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Abstract — The capacity of the two-user Gaus-

sian interference channel has been open for thirty

years. The understanding on this problem has been

limited. The best known achievable region is due to

Han-Kobayashi but its characterization is very com-

plicated. It is also not known how tight the existing

outer bounds are. In this work, we show that the ex-

isting outer bounds can in fact be arbitrarily loose in

some parameter ranges, and by deriving new outer

bounds, we show that a simplified Han-Kobayashi

type scheme can achieve to within a single bit the

capacity for all values of the channel parameters. We

also show that the scheme is asymptotically optimal

at certain high SNR regimes. Using our results, we

provide a natural generalization of the point-to-point

classical notion of degrees of freedom to interference-

limited scenarios.

I. Introduction

Interference is a central phenomenon in wireless com-
munication when multiple uncoordinated links share a
common communication medium. Most state-of-the-art
wireless systems deal with interference in one of two ways:

• orthogonalize the communication links in time or
frequency, so that they do not interfere with each
other at all;

• allow the communication links to share the same de-
grees of freedom, but treat each other’s interference
as adding to the noise floor.

It is clear that both approaches can be sub-optimal. The
first approach entails an a priori loss of degrees of freedom
in both links, no matter how weak the potential interfer-
ence is. The second approach treats interference as pure
noise while it actually carries information and has struc-
ture that can potentially be exploited in mitigating its
effect.

These considerations lead to the natural question of
what is the best performance one can achieve without
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making any a priori assumptions on how the common
resource is shared. A basic information theory model
to study this question is the two-user Gaussian interfer-
ence channel, where two point-to-point links with addi-
tive white Gaussian noise interfere with each other (Fig-
ure 1). The capacity region of this channel is the set of
all simultaneously achievable rate pairs (R1, R2) in the
two interfering links, and characterizes the fundamental
tradeoff between the performance achievable in the two
links in face of interference. Unfortunately, the problem
of characterizing this region has been open for over thirty
years. The only case in which the capacity is known is
in the strong interference case, where each receiver has
a better reception of the other user’s signal than the in-
tended receiver [1, 2]. The best known strategy for the
other cases is due to Han-Kobayashi [1]. This strategy is
a natural one and involves splitting the transmitted infor-
mation of both users into two parts: private information
to be decoded only at own receiver and common infor-
mation that can be decoded at both receivers. By decod-
ing the common information, part of the interference can
be cancelled off, with the remaining private information
from the other user treated as noise. The Han-Kobayashi
strategy allows arbitrary splits of each user’s transmit
power into the private and common information portions
as well as time sharing between multiple such splits. Un-
fortunately, the optimization among such myriads of pos-
sibilities is not well-understood, so while it is clear that it
will be no worse than the above-mentioned strategies as
it includes them as special cases, it is not very clear how
much improvement can be obtained and in which param-
eter regime would one get significant improvement. More
importantly, it is also not clear how close to capacity can
such a scheme achieve and whether there will be other
strategies that can do significantly better.

We recently made progress on this state of affairs by
showing that a very simple Han-Kobayashi type scheme
can in fact achieve within 1 bits/s/Hz of the capacity
of the channel for all values of the channel parameters.
That is, for all rate pairs (R1, R2) on the boundary of the
achievable region, (R1 +1, R2 +1) is not achievable. This
result is particularly relevant in the high SNR regime,
where the achievable rates are high and in fact grow un-
bounded as the noise level goes to zero. In fact, in some



high SNR regimes, we can strengthen our results to show
that our scheme is asymptotically optimal. In this confer-
ence paper, we will focus on characterizing the symmetric
rate of the symmetric interference channel. In a subse-
quent paper, we will present the general results.

The key feature of the scheme is that the power of
the private information of each user should be set such
that it is received at the level of the Gaussian noise at the
other receiver. In this way, the interference caused by the
private information has a small effect on the other link
beyond what is already caused by the noise. At the same
time, quite a lot of private information can be conveyed
in its own link if the direct gain is appreciably larger than
the cross gain.

To prove that this scheme is within one bit of optimal-
ity, we need good outer bounds on the capacity region of
the interference channel. The best-known outer bound is
based on giving extra side information to one of the re-
ceivers so that it can decode all of the information from
the other user (the Z-channel and related bound). It turns
out that while this bound is sufficiently tight in some pa-
rameter regimes, it can get arbitrarily loose in others. We
derive new outer bounds to cover for the other parame-
ters, and show that a very simple Han-Kobayashi type
scheme can get within 1 bits/s/Hz of this outer bound
for all range of parameters.

The rest of the paper is structured as follows. In Sec-
tion II, we describe the model. The main results are
described in Section III. Using our results, we derive in
Section IV a notion of generalized degrees of freedom. We
conclude our work in Section V.

II. Model

In this section we describe the model to be used in the
rest of this work. We consider a two-user Gaussian inter-
ference channel. In this model there are two transmitter-
receiver pairs, where each transmitter wants to commu-
nicate with its corresponding receiver (cf. Figure 1).
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Figure 1: Two-user Gaussian interference channel.

This channel is represented by the equations:

y1 = h1,1x1 + h2,1x2 + z1

y2 = h1,2x1 + h2,2x2 + z2

where for i = 1, 2, xi ∈ C is subject to a power con-
straint Pi, i.e., E[|xi|2] ≤ Pi, and the noise processes
Zi ∼ CN (0, N0) are i.i.d. over time. For convenience
we will denote the power gains of the channels by gi,j =
|hi,j |2, i, j = 1, 2.

It is easy to see that the capacity region of the interfer-
ence channel depends only on four parameters: the signal
to noise and interference to noise ratios. For i = 1, 2, let
SNRi = gi,iPi/N0 be the signal to noise ratio of user i, and
INR1 = g2,1P2/N0 (INR2 = g1,2P1/N0) be the interference
to noise ratio of user 1 (2). As will become apparent from
our analysis, this parameterization in terms of SNR and
INR is more natural for the interference channel, because
it puts in evidence the main factors that determine the
channel capacity.

For a given block length n, user i communicates a mes-
sage mi ∈ {1, . . . , 2nRi} by choosing a codeword from
a codebook Ci,n, with |Ci,n| = 2nRi . The codewords
{ci(mi)} of this codebook must satisfy the average power
constraint:

1

n

n
∑

t=1

|ci(mi)[t]|2 ≤ Pi

Receiver i observes the channel outputs {yi[t] : t =
1, . . . , n} and uses a decoding function fi,n : C

n → N

to get the estimate m̂i of the transmitted message mi.
The receiver is in error whenever m̂i 6= mi. The average
probability of error for user i is given by

ǫi,n = E[P (m̂i 6= mi)]

where the expectation is taken with respect to the ran-
dom choice of the transmitted messages m1 and m2. Note
that due to the interference among users, the probabil-
ity of error of each user may depend on the codeword
transmitted by the other user.

A rate pair (R1, R2) is achievable if there exists a fam-
ily of codebook pairs {(C1,n, C2,n)}n with codewords sat-
isfying the power constraints P1 and P2 respectively, and
decoding functions {(f1,n(·), f1,n(·)}n, such that the av-
erage decoding error probabilities ǫ1,n, ǫ2,n go to zero as
the block length n goes to infinity.

The capacity region R of the interference channel is
the closure of the set of achievable rate pairs.

III. Symmetric interference channel and

symmetric capacity

In order to introduce the main ideas and results in the
simplest possible setting, in this paper we focus our anal-
ysis of the interference channel capacity region by consid-
ering a symmetric interference channel and the symmetric
rate point.

In the symmetric interference channel we have g1,1 =
g2,2 = gd, g1,2 = g2,1 = gc and P1 = P2 = P , or equiv-
alently, SNR1 = SNR2 = SNR and INR1 = INR2 = INR.
Since the capacity region is known in the strong interfer-
ence case when INR/SNR ≥ 1, we will focus on the weak
interference case where INR/SNR < 1 (i.e. gc/gd < 1).



A natural operating point in the symmetric channel
is the symmetric rate point (or the symmetric capacity):
this is the point in the capacity region that solves the
optimization problem:

Csym =

{

Maximize: min{R1, R2}
Subject to: (R1, R2) ∈ R

Due to the convexity and symmetry of the capacity re-
gion of the symmetric channel, the symmetric rate point
maximizes the sum rate R1 + R2 and so the symmetric
capacity is half the sum capacity of the symmetric chan-
nel.

We will use a simple communication scheme that is
a special case of the general type of schemes introduced
by Han and Kobayashi in [1]. Let us first describe the
general Han-Kobayashi setup. For a given block length
n user i chooses a private message from codebook Cu

i,n

and a common message from codebook Cw
i,n. These code-

books satisfy the power constraints Pu and Pw with
Pu + Pw = P . The sizes of these codebooks are such
that |Cu

i,n| · |Cw
i,n| = 2nRi . After selecting the correspond-

ing codewords user i transmits the signal xi = c
u
i + c

w
i

by adding the private and common codewords. The pri-
vate codewords are meant to be decoded by receiver i,
while the common codewords must be decoded by both
receivers.

The general Han and Kobayashi scheme allows to gen-
erate the codebooks using arbitrary input distributions,
and allows to do time sharing between multiple strate-
gies. We will consider a simple scheme where the code-
books are generated by using i.i.d. random samples of a
Gaussian CN (0, σ2) random variable with σ2 = Pu, Pw.
We also choose Pu such that gcPu = N0, i.e. the in-
terference created by the private message has the same
power as the Gaussian noise. This is equivalent to choos-
ing Pu/N0 = SNR/INR, which is possible only if INR > 1.
This we assume for now. In addition, we use a single
common-private split, i.e. we do not do time sharing.
With this simple Han and Kobayashi scheme we obtain a
symmetric rate:

RHK

= min

{

1

2
log(1 + INR + SNR) +

1

2
log

(

2 +
SNR

INR

)

− 1,

log

(

1 + INR +
SNR

INR

)

− 1

}

(1)

which can be derived by a straightforward computation.
In order to assess how good our communication scheme

performs, we can compare the symmetric rate achieved
with an upper bound. We can obtain this upper bound by
considering half of any upper bound to the sum capacity
of the interference channel. One such upper bound is the
sum capacity of the Z-channel [3–5], from which we obtain

the following upper bound to the symmetric capacity:

RZ =
1

2
log (1 + SNR) +

1

2
log

(

1 +
SNR

1 + INR

)

(2)

Comparing (1) and (2), we can see that the gap be-
tween this bound and the first term in (1) is always less
than 1 for all values of SNR and INR. Thus, when the
first term is the smaller one, our scheme is within 1 bit of
the symmetric capacity. On the other hand, there exist
values of SNR and INR such that the second term of (1)
is arbitrarily smaller than the first term. Indeed, if for
example SNR ≫ 1 INR ≫ 1 and SNR ≫ INR

2, the first
term is asymptotically equal to:

log SNR − 1

2
log INR − 1

while the second term is asymptotically equal to:

log SNR − log INR − 1

and we see that the gap goes to infinity as INR goes to in-
finity. In this parameter regime at least, the gap between
the achievable rate of our scheme and the Z-channel up-
per bound is arbitrarily large.

Remark 1. A slightly better outer bound on the symmet-
ric rate is given in [6]. However, we can show that this
bound has a very similar characteristic to the Z-channel
bound: it is also within one bit of the achievable rate of
our scheme in the first parameter range, and unbounded
in the second range.

This large gap can be due to a very suboptimal scheme,
a loose upper bound, or both. It turns out that the
large gap is due to the looseness of previous known upper
bounds. In order to prove this we need to derive a new
upper bound for the sum rate of the interference channel.

Note that we can think of Z-channel as a genie giv-
ing one receiver the other transmitter’s message in the
original interference channel. In order to derive another
bound we will make use of the help of another kind of
genie. Define

s1 = h1,2x1 + z2

s2 = h2,1x2 + z1

and consider the genie-aided channel where a genie pro-
vides s1 to receiver 1 and s2 to receiver 2 (see Figure 2).

In contrast to the Z-channel bound or the bound de-
rived in [6], the information this genie provides does not
allow either receiver to completely decode the message of
the interfering user. This genie-aided channel is another
interference channel with two outputs per user. The use-
fulness of this genie-aided interference channel is that its
capacity can in fact be explicitly computed. This com-
putable capacity then yields an new upper bound on the
symmetric rate of the original interference channel, as
given in the following theorem.
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Figure 2: Genie-aided two-user Gaussian interference channel. A
genie provides signals s1 to receiver 1 and s2 to receiver 2.

Theorem 1. The symmetric capacity of the symmetric
Gaussian interference channel as defined in Section II,
equation (1) is upper bounded by

RNEW = log

(

1 + INR +
SNR

1 + INR

)

(3)

Combine (2) and (3), we have the following upper
bound on symmetric rate:

RUPPER = min

{

1

2
log (1 + SNR) +

1

2
log

(

1 +
SNR

1 + INR

)

,

log

(

1 + INR +
SNR

1 + INR

)

}

(4)

Comparing (1) and (4), we find that

RUPPER − RHK < 1 (5)

for all range of parameters SNR and INR < 1.
If INR < 1, we cannot let Pu/N0 = SNR/INR. In

this case, by giving all power to the private message, i.e.,
treating interference as noise, we can also get to within
one bit of the symmetric capacity. Thus we have the
following theorem.

Theorem 2. We can achieve to within one bit of the
symmetric capacity for symmetric Gaussian interference
channel by using a simple Han-Kobayashi scheme with
Pu/N0 = min(SNR/INR,SNR), i.e., the interference to
noise ration of the private message is as close to 1 as
possible.

IV. Generalized Degrees of Freedom

At high SNR, it is well known that the capacity of
a point-to-point AWGN link, in bits/s/Hz, is approxi-
mately:

Cawgn ≈ log SNR (6)

The approximation is in the sense that for SNR > 0dB,
the approximation error is within 1 bit. Using our re-
sults, we can derive analogous approximations of the

interference-channel capacity. The symmetric capacity
is approximately:

Csym ≈























log(SNR

INR
) log INR < 1

2
log SNR

log INR
1
2

log SNR < log INR < 2
3

log SNR

log SNR√
INR

2
3

log SNR < log INR < log SNR

log
√

INR log SNR < log INR < 2 log SNR

log SNR log INR > 2 log SNR

(7)

Note that there are five regimes in which the qualita-
tive behaviors of the capacity are different.

The fifth regime is the very strong interference regime
[2]. Here the interference is so strong that each receiver
can decode the other transmitter’s information, treating
its own signal as noise, before decoding its own infor-
mation. Thus, interference has no impact on the per-
formance of the other link. The fourth regime is the
strong interference regime, where the optimal strategy is
for both receivers to decode entirely each other’s signal,
i.e. all the transmitted information is common informa-
tion [1]. Here, the capacity increases monotonically with
INR because increasing INR increases the common infor-
mation rate.

The capacity in the fourth and fifth regimes follow from
previous results. The first three regimes fall into the weak
interference regime, and the capacity in these regimes is
a consequence of the new results we obtain. In these
regimes, the interference is not strong enough to be de-
coded in its entirety. In fact, regime 1 says that if the
interference is very weak, then treating interference as
noise is optimal. Regime 2 and 3 however say that if
the interference is not very weak, decoding it partially
can significantly improve performance. Interesting, the
capacity is not monotonically decreasing with INR in the
weak interference regime.

In point-to-point links, the notion of degrees of freedom
is a fundamental measure of channel resources. It tells us
how many signal dimensions are available for communica-
tion. In the (scalar) AWGN channel, there is one degree
of freedom per second per Hz. When multiple links share
the communication medium, one can think of the mutual
interference as reducing the available degrees of freedom
for useful communication. Our results quantify this re-
duction. Define

α :=
log INR

log SNR
(8)

as the ratio of the interference-to-noise ratio and the
signal-to-noise ratio in dB scale, and

dsym :=
Csym

Cawgn

(9)

as the generalized degrees of freedom per user, then (7)
yields the following characterization:



dsym =























1 − α 0 ≤ α ≤ 1
2

α 1
2
≤ α ≤ 2

3

1 − α
2

2
3
≤ α ≤ 1

α
2

1 ≤ α ≤ 2
1 α ≥ 2.

(10)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

α

d sy
m

Simple Han−Kobayashi scheme
Orthogonalizing scheme
Treating interference as noise scheme

Figure 3: Generalized degrees of freedom per user using different
schemes

This is plotted in Figure 3, together with the perfor-
mance of our baseline strategies of orthogonalizing and
treating interference as noise. Note that orthogonalizing
between the links, in which each link achieves half the
degrees of freedom, is strictly sub-optimal except when
α = 1

2
and α = 1. Treating interference as noise, on

the other hand, is strictly sub-optimal except for α ≤ 1
2
.

Note also the fundamental importance of comparing the
signal-to-noise and the interference-to-noise ratios in dB
scale. This is the parameter that significantly impacts
performance in the interference channel. The relevance
of this in wireless communication is accentuated by the
fact that the dB scale is a natural one to measure SNR’s
and INR’s as wireless channel gains have a very large dy-
namic range.

The approximation log SNR of the AWGN capacity is
not only within 1 bit, but is also asymptotically tight:

lim
SNR→∞

[Cawgn − log SNR] = 0.

We have analogous results in the interference channel
case. If we fix α and letting SNR and INR go to in-
finity, we have the following asymptotic tightness result
of the upper bound (4) for some ranges of α.

Theorem 3. For 0 < α < 1/2 and 1/2 < α < 2/3, the
upper bound in (4) is asymptotically tight in the sense that
the difference between Csym and the upper bound goes to
zero as SNR, INR go to infinity with α fixed.

Note that for α < 1, the asymptotic gap between the
achievable rate of the scheme presented earlier and the
upper bound (4) is in fact exactly 1. For 0 < α < 1/2
and 1/2 < α < 2/3, we were able to modify the scheme
slightly to remove the 1-bit gap asymptotically.

V. Conclusion

.
In this paper we present our results on the symmetric

capacity of the symmetric Gaussian interference channel.
We derive a new outer bound for the symmetric capacity
and show that a simple choice of a Han-Kobayashi scheme
can get to within one bit of the capacity region. Us-
ing these results, we derive simple approximations to the
symmetric capacity in the high SNR, INR regime. Using
these approximations, we generalize the notion of degrees
of freedom from the point-to-point to the interference-
limited scenario. We can also show that the approxima-
tion is asymptotically tight for some range of the param-
eters.
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