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Abstract—The capacity or approximations to capacity of var-
ious single-source single-destination relay network models has
been characterized in terms of the cut-set upper bound. In
principle, a direct computation of this bound requires evaluating
the cut capacity over exponentially many cuts. We show that the
minimum cut capacity of a relay network under some special
assumptions can be cast as a minimization of a submodular
function, and as a result, can be computed efficiently. We use
this result to show that the capacity, or an approximation to the
capacity within a constant gap for the Gaussian, wireless erasure,
and Avestimehr-Diggavi-Tse deterministic relay network models
can be computed in polynomial time. We present some empirical
results showing that computing constant-gap approximations to
the capacity of Gaussian relay networks with around 300 nodes
can be done in order of minutes.

I. INTRODUCTION

Relay networks, where one or more source nodes send
information to one or more destination nodes with the help
of intermediate nodes acting as relays, are often used to
model communication in wireless sensor networks. In sensor
networks, sensor nodes have limited power sources and often
require multi-hop communication with the help of intermediate
nodes to reach the data aggregation centers. To guide the
design of these networks it is of interest to characterize
fundamental communication limits such as the capacity, which
represents the maximum reliable communication rate.

Various communication models for relay networks capture
in an abstract setting different aspects of practical systems.
The wireless erasure network model of [7] captures the effect
of packet losses in the wireless setting. The deterministic
network model of Avestimehr, Diggavi and Tse (ADT) [3]
incorporates broadcast and interference and can be used to
gain insights about communication in more complex models
that incorporate noise. Among these, of special importance
is the Gaussian relay network, which models power limited
transmitters and received signals corrupted by additive white
Gaussian noise.

While the capacity of some network models (e.g. wireless
erasure and ADT) is well characterized, the capacity of the
Gaussian relay network, even in its simplest form with one
transmitter, one relay, and one receiver, is in general unknown.
The best known capacity upper bound is the so-called cut-set
bound. A cut Ω of a network can be considered as a subset
of nodes which includes the source node and excludes the
destination node. For this cut, the capacity F (Ω) is defined
as the maximum rate that information can be transferred form
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the nodes in Ω to the nodes that are not in Ω conditioned on
the fact the information on Ωc (the nodes that are not in Ω) is
known. The cut-set upper bound is the minimum cut capacity
over all the possible cuts.

In the Gaussian setting, there are several capacity lower
bounds based on different communication schemes, such
as amplify-and-forward, decode-and-forward, compress-and-
forward, quantize-and-forward, etc. [4], [6], [16]. Recently,
Avestimehr, et al. [2] made significant progress in the capacity
characterization of Gaussian relay networks by showing that a
quantization and coding communication scheme can achieve a
communication rate within a constant gap of the cut-set upper
bound, where the gap only depends on the number of nodes
in the network (i.e. it is independent of the channel gains
and power levels). However, the evaluation of the achievable
communication rate, which is necessary to implement the
scheme, requires the computation of the cut-set bound for the
network. Assuming that for a given cut the cut capacity is
easy to compute, finding the cut-set upper bound can be a
challenging problem. For a network with n relay nodes there
are up to 2n many different cuts and a greedy algorithm needs
exponential time in the number of relay nodes to compute the
cut-set bound.

In this work we show that the achievable rate of the scheme
of [2] for the Gaussian relay network can be computed in
polynomial time, and as a result, can be computed efficiently.
This result is obtained by showing that the cut capacity of
a fairly large class of networks under the assumption of
independent encoding at the nodes in Ω is a submodular
function. Existing results on minimization of submodular
functions provide algorithms with polynomial running time
O(n5α + n6), where α is the time that it takes to compute
F (Ω) and n is the number of nodes in the network [18].
In addition, there exist possibly faster algorithms without
polynomial time performance guarantees based on Wolfe’s
minimization norm algorithm [11]. In Section V, by simu-
lations, we show that the cut-set bound for a Gaussian relay
network with around 300 nodes can be computed on a laptop
computer in about a minute using a MATLAB package for
submodular minimization provided in [17].

Our results, extend and generalize previous results for the
ADT model. This model can be seen as a high signal-
to-noise-ratio (SNR) approximation of the Gaussian model,
incorporating the effects of broadcasting and superposition of
signals while de-emphasizing the effects of noise. Amaudruz
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et al. [1] showed that the cut-set bound for a layered1 ADT
model can be computed efficiently. They have extended graph
flow algorithms such as Ford-Fulkerson’s in a nontrivial way
to find the maximum possible linearly independent (LI) paths
in the network. They showed that the capacity of the network
is equal to the maximum number of (LI) paths and can
be computed in time O(M · |E| · C5), where M is the
maximum number of nodes per layer, |E| is the total number
of edges and C is the capacity of the network. Moreover,
they showed that the capacity can be achieved by using
a very simple one-bit processing at the relay nodes. Later
Goemans et al. [12] showed that the deterministic model is
a special case of a flow model based on linking systems, a
combinatorial structure with a tight connection to matroids.
As a by-product, they obtained the submodularity of the cut
capacity for layered ADT networks. Using this observation
they provided various algorithms related to matroid theory to
compute the cut capacity of the layered deterministic model
based on finding intersection or partition of matroids. These
results led to faster algorithms to compute the capacity of
large layered ADT networks. In addition, there has been
other extensions on improving the running time of the current
algorithms for computing the capacity of ADT networks [8],
[9], [20], [21].

In addition to showing that the capacity within a constant
gap of the Gaussian relay network can be computed in polyno-
mial time, our results allow us to compute in polynomial time
the capacity of the wireless erasure network. Furthermore, we
provide a simple proof for the computability in polynomial
time of the capacity of the layered and non-layered ADT
networks.

We obtain these results by considering a general framework
to compute the cut-set bound. We assign transmit signal ran-
dom variable Xi to node i ∈ V and we assume the probability
distribution over the signals X1, X2, . . . , Xn to be indepen-
dent, i.e p(X1, X2, . . . , Xn) = p1(X1)p2(X2) · · · pn(Xn). We
also assign received signal random variables Yi’s to each
node. The network is defined by the transition probability
function f(Y1, Y2, . . . , Yn|X1, X2, . . . , Xn). We further as-
sume that the transition probability function is of the form
f1(Y1|X1, . . . , Xn) · · · fn(Yn|X1, . . . , Xn), meaning that the
received signals are independent conditioned on the trans-
mitted signals in the network. For such networks we show
that F (Ω) = I(YΩc ;XΩ|XΩc)2 is submodular with respect
to Ω. Later we show that for ADT networks, the Gaussian
relay network and the wireless erasure network, we can find
p1(X1) · · · pn(Xn) such that minΩ F (Ω) becomes equal to
the capacity or the capacity within a constant gap. In other
words, the min-cut problem for these networks can be cast as
a minimization of a submodular function.

The paper is organized as follows. In Section III we show
that for specific type of networks the cut value, F (Ω), is a

1In a layered network, the nodes in one layer are only connected to the
nodes in the next adjacent layer. In particular, there is no direct connection
from source to destination.

2See Section II for a definition of the notation XΩ, YΩc , etc.

submodular function. We then show in Section IV that for
many wireless network models such as the ADT deterministic
network, Gaussian relay network and wireless erasure network
the capacity or an approximation to the capacity can be cast
as a minimization of F (Ω). Finally, in Section V we describe
results related to solving optimization problems involving
submodular functions. We start by introducing the notation
used in the rest of the paper.

II. NOTATION

Let V denote the set of nodes in the network and |V| its
cardinality. For any subset A of nodes we denote by V\A
or Ac the set of nodes in V that are not in A. We assume
V\A ∪ B = V\(A ∪ B). A cut Ω is defined as a subset of
nodes in V . A cut splits the nodes in the network into two
groups, the nodes that are in Ω and the ones that belong to
V\Ω. Random variables are shown in capital letters such as Xi

and Yi. We use boldface letter for vectors, e.g. x is a constant
vector and X is a random vector. We use XΩ to denote
(Xv1 , Xv2 , . . . , Xv|Ω|) with vi ∈ Ω. The function I(X;Y |Z)
is the mutual information between random variables X and
Y conditioned on random variable Z. With a slight abuse
of notation we use H(X) to denote either the entropy or
differential entropy of the discrete or continuous random
variable X [5]. By Fp we denote a finite field with p elements.
Finally, all the log(·) functions are in base two.

III. SUBMODULARITY OF CUT-SET FUNCTION

Submodularity arises in many combinatorial optimization
problems and large body of research has been developed
on minimizing or maximizing submodular functions under
various constraints.

A submodular function f : 2V → R is defined as a function
over subsets of V with diminishing marginal returns, i.e. if
A,B ⊆ V with A ⊆ B and any v ∈ V\B,

f(A ∪ v)− f(A) > f(B ∪ v)− f(B).

The theorem below establishes the submodularity of the
cut capacity function of a general relay network under some
special assumptions. This theorem will be used in Section IV
to prove that the capacity or an approximation to the capacity
of various specific relay network models can be computed by
minimizing a submodular function.

Theorem 1. Consider a network consisting of nodes in V .
Each node sends a message Xi, i ∈ V and receives Yi, i ∈
V . If the messages are independent p(X1, X2, . . . , X|V|) =
p1(X1)p2(X2) · · · p|V|(X|V|) and conditioned on the sent mes-
sages the received messages are independent, then the function

F (A) = I(XA;YV\A|XV\A) , A ⊆ V

is submodular.

Proof: To show that F (A) is submodular we show that
F (A ∪ a) − F (A) is monotonically non-increasing in A for
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a /∈ A.

F (A∪a) = I(XA∪a;YV\A∪a|XV\A∪a)

(a)
=H(XA∪a|XV\A∪a)−H(XA∪a|YV\A∪a,XV\A∪a)

(b)
=H(XA) +H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

−H(XA|Xa,YV\A∪a,XV\A∪a)

=H(XA) +H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

−H(XA|YV\A∪a,XV\A)

where (a) is the definition of mutual information and (b) is
from the chain rule for the entropy function. Therefore,

F (A∪a)− F (A)

=H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

−H(XA|YV\A∪a,XV\A)

+H(XA|YV\A∪a, Ya,XV\A)

=H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

− I(XA;Ya|YV\A∪a,XV\A)

=H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

−H(Ya|YV\A∪a,XV\A)

+H(Ya|XA,YV\A∪a,XV\A)

= H(Xa|XA)︸ ︷︷ ︸
non-increasing in A

− H(Xa|YV\A∪a,XV\A)︸ ︷︷ ︸
nondecreasing in A

−H(Ya|YV\A∪a,XV\A)︸ ︷︷ ︸
nondecreasing in A

+H(Ya|XV)

where the last equality follows because Ya is independent of
YV\A∪a conditioned on XV . So, F (A ∪ a) − F (A) is non-
increasing in A and thus F (A) is submodular.

IV. WIRELESS NETWORK MODELS

In this section, by applying the result of Theorem 1, we
show that the capacity or an approximation to the capacity for
the ADT deterministic network, Gaussian relay network, and
wireless erasure network can be cast as a minimization of a
submodular function.

A. Deterministic model (ADT)

We start by briefly describing the network model of [3]3. In
this model, each link from node i to node j has an associated
non-negative integer gain nij . Each node i ∈ V transmits a
signal Xi and receives a signal Yi, both in Fq

p where q =
maxi,j nij . At any given time, the received signal at node j
is given by

Yj =
∑

i∈V\{d}

Sq−nijXi (1)

3Please, refer [3] for a more complete description of the model and its
motivation.

where d is the destination node, the shifting matrix S is given
by

S =


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0


and the sums and products are in Fp.

For a given cut Ω of the network, where Ω includes the
source node and excludes the destination node, we can stack
together the input vectors Xi, i ∈ Ω and output vectors
Yi, i ∈ Ωc, and define a transition matrix ΛΩ that gives the
input-output relationship of these vectors according to (1). It
is shown in [2] that the capacity of the deterministic network
is equal to minΩ rank(ΛΩ). We show next in Theorem 2
that rank(ΛΩ) is submodular, and hence the capacity can be
computed by minimizing a submodular function.

Proposition 1. Assume an m × n matrix A over Fp. Let N
be the subspace N def

=
{
x ∈ Fn

p | Ax = 0
}

, and let G be the
set of cosets of N in Fn

p . Pick x̂i to be an element in the ith
coset of N for i = 1, 2, . . . , |G |, and set yi = Ax̂i. Notice that
yi 6= yj if i 6= j. Now, if we choose x uniformly at random
from elements of Fn

p with probability 1/|Fn
p |, then the mapping

Ax maps x to {y1,y2, . . . ,y|G |} uniformly at random with
probability 1/|G |. In addition, the cosets of N form a partition
of Fn

p into pn/|N | sets. Also rank(A) + logp(|N |) = n. Thus,
logp |G | = rank(A).

Theorem 2. For a deterministic model, given a cut Ω assume
ΛΩ is the transition matrix form nodes in Ω to nodes in Ωc.
Set D(Ω) = rank(ΛΩ), then D(Ω) is submodular.

Remark 1. A special case of Theorem 2 for layered ADT
networks was proved in earlier works [12], [21].

Proof: In the network, assume node i sends bi sym-
bols xi,1, xi,2, . . . , xi,bi with xi,j ∈ Fp. We assume xi,j’s
drawn i.i.d. with uniform probability distribution over Fp,
i.e. p(xi,j = q) = 1/|Fp| for all q ∈ Fp. From the
definition of transition matrix, ΛΩ, if we assume for the cut
Ω, s = (s1, s2, . . . , sk)t symbols are being sent from nodes
in Ω and r = (r1, r2, . . . , r`)

t symbols are being received by
nodes in Ωc then r = ΛΩs. Then we can write

I(XΩ;YΩc |XΩc) =H(YΩc |XΩc)−H(YΩc |XΩ,XΩc)

(a)
=H(YΩc |XΩc)

=H(ΛΩs|XΩc)

(b)
= logp |G | = rank(ΛΩ)

where G is the set of cosets of N where N = {s : ΛΩs = 0}.
Equality (a) is because YΩc is a deterministic function of XΩ

and (b) is the result of Proposition 1 and the fact the s has
uniform probability distribution.

Notice that for the independent probability distribution
on the sources the received signals are independent con-
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ditioned on transmitted signals so, based on Theorem 1,
I(XΩ;YΩc |XΩc) which is equal to D(Ω) is submodular.

B. Gaussian relay network

The Gaussian network model captures the effects of broad-
casting, superposition and noise of power constrained wireless
networks. In this model, at any time index (which we omit)
the received signal at node j ∈ V\{s} is given by

Yj =
∑

i∈V\{d}

hijXi +Nj (2)

where Xi ∈ C is the transmitted signal at node i, subject to
an average power constraint E(|Xi|2) 6 1, hij ∈ C is the
channel gain from node i to node j, and Nj ∈ CN (0, 1) is
additive white circularly symmetric complex Gaussian noise,
independent for different j.

It has been show in [19, Theorem 2.1] that using lattice
codes for transmission and quantization at the relays, all rates
R between source {s} and destination {d} satisfying

R 6 min
Ω
I(XΩ;YΩc |XΩc)− |V| (3)

can be achieved, where Ω is a source-destination cut of the
network and XΩ = {Xi, i ∈ Ω} are i.i.d. CN (0, 1). In
addition, the restriction to i.i.d. Gaussian input distributions is
within |V| bits/s/Hz of the cut-set upper bound [2]. Therefore
the rate achieved using lattice codes in the above result is
within 2|V| bits/s/Hz of the capacity of the network.

The following corollary is an immediate consequence of
Theorem 1.

Corollary 1. The function F (Ω) = I(XΩ;YΩc |XΩc) with the
elements of XΩ being i.i.d. CN (0, 1) is submodular.

Due to Corollary 1 the minimization in (3) is the minimiza-
tion of a submodular function and the resulting optimal value
is within 2|V| of the capacity of the network.4.

C. Wireless erasure network

In [7] the authors introduce a special class of wireless
networks, called wireless erasure networks. In these networks,
a directed graph G = (V, E) defines the interconnections
between nodes. To model the broadcast effect of wireless
networks, the signals on all outgoing arcs of any given node
are equal to each other. There is no interference among
multiple arcs arriving at a given node in this model, and the
signals on the various arcs are erased independently of each
other. We assume binary transmitted signals at each node, i.e.
Xi ∈ {0, 1}, i ∈ V\{d}, but all the results can be extended to
models with larger input alphabets. It has been shown in [7]
that the capacity of the network is

C = min
Ω
F (Ω) = min

Ω

∑
i∈Ω

1−
∏
j∈Ωc

εij

 (4)

4Notice that I(XΩ;YΩc |XΩc ) = log det(I + HH†) where H is the
matrix of channel gains from nodes in Ω to nodes in Ωc and H† is the
conjugate transpose of H . Therefore, it is easy to compute the capacity of
each cut.

where εij is the probability of erasure when node i is sending
information to node j. We show in the following theorem that
F (Ω) is submodular.

Theorem 3. The function F (Ω) =
∑

i∈Ω

(
1−

∏
j∈Ωc εij

)
equals I(XΩ;YΩc |XΩc) where Xi are i.i.d. ∼ Bernoulli(1/2)
for i ∈ Ω. Therefore, F (Ω) is submodular.

Proof: For i.i.d. Xi ∼ Bernoulli(1/2), we can write

I(XΩ;YΩc |XΩc)

=H(XΩ|XΩc)−H(XΩ|YΩc ,XΩc)

(a)
=
∑
i∈Ω

(H(Xi)−H(Xi|YΩc))

(b)
=
∑
i∈Ω

(1−H(Xi|YΩc))

=
∑
i∈Ω

(
1−∑

yj∈{1,0,e},j∈Ωc

H(Xi|Yj = yj , j ∈ Ωc)p(Yj = yj , j ∈ Ωc)
)

=
∑
i∈Ω

(
1−H(Xi|Yj = e, j ∈ Ωc)p(Yj = e, j ∈ Ωc)

)
(c)
=
∑
i∈Ω

1−
∏
j∈Ωc

εij

 .

We used in (a) the independence among Xi and the channel
erasures, in (b) the fact that for Xi ∼ Bernoulli(1/2), H(Xi) =
1, and in (c) the fact that for Xi ∼ Bernoulli(1/2), H(Xi|Yj =
e, j ∈ Ωc) = 1 and for independent erasures we have p(Yj =
e, j ∈ Ωc) =

∏
j∈Ωc εij . Theorem 1 can be applied to conclude

that F (Ω) is submodular.

V. ALGORITHMS AND SIMULATIONS

One approach to solve the submodular minimization prob-
lem due to Lovász is based on extension of the set function
f : 2V → R to a convex function g : [0, 1]|V| → R that
agrees with f on the vertices of the hypercube [0, 1]|V|, with
a guarantee that minA⊆V f(A) is equal to minx g(x) for
x ∈ [0, 1]|V|. In this section we assume the normalization
f(∅) = 0.

The Lovász extension g of any set function f can be defined
as follows. For a given x ∈ [0, 1]|V| order the elements of
V such that x(v1) > x(v2) > · · · > x(vn), where x(vi) is
the vith element of the vector x. Set λ0 = 1 − x(v1), λi =
x(vi)− x(vi+1), λn = x(vn), and

g(x)
def
=

n∑
i=1

λif({v1, v2, . . . , vi}).

Define 1∅ = 0 ∈ Rn and 1{v1,v2,...,vi} as an n dimensional
vector such that the coordinates v1, v2, . . . , vi are equal to one
and all the other coordinates are equal to zero. Then, it is
easy to see that x =

∑n
i=0 λi1{v1,v2,...,vi} ,

∑n
i=0 λi = 1

and λi > 0. So, x is a unique linear convex combination
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of some vertices of the hypercube and g(x) is linear convex
combination of values of f on those vertices.

A key result is that f is submodular if and only if its Lovász
extension g is a convex function [13], [10]. In addition, finding
the minimum of the submodular function f over subsets of V
is equivalent to finding the minimum of the convex function
g in the hypercube [0, 1]|V|. The optimization can be done in
polynomial time using Ellipsoid algorithm [13].

There are other algorithms with faster running time to solve
the submodular minimization problem [14], [15], [18]. To
the best of our knowledge, the running time of the fastest
algorithm is in the order of O(n5α + n6), where α is the
time that the algorithms takes to compute f(A) for any subset
A ⊆ V [18]. For ADT networks, Gaussian relay networks, and
erasure networks, α is the time to compute: the rank of n×n
matrices, the determinant of n×n matrices, and equation (4),
respectively.

However, for networks of large size, a complexity of
O(n5α + n6) may still be computationally cumbersome.
As a result, in these cases it is desirable to have faster
algorithms. Recently, Fujishing [10], [11] showed that the
minimization of any submodular function can be cast as a
minimum norm optimization over the base polytope of f ,
Bf = Pf ∩ {x |

∑
i∈V x(i) = f(V)}, where

Pf
def
=

{
x ∈ Rn

∣∣∣ ∀A ⊆ V :
∑
i∈A

x(i) 6 f(A)

}
and the corresponding minimum norm optimization is

minimize ||x||2, subject to x ∈ Bf . (5)

Letting x∗ be the solution of this minimization, the set A∗ =
{vi : x∗(vi) < 0} is the solution to minA f(A). Whether
the above optimization problem can be solved in polynomial
time is an open problem. However empirical studies [11]
have shown that this algorithm has comparable or even faster
running times than the other algorithms with polynomial time
performance guarantees.

In our specific setting, for layered Gaussian relay networks
of size up to around 300 nodes with 4 nodes per layer, we
were able to find the approximate capacity (cf. (3)) in order
of minutes on a laptop computer with a 2.8 GHz AMD Dual-
Core Processor and 4 GB of memory ( see Figure 1). In order
to solve the minimization (5) we used the Matlab package
provided in [17].

REFERENCES

[1] A. Amaudruz and C. Fragouli, “Combinatorial algorithms for wireless
information flow,” SODA ’09: Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, 2009.

[2] A. S. Avestimehr, S. N. Diggavi and D. N. C. Tse, “Approximate
Capacity of Gaussian Relay Networks,” ISIT ’08: IEEE international
Symposium on Information Theory, pp. 474–478, July 2008.

[3] S. Avestimehr, S.N. Diggavi and D. N C. Tse, “A deterministic approach
to wireless relay networks,” Forty-Fifth Allerton Conference, Illinois,
September 2007.

[4] Brett E. Schein, Distributed coordination in network information theory,
Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge,
MA, 2001.

100 101 102 103
10−2

10−1

100

101

102

number of nodes

tim
e 

(s
ec

)

Fig. 1. Running time of minimum norm algorithm for a layered Gaussian
relay network. Each layer has four nodes.

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory, New
York: Wiley, 1991.

[6] T. M. Cover and A. El Gamal, “Capacity Theorems for the Relay
Channel,” IEEE Trans. Info. Theory, vol. 25, no. 5, Sept. 1979, pp.
572–584.

[7] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, M. Effros, “Ca-
pacity of wireless erasure networks,” IEEE Transactions on Information
Theory, vol.52, no.3, pp.789–804, March 2006

[8] J. Ebrahimi, C. Fragouli, “Combinatorial Algorithms for Wireless In-
formation Flow,” under submission in ACM Transactions in Algorithms,
2009. Also available at arXiv:0909.4808v1.

[9] E. Erez, Y. Xu and E. M. Yeh, “Coding for the Deterministic Network
Model,” ITA workshop, San Diego, 2010.

[10] S. Fujishige, Submodular functions and optimization,(Second Edition),
Annals of Discrete Mathematics, Vol. 58, Elsevier, Piscataway, N.J.,
U.S.A., 2005.

[11] S. Fujishige, T. Hayashi, and S. Isotani, The Minimum-Norm-Point
Algorithm Applied to Submodular Function Minimization and Linear
Programming, Kyoto University, Kyoto, Japan, 2006.

[12] M. X. Goemans, S. Iwata and R. Zenklusen, “An Algorithmic Frame-
work for Wireless Information Flow,” Forty–Seventh Annual Allerton
Conference, October 2009.

[13] M. Groetschel, L. Lovasz, and A. Schrijver, “The ellipsoid method
and its consequences in combinatorial optimization,” In Combinatorica,
1:169–197, 1981.

[14] S. Iwata, “A faster scaling algorithm for minimizing submodular func-
tions,” SIAM Journal on Computing, 32(4):833–840, 2003.

[15] S. Iwata and J. B. Orlin, “A simple combinatorial algorithm for submod-
ular function minimization,” In SODA ’09 , pp 1230–1237, 2009.

[16] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and ca-
pacity theorems for relay networks,” IEEE Transactions on Information
Theory, 51(9):3037–3063, September 2005.

[17] R. A. Krause, Matlab Toolbox for Submodular Function Optimization,
http://www.cs.caltech.edu/ krausea/sfo/

[18] J. Orlin, “A faster strongly polynomial time algorithm for submodular
function minimization,” Mathematical Programming, 118(2): 237–251,
2009.
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