclusion

The problem of presenting a temporally correct view of a VE has implications throughout the 
whole support system architecture.  The most efficient technique for achieving this goal is a 
system whereby each component offers a service whose quality may be tailored to fit the time 
available for completion.  The practicalities of offering such a service are many.  The most 
important (and often the most expensive) component of a VE system is the CIG.  Most CIGs 
provide some form service degradation in the form of LOD but this is insufficient and 
improvements must be implemented via the API.  An efficient VE system must also demand 
certain guarantees from the underlying operating system such as maximum interrupt latency 
and context switch times.  Sadly, few of the OSs used in today's systems fulfil all of the 
requirements.  Consequently, a less efficient worst-case technique and details of its 
implementation were presented. 

Producing successive displays of a VE at a variable rate can be shown to cause interactivity to 
suffer.  The sense of presence in VEs is another area where variable rates may have an effect.  
In the study performed by Barfield and Hendrix (1995), five different update rates were used 
to examine the sense of presence.  Efforts were made to ensure a constant update rate but it 
would also be interesting to see the effect that a variable update rate has on presence - which 
is currently a far more realistic situation. 

Increasingly, other complex standalone hardware (such as eye-trackers) are being 
incorporated into VE systems.  Without a common time-frame, attempts to synchronise this 
equipment with a VE system can provide anything from erroneous to useless results. 
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Whilst a constant update rate permits object positions to be calculated into the future, 
predicting the actions of a human interacting in the VE is another matter.  Estimation of the 
participants head and possibly hand movements may be accomplished using Kalman filtering 
but there is no way of anticipating what they will do next.  Because of this there will always 
be a latency between human action and displayed reaction with an order of one or two 
updates.  However, it is surely better to base a judgement on a VE whose state is correct for 
that moment in time, than to base judgements on out-of-date information. 
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