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Abstract— We study a spectrum sharing problem in an unli-
censed band where multiple systems coexist and interfere with
each other. We first analyze a cooperative setting where all
the systems collaborate to achieve a common goal. Under the
assumptions that the systems communicate with Gaussian signals
and treat interference as noise, we study the structure of the
optimal power allocations. We show that any Pareto efficient
vector of rates can be achieved with piece-wise constant power
allocations. Moreover, if a strong interference condition among
all the systems is satisfied, we show that frequency division
multiplexing is optimal.

We then consider a non-cooperative situation, where the
systems act in a selfish and rational way, and investigate how the
lack of cooperation can affect performance. Using game theory,
we first analyze the possible outcomes of a one shot game, and
observe that in many cases an inefficient solution results. We show
that by extending the game definition to that of a repeated game,
the possibility of building reputations and applying punishments
allows to enlarge the set of achievable rates. We present examples
that show that in many cases, the performance loss due to lack
of cooperation is small. We also provide a converse theorem that
proves that our results are tight and quantify the best achievable
performance in a non-cooperative scenario.

I. INTRODUCTION

We consider a spectrum sharing scenario in an unlicensed
band. Multiple systems coexist in the same area and communi-
cate using the same portion of spectrum. For concreteness one
can consider present-day 802.11 networks, bluetooth systems,
walkie-talkies, etc. operating in the same unlicensed band, e.g.
ISM, UNII, etc., and interfering with each other. With the
future advent of sophisticated frequency-agile radios which
can operate over a wider and wider bandwidth, the potential
for sharing will only increase. We are interested in designing
spectrum sharing rules and protocols that allow the systems
to share the bandwidth in a way that is fair, efficient and
compatible with the incentives of the individual systems. We
assume that spectrum is a scarce resource, so that efficiency
is a concern.

A spectrum sharing rule is any method followed by each
system which results in their sharing the spectrum. Clearly,
the rule in which all systems attempt to maximize their rates
while treating the other systems as interference can result in
unfair and/or inefficient co-existence operating points.

Many of the fairness issues in spectrum sharing arise due
to asymmetries between the systems. Figure 1 shows three
different examples where two systems operate in asymmetric
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Fig. 1. Three examples of asymmetric situations between two systems sharing
the same band. The sizes of the antennas represent power capabilities, and
smaller distances indicate higher gains.

situations. In scenario (a) both systems have similar power
capabilities (e.g. two 802.11 systems) but due to the locations
of the transmitters and receivers, one system receives large
interference while the other does not. Scenarios (b) and (c)
describe situations where a high power system (e.g. 802.11
system) shares spectrum with a low power system (e.g. blue-
tooth system). In (b) all the gains are comparable, so intuitively
the weak system is in disadvantage. In (c) due to asymmetry
in the gains both systems can interfere with each other and
one can imagine that a more fair situation may result.

We address the question of whether these systems can
coexist and share spectrum in a fair and efficient manner. A
central aspect of the problem is the issue of cooperation: the
systems have different objectives and there may not be any
incentive to achieve a common goal. We investigate how the
lack of cooperation may affect the overall performance of the
systems.

Another important element of the problem is the amount of
knowledge that each system has about the others. For example,
a system may or may not know how many other systems are



sharing the same band, the corresponding channel gains, trans-
mission powers, communication rates, and codes. In this paper,
we will assume that the number of systems, channel gains,
and maximum transmission powers are common knowledge.
However we don’t require the systems to know the rates or
codebooks used by the other systems.

Current regulations provide a spectral mask that limits the
total power and power spectral density that each transmit-
ter can use. This tries to limit the amount of interference
generated by each transmitter onto other systems’ receivers.
This approach, however, has a number of drawbacks. First,
it may severely constrain the data rate when there are no
other systems around. In addition, it does not provide any
performance guarantee nor does it avoid unfair situations.
Consider for example scenario (b) in Fig. 1 where the powerful
802.11 system interferes the weak bluetooth system. Is this
an unavoidable consequence of the asymmetry between the
802.11 and bluetooth systems, or is just an indication of
inefficient spectrum sharing rules ?

Systems may need to spread their signals over the available
bandwidth in order to satisfy the spectral masks imposed
by regulation while achieving high data rates. Even though
spreading may work properly in cellular systems with tight
power control rules, this may not be a good spectrum sharing
technique in the scenarios that we are considering. Under
reasonable assumptions on the choice of the utility functions
we investigate the structure of the optimal power allocations,
and find that in many practical cases forcing the systems
to spread their signals is suboptimal. In particular, we show
that when the interference between systems is high, frequency
division multiplexing (FDM) is the optimal spectrum sharing
technique.

We investigate how the lack of cooperation may affect
performance using non-cooperative game theory. We start by
formulating a one shot game, and show by extending (for the
case of flat fading with white background noise) a result of
[3] that in low interference situations, the spread spectrum
equilibrium is the only possible outcome of the game. And in
many cases, the rates that result from the spread spectrum
equilibrium are poor for one or more systems. This is a
negative result from the point of view of designing a standard,
as it would be desirable to have multiple equilibrium points to
choose from. But if we repeat the stage-game indefinitely, the
possibility of building reputations and applying punishments
leads to a much richer set of equilibria. We show that in this
repeated game, any vector of rates in the achievable region
that is component-wise larger than the spread-spectrum rates
can be supported. Therefore, if the cooperative optimal rate
vector is component-wise greater than the spread spectrum rate
vector, there is no performance loss due to lack of cooperation.

In summary, if we incorporate punishment in the spectrum
sharing rule, then it is possible to find operating points which
are fair, efficient and incentive compatible. In theory, the
spectrum sharing rule can just mandate all systems to operate
at such a point, and since it is incentive compatible, there is
no reason why any system would leave it on its own.

This rest of this work is organized as follows. In Section
II we present the model to be used in the following sections.
Section III considers the structure of the optimal power allo-
cations assuming cooperation between systems. In Section IV
we analyze the non-cooperative situations. Finally in Section
V we present some conclusions and open problems.

II. CHANNEL MODEL

We model a situation in which M systems, each formed
by a single transmitter-receiver pair, coexist in the same area.
Consider an M user Gaussian interference channel in discrete
time defined by:

yi[n] =
M∑

j=1

hj,ixj [n] + zi[n]; i=1,. . . ,M (1)

where xi, yi, zi ∈ C and the noise processes are i.i.d. over
time with zi ∼ CN (0, N0)1. By assuming that the channel
from each transmitter to each receiver has a single tap we
are restricting attention to the case of flat fading. Note also
that the i.i.d. assumption on the noise process results in white
background noise.
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Fig. 2. MxM Gaussian interference channel.

We assume that the underlying continuous time channel
is band-limited to a bandwidth W , and that the sampling is
done at the Nyquist rate resulting in WT complex degrees of
freedom in the time interval [0, T ]. The input of user i has an
average power constraint Pi.

Unfortunately, except for few special cases, the capacity
region of the interference channel is unknown (see for example
[1] for a summary of the known results about the interference
channel). The best inner bound known to date is given by Han
and Kobayashi in [2], whose computation is in general pro-
hibitively complex. Instead of using the best known bounds, in
the rest of this work we will assume that each system treats the
received interference as noise. This leads to a more tractable
inner bound of the capacity region. For many applications it
may be reasonable to assume that each system does not know

1CN (0, σ2) is a circularly symmetric complex Gaussian random variable
with zero mean and variance σ2.



the codebooks used by the other systems, and as a result the
interference must be treated as noise. Even if the codebooks
are known, practical limitations such as decoder complexity,
uncertainty in the estimation of {hj,i}, delay constraints, etc.,
may preclude the use of interference cancellation techniques.
Therefore the assumption of treating interference as noise may
be realistic in these scenarios as well.

Finally, we will assume that the systems use random Gaus-
sian codebooks, which means that the transmitted signals look
like white Gaussian processes. Under these assumptions, using
the capacity expression for the single user Gaussian channel,
we can determine the maximum rate that system i can achieve
for specific power allocations2:

Ri =
∫ W

0

log

(
1 +

ci,ipi(f)
N0 +

∑
j �=i cj,ipj(f)

)
df (2)

where pi(f) is the power spectral density of the input signal of
system i, and where for convenience we defined ci,j = |hi,j |2.
Note that due to the power constraints, pi(f) must satisfy:∫ W

0

pi(f)df ≤ Pi (3)

Having introduced the channel model, we can describe
the three scenarios introduced in Figure 1 by giving their
parameters. Without loss of generality we can assume in all
cases that c1,1 = c2,2 = 1, N0 = 1 and W = 1. In scenario (a)
we can assume P1 = P2 = 10, c1,2 = 10 and c2,1 = 0.5. For
scenario (b) we set P1 = 10, P2 = 1, and c1,2 = c2,1 = 1.1.
Finally in (c) we set P1 = 10, P2 = 1, c1,2 = 0.5 and
c2,1 = 10.

The spectrum sharing problem that we consider is to de-
termine power allocations {pi(f)} for the M systems, that
maximizes a given global utility function while satisfying the
power constraints. In the next section we study the structure
of the optimal power allocations for any reasonable choice of
global utility.

III. OPTIMAL SPECTRUM ALLOCATIONS

Imagine that in the three scenarios described in Figure 1
we want to maximize some global utility function U(R1, R2).
We are interested in determining the maximum value of U
and the corresponding power spectral allocations that achieve
it. In this section we will show how to solve this problem
efficiently.

Let R be the achievable rate region:

R =

{
R : Ri =

∫ W

0
log

(
1 +

ci,ipi(f)

N0 +
∑

j �=i cj,ipj(f)

)
df

∧
∫ W

0
pi(f)df ≤ Pi ∧ pi(f) ≥ 0 for i = 1, . . . , M

}
(4)

where R = (R1, R2, . . . , RM ) and let R∗ be the set of Pareto
optimal points of R:

R∗ =
{

(R1, . . . , RM ) ∈ R : Ri ≥ R̃i ∀(R1, . . . , Ri−1,

R̃i, Ri+1, . . . , RM ) ∈ R, for i = 1, . . . , M
}

(5)

2In all cases we use log(·) for a base 2 logarithm.

In words, a rate allocation is Pareto optimal (or efficient) if
it is not possible to increase the rate of any system without
decreasing the rate of some other system.
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Figure 3 shows the achievable set and Pareto optimal set for
scenarios (b) and (c). The reason why for this specific choice
of parameters in both scenarios we obtain the same sets will
be explained later in this section.

The choice of the utility function will strongly influence
the fairness in the resulting allocations. For example we may
consider Usum(R1, R2) = R1 + R2 if we are interested in
maximizing the total sum rate. While in scenario (a) this
choice of utility results in an optimal operating point where
R1 = R2, in scenarios (b) and (c) the resulting optimal
allocations are very unfair for system 2 (R2 � R1) (see
Figure 3). A more fair allocation results from choosing the
proportional fair metric UPF (R1, R2) = log(R1) + log(R2)
proposed in [9]. By applying the log(·) function to each rate,
we give higher priority to the system in disadvantage. We can
see in Figure 3 how in scenarios (b) and (c) the use of the
proportional fair metric results in a more fair allocation. Note
that in scenario (a) the use of UPF results in the same rates
as when Usum is used.

For any utility function that is component-wise monotoni-
cally increasing in (R1, . . . , RM ), the optimal rate allocation
must occur in a point of R∗. So it is of interest to obtain
a simple characterization for R and R∗. For example, if we
knew R∗ the problem of maximizing Usum reduces to finding
the point in R∗ that is tangent to the line of slope (−1).

At first glance, computing R requires to search over all
possible power allocations pi(f) that satisfy the power con-
straint. Since pi(f) are functions with arbitrarily many degrees
of freedom, the computation of R seems to be an infinite
dimensional problem. However the following theorem shows
that we can restrict attention to piecewise constant power



allocations, and as a result, the problem of computing R has
finite dimension.

Theorem 1: Any point in the achievable rate region
R defined in (4) can be obtained with M power al-
locations that are piecewise constant in the intervals
[0, w1), [w1, w2), . . . , [w2M−1,W ], where wi ≤ wi+1, i =
1, . . . , 2M − 2, for some choice of {wi}2M−1

i=1 .
Note that once we fix the choice of intervals to obtain a

point in R, the M power allocations are constant in the same
intervals.

For the special case of channels satisfying a pairwise high
interference condition (which is satisfied with the choice of
parameters in scenarios (a), (b) and (c)), it turns out that
the optimal power allocations are orthogonal, and hence the
characterization of R∗ is further simplified.

Theorem 2: Let (R1, . . . , RM ) be a Pareto efficient rate
vector achieved with power allocations {pi(f)}i=1,...,M

which are piece-wise constant in the intervals
[0, w1), [w1, w2), . . . , [w2M−1,W ]. If ci,jcj,i

ci,icj,j
> 1 then

the power allocations pi(f) and pj(f) are orthogonal, i.e.
pi(f)pj(f) = 0 for f ∈ [0,W ].
The condition ci,jcj,i

ci,icj,j
> 1 means that for systems i and j,

the product of the channel cross gains ci,jcj,i is greater than
the product of the channel direct gains ci,icj,j . Note that the
condition can be satisfied even if one of the cross gains is
small, by having the other cross gain large enough. Also,
note that the condition is independent of the power constraints
{Pi, Pj} and noise variance N0. In our three examples, we
chose c1,1 = c2,2 = 1, so to check whether the condition of
Theorem 2 is satisfied, we only need to check that c1,2c2,1 > 1.
In scenario (a) we have c1,2c2,1 = 10 ·0.5 = 5, in scenario (b)
we have c1,2c2,1 = 1.1 · 1.1 = 1.21, and in scenario (c) we
have c1,2c2,1 = 0.5·10 = 5, so in the three cases the condition
is met.

In particular, if ci,jcj,i

ci,icj,j
> 1 for any i �= j, j = 1, . . . ,M ,

we can achieve any Pareto efficient rate vector with frequency
division multiplexing (FDM). In this case, the the maximiza-
tion of any weighted sum of rates reduces to the optimization
problem:

Maximize
M∑

i=1

αiWi log

(
1 +

ci,iPi

WiN0

)

subject to:
M∑

i=1

Wi = W ∧ Wi ≥ 0, i = 1, . . . , M (6)

which, as can be easily verified, is a concave optimization
problem and can be efficiently solved. It can also be verified
that the maximization of UPF =

∑M
i=1 log(Ri) is a concave

problem as well. These results allow to easily compute the
rates in Figure 3.

Note that since the Pareto efficient rates are obtained with
orthogonal allocations when c1,2c2,1 > 1 (for direct gains
equal to 1), the actual values of the cross gains c1,2 and c2,1

have no influence on the achievable region. This explains why
scenarios (b) and (c) result in the same achievable region and
optimal rates.

When the conditions of Theorem 2 are not satisfied, we
can use techniques such as Lagrangian methods to solve
the problem of maximizing U(R1, . . . , RM ) with tractable
complexity.

Throughout this section we have implicitly assumed that the
M systems cooperate to maximize a global utility function by
choosing appropriate power allocations. This assumption may
be realistic when the different systems are jointly designed
with a common goal, are complying with some standard or
regulation, or are in fact transmitter-receiver pairs of a single
global system.

However, in a spectrum sharing scenario where regulations
may be lax and systems may be competing with one another to
gain access to the shared medium, assuming selfish behavior
may be more realistic. In the next section we analyze how
the lack of cooperation among systems may affect the set of
achievable rates.

IV. NON-COOPERATIVE SCENARIOS

We will consider the same model introduced in Section
II under the assumption that the different systems behave
selfishly and rationally. We associate to each system i a utility
function Ui(Ri), which we assume concave and increasing
in Ri. The systems are selfish in the sense that they only
try to maximize their own utility. The rationality assumption
means that each system will never choose a strictly dominated
strategy3.

We analyze the set of achievable rates in this non-
cooperative scenario using non-cooperative game theory. We
first consider a static game of complete and perfect infor-
mation, usually referred to in the literature as the Gaussian
Interference Game [4].

The game has M players, the M systems. The strategy
space Si of system i is the set of power allocations pi(f),
f ∈ [0,W ] that are continuous almost everywhere and that
satisfy the power constraint (3). A strategy si for user i is the
choice of power allocation pi(f). For a given strategy profile
(s1, . . . , sM ) the rate of user i is given by (2). For concreteness
will consider Ui(Ri) = Ri, but we note that all the results
of this section apply to any choice of concave and increasing
utilities. The players play simultaneously, and know the utility
functions of all the other players (N0, {ci,j}i,j , {Pi}M

i=1,W
are common knowledge). A strategy profile {s∗i }M

i=1 is a Nash
Equilibrium (N.E.) of the game if

Ri(s∗1, . . . , s
∗
M ) ≥ Ri(s∗1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
M )

for all si ∈ Si, i = 1, . . . ,M (7)

A direct consequence of the flat-fading and white noise
assumption is the following fact:

3A strategy si for player i is strictly dominated
by strategy s′i if Ui(s1, . . . , si−1, s′i, si+1, . . . , sM ) <
Ui(s1, . . . , si−1, si, si+1, . . . , sM )) for each
(s1, . . . , si−1, si+1, . . . , sM ) that can be constructed from the other
players’ strategy spaces.



Fact 1: The frequency-flat allocations pi(f) = Pi/W, f ∈
[0,W ] for i = 1, . . . ,M form a Nash Equilibrium of the
Gaussian Interference Game.

This means that the best possible strategy for a given system
is to spread its available power over the total bandwidth when-
ever all the interfering systems are spreading their signals.
Fact 1 can be understood by noting that the best response of a
system to a strategy profile of the other systems is to waterfill4

the available power over the noise+interference seen. When
all the other systems use flat allocation, the waterfilling power
allocation is flat, and it follows that flat allocations are best
responses to each other.

If the players randomize their actions, the (mixed) strategy
of each player is the choice of probability distribution used
for the randomization. The utility that each user gets is the
expected utility, averaged over the random choices of actions
of all the players. Taking into account these changes in the
definition of the strategies and the utilities, the concept of a
mixed strategy Nash equilibrium can be defined exactly as
before.

When studying the set of N.E., one needs to consider
both pure and mixed strategies. However, in the case of the
Gaussian Interference Game it turns out that we need only
consider pure strategies.

Theorem 3: The Gaussian Interference Game can only have
pure strategy Nash equilibria. That is, every mixed strategy
N.E. of the game must consist of atomic distributions with a
single atom, and therefore is a pure strategy N.E.

If the channel gains across systems are sufficiently small
the full-spread N.E. is the only N.E. of the Gaussian game.
The following theorem gives a sufficient condition for the
uniqueness of the spread spectrum N.E.

Theorem 4: If
∑M

j=1
j �=i

cj,i

ci,i
< 1 for i = 1, . . . , M then

the spread spectrum N.E. is the only N.E. of the Gaussian
Interference Game.

Theorem 4 does not give us any information about the
uniqueness of the Nash equilibrium when the condition∑M

j=1
j �=i

cj,i

ci,i
< 1 is not met.

In many cases, the vector of rates that results from the
spread spectrum N.E. is not Pareto efficient (i.e. is not in
R∗) so there may be a significant performance loss if the M
systems operate in this point due to lack of cooperation. And
in many cases this inefficient outcome is the only possible
outcome of the game. Consider for example a two system
scenario (call it (d)) with c1,1 = c2,2 = 1, c2,1 = c1,2 = 1/4,
W = 1, N0 = 1 and P1 = P2 = P . Note that in this case the
condition of Theorem 4 is satisfied. If both users spread their
signals, they obtain rates

RSS
1 = RSS

2 = log
(

1 +
P

1 + P/4

)
[bits/s/Hz] (8)

4The waterfilling power allocation consists of distributing the available
power as if pouring water in a container whose bottom is given by the
noise+interference level. This power allocation maximizes the rate of the
system for a given Gaussian noise+interference power spectral density [5].

which tends to log(5)[bits/s/Hz] as P → ∞. However, if the
systems orthogonalize their power allocations using half of the
bandwidth each, the resulting rates are:

R1 = R2 =
1
2

log (1 + 2P ) [bits/s/Hz] (9)

which tends to ∞ as P → ∞. The regime in which P 	 N0

corresponds to the high signal to noise ratio (SNR) regime.
In this regime, when the systems orthogonalize their power
allocations they can communicate with an interference free
channel, and achieve large data rates. If on the contrary
both systems spread their signals, the signal to interference
plus noise ratio becomes limited by interference, resulting
in a reduced communication rate. This example shows that
the inefficiency resulting from choosing the spread spectrum
equilibrium can be arbitrarily large.

Scenario (d) shows that there are situations in which the
only possible outcome of the game is very inefficient, and as
a result, there is a large performance degradation due to lack
of cooperation. This negative result can be attributed to the
static nature of the game that we defined.

Many wireless systems operate and co-exist with the same
set of competing systems over a long period of time (days,
months, years). In this context, it may be more reasonable
to model the scenario as a repeated (or dynamic) game
where systems play multiple rounds, remembering the past
experience in the choice of the power allocation in the next
round. We will consider an infinite horizon repeated game,
where the Gaussian Interference Game is repeated forever. The
utility of each player is defined by

Ui = (1 − δ)
∞∑

t=0

δtRi(t) (10)

where Ri(t) is the utility of user i in the stage game at time
t, and δ ∈ (0, 1) is a discount factor that accounts for the
delay sensitivity of the systems. At the end of each stage, all
the players can observe the outcome of the stage-game and
can use the complete history of play to decide on the future
action. A strategy in the repeated game is a complete plan of
action, that defines what the player will do in every possible
contingency in which he may need to act.

One property of this repeated game is that sequences of
strategy profiles that form a N.E. in the stage game, form a
N.E. in the dynamic game5. Furthermore, the dynamic game
allows for a much richer set of N.E. This is an advantage from
the point of view of policy making or standardization. The
systems can agree through a standardization process to operate
in any N.E. of the dynamic game. Having many equilibrium
points to choose from gives more flexibility in obtaining a fair
and efficient resource allocation. A natural question that arises
is what set of rate vectors can be supported as a N.E. of the
repeated game. The following theorem, a general version of
which is due to Friedman [6], [7], gives a sufficient condition

5For the reader familiar with game theory, these equilibria are in fact sub-
game perfect Nash equilibria.



for the rate vector (R1, . . . , RM ) to be achievable as the
resulting utilities in a N.E. of the repeated game.

Theorem 5: Let RSS
i be the rate of system i when all

the systems spread their power over the bandwidth W , i.e.
the rate obtained in the spread spectrum N.E. There exists a
sub-game perfect N.E.6 of the dynamic Gaussian Interference
Game with utilities (U1, . . . , UM ) = (R1, . . . , RM ) whenever
(R1, . . . , RM ) ∈ R and Ri > RSS

i for i = 1, . . . , M for a
discount factor δ sufficiently close to 1.

Theorem C of [8] states that any utility vector that Pareto
dominates the payoffs of a Nash equilibrium of the stage
game can be supported by a sub-game perfect N.E. of the
repeated game for a discount factor δ sufficiently close to 1.
This Folk theorem is due to Friedman [6], [7], although he
considered only Nash equilibria instead of perfect equilibria
in his work. In the Gaussian Interference Game the spread-
spectrum allocations form a N.E. (see Fact 1), and we can use
(RSS

1 , . . . , RSS
M ) as the payoff vector of the N.E. of the stage

game in the Theorem above.
Let {pi(f)}M

i=1 be the power allocations that result in
the rate vector (R1, . . . , RM ) (which always exist since
(R1, . . . , RM ) ∈ R). The strategy that each system follows
to obtain the rate vector (R1, . . . , RM ) in Theorem 5 is the
following trigger strategy:

• at t = 1: use power allocation pi(f).
• at t = t0: if at time t = t0 − 1 every user j ∈

{1, . . . , M} used the power allocation pj(f) then use
pi(f). Otherwise use the power allocation Pi/W for
f ∈ [0,W ]

The idea behind this strategy, is to ”cooperate” by using
the required power allocation as long as all the other systems
cooperated in the previous stages. As soon as at least one
system deviates from the ”good” behavior, a punishment is
triggered where all the other systems spread their powers
forever. Since the rates obtained by the systems once the
punishment is triggered are lower than those obtained with
cooperation, it is in the system’s own interest to cooperate.
Friedman’s analysis shows that if δ is not too small, the above
set of strategies forms a sub-game perfect N.E.. The sub-game
perfection property of the N.E. guarantees that each system
will indeed apply the punishment once the punishing situation
arises. This property makes the threats believable.

Applying these ideas to scenario (d), we can define a trigger
strategy where system 1 uses the first half of the bandwidth,
and system 2 uses the second half, as long as in all the previous
stages both systems complied with this frequency allocation.
If at some stage any of the systems stops complying, a
punishment is triggered where the systems spread their powers
forever. For large enough P this pair of strategies forms a
N.E. where each system obtains a utility 1/2 log(1 + 2P ).
This shows how the punishment strategies within the dynamic
game formulation allow us to overcome the inefficiency that
we observed in the static game.

6The sub-game perfect N.E. is a refined and stronger version of the N.E.
concept defined before. It guarantees that the N.E. does not arise due to
unbelievable threats.

Theorem 5 gives us a sufficient condition for a rate vector
(R1, . . . , RM ) to be achievable through a N.E. But if the
condition of the theorem is not met we may still have hope
to find some other N.E. to support the desired vector of
rates. A natural question to ask is if there are other N.E.
that result in utilities (R1, . . . , RM ) with some Ri < RSS

i .
The following theorem answers this question negatively and
provides a converse to Theorem 5.

Theorem 6: The rate RSS
i is the reservation utility of player

i in the Gaussian Interference Game. That is, player i can
obtain a utility at least as large as RSS

i by using the power
allocation pi(f) = Pi/W , f ∈ [0,W ] regardless of the power
allocations used by the other players. Therefore, the rate Ri

obtained by user i in any N.E. of the Gaussian Interference
Game must satisfy Ri ≥ RSS

i . The same statement holds for
the repeated Gaussian Interference Game.

The proof of Theorem 6 shows that for a white Gaussian
input, the worst possible Gaussian interference of given power
is white. Since the power of each system is bounded to Pj ,
the total interference power seen by system i is bounded to∑

j �=i cj,iPj . If system i uses a white input, the worst case
interference is obtained when all the other systems spread their
powers, and it follows that a rate at least as large as RSS

i is
always achieved. Therefore, there is no incentive for player i
to play any strategy that results in a utility smaller than RSS

i .
An immediate consequence of Theorems 5 and 6 is that if

the desired operating point (R1, . . . , RM ) (i.e. the maximizer
of a desired global utility) is component-wise greater than the
spreading rate vector (RSS

1 , . . . , RSS
M ) there is no performance

loss due to lack of cooperation. However, when this condition
is not satisfied, the best that one can do is to find the point in
R∗ that is component-wise greater than (RSS

1 , . . . , RSS
M ) and

that maximizes the desired utility.
Referring to Figure 4 we see that in scenario (b) the optimal

sum rate point lies within the achievable region in the non-
cooperative setting. However, the optimal proportional fair
point lies outside of this set and cannot be supported without
cooperation. The best that one can do in the non-cooperative
setting is to operate in the point indicated in the figure. In
scenario (c) both the optimal sum rate and optimal proportional
fair rates are achievable in the non-cooperative setting. Note
that while in the cooperative case the specific values of the
cross gains had no influence on the achievable region (as long
as the strong interference condition is satisfied) this is not true
in the non-cooperative setting. This is because large cross gains
enable the systems to apply punishments, and hence achieve a
good N.E. through believable threats. In scenario (c) the large
value of c2,1 allows system 2 to punish system 1 whenever it
departs from the proportional fair allocation.

To further illustrate the concepts introduced in this and the
previous section, consider a two user scenario and assume that
we use the proportional fair utility UPF to measure the global
performance. Without loss of generality we assume that c1,1 =
c2,2 = 1, W = 1 and N0 = 1. Also we take P1 = P2 = P
and analyze the results in terms of the SNR = P/N0. At a
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given SNR we can control the asymmetry between the two
systems by varying the cross gains c1,2 and c2,1.

For a fixed set of parameters, using the results of Section
III we optimize the power allocations to maximize the pro-
portional fair metric, obtaining R∗

1 and R∗
2 as the resulting

rates. In the non-cooperative scenario, R∗
1 and R∗

2 can only
be supported by a N.E. if R∗

1 ≥ RSS
1 and R∗

2 ≥ RSS
2 .

If these inequalities are not satisfied, we obtain the best
possible solution for the non-cooperative case by maximizing
log(R1) + log(R2) subject to the constraint Ri ≥ RSS

i ,
i = 1, 2, being R̃1 and R̃2 the corresponding optimal rates.
If R∗

i = R̃i for i = 1, 2 we conclude that there is no
loss due to lack of cooperation. If R∗

i > R̃i for i = 1 or
i = 2 we measure the loss due to lack of cooperation using
maxi∈{1,2} 100(R∗

i − R̃i)/R∗
i , i.e. the percentage loss in rate

for one of the systems. Note that the other system will have
a rate larger than the one obtained with cooperation.

In Figure 5 we see that for low SNR, the region of rate pairs
(c1,2, c2,1) for which there is a loss due to lack of cooperation
is large, but this loss is quite small (about 5% in the worst case
seen in the figure). As the SNR increases, this region becomes
progressively smaller, but the corresponding performance loss
is more significant. For SNR = 10dB this performance loss
can be as large as 50% of the proportional fair rates, but this
only occurs in very asymmetric situations.

At low SNR performance is limited by noise not inter-
ference, so whether the systems cooperate or not does not
have much influence in performance. At larger SNRs, inter-
ference becomes the dominant performance limiter. In very
asymmetric situations the spread spectrum point (RSS

1 , RSS
2 )

is such that RSS
1 or RSS

2 is large. In either of these cases, one
system obtains a large enough rate with the spread spectrum
allocations, and a threat of the other system to apply the
spreading punishment is not effective to modify its behavior.
Using Theorem 6 we see that if RSS

1 or RSS
2 is large, the set
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of rates achievable in the non-cooperative situation is quite
limited, and often it does not include the optimal cooperative
point. Fortunately, the level of asymmetry required to reach
this unfair situation increases with SNR. The same qualitative
behavior should be observed with other performance metrics
and larger number of users.

The plots of Figure 5 illustrate the performance loss due
to lack of cooperation when there is asymmetry in the cross
gains between the systems. One can do a similar analysis for
the case when the source of asymmetry is the transmission
power instead of the cross gains.

V. CONCLUSIONS

For a situation where all the systems cooperate to achieve a
common goal, we showed that any Pareto efficient rate vector
can be achieved with piece-wise constant power allocations.



This allows to significantly reduce the complexity of the under-
lying optimization problem. If in addition a strong interference
condition among all the systems is satisfied, frequency division
multiplexing allows to achieve any Pareto efficient allocation.

Our game theoretic analysis showed that the use of punish-
ment strategies can significantly enlarge the set of rates achiev-
able in a non-cooperative situation. The converse theorem that
we presented shows that the rates that can be obtained with
our punishment strategies are essentially the best that one can
hope for in a non-cooperative setting. Therefore our results are
tight and quantify the best achievable performance with lack
of cooperation. The two system example that we presented
shows that in most situations the performance loss due to lack
of cooperation is small, and vanishes with increasing SNR.

We note that we assumed games of perfect and complete
information. In practice, some communication may be needed
between the systems to exchange parameters, such as channel
gains, transmission powers, etc. This parameter exchange
may be explicit through a specific communication protocol,
or implicit through a learning process. In a non-cooperative
environment systems may misrepresent information to increase
their utilities. This brings the issue of trust, and opens a whole
new set of interesting problems to investigate.

The solution to the optimization problem studied in Section
III requires a centralized processor with access to all the
systems’ parameters. In practice, the systems should be able to
optimize their power allocations in a distributed way with only
local information about their neighbors. Our future research
involves designing distributed algorithms that approximate
the solutions obtained from the centralized optimization. The
resource allocations resulting from these algorithms may not
be optimal, but in many cases can be achieved as a N.E. in a
dynamic game. Therefore, in a non-cooperative setting, the
distributed resource allocation algorithms should determine
the desired N.E. point and the corresponding punishment
strategies that achieve it.
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