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Abstract

We study a spectrum sharing problem in an unlicensed band where multiple systems coexist and interfere
with each other. We first analyze a cooperative setting where all the systems collaborate to achieve a common
goal. Under the assumptions that the systems communicate with Gaussian signals and treat interference as
noise, we study the structure of the optimal power allocations. We show that any Pareto efficient vector
of rates can be achieved with piece-wise constant power allocations. Moreover, if a strong interference
condition among all the systems is satisfied, we show that frequency division multiplexing is optimal.

We then consider a non-cooperative situation and investigate how the lack of cooperation can affect
performance. Using game theory, we first analyze the possible outcomes of a one shot game, and observe
that in many cases an inefficient solution results. We show that by extending the game definition to that of
a repeated game, the possibility of building reputations and applying punishments allows to enlarge the set
of achievable rates. We present examples that show that in many cases, the performance loss due to lack of
cooperation is small. We also provide a converse theorem that proves that our results are tight and quantify
the best achievable performance in a non-cooperative scenario. We finally show that our main results are
valid when we don’t constrain the signals to be Gaussian.

I. INTRODUCTION

We consider a spectrum sharing scenario in an unlicensed band. Multiple systems coexist in the
same area and communicate using the same portion of spectrum. For concreteness one can consider
present-day 802.11 networks, bluetooth systems, walkie-talkies, etc. operating in the same unlicensed
band, e.g. ISM, UNII, etc., and interfering with each other. We are interested in designing spectrum
sharing rules and protocols that allow the systems to share the bandwidth in a way that is fair,
efficient and compatible with the incentives of the individual systems. We assume that spectrum is
a scarce resource, so that efficiency is a concern.

We address the question of whether these systems can coexist and share spectrum in a fair and
efficient manner. A central aspect of the problem is the issue of cooperation: the systems have
different objectives and there may not be any incentive to achieve a common goal. We investigate
how the lack of cooperation may affect the overall performance of the systems.

Another important element of the problem is the amount of knowledge that each system has
about the others. For example, a system may or may not know how many other systems are sharing
the same band, the corresponding channel gains, transmission powers, communication rates, and
codes. In this paper, we will assume that the number of systems, channel gains, and maximum
transmission powers are common knowledge. However we don’t require the systems to know the
rates or codebooks used by the other systems.

Current regulations provide a spectral mask that limits the total power and power spectral density
that each transmitter can use. This tries to limit the amount of interference generated by each
transmitter onto other systems’ receivers. This approach, however, has a number of drawbacks.
First, it may severely constrain the data rate when there are no other systems around. In addition,
it does not provide any performance guarantee nor does it avoid unfair situations.



Systems may need to spread their signals over the available bandwidth in order to satisfy the
spectral masks imposed by regulation while achieving high data rates. Even though spreading may
work properly in cellular systems with tight power control rules, this may not be a good spectrum
sharing technique in the scenarios that we are considering. Under reasonable assumptions on the
choice of the utility functions we investigate the structure of the optimal power allocations, and find
that in many practical cases forcing the systems to spread their signals is suboptimal. In particular,
we show that when the interference between systems is high, frequency division multiplexing (FDM)
is the optimal spectrum sharing technique.

We investigate how the lack of cooperation may affect performance using non-cooperative game
theory. We start by formulating a one shot game, and show by extending (for the case of flat fading
with white background noise) a result of [3] that in low interference situations, the spread spectrum
equilibrium is the only possible outcome of the game. And in many cases, the rates that result from
the spread spectrum equilibrium are poor for one or more systems. This is a negative result from the
point of view of designing a standard, as it would be desirable to have multiple equilibrium points to
choose from. But if we repeat the stage-game indefinitely, the possibility of building reputations and
applying punishments leads to a much richer set of equilibria. We show that in this repeated game,
any vector of rates in the achievable region that is component-wise larger than the spread-spectrum
rates can be supported. Therefore, if the cooperative optimal rate vector is component-wise greater
than the spread spectrum rate vector, there is no performance loss due to lack of cooperation.

In summary, if we incorporate punishment in the spectrum sharing rule, then it is possible to find
operating points which are fair, efficient and incentive compatible. In theory, the spectrum sharing
rule can just mandate all systems to operate at such a point, and since it is incentive compatible,
there is no reason why any system would leave it on its own.

This rest of this work is organized as follows. In Section II we present the model to be used in
the following sections. Section III considers the structure of the optimal power allocations assuming
cooperation between systems. In Section IV we analyze the non-cooperative situations. Finally
Section V considers a more general model than that of Section II and shows that our main results
hold in a broader setting.

II. CHANNEL MODEL

We model a situation in which M systems, each formed by a single transmitter-receiver pair,
coexist in the same area. Consider an M user Gaussian interference channel in discrete time defined
by:

yi[n] =
M∑

j=1

hj,ixj[n] + zi[n]; i=1,. . . ,M (1)

where xi, yi, zi ∈ C and the noise processes are i.i.d. over time with zi ∼ CN (0, N0)
1. By assuming

that the channel from each transmitter to each receiver has a single tap we are restricting attention
to the case of flat fading. Note also that the i.i.d. assumption on the noise process results in white
background noise.

We assume that the underlying continuous time channel is band-limited to a bandwidth W , and
that the sampling is done at the Nyquist rate resulting in WT complex degrees of freedom in the
time interval [0, T ]. The input of user i has an average power constraint Pi.

Unfortunately, except for few special cases, the capacity region of the interference channel is
unknown (see for example [1] for a summary of the known results about the interference channel).

1CN (0, σ2) is a circularly symmetric complex Gaussian random variable with zero mean and variance σ2.



The best inner bound known to date is given by Han and Kobayashi in [2], whose computation is in
general prohibitively complex. Instead of using the best known bounds, in the rest of this work we
will assume that each system treats the received interference as noise. This leads to a more tractable
inner bound of the capacity region. For many applications it may be reasonable to assume that each
system does not know the codebooks used by the other systems, and as a result the interference
must be treated as noise. Even if the codebooks are known, practical limitations such as decoder
complexity, uncertainty in the estimation of {hj,i}, delay constraints, etc., may preclude the use of
interference cancellation techniques. Therefore the assumption of treating interference as noise may
be realistic in these scenarios as well.

Finally, until Section IV we will assume that the systems use random Gaussian codebooks, which
means that the transmitted signals look like white Gaussian processes. Under these assumptions,
using the capacity expression for the single user Gaussian channel, we can determine the maximum
rate that system i can achieve for specific power allocations2:

Ri =

∫ W

0

log

(
1 +

ci,ipi(f)

N0 +
∑

j 6=i cj,ipj(f)

)
df (2)

where pi(f) is the power spectral density of the input signal of system i, and where for convenience
we defined ci,j = |hi,j|2. Note that due to the power constraints, pi(f) must satisfy:

∫ W

0

pi(f)df ≤ Pi (3)

The spectrum sharing problem that we consider is to determine power allocations {pi(f)} for the
M systems, that maximizes a given global utility function while satisfying the power constraints. In
the next section we study the structure of the optimal power allocations for any reasonable choice
of global utility.

III. OPTIMAL SPECTRUM ALLOCATIONS

Assume that the systems cooperate to maximize some global utility function U(R1, . . . , RM).
We are interested in determining the maximum value of U and the corresponding power spectral
allocations that achieve it. In this section we will show how to solve this problem efficiently.

Let R be the achievable rate region:

R =

{
R : Ri =

∫ W

0

log

(
1 +

ci,ipi(f)
N0 +

∑
j 6=i cj,ipj(f)

)
df ∧

∫ W

0

pi(f)df ≤ Pi ∧ pi(f) ≥ 0 for i = 1, . . . , M

}
(4)

where R = (R1, R2, . . . , RM) and let R∗ be the set of Pareto optimal points of R:

R∗ =
{
(R1, . . . , RM ) ∈ R : Ri ≥ R̃i ∀(R1, . . . , Ri−1, R̃i, Ri+1, . . . , RM ) ∈ R, for i = 1, . . . , M

}
(5)

In words, a rate allocation is Pareto optimal (or efficient) if it is not possible to increase the rate
of any system without decreasing the rate of some other system.

Figure 1 shows the achievable set and Pareto optimal set for an asymmetric situation between
two systems. The choice of the utility function will strongly influence the fairness in the resulting
allocations. For example we may consider Usum(R1, R2) = R1 + R2 if we are interested in max-
imizing the total sum rate. As can be seen in Figure 1 the resulting optimal allocations are very

2In all cases we use log(·) for a base 2 logarithm.



unfair for system 2 (R2 ¿ R1). A more fair allocation results from choosing the proportional fair
metric UPF (R1, R2) = log(R1) + log(R2) proposed in [9]. By applying the log(·) function to each
rate, we give higher priority to the system in disadvantage. We can see in Figure 1 how the use of
the proportional fair metric results in a more fair allocation.

For any utility function that is component-wise monotonically increasing in (R1, . . . , RM), the
optimal rate allocation must occur in a point of R∗. So it is of interest to obtain a simple charac-
terization for R and R∗. For example, if we knew R∗ the problem of maximizing Usum reduces to
finding the point in R∗ that is tangent to the line of slope (−1).

At first glance, computing R requires to search over all possible power allocations pi(f) that
satisfy the power constraint. Since pi(f) are functions with arbitrarily many degrees of freedom,
the computation of R seems to be an infinite dimensional problem. However the following theorem
shows that we can restrict attention to piecewise constant power allocations, and as a result, the
problem of computing R has finite dimension.

Theorem 1: Any point in the achievable rate region R defined in (4) can be obtained with M

power allocations that are piecewise constant in the intervals [0, w1), [w1, w2), . . . , [w2M−1, W ], where

wi ≤ wi+1, i = 1, . . . , 2M − 2, for some choice of {wi}2M−1
i=1 .

Note that once we fix the choice of intervals to obtain a point in R, the M power allocations are
constant in the same intervals.

For the special case of channels satisfying a pairwise high interference condition, it turns out
that the optimal power allocations are orthogonal, and hence the characterization of R∗ is further
simplified.

Theorem 2: Let (R1, . . . , RM) be a Pareto efficient rate vector achieved with power allocations
{pi(f)}i=1,...,M which are piece-wise constant in the intervals [0, w1), [w1, w2), . . . , [w2M−1,W ]. If
ci,jcj,i

ci,icj,j
> 1 then the power allocations pi(f) and pj(f) are orthogonal, i.e. pi(f)pj(f) = 0 for

f ∈ [0, W ].
The condition ci,jcj,i

ci,icj,j
> 1 means that for systems i and j, the product of the channel cross gains

ci,jcj,i is greater than the product of the channel direct gains ci,icj,j . Note that the condition can be
satisfied even if one of the cross gains is small, by having the other cross gain large enough. Also,
note that the condition is independent of the power constraints {Pi, Pj} and noise variance N0.

In particular, if ci,jcj,i

ci,icj,j
> 1 for any i 6= j, j = 1, . . . ,M , we can achieve any Pareto efficient

rate vector with frequency division multiplexing (FDM). In this case, the maximization of any
utility U(R1, . . . , RM) that is concave and non-decreasing on (R1, . . . , RM) results in a concave
optimization problem, which can be solved efficiently. Specifically, this is the case for Usum and
UPF .

When the conditions of Theorem 2 are not satisfied, we can use techniques such as Lagrangian
methods to solve the problem of maximizing U(R1, . . . , RM) with tractable complexity.

Throughout this section we have implicitly assumed that the M systems cooperate to maximize a
global utility function by choosing appropriate power allocations. This assumption may be realistic
when the different systems are jointly designed with a common goal, are complying with some
standard or regulation, or are in fact transmitter-receiver pairs of a single global system.

However, in a spectrum sharing scenario where regulations may be lax and systems may be
competing with one another to gain access to the shared medium, assuming selfish behavior may
be more realistic. In the next section we analyze how the lack of cooperation among systems may
affect the set of achievable rates.



IV. NON-COOPERATIVE SCENARIOS

We will consider the same model introduced in Section II under the assumption that the different
systems behave selfishly and rationally. We associate to each system i a utility function Ui(Ri),
which we assume concave and increasing in Ri. The systems are selfish in the sense that they only
try to maximize their own utility. The rationality assumption means that each system will never
choose a strictly dominated strategy3.

We analyze the set of achievable rates in this non-cooperative scenario using non-cooperative
game theory. We first consider a static game of complete and perfect information, usually referred
to in the literature as the Gaussian Interference Game [4].

The game has M players, the M systems. The strategy space Si of system i is the set of power
allocations pi(f), f ∈ [0,W ] that are continuous almost everywhere and that satisfy the power
constraint (3). A strategy si for user i is the choice of power allocation pi(f). For a given strategy
profile (s1, . . . , sM) the rate of user i is given by (2). For concreteness will consider Ui(Ri) = Ri,
but we note that all the results of this section apply to any choice of concave and increasing
utilities. The players play simultaneously, and know the utility functions of all the other players
(N0, {ci,j}i,j, {Pi}M

i=1,W are common knowledge). A strategy profile {s∗i }M
i=1 is a Nash Equilibrium

(N.E.) of the game if

Ri(s
∗
1, . . . , s

∗
M) ≥ Ri(s

∗
1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
M) for all si ∈ Si, i = 1, . . . ,M (6)

A direct consequence of the flat-fading and white noise assumption is the following fact:
Fact 1: The frequency-flat allocations pi(f) = Pi/W, f ∈ [0,W ] for i = 1, . . . ,M form a Nash

Equilibrium of the Gaussian Interference Game.
This means that the best possible strategy for a given system is to spread its available power over

the total bandwidth whenever all the interfering systems are spreading their signals. Fact 1 can be
understood by noting that the best response of a system to a strategy profile of the other systems is
to waterfill4 the available power over the noise+interference seen. When all the other systems use
flat allocation, the waterfilling power allocation is flat, and it follows that flat allocations are best
responses to each other.

If the players randomize their actions, the (mixed) strategy of each player is the choice of
probability distribution used for the randomization. The utility that each user gets is the expected
utility, averaged over the random choices of actions of all the players. Taking into account these
changes in the definition of the strategies and the utilities, the concept of a mixed strategy Nash
equilibrium can be defined exactly as before.

When studying the set of N.E., one needs to consider both pure and mixed strategies. However, in
the case of the Gaussian Interference Game it turns out that we need only consider pure strategies.

Theorem 3: The Gaussian Interference Game can only have pure strategy Nash equilibria. That
is, every mixed strategy N.E. of the game must consist of atomic distributions with a single atom,
and therefore is a pure strategy N.E.

If the channel gains across systems are sufficiently small the full-spread N.E. is the only N.E.
of the Gaussian game. The following theorem gives a sufficient condition for the uniqueness of the
spread spectrum N.E.

3A strategy si for player i is strictly dominated by strategy s′i if Ui(s1, . . . , si−1, s
′
i, si+1, . . . , sM ) <

Ui(s1, . . . , si−1, si, si+1, . . . , sM )) for each (s1, . . . , si−1, si+1, . . . , sM ) that can be constructed from the other players’
strategy spaces.

4The waterfilling power allocation consists of distributing the available power as if pouring water in a container whose bottom is
given by the noise+interference level. This power allocation maximizes the rate of the system for a given Gaussian noise+interference
power spectral density [5].



Theorem 4: If
∑M

j=1
j 6=i

cj,i

ci,i
< 1 for i = 1, . . . ,M then the spread spectrum N.E. is the only N.E. of

the Gaussian Interference Game.
Theorem 4 does not give us any information about the uniqueness of the Nash equilibrium when

the condition
∑M

j=1
j 6=i

cj,i

ci,i
< 1 is not met.

In many cases, the vector of rates that results from the spread spectrum N.E. is not Pareto efficient
(i.e. is not in R∗) so there may be a significant performance loss if the M systems operate in this point
due to lack of cooperation. And in many cases this inefficient outcome is the only possible outcome
of the game. Compare for example the rates obtained by two systems when they use orthogonal
power allocations versus the rates obtained when they operate in the spread spectrum N.E. as the
noise power spectral density N0 → 0. In the spread spectrum N.E. the rates are interference limited
and they are bounded. In contrast, with orthogonal power allocations the rates are noise limited and
can be made arbitrarily large for N0 sufficiently small. This example shows that the inefficiency
resulting from choosing the spread spectrum equilibrium can be arbitrarily large.

The previous example shows that there are situations in which the only possible outcome of the
game is very inefficient, and as a result, there is a large performance degradation due to lack of
cooperation. This negative result can be attributed to the static nature of the game that we defined.

Many wireless systems operate and co-exist with the same set of competing systems over a long
period of time (days, months, years). In this context, it may be more reasonable to model the
scenario as a repeated (or dynamic) game where systems play multiple rounds, remembering the
past experience in the choice of the power allocation in the next round. We will consider an infinite
horizon repeated game, where the Gaussian Interference Game is repeated forever. The utility of
each player is defined by

Ui = (1− δ)
∞∑

t=0

δtRi(t) (7)

where Ri(t) is the utility of user i in the stage game at time t, and δ ∈ (0, 1) is a discount factor
that accounts for the delay sensitivity of the systems. At the end of each stage, all the players can
observe the outcome of the stage-game and can use the complete history of play to decide on the
future action. A strategy in the repeated game is a complete plan of action, that defines what the
player will do in every possible contingency in which he may need to act.

One property of this repeated game is that sequences of strategy profiles that form a N.E. in the
stage game, form a N.E. in the dynamic game5. Furthermore, the dynamic game allows for a much
richer set of N.E. This is an advantage from the point of view of policy making or standardization.
The systems can agree through a standardization process to operate in any N.E. of the dynamic
game. Having many equilibrium points to choose from gives more flexibility in obtaining a fair
and efficient resource allocation. A natural question that arises is what set of rate vectors can be
supported as a N.E. of the repeated game. The following theorem, a general version of which is due
to Friedman [6], [7], gives a sufficient condition for the rate vector (R1, . . . , RM) to be achievable
as the resulting utilities in a N.E. of the repeated game.

Theorem 5: Let RSS
i be the rate of system i when all the systems spread their power over the

bandwidth W , i.e. the rate obtained in the spread spectrum N.E. There exists a sub-game perfect
N.E.6 of the dynamic Gaussian Interference Game with utilities (U1, . . . , UM) = (R1, . . . , RM)

5For the reader familiar with game theory, these equilibria are in fact sub-game perfect Nash equilibria.
6The sub-game perfect N.E. is a refined and stronger version of the N.E. concept defined before. It guarantees that the N.E. does

not arise due to unbelievable threats.



whenever (R1, . . . , RM) ∈ R and Ri > RSS
i for i = 1, . . . , M for a discount factor δ sufficiently

close to 1.
Theorem C of [8] states that any utility vector that Pareto dominates the payoffs of a Nash

equilibrium of the stage game can be supported by a sub-game perfect N.E. of the repeated game for
a discount factor δ sufficiently close to 1. This Folk theorem is due to Friedman [6], [7], although he
considered only Nash equilibria instead of perfect equilibria in his work. In the Gaussian Interference
Game the spread-spectrum allocations form a N.E. (see Fact 1), and we can use (RSS

1 , . . . , RSS
M ) as

the payoff vector of the N.E. of the stage game in the Theorem above.
Let {pi(f)}M

i=1 be the power allocations that result in the rate vector (R1, . . . , RM) (which always
exist since (R1, . . . , RM) ∈ R). The strategy that each system follows to obtain the rate vector
(R1, . . . , RM) in Theorem 5 is the following trigger strategy:

• at t = 1: use power allocation pi(f).
• at t = t0: if at time t = t0− 1 every user j ∈ {1, . . . , M} used the power allocation pj(f) then

use pi(f). Otherwise use the power allocation Pi/W for f ∈ [0,W ]

The idea behind this strategy, is to ”cooperate” by using the required power allocation as long
as all the other systems cooperated in the previous stages. As soon as at least one system deviates
from the ”good” behavior, a punishment is triggered where all the other systems spread their powers
forever. Since the rates obtained by the systems once the punishment is triggered are lower than
those obtained with cooperation, it is in the system’s own interest to cooperate. Friedman’s analysis
shows that if δ is not too small, the above set of strategies forms a sub-game perfect N.E.. The sub-
game perfection property of the N.E. guarantees that each system will indeed apply the punishment
once the punishing situation arises. This property makes the threats believable.

Theorem 5 gives us a sufficient condition for a rate vector (R1, . . . , RM) to be achievable through
a N.E. But if the condition of the theorem is not met we may still have hope to find some other
N.E. to support the desired vector of rates. A natural question to ask is if there are other N.E. that
result in utilities (R1, . . . , RM) with some Ri < RSS

i . The following theorem answers this question
negatively and provides a converse to Theorem 5.

Theorem 6: The rate RSS
i is the reservation utility of player i in the Gaussian Interference Game.

That is, player i can obtain a utility at least as large as RSS
i by using the power allocation pi(f) =

Pi/W , f ∈ [0, W ] regardless of the power allocations used by the other players. Therefore, the rate
Ri obtained by user i in any N.E. of the Gaussian Interference Game must satisfy Ri ≥ RSS

i . The
same statement holds for the repeated Gaussian Interference Game.

The proof of Theorem 6 shows that for a white Gaussian input, the worst possible Gaussian
interference of given power is white. Since the power of each system is bounded to Pj , the total
interference power seen by system i is bounded to

∑
j 6=i cj,iPj . If system i uses a white input, the

worst case interference is obtained when all the other systems spread their powers, and it follows
that a rate at least as large as RSS

i is always achieved. Therefore, there is no incentive for player i

to play any strategy that results in a utility smaller than RSS
i .

An immediate consequence of Theorems 5 and 6 is that if the desired operating point (R1, . . . , RM)

(i.e. the maximizer of a desired global utility) is component-wise greater than the spreading rate
vector (RSS

1 , . . . , RSS
M ) there is no performance loss due to lack of cooperation. However, when this

condition is not satisfied, the best that one can do is to find the point in R∗ that is component-wise
greater than (RSS

1 , . . . , RSS
M ) and that maximizes the desired utility.
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Consider two scenarios where a strong system (1) coexists with a weak system (2). In scenario (a)
all the channel gains are of the same order, so while the strong system interferes the weak system,
the opposite is not true. In scenario (b) the transmitter of the weak system is close to the receiver
of the strong system, so both systems can generate significant interference to each other. Figure
2 shows the achievable rate regions, with and without cooperation in both scenarios. We see that
in scenario (a) the optimal sum rate point lies within the achievable region in the non-cooperative
setting. However, the optimal proportional fair point lies outside of this set and cannot be supported
without cooperation. The best that one can do in the non-cooperative setting is to operate in the
point indicated in the figure. In scenario (b) both the optimal sum rate and optimal proportional fair
rates are achievable in the non-cooperative setting.

In the cooperative case with strong interference the optimality of FDM implies that the specific
values of the cross gains have no influence on the achievable region. However this is not true in the
non-cooperative setting. This is because large cross gains enable the systems to apply punishments,
and hence achieve a good N.E. through believable threats. In scenario (b) the large value of c2,1

allows system 2 to punish system 1 whenever it departs from the proportional fair allocation.
To further illustrate the concepts introduced in this and the previous section, consider a two user

scenario and assume that we use the proportional fair utility UPF to measure the global performance.
Without loss of generality we assume that c1,1 = c2,2 = 1, W = 1 and N0 = 1. Also we take
P1 = P2 = P and analyze the results in terms of the SNR = P/N0. At a given SNR we can control
the asymmetry between the two systems by varying the cross gains c1,2 and c2,1.

For a fixed set of parameters, using the results of Section III we optimize the power allocations
to maximize the proportional fair metric, obtaining R∗

1 and R∗
2 as the resulting rates. In the non-

cooperative scenario, R∗
1 and R∗

2 can only be supported by a N.E. if R∗
1 ≥ RSS

1 and R∗
2 ≥ RSS

2 . If
these inequalities are not satisfied, we obtain the best possible solution for the non-cooperative case

by maximizing log(R1) + log(R2) subject to the constraint Ri ≥ RSS
i , i = 1, 2, being R̃1 and R̃2

the corresponding optimal rates. If R∗
i = R̃i for i = 1, 2 we conclude that there is no loss due to

lack of cooperation. If R∗
i > R̃i for i = 1 or i = 2 we measure the loss due to lack of cooperation

using maxi∈{1,2} 100(R∗
i − R̃i)/R

∗
i , i.e. the percentage loss in rate for one of the systems. Note that

the other system will have a rate larger than the one obtained with cooperation.
In Figure 3 we see that for low SNR, the region of rate pairs (c1,2, c2,1) for which there is a loss
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Fig. 3. Contour plots of (R∗i − R̃i)/R∗i (%) (percentage of rate loss with respect to the cooperative solution) as a function of the
cross gains c1,2 and c2,1, for SNR = −10, 10dB.

due to lack of cooperation is large, but this loss is quite small (about 5% in the worst case seen in
the figure). As the SNR increases, this region becomes progressively smaller, but the corresponding
performance loss is more significant. For SNR = 10dB this performance loss can be as large as
50% of the proportional fair rates, but this only occurs in very asymmetric situations.

At low SNR performance is limited by noise not interference, so whether the systems cooperate
or not does not have much influence in performance. At larger SNRs, interference becomes the
dominant performance limiter. In very asymmetric situations the spread spectrum point (RSS

1 , RSS
2 )

is such that RSS
1 or RSS

2 is large. In either of these cases, one system obtains a large enough
rate with the spread spectrum allocations, and a threat of the other system to apply the spreading
punishment is not effective to modify its behavior. Using Theorem 6 we see that if RSS

1 or RSS
2 is

large, the set of rates achievable in the non-cooperative situation is quite limited, and often it does
not include the optimal cooperative point. Fortunately, the level of asymmetry required to reach this
unfair situation increases with SNR. The same qualitative behavior should be observed with other
performance metrics and larger number of users.

The plots of Figure 3 illustrate the performance loss due to lack of cooperation when there is
asymmetry in the cross gains between the systems. One can do a similar analysis for the case when
the source of asymmetry is the transmission power instead of the cross gains.

V. NON-GAUSSIAN SIGNALS

The model introduced in Section II assumed that each system generated its codebook randomly
using a Gaussian distribution. We now consider a more general model in which the different systems
generate their codebooks using arbitrary distributions subject to a mean power constraint. We analyze
whether Theorems 5 and 6 hold in this more general setting.

One can imagine that with more freedom in the choice of input distributions, it may be possible
to exert a stronger punishment over a misbehaving system. In addition, a misbehaving system may
want to find its most robust input signal to maximize its rate once the punishment is triggered. When
system i misbehaves and the remaining systems apply a punishment, the interference observed at
the receiver of system i has a maximum power given by

∑
j 6=i cj,iPj . It is possible to analyze the

rates that system i gets for different input and punishment signals by considering a game between
a sender x and an interferer z. Let Y = X + Z, and assume that X ∈ CN and Y ∈ CN are



independent, zero mean, circularly symmetric random vectors with covariance matrices KX and
KZ subject to trace constraints tr(KX) ≤ PX and tr(KZ) ≤ PZ . The strategy of each player is to
choose a distribution subject to the power constraint. Define the payoff of player x to be I(X;Y)

and the payoff of player z to be −I(X;Y). Since the payoffs sum to a constant (i.e. 0) the game
is a zero-sum game. In our context PX = ci,iPi and PZ =

∑
j 6=i cj,iPj .

The sender should choose its distribution pX to solve suppX
infpZ

I(X;Y) and the interferer should

choose its distribution pZ to solve infpZ
suppX

I(X;Y). In both cases, the supremum and infimum
are taken over all distributions satisfying the power constraints PX and PZ respectively. In this way
the sender maximizes its payoff under the worst possible interference, and the interferer maximizes
its payoff when the sender can adapt its signal to the observed interference. It turns out that the
game has a saddle point and a saddle value, that is, suppX

infpZ
I(X;Y) = infpZ

suppX
I(X;Y)

which is achieved when both the input and interfering signals are white and Gaussian [10].
It follows that the strongest punishment that can be applied over a misbehaving system is achieved

when all the other systems use white Gaussian signals. Therefore, the punishments used in Theorem
5 should still be white and Gaussian even if we have the freedom to choose other distributions.
Moreover, by using a white Gaussian signal any system i can obtain a rate at least as large as RSS

i

regardless of the distribution of the interfering signals. Therefore Theorem 6 still holds under the
more general model that we consider here. In particular, it is not possible to achieve any rate vector
with a component Ri < RSS

i even allowing for arbitrary input distributions.
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